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ABSTRACT: Hydrological extremes, in the form of droughts and floods, have impacts on a wide 
range of sectors including water availability, food security, and energy production. Given continuing 
large impacts of droughts and floods and the expectation for significant regional changes projected 
in the future, there is an urgent need to provide estimates of past events and their future risk, 
globally. However, current estimates of hydrological extremes are not robust and accurate enough, 
due to lack of long-term data records, standardized methods for event identification, geographi-
cal inconsistencies, and data uncertainties. To tackle these challenges, this article presents the 
development of the first Global Drought and Flood Catalogue (GDFC) for 1950–2016 by merging 
the latest in situ and remote sensing datasets with state-of-the-art land surface and hydrodynamic 
modeling to provide a continuous and consistent estimate of the terrestrial water cycle and its 
extremes. This GDFC also includes an unprecedented level of detailed analysis of drought and 
large-scale flood events using univariate and multivariate risk assessment frameworks, which 
incorporates regional spatial–temporal characteristics (i.e., duration, spatial extent, severity) and 
global hazard maps for different return periods. This Catalogue forms a basis for analyzing the 
changing risk of droughts and floods and can underscore national and international climate change 
assessments and provide a key reference for climate change studies and climate model evalua-
tions. It also contributes to the growing interests in multivariate and compounding risk analysis.
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D
roughts and floods are two extremes of the hydrological spectrum and have a wide 

range of societal impacts. Historically, droughts and floods have cost $596 billion (U.S. 

dollars) in damages in the early twenty-first century (2000–17) (EM-DAT 2018) and have 

affected more than 3.4 billion people during 1995–2015 (UNISDR 2015). Besides these direct 

costs, impacts can propagate into other sectors due to losses of ecosystem services (e.g., 

Palmer et al. 2009; Mora et al. 2018), disruption of global supply chains (e.g., Haraguchi and 

Lall 2015; in den Bäumen et al. 2015; Cottrell et al. 2019), and increased risk mitigation costs 

(e.g., Kreibich et al. 2017). There is also a growing body of literature exploring the effects of 

droughts and floods on human health (e.g., Hajat et al. 2005; Haines et al. 2006; Fernandez 

et al. 2015; Evans 2019), migration (e.g., Perch-Nielsen et al. 2008; Feng et al. 2010; Black 

et al. 2011; Abel et al. 2019), and conflicts (e.g., Gleick 2014; Maystadt and Ecker 2014; Kelley 

et al. 2015; Ghimire et al. 2015), although there is as yet no consensus on the causal linkages 

between these hydrological extremes and their impacts due to the complexity of physical 

and socioecological systems (e.g., Hajat et al. 2005; Adams et al. 2018; Mach et al. 2019). 

Nevertheless, these studies highlight the societal value of an improved assessment of drought 

and flood risk, whose impacts may further increase as a result of climate change and economic 

development. Evidence from climate model projections shows that climate change will lead 

to increased frequency and intensity of droughts (e.g., Sheffield and Wood 2008b; Orlowsky 

and Seneviratne 2013; Trenberth et al. 2014) and floods (e.g., Milly et al. 2002; Pall et al. 2011; 

Field 2012; Hirabayashi et al. 2013; Arnell and Gosling 2016) at regional scales. This poses 

serious challenges to mitigation and adaptation strategies as defined in recent global (IPCC 

2018), continental (e.g., the Fourth National Climate Assessment; Wuebbles et al. 2017), and 

regional (e.g., California’s Fourth Climate Change Assessment) assessment reports.

To this end, there is a need to improve our understanding of current drought and flood 

risks and how they may change in the future under the influence of climate change and hu-

man activities. However, observational hydrological data from, for example, precipitation 

and streamflow gauges are sparse over many parts of the world, are often short term, and 

usually impacted by anthropogenic influences. Consequently, current drought and flood risk 

estimates are often short term and inconsistent, limited to developed nations, and are often 

associated with large uncertainties (Seneviratne et al. 2012). Addressing these challenges 

requires developing a Catalogue of hydrological extremes and their characteristics, which 

should have long-term data records to enable more robust risk quantification than existing 

short-term global drought (e.g., Heim and Brewer 2012; AghaKouchak and Nakhjiri 2012; Hao 

et al. 2014), flood (e.g., Herold et al. 2011; Ward et al. 2013; Brakenridge 2019) and inundation 

(Pappenberger et al. 2012; Fluet-Chouinard et al. 2015; Ji et al. 2018) products. It also needs to 

be spatially and temporally continuous and consistent, so that risk can be quantified glob-

ally, not only for developed regions [e.g., see recent U.S. flood events compiled by Shen et al. 

(2017) and European drought Catalogue by Lloyd-Hughes et al. (2009)] but also for data-poor 

regions (such as much of Africa). Moreover, drought and flood risk should be quantified in 

a consistent way to enable a comprehensive understanding of both extremes to improve risk 
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assessment and water resources management that can further mitigate impacts. As droughts 

and floods share the same types of interlinked characteristics (e.g., severity, area, duration), 

and potentially linked driving mechanisms, their cooccurrence could contribute to even 

larger impacts than the sum of each individual type of extreme because of the exacerbation 

of human vulnerabilities (e.g., King-Okumu et al. 2018). Therefore, dependence structures 

between the contributing variables should be well represented to avoid the underestima-

tion of the compounding impact that can occur if risk is assessed based on the traditional 

univariate frameworks, which only focus on a single variable (Zscheischler and Seneviratne 

2017; Moftakhari et al. 2017; Hao et al. 2018). In fact, a multivariate risk assessment frame-

work has the advantage to simultaneously consider the interlinkages between different 

impact-contributing factors (e.g., event characteristics or drivers). It allows us to have a more 

comprehensive understanding of the combined impact of extremes and therefore has been 

increasingly recommended by several international guidelines (e.g., European Union 2007).

We are now in a much better position to tackle the above challenges thanks to a series of 

advancements in monitoring, modeling and risk assessment. This includes recent develop-

ment in satellite-based hydrological measurements (e.g., Lettenmaier et al. 2015; Sheffield et 

al. 2018), advances in large-scale land surface and hydrodynamic modeling (e.g., Yamazaki 

et al. 2011; Bierkens 2015) as well as improved risk quantification and event identification 

approaches (e.g., Andreadis et al. 2005; Leonard et al. 2014; He et al. 2017; Hao et al. 2018). 

Leveraging on these advancements, this study aims at developing the first Global Drought 

and Flood Catalogue (GDFC). The GDFC is generated based on 0.25°, long-term (1950–2016) 

and improved land surface and river simulations driven by quality-controlled and consis-

tent meteorological forcings. Although there exists other global-scale drought (e.g., Global 

Drought Information System; Nijssen et al. 2014) and flood (e.g., Dartmouth Flood Observa-

tory; Brakenridge 2019) databases, their short-term data records jeopardize their ability for 

robust risk quantification. In addition, most of them only focus on one type of extreme (either 

droughts or floods) and therefore do not provide a joint picture of how droughts and floods 

evolve together. The GDFC is distinguished from, but also complementary to, existing hazard 

databases from both the univariate and multivariate perspective, ensuring a global-scale and 

robust quantification of these hazards. It could also be used as a reference to evaluate other 

datasets and future changes in droughts and floods.

Overview of approach

The GDFC focuses on droughts and large-scale floods (both pluvial and fluvial). It builds 

upon legacy systems developed previously at global (Sheffield and Wood 2007, 2008a) and 

regional (Sheffield et al. 2014) scales, making use of existing models and datasets, but has 

been enhanced in the following aspects to provide better estimates of the global terrestrial 

hydrological cycle and its extremes (Fig. 1). We first extend the existing long-term global 

meteorological dataset [Princeton Global Forcings (PGF); Sheffield et al. 2006] from 1950 to 

near present (2016), which is also enhanced in its spatial resolution (0.25°) through statistical 

downscaling and corrected for temporal and spatial inconsistencies (see details in appendix A, 

“Enhanced global meteorological forcings” section). This new version (v3) of the PGF is then 

utilized to drive an updated version of the Variable Infiltration Capacity (VIC) land surface 

model (see appendix A, “Enhanced land surface model simulations” section, for details) to 

obtain an improved estimate of soil moisture and runoff variability that is key to understanding 

changes in drought and flood (pluvial and fluvial) risk. We also implement a newly developed 

global-routing and hydrodynamic model Catchment-Based Macro-Scale Floodplain model 

(CaMa-Flood) to explicitly characterize flood stage (e.g., inundation area and water level) 

and river discharge (see appendix A, “Enhanced routing model” section, for model details 

and Fig. S1 in the online supplemental material for streamflow validation results; https://doi.
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org/10.1175/BAMS-D-18-0269.2). Related hydrological variables (e.g., 3-month accumulative 

precipitation from the PGFv3 and monthly soil moisture simulated from VIC) are then trans-

formed to standardized indices (see appendix B, “Standardized indices” section) to identify 

drought and pluvial events at the pixel level based on run theory (appendix B, “Run theory to 

estimate drought and pluvial (defined as large-scale and long-term wet extreme) frequency” 

section). Given the dynamic nature of hydrologic extremes, a joint spatial–temporal analysis 

is performed to investigate how droughts and pluvials propagate, merge (two events merging 

into one) or break up (an event splitting into two or more events separated in space) through 

time and space. We utilize a severity–area–duration (SAD) clustering algorithm (appendix 

B, “Clustering algorithm for drought and pluvial identification” section) to identify spatially 

contiguous drought and pluvial events over six continents (excluding Antarctica) and examine 

Fig. 1. Schematic of the overall framework illustrating three major steps to develop the Global Drought 

and Flood Catalogue (GDFC). Step 1 is generating long-term and consistent hydrologic datasets using 

state-of-the-art physically based hydrologic modeling platform that includes hybrid meteorological forc-

ings (PGFv3), improved land surface modeling (VIC), and enhanced hydrodynamic model (CaMa-Flood). 

Step 2 is robust quantification of drought and flood/pluvial risk based on a suite of statistical postpro-

cessing procedures, including the statistical transformation of hydrologic data into standardized indices 

for drought and large-scale flood identification, spatial and temporal clustering analysis, univariate risk 

analysis, and multivariate dependence modeling. Step 3 is developing a meta-database to deliver products 

and Catalogues (e.g., drought and pluvial inventory at the continental scale, global risk maps for different 

types of hydrological extremes, and an online web interface) that enables dissemination of knowledge 

and data to the wider scientific community.

Unauthenticated | Downloaded 08/10/22 03:02 AM UTC

https://doi.org/10.1175/BAMS-D-18-0269.2


A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M AY  2 0 2 0 E512

the stationarity of their evolution through the estimation of their time-varying frequency (see 

appendix B, “Stationarity of drought and pluvial events” section, for details). Characteristics 

(i.e., frequency, spatial extent, severity) of drought and pluvial events (and their associated 

flooding) are synthesized into a Catalogue with a particular focus on characterizing the 

long-term variability in risk from both a univariate and multivariate perspective (appendix 

B, “Copula-based risk analysis” section).

Deliverables

To enable dissemination of knowledge and data to the wider scientific community and en-

able feedback, a publicly accessible Internet data portal and web interface (http://hydrology 

.princeton.edu/data/hexg/GDFC/) has been developed. This delivers relevant products, including 

continental drought and pluvial Catalogues, global-scale drought and flood (pluvial and flu-

vial) risk maps, long-term meteorological and agricultural standardized indices, the underly-

ing meteorological forcings, and land surface hydrological fluxes and states (Table 1), which 

can be used to underpin climate services (e.g., Hewitt et al. 2012; Goddard 2016; Haigh et al. 

2018). More specifically, these datasets could be utilized by the humanitarian community, 

development funding agencies and insurance companies for risk analysis, investment plan-

ning, and targeted early warning especially over developing countries (e.g., in Africa) with 

sparse data and low coping capacities.

Results

Stationarity and trend of spatially contiguous drought and pluvial frequency. Acknowl-

edging the dynamic nature of droughts and pluvials and their interrelated characteristics 

(e.g., severity, area, and duration), it is necessary to investigate their variation and trends at 

Table 1. Data products included in the Global Drought and Flood Catalogue.

Products Types/variables/indices Data source and description Attributes Format

Catalogue

Drought inventory  
(agricultural and meteorological)

SAD clustering algorithm
Event ID, date, duration, 
spatial extent, severity 

(six continents)
txt, csv

Pluvial inventory  
(agricultural and meteorological)

Hazard maps

Drought frequency  
(agricultural and meteorological) Return period calculated from 

standardized indices

0.25°; duration with 
1–3, 4–6, 7–12, and >12 

months

netCDF4

Pluvial frequency  
(agricultural and meteorological)

Fluvial risk maps

Annual maximum inundation 
fraction and daily streamflow 
estimated from CaMa-Flood 

simulations and GEV distribution

0.25°; 5-, 10-, 20-, 50-, 
75-, 100-, 200-, and 
500-yr return periods

Standardized indices

Standardized precipitation index
Precipitation from PGFv3 

(1950–2016)

0.25°; SPI1, SPI3, SPI6, 
SPI12; daily, monthly, 

yearly netCDF4

Soil moisture percentile
VIC land surface model 

(1950–2016)
0.25°; daily,  

monthly, yearly

Meteorological forcings

Precipitation, 2-m temperature, downward 
surface shortwave radiation, downward 
surface longwave radiation, 2-m specific 
humidity, surface pressure, 10-m wind

PGFv3 (1948–2016)
0.25°; 3-hourly, daily, 

monthly, yearly
netCDF4

Land surface hydrological 
fluxes and states

Evapotranspiration, runoff, soil moisture at 
different layers (0.1 and 1 m), streamflow, 

inundation area and fraction

VIC land surface model and 
CaMa-Flood hydrodynamic model 

(1950–2016)

0.25°; daily,  
monthly, yearly

netCDF4
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the event level. We count the occurrence of spatially contiguous droughts and pluvials using 

the SAD technique and examine the stationarity of event frequency based on time-varying 

occurrence rate and associated long-term trends through a nonparametric Gaussian kernel 

(Fig. 2). Globally, there are 453 and 476 short-duration meteorological droughts and pluvials, 

respectively, with a contiguous area larger than 375,000 km2 from 1950 to 2016. Fewer (200) 

medium-duration events are identified, indicating that prolonged hydrological extremes have 

less persistence and tend to break into short-term events during their evolution. This is also 

evidenced by the soil moisture percentile (SMPct)-based analysis with a reduced number (179) 

Fig. 2. Time-varying occurrence rates (yr-1; bold lines) and 90% confidence bands (shaded area) for spatially 

contiguous short-duration (D
4–6

, 4–6 months) and medium-duration (D
7–12

, 7–12 months) drought (red color) 

and pluvial (blue color) events during 1950–2016 identified through the SAD clustering approach using the 

3-month standardized precipitation index (SPI3; left side of each panel) and soil moisture percentile (SMPct; 

right side of each panel). The upward and downward arrows in each panel indicate statistically significantly 

increasing and decreasing trends, respectively, based on different levels of significance (represented by dif-

ferent numbers of stars). We divide the global land surface (excluding Greenland and Antarctica) into six 

continents (i.e., North America, Europe, South America, Asia, Africa, and Oceania) based on Sheffield et al. 

(2009) and mask out extremely dry regions with annual rainfall less than 100 mm.
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of medium-duration droughts and consequently an increased number of short-term droughts 

(570). Among the six continents, Asia has the largest number of occurrences of both short- and 

medium-duration droughts and pluvials, followed by North America, whereas Oceania has 

the smallest number. This is mainly due to the domain size.

For meteorological extremes [based on 3-month standardized precipitation index (SPI3)], 

globally the frequency of short-term droughts has decreased significantly (p < 0.01), from more 

than eight events per year in the 1950s to roughly six events per year in the 1990s, and then 

stabilizes afterward. There is no statistically significant trend in short-term pluvial frequency 

over the whole study period, but it increases slightly in the first half of the study period and 

decreases dramatically in the second half, with peak occurrence rate around eight times per 

year during the 1980s. Such an out-of-phase relationship in the long-term trend between 

short-term droughts and pluvials is also shown in other continents, including North America 

and Asia, although the decadal fluctuation in event frequency has been dampened due to the 

large size of the region. Short-term meteorological droughts occur less frequently (p < 0.05) 

in recent decades over South America, which is consistent with the decreased probability of 

dry extremes over northeastern South America (Schubert et al. 2016). In contrast, short-term 

meteorological pluvials have a slightly increasing trend over Oceania, although with a reduced 

degree of statistical significance (p < 0.1). For medium-duration events, droughts and pluvials 

occur roughly half as frequently as short-term events and with reduced decadal variability. 

We observe that the occurrence of medium-duration pluvials has become more frequent in 

recent decades over Europe and South America (p < 0.05), whereas medium-duration droughts 

occur more frequently over Asia (p < 0.05). Over Africa, the robust increasing trend of medium-

duration drought occurrence is coincident with the decreased frequency in medium-duration 

pluvials. This is consistent with previous findings arguing that Africa is moving toward a 

drier climate at regional (Liebmann et al. 2014; Diem et al. 2014) and continental (Dai et al. 

2004b; Dai 2011) scales.

The soil moisture–based analysis illustrates a complementary picture of drought and 

pluvial occurrence. Compared to the SPI3-based analysis, frequency estimation using SMPct 

shows an overall reduced decadal variability and a more synchronous and coherent temporal 

evolution between droughts and pluvials, as reflected at both global and regional scales. 

However, over Africa and Oceania, we find opposite temporal trends between short-duration 

droughts and pluvials, with a robust decreasing trend in one extreme contemporaneous with 

robust increasing frequency of the other. Such patterns over Africa show the vulnerability 

of this region to both dry and wet extremes, due to the high variability in soil moisture that 

is partly influenced by the intertropical convergence zone (ITCZ) seasonal footprint (Shef-

field and Wood 2007). Oceania experiences a wetting trend in soil moisture, resulting in 

more frequent pluvials and less frequent droughts (Sheffield and Wood 2008a). We also find 

that, at the global scale, the frequency of short-duration extremes has significantly higher 

magnitude estimated from SMPct compared to that estimated from SPI3, which is mainly 

attributed to the difference in Asia and North America. Regardless of what event index is 

used, the estimated trends are consistent between SPI3 and SMPct for medium-duration 

droughts over North America, medium-duration pluvials over South America and Africa, 

and short-duration pluvials over Oceania. This highlights the dominant role of changing 

precipitation that leads to more frequent meteorological extremes and can translate to ag-

ricultural extremes through the filtering of land surface hydrologic processes. For regions 

lacking such consistency between SPI3 and SMPct, the complexity of hydrologic processes 

(e.g., soil moisture memory effects, snow processes, land–atmosphere coupling) and how 

they respond to long-term changes in precipitation needs further investigation to improve 

our understanding of drought and pluvial occurrence. In summary, the detected trends of 

drought and pluvial frequency are geographically variable and may not be consistent or 
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statistically robust depending on what index is used. Frequency differences between short- 

and medium-duration extremes highlight the need to improve our understanding of how 

prolonged events persist or break up under changing atmospheric conditions and chang-

ing hydrological processes, such as local land–atmospheric feedbacks (Guillod et al. 2015; 

Miralles et al. 2019) and large-scale teleconnections with sea surface temperatures (Pal and 

Eltahir 2002; Wang et al. 2015; Sheffield et al. 2009) that may lead to self-intensification 

and self-propagation of extreme events.

Continental inventory of drought and pluvial episodes. SAD AnAlySiS of continentAl 

DroughtS AnD pluviAlS. Figure 3 shows all agricultural drought and pluvial events with a 

3-month duration. For small-area extent, SAD curves overlap with each other, because dif-

ferent events tend to have similar severity (these are usually localized events). As fraction 

of total area of the continent increases, the SAD curves start to diverge, which is due to the 

increased spatial variability of soil moisture as drought expands to a larger area. Out of the 

six continents, droughts and pluvials identified in Asia generally have smaller fractions of 

spatial coverage (less than 20%), but the absolute area could be large given the domain size. 

In contrast, extremes that occurred in Oceania usually cover a much larger area (e.g., the 

maximum spatial coverage can be more than 80% of the total area). The reduced number 

of occurrences in this region is largely due to the small domain size, and the SAD curves 

are more dispersed compared to other regions. These findings also hold true for SPI3-based 

analysis (Fig. S2). As expected, longer-duration events (6 and 9 months) are rarer (fewer lines 

in Figs. S3–S6). However, these longer-duration events move and propagate to other places 

and therefore become more spatially extensive (e.g., maximum fraction area in Figs. S5 and 

S6 is larger than that in Fig. 3 and Fig. S2).

To further explore the relationship between droughts and pluvials, we slice the 2D SAD 

curves (Fig. 3 for example) within a certain window (horizontal or vertical) and calculate 

the cumulative distribution function (CDF) conditioned upon area and severity for both 

Fig. 3. SAD curves showing the relationship between severity and spatial extent (represented by fraction 

area) for 3-month droughts (left side of each panel) and pluvials (right side of each panel) based on SMPct. 

Each line represents a specific event that is spatially contiguous given the specified duration (3 months 

here). Severity decreases as droughts and pluvials expand to a larger area.
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SMPct- (Fig. 4, Figs. S7 and S8) and SPI3-based index (Figs. S9–S11). We group events into 

large (fraction area ≥ 30%) and small (fraction area ≤ 10%) area as well as high (≥0.9) and low 

(≤0.8) severity categories. We conduct a two-sample Kolmogorov–Smirnov (K-S) test to exam-

ine whether the CDF between droughts and pluvials is statistically significantly different. In 

North America, results show that large-area pluvials are less severe than large-area droughts, 

which holds true for both SMPct- and SPI3-based analysis. However, only the SMPct-based 

results show that smaller-area pluvials are more severe. Moreover, the SMPct-based analysis 

indicates that low-severity pluvials are usually larger than low-severity droughts. However, 

from the meteorological perspective (based on SPI3), pluvials usually have smaller spatial 

extent than droughts (except for the low-severity pluvials with 3-month duration). In Europe, 

short-duration pluvials tend to be less severe than short-duration droughts (e.g., Fig. S9). 

For longer-duration events (i.e., 9 months), large agricultural pluvials (Fig. S8) and small 

meteorological pluvials (Fig. S11) tend to be more severe than droughts. In terms of event 

size, pluvials are generally smaller than droughts in this region, but the significance level 

of the difference varies with duration and severity category. In Asia, meteorological pluvials 

are more severe but slightly smaller compared to meteorological droughts for all durations 

(Figs. S9–S11). For agricultural extremes, statistical differences between droughts and pluvi-

als are only evident for 9-month-duration event (Fig. S8). For such prolonged events, pluvials 

tend to be more spatially extensive and severe than droughts. Pluvials that occurred in South 

America and Africa are less severe than droughts. With a few exceptions (e.g., 3-month low-

severity agricultural extremes and 6-month meteorological extremes), pluvials also tend to 

cover smaller areas than droughts. Oceania pluvials extend to have larger areas than droughts 

and also tend to be more severe.

Among all the drought and pluvial events, the top five events ranked by duration and spa-

tial extent are summarized in Figs. 5 and 6 and Table S1 for each continent. For agricultural 

extremes, North America has the longest-duration (97 months) drought lasting from June 1951 

to June 1959, which also turns out to be the most spatially extensive one with peak extent cov-

ering 83.2% of the total area. For pluvials, the top two longest episodes occurred in Asia (i.e., 

Fig. 4. Comparison of the empirical cumulative distribution function (CDF) between the 3-month droughts 

and pluvials conditioned on area (left side of each panel) and severity (right side of each panel) across six 

continents using SMPct as the event index. The two-sample K-S test is performed for each pair to examine 

whether the differences in CDF between droughts and pluvials are statistically significant. The number 

of stars represents the level of significance.
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Fig. 5. Timeline of the top five drought (pink color) and pluvial (blue color) episodes ranked 

by duration. These events are detected by the SAD clustering algorithm using SPI and SMPct. 

See details in Table S1.

Fig. 6. As in Fig. 5, but events are illustrated based on the rank of the spatial extent.
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81 months from 1965 to 1972 and 61 months from 1959 to 1964). The most spatially extensive 

episode is found in Oceania from April 1973 to November 1974 with the highest coverage up 

to 92.4%, which also has the longest duration (20 months) over Oceania. For meteorological 

extremes, droughts with the longest duration again occur over North America with a similar 

timing (in the 1950s) compared to the SMPct-based results, but with a much shorter duration 

(35 months). Longer-duration pluvials are mainly found in Asia during more recent decades 

(after 2000) compared to those long-lasting episodes occurring in earlier periods (from the 

1950s to the 1970s) as detected from SMPct. Out of the six continents, Oceania has the largest 

meteorological droughts and pluvials, which also tend to cover a larger area than agricultural 

extremes.

continentAl SAD envelope curveS for DroughtS AnD pluviAlS. Based on all individual 

SAD curves (e.g., Fig. 3 and Figs. S2–S6), we extract the maximum bound of severities for 

a given areal fraction to form a set of SAD envelope curves with different durations (Fig. 7 

for droughts and Fig. 8 for pluvials based on SMPct). These envelope curves allow us to 

construct a continental profile of the most severe droughts and pluvials. We find that, for 

prolonged (i.e., 9-month duration) events, severe droughts tend to have larger spatial ex-

tent than severe pluvials for both SMPct- and SPI3-based estimates. For short-duration (3 

and 6 months) events, severe droughts have an overall higher severity than severe pluvials 

for both agricultural (except Africa and Oceania) and meteorological type. Comparison 

between agricultural and meteorological extremes (Figs. 7 and 8 vs Figs. S12 and S13) 

indicates that SMPct-based SAD envelope curves tend to be less stretched out compared 

to SPI3-based envelope curves, especially for short-duration events. This is also true even 

for smaller-area events, as we can see clear differences in severity across SAD envelope 

Fig. 7. Continental SAD envelope curves for drought events with different durations (3, 6, and 9 months, 

represented by different markers). For a particular duration (e.g., 3 months), the curve is generated by 

selecting the maximum bound of severities from all drought events (e.g., left side of each panel in Fig. 

3). Each curve can be made up of different episodes (represented by different colors), as some events are 

more severe for large areas while others could be more severe for localized events (with smaller areas).
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curves with different duration. However, the severity of short-duration events tends to 

overlap with each other based on SMPct. In addition, SPI3-based SAD envelope curves 

tend to consist of fewer event episodes compared to SMPct, except for droughts in North 

America and Africa, as well as pluvials in North America and Oceania. This implies that 

meteorological extremes tend to be dominated by single severe episodes affecting larger 

areas, whereas agricultural extremes tend to be made up of several severe events that 

have limited spatial influence and might occur in different periods or regions. In addition, 

drought and pluvial envelopes estimated from SPI3 have higher severity, larger extent, and 

shallower slope compared to those based on SMPct, although with a few exceptions (e.g., 

all events over North America, 9-month droughts over Europe, 3–9-month pluvials over 

Europe), indicating a lower decreasing rate of severity with increasing area. This further 

implies that as droughts and pluvials develop, meteorological extremes tend to persist over 

a larger domain while maintaining a higher severity compared to agricultural extremes. 

Acknowledging the geographical variations, we discuss major drought and pluvial events 

for each continent in the following sections.

Meteorological droughts and pluvials. This section documents major droughts and pluvials 

for each continent from the meteorological perspective (Figs. S12 and S13). In North America, 

the top two longest droughts (1952–55, 1955–58; see Table S1 and Fig. 5) contribute to the major-

ity of the SAD envelope curves, especially for large fraction of spatial extent. For smaller extent 

and short duration, drought envelopes are mainly made up from the 1976/77 event. These 

results are consistent with the depiction of agricultural droughts (Fig. 7) with similar location 

and spatial coverage. Pluvial envelope curves in this region are steeper compared to drought, 

and the maximum spatial extent is also reduced. The longest-duration pluvial during the 

1960s (1961/62; Table S1) dominates the 9-month envelope curve for smaller extent, whereas 

the 1990s (1992/93 and 1996/97) pluvials (Seager et al. 2005) dominate envelope curves with 

larger extent, which also rank the second and third in terms of spatial extent (Table S1 and 

Fig. 6). Note that the 1992/93 event appears in both SPI3- and SMPct-based envelope curves, 

Fig. 8. As in Fig. 7, but for large-scale pluvial events.
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but the SMPct-based pluvial event has longer duration (i.e., continues to March 1994) likely due 

to soil moisture memory. European drought envelope curves are dominated by the top three 

largest droughts [Table S1 and Fig. 6; for example, the 1953/54 event covering central Europe 

(Briffa et al. 1994) and the 1970s event over British Islands and central Europe (Green 1977; 

Hannaford et al. 2011)], whose maximum spatial coverage can reach to 75%. As for pluvials, 

the envelope curves consist of more spatially disconnected events that span a smaller extent 

compared to droughts. Notable pluvials include the most severe episode over the United King-

dom during 2012/13 (Kendon and McCarthy 2015) and a more recent (2015/16) episode across 

the United Kingdom and Ireland (McCarthy et al. 2016). In Asia, the most spatially extensive 

drought (1975–77) occurred over Kazakhstan and western Russia (Kazhydromet 2006; Schubert 

et al. 2014), which is also the longest, contributing to the tail of the envelopes. The longest 

and largest pluvial identified in this region occurs more recently (2012–16; Table S1), but this 

event contributes to the envelope curve only at very small extent. The majority of the pluvial 

severity envelopes are made up of the 1966/67 event over northern Russia and 2000–02 (the 

second largest) pluvial over Kazakhstan (Ta et al. 2018). According to the SAD envelope curve in 

South America, the fourth largest drought (2015/16; Jiménez-Muñoz et al. 2016; Erfanian et al. 

2017) is also the most severe one for almost all the 3- and 6-month droughts. Interestingly, the 

longest-duration meteorological pluvial (1973–75) dominates almost the entire SAD envelope 

curves for all durations, occurring at similar locations compared to the 1973/74 agricultural 

type pluvial (Fig. 8). In Africa, the largest and longest meteorological droughts all occur dur-

ing the 1980s and 1990s (consistent with those agricultural droughts), among which the top 

three largest ones (two in 1983/1984, 1991/1992) dominate the envelopes. Similarly, pluvial 

envelope curves are dominated by the top two longest (1961/62, 1967/68) and largest (1961/62, 

1951/52) (Hoerling et al. 2006) episodes. Compared to other continents, severe droughts and 

pluvials in Oceania have much larger spatial extent, which can cover up to 90% of the total 

continents. The 1965 and 2002/03 droughts (Mpelasoka et al. 2008) dominate 3- and 9-month 

envelope curves, respectively, whereas points on the pluvial envelope curves come almost 

entirely from the largest and longest pluvial (1973/74).

Agricultural droughts and pluvials. In North America, the 1950s drought (1951–59, Cook et al. 

1999; Sheffield et al. 2009) dominate the 6- and 9-month SAD envelope curves, especially for 

larger spatial extents (covering most of Canada and the central United States), whereas the 

1968–71 drought over northeastern United States and 1976/77 drought over central Canada 

and the northern United States (Cook et al. 1999; Keyantash and Dracup 2004) are the most 

severe for smaller extents and shorter durations. For pluvials, most severe episodes occurring 

in the 1980s dominate the envelope curves. For example, the 1981–84 pluvial is the worst for 

large extents up to 50% fraction (covering the Great Plains, the western United States, and 

Canada), whereas the 1984–89 pluvial is the worst for smaller extents. Note the almost identi-

cal pluvial envelopes for 3- and 6-month durations, which indicates that the 6-month events 

remain at high severity as they propagate. In Europe, the 1953/54 drought (over much of cen-

tral Europe) is the most severe for 3-month duration (Briffa et al. 1994). Almost at the same 

time (1952–54), a severe pluvial event occurred over northwestern Europe, which dominates 

a large proportion of the 3- and 6-month SAD envelope curves. Pluvials that occurred during 

recent periods (e.g., 2012/13 and 1998/99) over northern Europe are the most spatially exten-

sive, with coverage up to 60% of the total area. Different from other continents, drought and 

pluvial envelope curves of Asia are generally inseparable and cover a much smaller fraction 

with much steeper slopes. Part of this could be due to the large size of the continent, which 

has more variable climate and land surface conditions that allow droughts and pluvials to 

split more easily and rapidly and potentially more difficult to persist. Notable events include 

the 1983–87 Siberian drought (Sheffield et al. 2009) and 2007/08 droughts over Middle East 
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(Trigo et al. 2010; Barlow et al. 2016) and northern China, which dominate the SAD envelope 

curves for smaller and larger extents, respectively. Following the 1983–87 drought, wet condi-

tions lead to an almost 5-yr (1987–91) pluvial covering northern China (Qian and Zhu 2001; 

Qian et al. 2003), central Mongolia and central Russia. Although this pluvial does not have 

the longest duration (Table S1), it is the most severe one in Asia for both smaller and larger 

extents. In South America, the latest 2015/16 Amazon drought (Jiménez-Muñoz et al. 2016; 

Erfanian et al. 2017) dominates the envelope curve for all durations, especially for large ex-

tents. A 7-month drought that occurred in 1985 has the highest severity among all the short-

duration and small-extent events. For pluvials, the envelope curves are made up of more 

individual episodes in this continent, especially for smaller events. For larger extents, the 

1973/74 pluvial over Peru, northern Brazil and Argentina (Compagnucci et al. 2002) dominates 

the 6- and 9-month SAD curves. In Africa, droughts are dominated by events that occurred 

in the 1980s and 1990s, with the 1984/85 drought (Tarhule and Lamb 2003; Dai et al. 2004a; 

Sheffield et al. 2009; Zhan et al. 2016) being the most severe one across almost the full range 

of spatial extent and for almost all durations. In contrast, severe pluvials in this continent 

mainly occurred over the Sahel during early 1950s (Folland et al. 1986) and over central Africa 

during the 1960s–70s (Laraque et al. 2001). Compared to other continents, Oceania has the 

smallest slope of severity for both pluvials and droughts, but with the largest possible spatial 

extent up to ~80% (although this is relative to the arid and semi-arid conditions across much 

of the continent). Dominant and widespread droughts mainly occur in the 1960s (White et al. 

2003; Mpelasoka et al. 2008), whereas the widespread 1973/74 pluvial (Plummer et al. 1999) 

contributes almost the entire envelope curve.

Univariate risk analysis of droughts and pluvials. We use run theory to estimate the fre-

quency of drought and pluvial events with different duration categories (short and medium 

term) and generate both agricultural-type (based on SMPct; Fig. 9) and meteorological-type 

(based on SPI3; Fig. S14) global hazard maps (represented by return periods). Overall, the 

spatial distribution of event occurrence is similar between droughts and pluvials, albeit 

with slight local differences, indicating a general equal frequency of these two extremes 

Fig. 9. Maps showing the return period of large-scale (left) drought and (right) pluvial events with (top) 

short-term (4–6 months) and (bottom) medium-term (7–12 months) duration based on SMPct.
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over a long period (about seven decades), which is consistent with previous regional 

studies (e.g., Bhalme and Mooley 1980). This pattern is within our expectation as event 

indices have been standardized and the thresholds (below 20%/above 80%) that define 

droughts/pluvials are symmetrical. Differences will occur spatially and between drought 

and pluvial because of differences in the temporal characteristics of individual events. We 

find that short-duration agricultural-type droughts and pluvials occur more frequently than 

medium-duration events over North America, Europe, Central Asia, Southeast China, the 

northwestern part of South America, southern Africa, and central Australia, where climate 

is more variable. In contrast, high-frequency, medium-duration droughts and pluvials 

based on SMPct are mainly found over high latitudes, including northern Canada and 

Siberia, due to persistent anomalies of soil moisture in cold seasons because of freezing 

temperatures. These medium-duration agricultural extremes also have high frequency 

over northeastern and central China, the Sahel, and the western Andes. Such spatial 

heterogeneity of event frequency is less captured in SPI3-based analysis, highlighting the 

important role and necessity of accounting for the filtering processes of the land surface 

in drought and flood/pluvial hazard assessment.

Multivariate risk analysis of droughts and pluvials. As properties of droughts/pluvials are 

inherently and stochastically correlated, frequency analysis should consider their coupled 

characteristics (i.e., severity, area, and duration) and heterogeneous dependence structures 

within a suitable multivariate setting, instead of using the conventional univariate frame-

work. From the risk assessment perspective, this is important because not accounting for 

the multivariate nature of these extremes can lead to an underestimation of their combined 

impact. To avoid this, we perform probabilistic copula analysis (see appendix B, section 

“Copula-based risk analysis”) to estimate the joint return period of paired properties of se-

verity and area, and focus on medium-duration (≥6 months) droughts/pluvials since these 

events may have larger impact on water resources management. This enables us to quantify 

drought and pluvial risks as well as to accommodate their commonalities and differences 

in a probabilistic and consistent way. We use two examples over Africa (Fig. 10) and North 

America (Fig. S15) to illustrate the importance of considering the dependence structure of 

event characteristics for risk assessment. Strong asymmetric and tail dependence is evi-

dent, where data points are clustered toward the upper-left corner (high severity but small 

extent, especially in Fig. S15). As droughts/pluvials become more spatially extensive, the 

dependence between severity and area decreases due to increased spatial variability of soil 

moisture. Such reduced correlation leads to a wider spread of level curves between different 

return periods (RPs), especially in North America (Fig. S15). Differences in RP-level curves 

also exist between SMPct- and SPI3-based analysis, indicating that meteorological and 

agricultural types of extremes have different risks even for events with the same severity, 

area, and duration. This further reinforces the necessity to consider the joint dependence 

structure between different variables and for different types of extremes. Results show that 

SMPct-based RP-level curves are generally higher than those based on SPI3, which means 

agricultural extremes have smaller return periods than meteorological extremes given the 

same magnitude of severity and area. This implies a higher likelihood of occurrence for 

agricultural extremes and therefore higher risks, because of the strong dependence between 

SMPct-based severity and spatial extent, which is likely due to the soil moisture memory 

effect. Similar analysis can be applied to examine how risk differs between droughts and 

pluvials. In Africa, pluvials have a lower likelihood of occurrence compared to droughts 

as can be seen from the downward shift of pluvial RP-level curves (Fig. 10). However, such 

a difference is subtle in North America (Fig. S15), indicating commensurate risks between 

droughts and pluvials.

Unauthenticated | Downloaded 08/10/22 03:02 AM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M AY  2 0 2 0 E523

The joint frequency analysis indicates that it is not necessary for all characteristics of 

droughts/pluvials to be extreme such that their compound impact is extreme. For instance, 

the 1990/91 meteorological drought in Africa (Fig. 10b) is not the most severe one if risk is 

assessed based on either severity or area independently. However, the joint return period of 

this drought is larger than 100 years indicating a low probability (less than 0.01) of occurrence 

if severity and area are considered simultaneously. Considering such compound impact, the 

1961/62, 1973/74, and 1976 pluvials (Fig. 10c) are exceptional with no historical precedent in 

their severity and area extent. Such events, on average, should occur within an interval of 

more than 100 years. But, in reality, they occur within a time period of 15 years and therefore 

Fig. 10. African (a),(b) droughts and (c),(d) pluvials detected from SAD (red and blue colors) and randomly 

permuted through vine copula (gray color) based on (left) SMPct and (right) SPI3. Isolines denote the 

conditional bivariate return periods (i.e., 5, 20, 100 years) showing a set of possible realizations of area 

and severity that share the same probability. All events have a minimum duration of 6 months.
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may cause more devastating impact. Similar pairs of events (1976 and 1978 pluvials) are also 

identified based on SPI3 (Fig. 10d). This situation can be even worse if exceptional droughts 

and pluvials follow each other over a short period of time, which can magnify the impact of 

individual drought or pluvial events, and puts more pressure on emergency preparedness 

and disaster response. For instance, the exceptional 1988 pluvial in North America (Fig. S15d) 

occurred on the back of the continent’s exceptional 1987 drought, challenging water resources 

planning and management especially for reservoir operations.

Summary and discussion

This study provides a new panoptic view of both pixel-level and event-level drought and flood 

(pluvial and fluvial) risks through the development of the Global Drought and Flood Catalogue 

(GDFC). The GDFC is developed based on enhanced global hydrological model simulations with 

new meteorological forcings (PGFv3), new model processes (VIC and CaMa-Flood), and higher 

spatial resolution (0.25°). Datasets in the GDFC are analyzed to quantify the spatial–temporal 

characteristics (including severity, spatial extent, and duration) of large-scale drought and 

pluvial events with a particular focus on characterizing the long-term trend and variability in 

risk from both univariate and multivariate perspectives. Additional fluvial (inundation and 

streamflow) risk maps are also included in the GDFC (see details in the first section and Figs. 

S16 and S17 in the supplemental material). It should be noted that our estimates are focused 

on large-scale dry and wet extremes and by no means capture small-scale flooding (e.g., as 

compiled by the Dartmouth Flood Observatory; Brakenridge 2019). Nevertheless, this Cata-

logue facilitates our understanding of the changing behavior of these hydrologic extremes 

and can be used for analysis of individual events, their drivers and impacts, risk assessment 

of different types of events, and as a benchmark for model evaluation. Here we only focus on 

the hazard component of risk, but this is a fundamental component of the full-impact risk 

assessment that also incorporates vulnerability and exposure. The following findings are 

worthy of emphasis and exploration in future work.

Commonalities and differences between droughts and pluvials. Although numerous 

studies exist on drought and flood risk, most of them treat drought and flood separately. 

Development of the GDFC enables the study of the commonalities and differences between 

these two types of extremes in a comprehensive and systematic way. At the pixel level, 

we find that long-term drought and pluvial frequency have symmetric spatial patterns, 

which is mainly due to the definition of extremes, although geographical difference exists. 

At the event level, the stationarity of drought and pluvial occurrence is more complex, 

depending on the index type (whether precipitation driven or soil moisture driven), event 

duration (short term vs long term), and geographical location. Globally, the occurrence 

rate of short-term meteorological droughts has decreased significantly, while there is no 

robust trend detected for short-term meteorological pluvials. Agricultural type droughts 

and pluvials tend to be more temporally coherent with a dampened decadal variability 

compared to meteorological extremes. Through a large sample of individual drought 

and pluvial episodes, we are able to examine whether droughts are statistically different 

from pluvials in terms of area and severity, although conclusions vary across continents. 

Further consideration of the joint dependence among the multivariate characteristics (i.e., 

severity, area, and duration) indicates that both droughts and pluvials have strong and 

asymmetric dependence between severity and areal extent. Given the same compound 

impact (e.g., same magnitude of severity and area), pluvials have a lower chance of 

occurrence than droughts in Africa, but such difference is subtle in North America. These 

diagnostic findings together with a large number of event-based drought and pluvial epi-

sodes in the GDFC can enable a more detailed analysis through case studies to advance 
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our understanding of the underlying physical mechanisms that drive the occurrence and 

changes in these extremes.

Challenges and future directions. The impact of drought and flood hazards on societies is 

large and is likely to further intensify under anthropogenic climate change and future human 

activities. Reducing impacts requires bridging the gap between large-scale hazard mapping 

and local-scale impact assessment, and integrating this with the knowledge and activities of 

users on the ground, including water resources managers and meteorological, hydrological, 

and disaster response agencies. The interface of these agencies and region-specific manage-

ment objectives could enable the diverse use of the GFDC in decision-making and impact 

assessment. For instance, disaster response agencies could map the GDFC hazard informa-

tion to the management space that is more relevant to reservoir managers’ decision-making, 

such as flood risk management, water supply, and hydropower generation. From the long-

term-planning perspective, decision-makers can take historic records in the GDFC to examine 

whether existing engineering design (e.g., reservoir storage based on previous estimated return 

periods) could withstand future droughts and floods with increased frequency and magnitude. 

Such evaluation could guide government’s investment decisions to reduce future impacts by 

enhancing the resilience of current water infrastructure. In addition, better understanding is 

needed of hazard-impact linkages and the scale differences between this study and impacts 

on the ground (He et al. 2019). To promote actionable science and support decision making 

across scales, information such as from the GDFC needs to be integrated in the form of scalable 

and policy relevant Catalogue databases accounting for human influences. This is challeng-

ing and efforts to achieve this are at early stages, but a promising avenue is to harness recent 

advances in hyperresolution land surface modeling (Wood et al. 2011), high-resolution satellite 

remote sensing (Sheffield et al. 2018), data downscaling techniques (e.g., Maraun et al. 2010; 

He et al. 2016), and human–water interaction analysis (e.g., He et al. 2017; Wada et al. 2017), 

and to incorporate this into the existing seamless monitoring and predicting systems (e.g., 

Sheffield et al. 2014). However, case studies need to be carefully designed to better understand 

the potential of generalizing such integrated frameworks to large scales.

In this study, we focus on large-scale and long-term droughts and floods, as these hydro-

logical extremes tend to have a much larger societal impact, compared to traditional small-

scale and short-duration events. This is also limited by our modeling platform, in which VIC 

and CaMa-Flood are designed for hydrological simulations at large basin/floodplain scales, 

rather than small streams, lakes, and estuaries. Therefore, the GDFC should be applied with 

caution for floods if risk is to be assessed at local scale and short duration (e.g., a few hours) 

such as flash flooding. Further combination of the hazard information with local exposure 

and vulnerability information can provide a more complete picture of risk and the associated 

impact. This is also valuable for developing adaptation and mitigation strategies to withstand 

future elevated drought and flood risk and improve society’s resilience, if more individual 

and/or multiple pair-event case studies (Kreibich et al. 2017) are conducted. Such efforts can 

reveal general and transferable conclusions for both developed and developing countries, 

which have different coping capacities to droughts and floods even when they experience 

hazards of the same magnitude. Moreover, continued efforts are needed to incorporate the 

dynamic nature of drought and flood risk (e.g., how risks evolve in time) into the current static 

GDFC, so that future adaptation strategies can be designed in an adaptive way. It should be 

noted that current GDFC only provides deterministic information on drought and flood risk, 

but would benefit from incorporating understanding of uncertainties so that risk information 

can be utilized to identify strategies that are robust to a wide range of possible future scenarios 

(Hall et al. 2012). Quantifying such uncertainties is challenging, especially when accounting 

for uncertainties from different sources. This requires an improved understanding of known 
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and unknown physical processes related to drought and flood mechanisms (e.g., Sivapalan 

et al. 2005; Sheffield et al. 2012; Zhao et al. 2017), and whether current land surface models 

are suitable to simulate these processes within the full picture of the hydrological cycle, for 

example, not only focusing on streamflow and soil moisture simulation, but also on the role 

of terrestrial storage (e.g., Döll et al. 2014; Livneh and Hoerling 2016) or water management 

(e.g., He et al. 2017). Some of these aspects have been examined previously for the VIC model 

specifically, indicating that uncertainties in hydrological extremes tend to be dominated by 

the model structure, especially over snow-dominated and arid regions (e.g., Sheffield and 

Wood 2007; Sheffield et al. 2012; Lin et al. 2019), where physical processes related to snow (e.g., 

Sheffield et al. 2003; Pan et al. 2003; Xia et al. 2018) and evapotranspiration partitioning (e.g., 

Bohn and Vivoni 2016) are not well understood, and other key hydrological processes (e.g., 

groundwater dynamics, irrigation) are missing. Therefore, risk information compiled in the 

GDFC should be interpreted with caution over regions where these processes are important. 

There are other factors that make uncertainty quantification even challenging but worth 

exploring in future work. One of them is related to the quality (e.g., availability, coverage) of 

observational datasets, which are either used as input forcings to drive land surface models 

(such as precipitation data), or adopted to parameterize certain hydrological processes (e.g., 

soil properties data), or utilized for calibration and validation purposes (e.g., streamflow data). 

Uncertainties are likely higher in regions such as Africa where observational constraints on 

the model simulations are fewer. Future studies are warranted to explore this aspect and 

examine to what degree risk quantification is dependent on the quality and richness of these 

observations through regional comparisons (e.g., North America vs Africa). Nevertheless, one 

potential and emerging approach to tackle these issues is through ensemble frameworks, 

where scenarios with multiple forcings (e.g., Biemans et al. 2009; Müller Schmied et al. 2016), 

multiple land surface models (e.g., Nijssen et al. 2014; Dankers et al. 2014; Prudhomme et al. 

2014; Samaniego et al. 2018), and multiple parameterizations schemes (e.g., Wood et al. 1998; 

Zaherpour et al. 2018) can be combined together to explore the full spectrum of uncertainties 

of drought and flood risk.
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Appendix A: Enhanced hydrologic data

Enhanced global meteorological forcings. We have developed an updated and extended v3 

of the meteorological forcing dataset, PGF (Sheffield et al. 2006), from 1948 to 2016 at 3-hourly 

temporal resolution and 0.25° spatial resolution. PGF is a hybrid dataset of meteorologi-

cal data derived from the National Centers for Environmental Prediction (NCEP)–National 

Center for Atmospheric Research (NCAR) reanalysis and a suite of global observation-based 

products. Compared to the original PGF, precipitation in PGFv3 is scaled to match updated 

monthly products of the Climate Research Unit (CRU) TS3.24 that has fixed some of the wet 

biases observed in earlier versions (Trenberth et al. 2014). Corrections are also made to the 

reanalysis rain-day statistics that have been found to exhibit a spurious wavelike pattern in 

high-latitude wintertime (Sheffield et al. 2004b). Precipitation is disaggregated in space to 

0.25° by statistical downscaling using relationships developed with the GPCP (Adler et al. 

2003) daily product. Disaggregation in time from daily to 3 hourly is accomplished similarly, 

using the TRMM Multisatellite Precipitation Analysis (TMPA) 3-hourly real-time dataset. Other 
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meteorological variables (downward longwave radiation, specific humidity, and surface air 

pressure) are downscaled in space accounting for changes in elevation. Surface air tempera-

ture is scaled to match the CRU dataset in terms of monthly means and diurnal range. The 

reanalysis downward shortwave and longwave radiation products are adjusted for system-

atic bias using the NASA Langley Research Center Surface Radiation Budget (SRB) remote 

sensing–based dataset (Gupta et al. 1999) and spurious trends in the shortwave radiation are 

corrected using relationships with cloud cover. These data are available online (http://hydrology 

.princeton.edu/data/hexg/GDFC).

Enhanced land surface model simulations. The VIC (Liang et al. 1994, 1996; Cherkauer 

et al. 2003) land surface model (LSM) is utilized for the offline simulation of the terrestrial 

water cycle over the period 1948–2016 covering the global land area except for Antarctica. 

Over the past few decades, VIC has been widely used to understand statistical characteristics 

and underlying physics of hydrological extremes (e.g., droughts, floods, wet extremes) from 

regional to global scales (e.g., Pan et al. 2013; Sheffield et al. 2014; Livneh and Hoerling 2016; 

Zhan et al. 2016; Samaniego et al. 2018; Lin et al. 2019). Moreover, it has been demonstrated 

that VIC has similar performance compared to other LSMs according to recent intermodel 

comparisons (e.g., Prudhomme et al. 2014; Samaniego et al. 2018). In this study, we use ver-

sion 4.0.5 of VIC (an older but parallelized version), and run it in a water balance mode with 

a daily time step at a 0.25° spatial resolution. The model is forced with daily precipitation, 

maximum and minimum temperature, and wind speed obtained from the above updated PGF 

meteorological data. The VIC model requires a number of distributed parameter datasets as 

input. These include physical soil and vegetation parameters as well as a number of model 

specific parameters that generally require calibration. These parameters were taken from 

existing global simulations (Sheffield and Wood 2008a), which used parameters that were 

calibrated to large-basin streamflow observations. In this study, values of these parameters 

have been updated to take advantage of the recent SoilGrids global dataset of soil texture and 

properties (Hengl et al. 2014) and using new-generation pedotransfer functions (Tóth et al. 

2015). The distribution of vegetation cover is taken from the Advanced Very High Resolution 

Radiometer (AVHRR)-based, 1-km, global land-cover dataset of Hansen et al. (2000), which 

uses the University of Maryland (UMD) classification scheme, by calculating the fractional 

area of each vegetation type within each 0.25° grid cell. Vegetation parameters such as height 

and stomatal resistance are specified for each of 12 vegetation classes and are taken from 

Nijssen et al. (2001). Values of leaf area index (LAI) are specified for each vegetation type 

that exists in each grid cell by resampling the dataset of Myneni et al. (1997), which is based 

on AVHRR normalized difference vegetation index values. The LAI values are specified for 

each month but do not vary from year to year. We are currently in the process of updating 

these to the latest MODIS-based land classifications and to use the interannually varying 

Global Inventory Monitoring and Modeling System (GIMMS)-AVHRR LAI dataset, and incor-

porating a new global depth to bedrock datasets (Shangguan et al. 2017). Three soil layers 

were specified, which is the usual configuration for the current version of the VIC model: a 

thin top layer from which soil evaporation occurs, the thicker second layer is the main soil 

water storage layer, and a third layer from which base flow is generated. Following Nijssen 

et al. (2001), the layer thicknesses were initially specified as 0.3 and 0.7 m for the first and 

second layers, respectively. The third-layer thickness is taken from interpolated calibrated 

values from previous global model simulations (Sheffield and Wood 2007) and is generally 

between 0.25 and 4 m. The land–sea mask and gridcell elevations are taken from the National 

Geophysical Data Center (NGDC) ETOPO 2-min global elevation and bathymetry dataset (U.S. 

Department of Commerce 2006). The elevations are also used to define the elevation subgrid 

tiling used in the VIC model.
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Enhanced routing model. The physically based hydrodynamic model CaMa-Flood (Yamazaki 

et al. 2011) is utilized in this study to simulate continental-scale river discharge and flood 

inundation. CaMa-Flood offers several distinct advantages over existing routing models 

(e.g., Lohmann et al. 1998) due to its explicit representation of flood stage (e.g., water level 

and inundation area) in addition to river discharge for each grid cell, and more realistic 

hydrodynamic processes (e.g., backwater effects, bifurcation channels), yet still maintains 

high computational efficiency through the discretization of the entire river network into unit 

catchments. River network maps and flow direction maps in CaMa-Flood are generated by the 

Flexible Location of Waterway (FLOW; Yamazaki et al. 2009) algorithm using high-resolution 

hydrography datasets including HydroSHEDS for below 60°N and Global Drainage Basin 

Dataset (GDBD; Masutomi et al. 2009) for above 60°N. Flow direction has been modified 

to be consistent with a satellite-based river width dataset [Global Width Database of Large 

Rivers (GWD-LR); Yamazaki et al. 2014] and is used to derive the floodplain elevation profile. 

CaMa-Flood calculates river discharge and flow velocity using the local inertial equation 

proposed by Bates et al. (2010) and is forced by gridded daily runoff simulated from VIC 

LSM at the 0.25° spatial resolution. Floodplain inundation in CaMa-Flood is approximated 

at the unit-catchment scale through a subgrid parameterization scheme, which constructs a 

relationship between the inundation area and water level based on the floodplain elevation 

profile. Model spinup is repeated twice with the same year (1948) of runoff forcing to reach 

steady state conditions. We exclude the first two years (1948–49) from the analysis to avoid 

any spurious effects.

Appendix B: Statistical and risk analysis

Standardized indices. We identify large-scale hydrological extremes from both meteorological 

and agricultural perspectives based on two widely used indices: standardized precipitation 

index (SPI; WMO 2012) and SMPct (Sheffield et al. 2004a). SPI measures the standard depar-

ture of precipitation from the long-term climatology for an aggregated period (e.g., monthly, 

seasonal, annual). Calculation of SPI involves two steps. The first step is to fit precipitation 

time series at each grid cell with a gamma distribution:
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where P is the running series of aggregated precipitation; α is the shape parameter and β is the 

scale parameter, both of which can be estimated through the maximum likelihood estimation 

(MLE) method; Γ(⋅) is the gamma function. The second step is to transform the cumulative 

probability of the fitted gamma distribution to a standard normal distribution (with mean zero 

and variance one). For an observed P at a given time scale, SPI is calculated as the number of 

standard deviations away from the median P with negative and positive values representing 

precipitation deficit and surplus, respectively. Following the widely used classification cat-

egory (McKee et al. 1993), we define drought and large-scale flood (also referred to as pluvial) 

at a grid cell if the SPI is below or above the threshold of −1.0 and 1.0, respectively. Despite 

the advantage of convenient computation, the SPI only reflects one part of the land surface 

hydrologic cycle (i.e., precipitation) and ignores other important hydrologic processes includ-

ing evapotranspiration (ET) and runoff (R). Soil moisture (SM)-based indices can complement 

this, as SM reflects the aggregated behavior of land surface water balance among P, ET, and 

R, and is closely related to agricultural activities (e.g., plant growth) (Sheffield et al. 2009). 

We estimate daily SM over the entire soil column based on VIC simulations, average it to a 

monthly time scale and calculate SMPct at each grid after fitting an empirical distribution. 
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Transforming SM into a percentile space enables us to compare the deficit and surplus of 

SM relative to its seasonal climatology across locations with different climate conditions 

(Sheffield et al. 2004a). A threshold of 20th percentile is used to define drought conditions, 

as suggested by the U.S. Drought Monitor. On the flip side and analogous to large-scale wet 

extremes, pluvials are defined in a conceptual way for grid cells with SMPct exceeding the 

80th-percentile threshold.

Run theory to estimate drought and pluvial frequency. We use run theory to estimate the 

event (drought or pluvial) frequency at the pixel level (Yevjevich 1972; Sheffield and Wood 

2007) for different duration classes D
c
, which are defined as follows:

 D
D

D

P4 6
4 6

0

0

�
� �

�

�

�
, short term:

SI SI for drought

SI SI for pluvial
��
�

,

 
D

D

D

P7 12
7 12

0

0

�
� �

�

�
, medium term:

SI SI for drought

SI SI for pluviaal

�
�
�

,

where SI is the standardized index (either SPI or SMPct; see details in the previous section), 

and SI
0
D and SI

0
P is the event threshold for drought and pluvial, respectively. We count the total 

number of runs (defined as consecutive time series of SI below and above the threshold SI
0
D 

and SI
0
P for drought and pluvial, respectively) in the study period (1950–2016) to calculate the 

frequency of occurrence for short- (D
4–6

) and medium-term (D
7–12

) duration events. We then 

inverse the frequency to get the corresponding return periods.

Clustering algorithm for drought and pluvial identification. We implement an existing 

and well-tested approach for tracking spatially contiguous drought and pluvial events and 

quantifying their characteristics in time and space based on the severity–area–duration (SAD) 

algorithm (e.g., Andreadis et al. 2005; Sheffield et al. 2009; Zhan et al. 2016). SAD has the 

advantage of tracking how each individual event cluster merges or breaks at each time step. 

It links multivariate event characteristics (i.e., severity, spatial extent, duration) through the 

following equation:

 S
D

� � �
�

1
SI

SI {SPI,SMPct},,

where S is severity, SI is the standardized index (either SPI or SMPct; see details in appendix B, 

“Standardized indices” section) that defines hydrological extremes (e.g., drought or pluvial), 

and D is the duration in months. At each time step, the maximum spatial extent is calculated 

by repeatedly adding surrounding pixels with a constant increment (80 model pixels) to the 

center of the cluster until all contiguous pixels exceeding the threshold are included (see 

details in Andreadis et al. 2005; Sheffield et al. 2009). For a given duration, the maximum 

severity under each spatial extent forms the SAD curve. The upper bound delineated from all 

SAD curves forms the SAD envelope curve, which characterizes the event severity over an area 

given the specified duration. Two critical thresholds have to be predefined in SAD to identify 

the spatial clusters, including the index threshold to detect the pixel-level extremes (see de-

tails in “Standardized indices” section) and a minimum cluster size threshold N
grids

 to ensure 

a reasonable number of spatially connected pixels. In this study, we set N
grids

 to be 150 grids 

(approximately 3.75 × 105 km2), a value suggested by the original SAD algorithm (Andreadis 

et al. 2005) and is recently tested by Zhan et al. (2016).
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Stationarity of drought and pluvial events. We estimate the time-varying occurrence rate λ
t
 

of drought and pluvial events through a nonparametric Gaussian kernel technique (Mudelsee 

et al. 2003; Mudelsee 2014) based on the following equation:

 
� �

��

�
�

�

�
��

1

h
K
t T

hi

N

i ,

where h is the bandwidth, T
i
 is the occurrence date for the event (drought or pluvial) i 

(i = 1, 2, 3, …, N), and K is the Gaussian kernel to weigh the observed event dates. We select a 

bandwidth of 10 years for kernel smoothing to reflect the decadal variability. To reduce the 

bias of estimating λ
t
 near boundaries, we generate pseudodata outside of the original time 

series with a time interval of 3 h for both left and right boundaries, yet still maintain the same 

empirical distribution based on the “reflection” rules suggested by Cowling and Hall (1996). 

Confidence intervals of λ
t
 are estimated using a bootstrap technique by randomly sampling 

the event occurrence dates 2,000 times with replacement. We calculate the Cox–Lewis statistic 

(Mudelsee et al. 2003) to test whether λ
t
 exhibits a monotonic trend with the null hypothesis 

of constant λ
t
 over the study period (1950–2016).

Copula-based risk analysis. Risk assessment of droughts and pluvials can be greatly enhanced 

if the dependence structure of severity S, area A, and duration D can be well represented. 

However, such high dimensional dependence modeling becomes inflexible due to the “curse 

of dimensionality.” In addition, dependence structures between different pairs of variables 

can be very different. For instance, one pair may have tail dependence (extreme dependence) 

and other pairs may have symmetric or asymmetric dependence. Recent development of vine 

copulas (pair-copula constructions) can overcome these limitations as it can decompose the 

multivariate copulas into pair copulas based on hierarchical graphical models (Bedford and 

Cooke 2002; Kurowicka and Cooke 2006; Cooke et al. 2015). Given these advantages, the vine 

copula has been widely applied in hydrology recently (e.g., Hao and Singh 2016; Wanders et al. 

2017; Bevacqua et al. 2017). In this study, we utilized the R package VineCopula to optimize 

the vine structure (either C-vine or D-vine) through the determination of the most appropriate 

bivariate copula family and its corresponding parameters (see details in Schepsmeier et al. 

2012). We test seven parametric distributions (exponential, gamma, generalized extreme 

value, generalized Pareto, lognormal, Weibull minimum, and Weibull maximum) to find the 

most suitable fit of the marginal distribution for S, A, and D. As D is discrete (integer values 

with the unit of month) and has repeated values (called “ties”), the rank of data points is not 

unique anymore, making the multivariate analysis ambiguous (e.g., the fit of the marginal 

distribution). To overcome this issue, we add random noise (called “jittering”) to the original 

discrete datasets and generate 200 continuous pseudosamples following the procedures sug-

gested by De Michele et al. (2013). For each random sample, we first identify the best-fitted 

distribution and count how many times each distribution is selected. The distribution with the 

highest selection frequency is then identified as the best-fitted distribution for D. After fitting 

the three-dimensional joint distribution function using the vine copula, the joint nonexceed-

ance probability between S and A conditional on D can be calculated as
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where u
s
, u

a
, u

d
 = F

S
(s), F

A
(a), and F

D
(d) are marginal distributions for S, A, and D; C

SA
 and C

SAD
 

are copula functions fitted from the vine copula. Different from the conventional univariate RP, 

here we calculate the so-called Kendall’s return period (KRP) T
SA|D

, to ensure the mathematical 

consistency for multivariate events as suggested by Salvadori et al. (2011):

 
T

K q
SA D

C

|
( )
,�

�

�

1  
(B2)

where µ = N/n is the average interarrival time; N is the number of years; n is the number of 

events, K q p q
C SA D
( ) :

|
� ��� ��  is the Kendall’s survival function, and q– is the survival Kendall’s 

quantile. For any return period T
SA|D

 (e.g., 100 years), q– can be calculated through the inver-

sion of K–
C

–
 from Eq. (B2):
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(B3)

Substitute q– into Eq. (B1) and calculate the quantiles of S and A based on their marginal dis-

tributions, we can get a bundle of isolines, which represent a combination of realizations of 

S and A that share the same RPs (Salvadori et al. 2013).
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