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Abstract—An accurate, computationally efficient, and fully au-
tomated algorithm for the alignment of two-dimensional (2-D) se-
rially acquired sections forming a three-dimensional (3-D) volume
is presented. The approach relies on the optimization of a global
energy function, based on the object shape, measuring the simi-
larity between a slice and its neighborhood in the 3-D volume. Slice
similarity is computed using the distance transform measure in
both directions. No particular direction is privileged in the method
avoiding global offsets, biases in the estimation and error propaga-
tion. The method was evaluated on real images [medical, biological,
and other computerized tomography (CT) scanned 3-D data] and
the experimental results demonstrated its accuracy as reconstuc-
tion errors are less than one degree in rotation and less than one
pixel in translation.

Index Terms—Deterministic optimization, image registration,
misalignment, nonoverlapping structures, pixel similarity mea-
sure, registration error, serially acquired images.

I. INTRODUCTION

T HREE-DIMENSIONAL (3-D) reconstruction of med-
ical images [tissue sections, computerized tomography

(CT) and autoradiographic slices] is now an integral part of
biomedical research. In biomedicine, 3-D data are acquired by
a multitude of imaging devices [magnetic resonance imaging
(MRI), CT, 3-D microscopy, etc.]. In most cases, 3-D images
are represented as a sequence of two-dimensional (2-D) parallel
image slices. Depending on the acquisition method, the 2-D
slices can be aligned or not. MRI images, for example, are
aligned, whereas slices obtained through physical sectioning,
e.g., biological tissue slices obtained using a microtome, are
not. Usually alignment of such images involves only rotation
and translation compensation. Therefore, reconstruction of
such data sets into 3-D volumes, via the registrations of 2-D
sections, has gained an increasing importance. The registration
of multiple slices is very important for the correct 3-D visual-
ization and morphometric analysis (e.g., surface and volume
representation) of the structures of interest. Several alignment
algorithms have been proposed in that framework. A review of
general medical image registration methods is presented in [1],
[2].

The 3-D alignment (reconstruction from 2-D images)
methods may be classified in the following categories: fiducial
marker-based methods [3], feature-based methods using con-
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tours [4], crest lines or characteristic points extracted from the
images [5], and gray-level-based registration techniques using
the intensities of the whole image [6]–[8]. Most of the above
mentioned techniques do not simultaneously consider the two
major difficulties involved in medical and CT scanned data
registration.

At first, consecutive slices may differ significantly due to dis-
tortions, discontinuities in anatomical structures, cuts, and tears.
These effects are more pronounced when distant slices are in-
volved in the registration. From this point of view, a registration
method must be robust to missing data or outliers [8].

Besides, registering the slices sequentially (the second with
respect to the first, the third with respect to the second, etc.)
sometimes leads to misregistration. If an error occurs in the reg-
istration of a slice with respect to the preceding slice, this error
will propagate through the entire volume. Furthermore, if the
number of slices to be registered is large, a global offset of the
volume may be observed, due to error accumulation [6].

In this paper, a solution to the above mentioned shortcom-
ings is presented. A global energy function having as variables
the rigid transformation parameters (2-D translation and rota-
tion) of a given slice with respect to a local symmetric neigh-
borhood is proposed. Global energy functions are a powerful
tool in computer vision applications but they have not yet been
considered for the registration of serially acquired slices. Our
approach was inspired by the technique presented in [9], which
consists in minimizing a global energy function with the iter-
ative closest point algorithm [10] to register multiple, partially
overlapping views of a 3-D structure. The global energy func-
tion implemented in our approach is associated with a pixel sim-
ilarity metric based on the Euclidean distance transform [11].

The remainder of the paper is organized as follows. The
global energy function formulation and the associated reg-
istration algorithm is presented in Section II, experimental
results are presented in Section III and conclusions are drawn
in Section IV.

II. GLOBAL ENERGY FUNCTION FORMULATION

Before presenting the alignment method, the notations used
in our formulation are introduced. A set of 2-D serially acquired
slices is represented by

(1)

where is a slice (a 2-D image) and denotes the total number
of slices. A pixel of a 2-D slice is represented by ,
so that corresponds to the gray level (intensity) of pixel
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of slice . and designate the number of pixels of each
slice in the horizontal and vertical direction, respectively.

Standard 2-D rigid alignment consists of estimating the rigid
transformation parameters (translation, and rotation by
angle ) that have to be applied to the image to be aligned
(floating image) in order to match a reference image. In the ap-
proach proposed here, the alignment of the 2-D sections within
the 3-D volume is considered globally, by minimizing an energy
function , which expresses the similarity between the 2-D
sections

(2)
where is a similarity metric, denotes slice and

designates a rigid transformation with parameters

. Equation (2) indicates that, for a given
set of rigid transformation parameters , applied to the
slice to be aligned , the similarity between thetransformed
slice and all of the other already transformed
slices in the volume is accumulated in the energy

function. Assuming that function is symmetric

(3)

which is the case for the pixel similarity functions considered
here (2), leads to the following global minimization problem:

(4)

Without additional constraints, the optimization problem (4)
has clearly an infinite number of solutions (if the set of rigid
transformations is a solution, the

same holds true for ,

where is an arbitrary 2-D rigid transformation). To remove
this ambiguity, the transformation applied to an arbitrary
chosen slice is constrained to the identity transformation (we
have chosen in our implementation). As a result, there
are parameters to estimate. It is common sense that
distant slices present very little similarity due to anatomy and
it would be more appropriate to measure the energy function
only for slices presenting at least some similarities. Therefore,
the support region of function has been limited to a
neighborhood of radius centered at each slice and set

(5)

Thus, the following alignment algorithm is associated with the
energy function (4):

do until convergence:
declare all slices unvisited.
do until all slices are declared vis-

ited:
randomly choose an unvisited slice

.
update the rigid transformation param-

eters bringing into alignment slice
with the other slices in the neighborhood
of , by minimization of the following
local energy function:

(6)

declare slice visited.
end do

end do

The minimization of the local energy function (4) is con-
ducted by a deterministic optimization algorithm, known as it-
erated conditional modes (ICM) [12], rendering our method a
variant of the ICM. ICM is a discrete Gauss–Seidel-like opti-
mization technique, accepting only configurations decreasing
the objective function. Let us notice that the parametercor-
responding to the minimum value of the local energy function

also corresponds to a local minimum value of the global
energy function with respect to , keeping all other pa-
rameters fixed. Thus, it is easy to see that the de-
scribed algorithm converges toward a local minimum of the ini-
tial energy function (2). This local minimum corresponds to a
satisfactory registration, since the initial alignment of the 2-D
sections is generally close to the desired solution. If this is not
the case, a good initialization may be obtained by a standard
coarse alignment technique such as principal axes registration.
Thus, it is not necessary to resort here to greedy global opti-
mization procedures, such as simulated annealing or genetic al-
gorithms. Further improvement of the solution is obtained by a
gradient descent technique.

The pixel similarity metric associated with the above de-
scribed global energy function is based on a distance transform
[11], [13] (also known as chamfer matching technique [14])
and is computed from the 2-D object contours [15]. A distance
transformation is an operation that converts a binary picture,
consisting of feature and nonfeature elements (contours), to
a picture where each pixel has a value that approximates its
distance to the nearest contour point. Thus, using the distance
transform of the reference slice the method aligns the
floating slice by minimizing the distance between the contours
of the images. For further details of the chamfer matching
method the reader may refer to [14]. Considering the slices
per triplets, which is very common for standard reconstruction
problems [i.e., setting in (5)], the estimation of the
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alignment parameters involves the nonlinear similarity
metric

(7)

where means that only the contour points of
are involved.

A large number of interpolations are involved in the align-
ment process. The accuracy of estimation of the rotation and
translation parameters is directly related to the accuracy of the
underlying interpolation model. Simple approaches such as the
nearest neighbor interpolation are commonly used because they
are fast and simple to implement, though they produce images
with noticeable artifacts. Besides, as the translation and rota-
tion parameters should compensate for accuracy by having sub-
voxel values, this type of interpolation would not be appropriate.
More satisfactory results can be obtained by small-kernel cubic
convolution techniques, bilinear, or convolution-based interpo-
lation. According to sampling theory, optimal results are ob-
tained using sinus cardinal interpolation, at the expense of a
high computational cost. As a compromise, a bilinear interpola-
tion technique has been used in the optimization procedure. At
the end of the algorithm, the alignment parameters are refined
using a sinus cardial interpolation that preserves the quality of
the image to be aligned. This technique has proven to be fast
and efficient.

III. EXPERIMENTAL RESULTS

To evaluate our method, we applied the algorithm to the re-
construction of an artificially misaligned 3-D CT scanned me-
chanical part Fig. 1. The slices of the original 256256 109
CT volume were transformed using translations varying from

10 to 10 pixels and rotations varying from20 to 20 .
The transformations for each slice were random following a uni-
form distribution in order not to privilege any slice (Fig. 1(a) and
(b)). Table I presents statistics on the alignment errors. The al-
gorithm was proven to be robust in aligning this type of image
producing small registration errors. Fig. 1(c) and (d) presents
the reconstructed volume.

Moreover, we have uniformly transformed 100 slices of the
same 3-D volume (mechanical part of an engine) by applying
to each slice a translation of pixels and

pixels and a rotation of .
As the volume has 100 slices, the last slice is translated by 20
pixels in both directions and rotated by 40with respect to its
initial position. Table II presents the registration errors of the
method. It is illustrated that our approach has subpixel mean,
median, and maximum errors.

The same evaluation procedure was performed on a 3-D
human skull volume with 140 slices (Fig. 2). The algorithm
aligned the artificially (randomly and uniformly) misaligned
slices of the volume and the errors are drawn in Tables III
and IV. Human skull presents discontinuities and consecutive
slices may differ significantly due to anatomy, but the global
energy function is robust to these shortcomings. As can be
seen, median and mean translation and rotation errors are less

(a) (b)

(c) (d)

Fig. 1. Reconstruction of a 3-D scanned mechanical part volume of 109 slices.
(a) Multiplanar view of the volume before registration. (b) 3-D view of the
volume before registration. (c) Multiplanar view of the volumeafter registration.
(d) 3-D view of the same volume after registration.

TABLE I
SET OF 109 SLICES OF A 3-D CT SCANNED MECHANICAL PART VOLUME

WERE ARTIFICIALLY TRANSFORMEDUSING DIFFERENT RIGID

TRANSFORMATION PARAMETERS. EACH SLICE WAS RANDOMLY

TRANSFORMEDUSING TRANSLATIONS VARYING FROM�10 TO+10 PIXELS

AND ROTATIONS VARYING FROM�20 TO+20 DEGREES. STATISTICS ON THE

ALIGNMENT ERRORS FOR THERIGID TRANSFORMATION PARAMETERS ARE

PRESENTED. TRANSLATION ERRORSARE EXPRESSED INPIXELS AND

ROTATION ERROR IN DEGREES

TABLE II
SET OF 100 SLICES OF A 3-D CT SCANNED MECHANICAL PART VOLUME

WERE ARTIFICIALLY TRANSFORMEDUSING DIFFERENT RIGID

TRANSFORMATION PARAMETERS. EACH SLICE WAS TRANSLATED BY 0.2
PIXELS IN BOTH DIRECTIONS AND ROTATED BY 0.4 DEGREESWITH RESPECT

TO ITS PRECEDINGSLICE. DIFFERENTSTATISTICS ON THEERRORS FOR THE

RIGID TRANSFORMATION PARAMETERS ARE PRESENTED. TRANSLATION

ERRORSARE EXPRESSED INPIXELS AND ROTATION ERROR INDEGREES

than 1 pixel and 1 degree, respectively. Also maximum errors
are slightly larger than one pixel and one degree, respectively,
showing the robustness of the proposed technique.

Furthermore, the algorithm was applied to the reconstruction
of volumes (tooth germs, biological tissues) with unknown
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(a) (b)

(c) (d)

Fig. 2. Reconstruction of a 3-D human skull volume of 140 slices.
(a) Multiplanar view of the volume before registration. (b) 3-D view of
the volume before registration. (c) Multiplanar view of the volume after
registration. (d) 3-D view of the same volume after registration.

TABLE III
SET OF140 SLICES OF A3-D CT HUMAN SKULL VOLUME WEREARTIFICIALLY

TRANSFORMEDUSING DIFFERENTRIGID TRANSFORMATION PARAMETERS.
EACH SLICE WAS RANDOMLY TRANSFORMEDUSING TRANSLATIONS VARYING

FROM �10 TO +10 PIXELS AND ROTATIONS VARYING FROM �20 TO

+20 DEGREES. DIFFERENTSTATISTICS ON THEERRORS FOR THERIGID

TRANSFORMATIONPARAMETERSARE PRESENTED. TRANSLATION ERRORSARE

EXPRESSED INPIXELS AND ROTATION ERROR IN DEGREES

ground truth. The performance of our method was compared
with the manual alignment accomplished by an expert physi-
cian-researcher. Fig. 3 shows the reconstruction of a tooth germ
(acquired using an optical microscopy) by an expert dentist-re-
searcher [Fig. 3(c) and (d)] and by our method [Fig. 3(e) and (f)].
It is illustrated that human intervention fails to correctly align
the slices, while our method is efficient and can achieve align-
ment with high accuracy, which has been confirmed by dentist
specialists. The same stands for the example presented in Fig. 4
where another tooth reconstruction is presented. In both exam-
ples, a specialist (dentist-researcher) confirmed that the volumes
reconstructed by our method are of higher quality. This can also
be observed by a simple visual inspection (Figs. 3 and 4).

In both examples, the visual quality of the teeth under consid-
eration are superior regarding the smoothness and the curvature
of their surfaces aligned by our program, according to the vali-
dation performed by an objective (unbiased) dentist-researcher,
who was knowledgeable of the teeth in their real form.

Moreover, we applied the algorithm to the reconstruction of
an already aligned 3-D human skull volume (the ground truth

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Reconstruction of a 3-D tooth germ volume of 265 slices.
(a) Multiplanar view of the volume before registration. (b) 3-D view of the
volume before registration. (c) Multiplanar view of the volume after manual
alignment by an expert dentist-researcher. (d) 3-D view of the volume after
manual alignment by an expert dentist-researcher. (e) Multiplanar view of the
volume after registration. (f) 3-D view of the same volume after registration.

of Fig. 2). The results shown in Table V illustrate that our algo-
rithm is unbiased. As it can be seen, median and mean transla-
tion and rotation errors are less that 0.2 pixel and 0.1, respec-
tively. Maximum errors are also about 1 pixel and less than 0.5,
respectively, proving the unbiasness of our method.

Finally, let us notice that the algorithm has a computational
complexity and requires approximately 10 min,
to reconstruct a 256 256 140 volume on a Pentium III
(800 MHz) workstation under Windows 2000 Professional
without any particular code optimization.

IV. CONCLUSION

The alignment method described in this paper is akin to the
global energy function formulation proposed in [9] to register
multiple views of a 3-D surface in computer vision applica-
tions. The main contribution of our approach is to consider the
alignment problem globally on the 3-D volume, by minimizing
a global objective function expressing the similarity between
neighboring slices. The approach does not privilege any par-
ticular direction in the registration process. By these means,
the major problems set by the registration of serially acquired
slices are addressed. With the global (isotropic) formulation of
the registration problem (rather than a standard step by step, se-
quential formulation), no global offset nor error propagations
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Reconstruction of a 3-D tooth germ volume of 194 slices.
(a) Multiplanar view of the volume before registration. (b) 3-D view of the
volume before registration. (c) Multiplanar view of the volume after manual
alignment by an expert dentist-researcher. (d) 3-D view of the volume after
manual alignment by an expert dentist-researcher. (e) Multiplanar view of
the same volume after registration. (f) 3-D view of the same volume after
registration.

TABLE IV
SET OF140 SLICES OF A3-D CT HUMAN SKULL VOLUME WEREARTIFICIALLY

TRANSFORMEDUSING DIFFERENTRIGID TRANSFORMATION PARAMETERS.
EACH SLICE WAS TRANSLATED BY 0.15 PIXELS IN BOTH DIRECTIONS AND

ROTATED BY 0.3 DEGREESWITH RESPECT TO ITSPRECEDING SLICE.
DIFFERENTSTATISTICS ON THEERRORS FOR THERIGID TRANSFORMATION

PARAMETERS ARE PRESENTED. TRANSLATION ERRORSARE EXPRESSED

IN PIXELS AND ROTATION ERROR IN DEGREES

TABLE V
ALREADY ALIGNED SET OF140 SLICES OF A3-D CT HUMAN SKULL VOLUME

(THE GROUND TRUTH) WERE APPLIED TO THEALGORITHM. TRANSLATION

ERRORSARE EXPRESSED INPIXELS AND ROTATION ERROR INDEGREES

are observed in the final alignment. Its association to more so-
phisticated but time consuming pixel similarity metrics (mutual
information [16], robust estimation-based measures [17]) may
improve its accuracy and is a perspective of this work.
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