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The COVID-19 pandemic has reminded us that infections 
are unique among diseases in their potential to rapidly cause 
massive morbidity and mortality worldwide. Throughout 

history, infectious diseases have imposed strong selection pres-
sures on humans1–3. In particular, viral pandemics, including ones 
caused by coronaviruses, have occurred repeatedly over the last 
century, and probably throughout human history4–7. Clinical vari-
ability in response to infection, viral or otherwise, can be explained, 
at least in some individuals, by human genetic factors8. The intro-
duction of SARS-CoV-2 to a naive population, on a global scale, 
has provided yet another demonstration of the remarkable clinical 
variability between individuals in the course of infection, ranging 
from asymptomatic infections to life-threatening disease9–11. Our 
understanding of the pathophysiology of life-threatening COVID-
19 has progressed considerably since the disease was first described 
in December 2019 (refs. 12,13), but we still know very little about the 
human genetic and immunological basis of inborn resistance to 
SARS-CoV-2. Mean secondary attack rates for SARS-CoV-2 infec-
tions can reach up to 70% in specific households14,15, and a number 
of families have been reported in which all the members except one 
of the spouses are infected16, suggesting that some highly exposed 
individuals may be resistant to infection with this virus. Here, 
we review examples of genetically determined susceptibility to 
severe outcomes of two infectious diseases—tuberculosis (TB) and 

COVID-19—while covering in greater depth the three known cases 
of inborn resistance to infections. We then consider candidate genes 
directly relevant to resistance to SARS-CoV-2 infection. Finally, we 
propose a strategy for recruiting and genetically analyzing individu-
als who are naturally resistant to infection with the virus. Above all, 
we advocate for further studies to develop our understanding of the 
causal mechanisms of inborn resistance to SARS-CoV-2 infection 
and provide a framework for the use of this knowledge for thera-
peutic purposes.

Inborn susceptibility to life-threatening infectious diseases
Human evolution has been marked by microorganisms that are suf-
ficiently pathogenic to exert selective pressure on genes crucial for 
host defense2. One of the deadliest scourges of human health is TB, 
which has caused an estimated one billion deaths in Europe over 
the past two millennia17. Paradoxically, less than 10% of humans 
infected with Mycobacterium tuberculosis develop TB. Since the 
turn of the twentieth century, the contribution of human genetics 
to TB pathogenesis has been deciphered through classic genet-
ics and experimental studies18,19. More recently, rare inborn errors 
of immunity (IEIs), including autosomal recessive interleukin-12 
receptor β1 (IL12RB1)20,21 and tyrosine kinase 2 (TYK2) deficien-
cies22, in particular, have been identified in a few people with TB. 
The broader relevance of this finding was shown when the analysis 
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was expanded to more common variants, revealing that homozy-
gosity for the TYK2(P1104A) polymorphism was associated with 
a high risk of developing TB17,23. p.P1104A homozygosity disrupts 
the capacity of TYK2 to mediate IL-23-dependent IFN-γ immu-
nity to mycobacteria23. Its minor allele frequency is highest among 
Europeans17. An analysis of ancient DNA showed that the frequency 
of TYK2(P1104A) has strongly decreased over the last 2,000 years 
in Europe owing to strong negative selection, concomitant with the 
high TB burden in Europe24.

With the advent of the COVID-19 pandemic, specific IEIs were 
shown to have a role in defining susceptibility to severe COVID-19.  
The COVID Human Genetic Effort (http://www.covidhge.com) 
reported 23 critically ill people with IEIs at 8 loci governing TLR3- 
and IRF7-dependent type I IFN induction and amplification13. 
Remarkably, four unrelated and previously healthy adults had auto-
somal recessive IRF7 or IFNAR1 deficiency. Although rare, the 
individuals with IEIs demonstrate that type I IFN immunity is indis-
pensable for the control of SARS-CoV-2 infection. This finding led 
to the subsequent discovery, also by the consortium, of pre-existing 
neutralizing autoantibodies against type I IFNs as a phenocopy of 
type I IFN-related IEIs12. Subsequent studies in independent cohorts 
confirmed the presence of neutralizing autoantibodies against 
type I IFNs in more than 10% of people with severe COVID-19  
(refs. 25–30). More recently, the consortium found that autoantibod-
ies neutralizing lower, more physiological concentrations of type I 
IFNs account for about 20% of patients older than 70 years with 
critical pneumonia31. Moreover, the consortium also reported that 
about 1% of male patients younger than 60 years of age with criti-
cal pneumonia have X-recessive TLR7 deficiency32. Surprisingly, the 
individuals with IEIs identified and those with autoantibodies had 
not displayed any particular susceptibility to other severe infectious 
diseases before exposure to SARS-CoV-2. This finding is consistent 
with the smaller amounts of type I IFNs induced by SARS-CoV-2 
than by seasonal influenza virus, for example33. However, type I IFN 
autoantibodies have been shown to underlie a third of adverse reac-
tions to the live attenuated yellow fever virus vaccine34. Collectively, 
these examples illustrate how the genetic elucidation of an immu-
nological deficit in a few rare individuals can indicate a mechanism 
that is disrupted by other causes in many more people.

Inborn resistance to infection upon exposure
An individual’s genetically determined protection against an infec-
tious disease is the mirror image of genetically determined suscep-
tibility to life-threatening disease. The term ‘protective’ is applied to 
a given locus when the allele associated with a lower risk of disease 
is the least frequent, alternative allele. Far fewer genetic studies on 
infectious diseases have focused on protective alleles than on sus-
ceptibility to infection, whether monogenic or polygenic. In the 
early 1950s, Anthony Allison showed that the HbS sickle-cell trait 
is maintained at high frequency in African areas where malaria is 
endemic, owing to a heterozygous advantage1 of the allele for provid-
ing protection against severe Plasmodium falciparum infections35. 
Other examples of protection against poor infection outcomes 
include the occurrence of specific HLA class I alleles in long-term 
nonprogressing HIV-1-infected individuals36, and the role of a type 
III interferon (IFNL3-IFNL4) haplotype in viral clearance follow-
ing infection with hepatitis C virus (HCV)37,38. These alleles confer 
protection against severe disease in infected people, but not against 
contraction of the infection itself.

The genetic determinism of resistance to infection has been even 
less studied than that of protection against poor infection outcomes, 
and study has always been from a monogenic angle. Only three 
mechanisms of Mendelian resistance to infection have been identi-
fied to date. In the 1970s, Louis Miller discovered that the absence of 
the Duffy antigen on erythrocytes prevented these cells from becom-
ing infected with Plasmodium vivax39,40. The molecular genetic basis 

of this autosomal recessive resistance trait was not determined until 
the 1990s. The causal variant affects the GATA-1 binding site in the 
DARC promoter, selectively preventing gene transcription in ery-
throid cells41. At about the same time, autosomal recessive CCR5 
deficiency was found to confer resistance to infection with HIV-1 
(refs. 42–44). The most common loss-of-function mutation in CCR5 is 
a 32-base-pair deletion with a minor allele frequency of 10% in the 
European population. Finally, autosomal recessive FUT2 deficiency 
was discovered to confer resistance to gastrointestinal infections 
with noroviruses45. As for DARC and the P. vivax Duffy binding 
protein, and CCR5 and the HIV-1 gp120–gp41 heterodimer, FUT2 
expression is required for binding of the norovirus VPg capsid. It 
is probably no coincidence that these examples of Mendelian resis-
tance to infection are complete deficiencies of receptors or core-
ceptors exploited by the pathogen as a means of entering cells. The 
genetic mechanisms of protection against severe infectious out-
comes and those underlying resistance to infection itself are both 
subject to positive selection, as they provide a survival advantage46.

Candidate SARS-CoV-2 resistance genes
The proportion of humans naturally resistant to SARS-CoV-2 
infection is unknown, but a number of candidate genes potentially 
involved in human inborn resistance to SARS-CoV-2 infection have 
emerged from several lines of evidence. One is the ABO locus, which 
was identified in genome-wide association studies (GWAS)47,48. 
Although initial data on the impact of blood group on COVID-19  
severity were inconsistent, a recent meta-analysis of nearly 50,000 
people from 46 studies confirmed an effect of this locus on suscep-
tibility to infection49. The protective effect of the O allele, however, 
is small, with an odds ratio of ~0.90. Although no unified mecha-
nism of resistance has yet been proposed50, ABO blood groups 
may play a direct role in infection by serving as coreceptors for 
SARS-CoV-2 (ref. 47). Pandemic-associated pernio (chilblain) is 
a rare manifestation in individuals exposed to SARS-CoV-2 that 
could provide insight into mechanisms of resistance to infection51,52. 
Pandemic-associated pernio (‘COVID toes’) mimics the skin lesions 
of familial chilblain lupus and Aicardi–Goutières syndrome, mono-
genic disorders caused by mutations leading to an upregulation of 
type I IFN signaling53. Most people with pernio remain seronega-
tive, but the presence of the SARS-CoV-2 spike protein has been 
demonstrated in skin biopsy specimens, and a robust local type I 
IFN response has also been observed, suggesting early clearance of 
the virus54. These observations imply the presence of infection, and, 
thus, the absence of natural resistance to infection. Nevertheless, by 
understanding the pathophysiology of this phenomenon, we may be 
able to shed light on host mechanisms restricting viral replication 
and promoting resilience upon SARS-CoV-2 infection.

In vitro interactome studies have identified additional candidate 
host genes supporting the viral life cycle. Early in the pandemic, 
it was discovered that SARS-CoV-2 infection is dependent on the 
ACE2 receptor for cell entry and the serine protease TMPRSS2 
for spike protein priming55–58. Indeed, a rare variant located 
close to ACE2 was found, by GWAS, to confer protection against 
SARS-CoV-2 infection, possibly by decreasing ACE2 expression59. 
Furthermore, although their impact on infection is unknown, some 
human ACE2 polymorphisms bind the SARS-CoV-2 spike protein 
with different affinities in vitro60. In a genome-wide CRISPR knock-
out screen for infection with SARS-CoV-2 and other coronaviruses, 
TMEM41B was identified as a requirement for permissive infection 
with the virus61. TMEM41B is an endoplasmic reticulum trans-
membrane protein that is also required by flaviviruses62. Its impact 
on SARS-CoV-2 infection remains to be established, but an allele 
common in East and South Asians has been shown to be associated 
with a lower capacity to support flavivirus infection in vitro62. Like 
genome-wide CRISPR knockout screens, affinity purification-mass 
spectrometry on human proteins interacting with SARS-CoV-2 has 
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yielded an extensive protein interaction map63,64. Functional assess-
ments of this interactome have resulted in its translation into a cata-
log of essential host factors required for SARS-CoV-2 infection65. 
Although no human studies linking the SARS-CoV-2 interactome 
to susceptibility to infection have yet been published, the genes con-
cerned—along with the loci identified by GWAS—can be regarded 
as candidates for the identification of inborn variants conferring 
resistance to infection.

Genetic and immunological strategies
There are two key challenges in the search for individuals naturally 
resistant to SARS-CoV-2 infection. First, demonstrating an absence 
of infection poses a diagnostic hurdle. PCR-based molecular diag-
nostic approaches using respiratory specimens provide only snap-
shot information. Serology is useful for assessing the occurrence 
of prior infections for many viral infections, but some individuals 
remain seronegative despite infection with SARS-CoV-2 (refs. 66,67). 
Pre-existing crossreactive T-cell-mediated immunity as a result 
of prior infections with other coronaviruses might contribute to a 
resilient response upon infection with SARS-CoV-2 (refs. 68–71). At 
the same time, T cell responses to SARS-CoV-2-specific antigens 
could provide a sensitive and specific marker for the qualitative 
assessment of prior infection with SARS-CoV-2 (ref. 68). A second 
challenge lies in the probability of virus transmission. The likeli-
hood of infection is influenced by both the duration and intensity 
of exposure to an infected individual, and the intrinsic transmission 
characteristics of the pathogen. The basic reproduction number  
(R0, the average number of secondary infections produced by a 
typical case of an infection in a population where everyone is sus-
ceptible) of SARS-CoV-2 is between 2.5 and 5.0, on average72–74. 
However, coronaviruses are known to be transmitted during super-
spreader events with very high secondary attack rates75. Identifying 
these events, other large-scale outbreaks, and households in which 
one or very few individuals remained uninfected14–16 would be of 
particular interest for the study of inborn variants conferring resis-
tance to SARS-CoV-2.

When testing the hypothesis that monogenic inborn variants of 
immunity confer natural resistance to SARS-CoV-2 infection, we 
apply a four-step strategy to overcome diagnostic limitations and 
uncertainties about exposure (Fig. 1). We first focus on uninfected 
household contacts of people with symptomatic COVID-19 (score 
of 3 or higher on the World Health Organization’s clinical progres-
sion scale76). We then consider individuals exposed to an index case 
without personal protection equipment, for at least 1 hour per day, 
and during the first 3–5 days of symptoms in the index case. Priority 
is given to the study of serodiscordant spouses and sleeping part-
ners. We subsequently enroll individuals with a negative PCR result 
when tested plus negative serological results obtained 4 weeks after 

exposure. Finally, we assess SARS-CoV-2-specific T cell responses in 
the candidate resistant individuals and compare their responses with 
those of SARS-CoV-2-infected individuals. We differentiate T cell 
responses induced by vaccination from those provoked by natural 
infection. Study participants lacking a SARS-CoV-2-reactive T cell 
response will be analyzed by whole-exome/genome sequencing. 
The results will be compared with those for SARS-CoV-2-infected 
controls, with the aim of identifying rare or common variants with a 
strong effect on resistance to infection11–13,77. Finally, as in studies of 
IEIs78, the genetic findings will be validated experimentally, includ-
ing with cells from the study participants, to dissect the mechanisms 
of resistance at the molecular, cellular, tissue, immunological, and 
whole-organism levels (Fig. 1).

Concluding remarks
Historical examples of inborn resistance to infection with other 
pathogens provide a road map for testing the hypothesis of mono-
genic inborn resistance to infection with SARS-CoV-2. Some more 
common inborn variants of resistance in candidate genes may have 
relatively small effects. However, we also aim to identify candidate 
genes with potentially rare variants and a large effect size. These 
variants are of particular interest for two reasons. First, they can 
provide a deep understanding of the essential biological pathways 
involved in infection with SARS-CoV-2. Second, they will allow for 
the development of innovative therapeutic interventions to prevent 
or treat SARS-CoV-2 infection in others. The proof-of-principle 
for this second reason of interest has been provided by CCR5 and 
its antagonist maraviroc, which is used for the treatment of HIV-1 
infections in specific settings79. In addition, transplantation of 
CCR5-deficient bone marrow has been successfully applied to cure 
HIV infection in a few people80,81. No specific drug effective against 
COVID-19 has been discovered since the start of the pandemic. 
Lessons learned from experiments of nature could potentially guide 
us toward such specific treatments for COVID-19. We have already 
enrolled more than 400 individuals meeting the criteria for inclu-
sion in a dedicated resistance study cohort. The collaborative enroll-
ment of study participants is continuing (http://www.covidhge.
com), and subjects from all over the world are welcome.
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