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Abstract. We propose a novel approach for verifying model hypothe-
ses in cluttered and heavily occluded 3D scenes. Instead of verifying one
hypothesis at a time, as done by most state-of-the-art 3D object recog-
nition methods, we determine object and pose instances according to a
global optimization stage based on a cost function which encompasses
geometrical cues. Peculiar to our approach is the inherent ability to de-
tect significantly occluded objects without increasing the amount of false
positives, so that the operating point of the object recognition algorithm
can nicely move toward a higher recall without sacrificing precision. Our
approach outperforms state-of-the-art on a challenging dataset including
35 household models obtained with the Kinect sensor, as well as on the
standard 3D object recognition benchmark dataset.

1 Introduction

Object recognition has been extensively pursued during the last decade within
application scenarios such as image retrieval, robot grasping and manipulation,
scene understanding and place recognition, human-robot interaction, localiza-
tion and mapping. A popular approach to tackle object recognition - especially
in robotic and retrieval scenarios - is to deploy 3D data, motivated by its in-
herently higher effectiveness compared to 2D images in dealing with occlusions
and clutter, as well as by the possibility of achieving 6-degree-of-freedom (6DOF)
pose estimation of arbitrarily shaped objects. Moreover, the recent advent of low-
cost, real-time 3D cameras, such as the Microsoft Kinect and the ASUS Xtion,
has turned 3D sensing into an easily affordable technology. Nevertheless, ob-
ject recognition remains an unsolved task, particularly in challenging real world
settings involving texture-less and/or smooth objects, significant occlusions and
clutter, different sensing modalities and/or resolutions (i.e. see Fig. 1).

Algorithms for 3D object recognition can be divided between local and global.
Local approaches extract repeatable and distinctive keypoints from the 3D sur-
face of the models in the library and the scene, each being then associated with
a 3D descriptor of the local neighborhood [1–5]. Scene and model keypoints are
successively matched together via their associated descriptors to attain point-to-
point correspondences. Once correspondences are established, they are usually
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Fig. 1. With the proposed approach, heavily occluded and cluttered scenes (left) are
handled by evaluating a high number of hypotheses (center), then retaining only those
providing a coherent interpretation of the scene according to a global optimization
framework based on geometric cues (right)

clustered together by taking into account geometrical constraints derived from
the underlying assumption that model-to-scene transformations are rigid. Clus-
tered correspondences define model hypotheses, i.e. subsets of correspondences
holding consensus for a specific 6DOF pose instance of a given model in the
current scene [1, 3, 6, 5, 7, 8]. Conversely, global methods, e.g., [9, 10], compute
a single descriptor which encompasses the whole object shape: this requires, in
presence of clutter and/or occlusions, the scene to be pre-processed by a suitable
3D segmentation algorithm capable of extracting the individual object instances.

These 3D pipelines usually comprise an additional final step whereby object
hypotheses are further verified so as to reject false detections. However, unlike
previous stages, this final Hypothesis Verification (HV) step has been relatively
unexplored so far, with only a few techniques explicitly addressing it [11, 3, 6, 5].
The most common HV paradigm consists in considering one hypothesis at a time
and thresholding a consensus score depending on the amount of scene points
explained by the transformed model points. Hence, this paradigm disregards
interactions between different hypotheses, this implying the inability to detect
strongly occluded objects (scoring low in terms of explained scene points), unless
the consensus threshold is kept low resulting in numerous false detections.

This paper proposes a study focused on the HV stage including three main
contributions: (i) a careful analysis of geometrical cues to be deployed within the
HV stage, taking into account model-to-scene/scene-to-model fitting, occlusions
and model-to-model interactions. (ii) A more principled approach to address the
HV stage where, instead of considering each model hypothesis individually, we
take into account the whole set of hypotheses as a global scene model by for-
malizing the HV problem in terms of the minimization of a suitable global cost
function, trying to maximize the number of recognized models while taking into
account the aforementioned cues. Due to the computational burden involved
in the minimization of such a global cost function for relatively large solution
spaces, we explore the use of Simulated Annealing, an approximate method, to
retrieve accurate solutions within a limited amount of time and computational
resources. Finally, (iii) a complete local 3D recognition pipeline to efficiently
generate model hypotheses to be validated by the HV stage. By means of exper-
imental results we demonstrate that the proposed approach neatly outperforms
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state-of-the-art HV algorithms. In this respect, a major advantage provided by
the global HV approach deals with the dramatic increase of correct recognitions,
in particular those that are ”weak”, without increasing the number of false posi-
tives. Furthermore, our approach brings in a significant reduction of the number
of hard thresholds required by the recognition pipeline, thus providing a general
framework capable to handle different scenarios governed by a few parameters,
some easily derivable from the characteristics of the processed data.

2 Related Work

So far only a few methods have outlined a specific proposal for the HV stage. In
[1, 11] using the correspondences supporting a hypothesis as seeds, a set of scene
points is grown by iteratively including neighboring points which lie closer than
a pre-defined distance to the transformed model points. If the final set of points
is larger than a pre-defined fraction of the number of model points (from one
fourth to one third of the number of model points), the hypothesis is selected
and ICP is selectively run on the attained set of points in order to refine object’s
pose. Obviously, one disadvantage of such an approach is that it can not handle
levels of occlusions higher than 75%.

The HV method proposed in [3] ranks hypotheses based on the quality of
supporting correspondences, so that they are then verified sequentially start-
ing from the highest rank. To verify each hypothesis, after ICP, two terms are
evaluated: the former, similarly to [1], is the ratio between the number of model
points having a correspondent in the scene and the total number of model points,
the latter is the product between this ratio and the quality score of supporting
correspondences. This step requires to set three different thresholds. Two addi-
tional checks are then enforced, so as to prune hypotheses based on the number
of outliers (model points without a correspondent in the scene) as well as on
the amount of occlusion generated by the current hypothesis with respect to the
remaining scene points. Again, these two additional checks require three thresh-
olds. If an hypothesis gets through each of these steps, it is accepted and its
associated scene points are eliminated from the scene, so that they will not be
taken into account when the next hypothesis is verified.

In [6], for each model yielding correspondences, the set of hypotheses associ-
ated with the model is first pruned by thresholding the number of supporting
correspondences. Then, the best hypothesis is chosen based on the overlap area
A(Hbest) between the model associated with that hypothesis and the scene, and
the initial pose is refined by means of ICP. Finally, the accuracy of the selected

hypothesis is given by the ratio A(Hbest)
Ma(Hbest)

where Ma(Hbest) is the total visible

surface of the model within the bounding box of the scene. The model is said
to be present in the scene if its accuracy is above a certain threshold and, upon
acceptance, the scene points associated with A(Hbest) are removed.

Papazov and Burschka [5] evaluate how well a model hypothesis fits into
the scene by means of an acceptance function which takes into account, as a
bonus, the number of transformed model points falling within a certain distance
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from a scene point (support) and, as a penalty, the number of model points
that would occlude other scene points (i.e. their distance from the closest scene
point is above threshold but they lie on the line of sight of a scene point). A
hypothesis is accepted by thresholding its support and occlusion sizes. Given
the hypotheses fulfilling the requirements set forth by the acceptance function, a
conflict graph is built, wherein forks are created every time two hypotheses share
a percentage of scene points above a -third- threshold. Surviving hypotheses are
then selected by means of a non-maxima suppression step carried over the graph
and based on the acceptance function. This approach is the most similar to
ours, as, thanks to the conflict graph, interaction between hypotheses is taken
into account. Nevertheless, their method is only partially global, since the first
stage of the verification still relies on pruning hypotheses one at a time and a
winner-take-all strategy is used for conflicting hypotheses.

Relevant to our work but aimed at piecewise surface segmentation on range
images, Leonardis et al. proposed in [12] a model selection strategy based on the
minimization of a cost function to produce a globally consistent solution. Even
though the minimization is formalized in terms of a Quadratic Boolean Problem,
the final solution is still attained taking into accounts hypotheses sequentially
by means of a winner-take-all strategy.

3 Proposed Method

This Section illustrates the proposed HV approach for 3D object recognition.
After introducing notation, we analyze the geometrical cues that ought to be
taken into account for global hypotheses verification. Then, we illustrate how
to formulate the cost function and tackle the optimization problem. Finally, we
describe the overall 3D object recognition pipeline.

3.1 Notation, Grounds and Geometrical Cues

We consider a model library consisting of m point clouds, M = {M1, · · · ,Mm},
together with a scene point cloud, S. We address the general case of S containing
any number of instances from M (as well as no instance at all), including the
case of multiple instances of the same model. The pose, T , which relates a model
to its instance in S is given by a 6 DOF rigid body transformation (i.e. a 3D
rotation and translation). We assume that the previous stages of the 3D pipeline
provide a set of n recognition hypotheses H = {h1, · · · , hn}, each hypothesis hi

given by the pair (Mhi
, Thi

), with Mhi
∈ M being the model hypothesis and

Thi
the pose hypothesis which relates Mhi

to S.
The goal of the proposed method is to choose an arbitrary (up to n) number

of items belonging to H in order to maximize the number of correct recognitions
(TPs) while minimizing the number of wrong recognitions (FPs). Purposely, we
determine and minimize a suitable cost function defined over the solution space of
the HV problem. In particular, we denote a solution as a set of boolean variables
X = {x0, · · · , xn} having the same cardinality as H, with each xi ∈ B = {0, 1}
indicating whether the corresponding hypothesis hi ∈ H is dismissed/validated
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(i.e. xi = 0/1). Hence, the cost function can be expressed as F (X ) : Bn → R,
B
n being the solution space, of cardinality 2n.

Occlusions. Given an hypothesis hi, model parts not visible in the scene due to
self-occlusions or occlusions generated by other scene parts should be removed
since they cannot provide consensus for hi. Thus, given an instance of X , for
each xi = 1 we compute a modified version of Mhi

by transforming the model
according to Thi

and removing all occluded points. Hereinafter this new point
cloud will be denoted as Mv

hi
.

Establishing whether a model point is visible or occluded can be done effi-
ciently based on the range image associated to the scene point cloud, possibly
generating the range image from the point cloud whenever the former is not
available directly. Thus, similarly to [5, 3], a point p ∈ Mhi

is considered oc-
cluded if its back-projection into the rendered range map of the scene falls onto
a valid depth point and its depth is bigger than the corresponding one of the
model. The same reasoning applies to self-occlusions.

Cues i, ii) Scene Fitting and Model Outliers. Once the set of visible points
of a model,Mv

hi
, has been calculated, we want to determine whether these points

have a correspondent on the scene, i.e. how well they explain scene points. This
cue was exploited by thresholding scene points based on a fixed distance value
in the HV stage proposed in [1, 3, 6, 5]. Here, we want to refine such approach,
by measuring how well each visible model point locally fits the scene. Hence, for
each xi = 1 we associate to each scene point, p, a weight which estimates how
well the point is explained by hi by measuring the local fitting with respect to
its nearest neighbor in Mv

hi
, denoted as N

(

p,Mv
hi

)

:

ωhi
(p) = δ

(

p,N
(

p,Mv
hi

))

(1)

Local fitting between two points p and q is measured by function δ (p, q), which
accounts for their distance as well as the local alignment of surfaces, as typically
done, e.g., to assess the quality of registration between two surfaces. Referring
to the normals at p and q respectively as np and nq, δ (p, q) is defined as

δ(p, q) =

{

(− ‖p−q‖2

ρe

+ 1)(np ◦ nq), ‖p− q‖2 ≤ ρe

0, elsewhere
(2)

where ◦ is the dot product, which is rounded to 0 whenever negative to avoid
negative weights (note that all normals have a consistent orientation based on
the position of the sensor). As for the distance weight, so far we have employed
a simple linear function truncated to 0 when the distance between p and q gets
bigger than a threshold ρe, though in principle other choices may be considered,
e.g. according to one of the several M-estimators proposed in the literature.
Additionally, we point out that the use of weights performs a soft thresholding
for visible points, which helps in case ρe is not chosen properly.
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For each solution X , we can associate to each scene point p the sum of all
weights related with active hypotheses:

ΩX (p) =

n
∑

i=1

ωhi
(p) · xi (3)

Then, a scene point is said to be explained by X if ΩX (p) > 0, unexplained
otherwise (ΩX (p) = 0). Moreover, a point p ∈ Mv

hi
is termed an outlier for

hypothesis hi if it is not fitted by any scene point according to (2), it is termed
inlier otherwise. Hereinafter, we will denote as Φhi

the set of outliers for hy-
pothesis hi and as |Φhi

| the cardinality of each such a set. In the bottom left
of Fig. 2-a) and -b), we provide an example of the classification of model points
associated to a solution into outliers and inliers.

The amount of explained scene points and outliers are powerful geometrical
cues for evaluating the goodness of a solution X within a global HV framework.
In particular, i) the number of explained scene points should be maximized;
and ii) the number of outliers associated with all active hypotheses should be
minimized.

Cue iii) Multiple Assignment. An important cue highlighting the existence
of incoherent hypotheses within a solution deals with a surface patch in the
scene being fitted by multiple models. According to our definitions, this can be
exploited by penalizing scene points explained by two or more hypotheses (see
Fig. 2-a) and -b) for a graphical explanation). Thus, given a solution X and a
scene point p, we define a function ΛX (p)

ΛX (p) =

⎧

⎪

⎨

⎪

⎩

n
∑

i=1

sgn (ωhi
(p)) ,

n
∑

i=1

sgn (ωhi
(p)) > 1

0, elsewhere

(4)

which counts the number of conflicting hypotheses with respect p according to
the definition given in (1). Again, in bottom-right of Fig. 2 -a) and -b), we show
an example of scene points explained by either a single or multiple hypotheses.

Hence, another cue for global HV to be enforced through ΛX (p) is that iii) the
number of multiple hypothesis assignments to scene points should be minimized.

Cue iv) Clutter. In many application scenarios not all sensed shapes can be
fitted with some known objects model. Exceptions might occur, for instance,
in some controlled industrial environments where all the objects making up the
scene are known a priori. More generally, though, several visible scene parts
which do not correspond to any model in the library might locally - and erro-
neously - fit some model shapes, potentially leading to false detections. Maximiz-
ing the number of explained scene points (i.e. cue i) ), although useful to increase
the number of correct recognitions, nevertheless favors this circumstance. On the
other hand, computing the outliers associated with these false positives (cue ii))
might not help, since the parts of the model which do not fit the scene might
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(a) (b)

Fig. 2. Proposed cues for global optimization. In both a) and b), top left: a solution
consisting of a set of active model hypotheses super-imposed onto the scene. Top right:
scene labeling via smooth surface segmentation. Bottom left: classification of visible
model points between inliers (orange) and outliers (green). Bottom right: classification
of scene points between explained by a single hypothesis (blue), by multiple hypotheses
(black), unexplained (red), cluttered due to region growing (yellow) and to proximity
(purple).

turn out occluded or outside the field of view of the 3D sensor. This is the case,
e.g., of the chicken in Fig. 2-b) being wrongly fitted to the rhino (in particular,
the bottom left image shows that the potential outliers turn out indeed occluded
and hence the wrong hypothesis not significantly penalized).

To counterattack the effect of clutter, we devised an approach, inspired by
surface-based segmentation [13], aimed at penalizing a hypothesis that locally
explains some part of the scene but not nearby points belonging to the same
smooth surface patch. This is also useful to penalize hypotheses featuring cor-
rect recognition but wrong alignment of the model in the scene. Surface-based
segmentation methods are based on the assumption that object surfaces are con-
tinuous and smooth. Continuity is usually assessed by density of points in space
and smoothness through surface normals. Following this idea, scene segmenta-
tion is performed by identifying smooth clusters of points. Each new cluster
is initialized with a random point, then it is grown by iteratively including all
points pj lying in its neighborhood which show a similar normal:

||pi − pj ||2 < td ∧ ni ◦ nj > tn (5)

At the end of the process, each scene point is associated with a unique label l(p).
In top right of Fig. 2-a) and -b), we report two examples of scene segmentation.
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Hence, given a solution X , likewise in (3), we compute a clutter term, ΥX (p),
at each unexplained scene point p, so as to penalize those that are likely to
belong to the same surface as nearby explained points:

ΥX (p) =

n
∑

i=1

xi · γ (p,N (p, Ehi
)) (6)

ΥX (p) consists of contributions, γ (p,N (p, Ehi
)), associated with each active hy-

pothesis hi, where Ehi
is the set scene points explained by hi. Analogously to

δ (p, q), we want γ (p, q) to weight clutter based on the proximity of p to its
nearest neighbor, q ∈ Ehi

, as well as according to the alignment of their surface
patches:

γ(p, q) =

⎧

⎪

⎨

⎪

⎩

κ, ‖p− q‖2 ≤ ρc ∧ l(p) = l(q)

(−
‖p−q‖2

2

ρ2
c

+ 1)(np ◦ nq), ‖p− q‖2 ≤ ρc ∧ l(p) �= l(q)

0, elsewhere

(7)

The radius given by ρc defines the spatial support related to γ(p, q), while κ
is a constant parameter used to penalize unexplained points that have been
assigned to the same cluster by the smooth segmentation step. Thanks to the
above formulation, wrong active hypotheses, such as the milk bottle in Fig. 2-a)
and the chicken model in Fig. 2-b), cause a significantly valued clutter term
ΥX (e.g. the purple and yellow regions in the bottom right part of the Figure),
which will penalize their validation within the global cost function. Therefore,
we have derived the last cue: iv) the amount of unexplained scene points close
to an active hypothesis according to (7) should be minimized.

3.2 Cost Function

We have so far outlined four cues i)-iv). While i) is aimed at increasing as much
as possible the number of recognized model instances (thus TPs and FPs), ii),
iii) and iv) try to penalize unlikely hypotheses through geometrical constraints,
so as to minimize false detections (FPs). The cost function F we are looking for
is obtained as the sum of the terms related to the cues that need to be enforced
within our optimization framework:

F (X ) = fS (X ) + λ · fM (X ) (8)

where λ is a regularizer, and fS , fM account, respectively, for cues defined on
scene points and model points:

fS (X ) =
∑

p∈S

(ΛX (p) + ΥX (p)−ΩX (p)) (9)

fM (X ) =

n
∑

i=1

|Φhi
| · xi (10)
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The global cost formulation in (8) easily allows plugging in additional cost terms
derived from geometric constraints or from specific application characteristics.
For instance, the relatively common assumption, in indoor robotic scenarios,
that objects are placed over a planar surface [9, 10] would allow to penalize
hypotheses having object parts lying below - or intersecting with - this surface.

3.3 Optimization

Having defined the cost function, we need to devise a solver for the proposed
optimization problem. As previously pointed out, we are looking for a solution
X̃ which minimizes function F (X ) over the solution space B

n:

X̃ = argmin
X∈Bn

{ F (X ) = fS (X ) + λ · fM (X )} (11)

As the cardinality of the solution space is 2n, even with a relatively small num-
ber of recognition hypotheses (e.g. in the order of tens) exhaustive enumeration
becomes prohibitive. As the defined problem belongs to the class of non-linear
pseudo-boolean optimization, we adopt a classical approach from operation re-
search based on simulated annealing [14] (SA). SA is a meta-heuristic algorithm
that optimizes a certain function without the guarantee to find the global opti-
mum. It randomly explores the solution space applying moves from a solution X i

to another valid solution X j . In order to deal with local optima, the algorithm
allows moves which increase the cost of the target solution. Such ”bad” moves
are usually performed during the initial iterations (when the temperature of the
system is high), whilst they become less and less probable as the optimization
goes on (system cooling down). The algorithm stops when the temperature has
reached a minimum or no improvement has been achieved in the last N moves,
which occurs either when the algorithm reaches the global optimum or trapped
into a local minimum. We initialize SA assuming all hypotheses to be active,
i.e. X 0 = {1, · · · , 1}, each move consisting then in switching on/off a specific
hypothesis at a time.

In our experiments we relied on the SA implementation available on MetsLib1

based on linear cooling and on the default parameter values, except for the
number of iterations, as we used a high enough value (6000) so that different
runs yielded the same results. We wish to point out that the proposed formulation
allows the terms included in the cost function to be pre-computed for each single
hypothesis (those related to fM) and scene point (those related to fS), so that at
each new move the cost function can be computed efficiently, and independently
of the total amount of scene points and number of hypotheses, by updating
only the hypothesis (and related scene points) being switched on/off. In Sec.
4 we will show how, despite being an approximate optimization algorithm, in
the addressed scenarios SA can yield accurate results while requiring reasonably
low computation times (typically below 2 seconds for hypothesis sets up to 200
elements – see Fig. 3-a) and Fig. 4-b).

1 www.coin-or.org/metslib

www.coin-or.org/metslib
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3.4 3D Recognition Pipeline

We briefly present the complete pipeline which will be used for our object recog-
nition experiments. This pipeline is based on local features, although we wish
to point out that the proposed algorithm can be straightforwardly plugged into
pipelines based on global features or recognition pipelines combining several de-
scriptors with different strengths as long as a 6DOF pose is provided.

Input Data. We assume input data to be either in the form of 3D meshes
(2.5D/3D) or point clouds. In most practical scenarios, scenes will be represented
by range images obtained from a single viewpoint. To build up the model library,
we transform each full 3D model into 2.5D clouds by placing a virtual camera
on a tessellated sphere around the mesh and rendering it from the centroids of
the triangles building up the tessellated sphere. In our pipeline, a icosahedron is
tessellated once, giving a total of 80 camera positions (i.e., similarly to [9]).

Keypoint Detection and Description. Keypoints are extracted at uniformly sam-
pled positions on the surface of models and scene, parameter σs being the sam-
pling distance. Then, the SHOT local descriptor [2] is computed at each keypoint
over a support size specified by radius σd. As for SHOT parameter values, we
have used those originally proposed in [2].

Correspondence Matching and Grouping. Descriptors are then matched to attain
point-to-point correspondences. To handle the case of multiple instances of the
same model, each scene descriptor is matched, via fast indexing [15], against all
models descriptors. We explicitly avoid using a matching threshold to reject weak
correspondences, given the ad-hoc choice of such thresholds and their strong
dependency to the metric being used.

Successively, a Correspondence Grouping (CG) algorithm is run to obtain
the model hypotheses to be feed to the proposed global HV process. Our CG
approach, inspired by [16], iteratively groups subsets of correspondences based
on checking the geometric consistency of pairs of correspondences. In partic-
ular, starting from a seed correspondence ci = {pMi , pSi }, p

M
i and pSi being,

respectively, the model and scene 3D keypoints in ci, and looping over all corre-
spondences not yet grouped, the correspondence cj = {pMj , pSj } is added to the
group started by ci if the following relation holds:

∣

∣||pMi − pMj ||2 − ||pSi − pSj ||2
∣

∣ < ε (12)

ε being a parameter of the method, intuitively representing the inlier tolerance
for the consensus set. A threshold τ is usually deployed to discard subsets sup-
ported by too few correspondences. Given that each subset of correspondences
yielded by CG defines a model hypothesis, threshold τ influences the final car-
dinality of the hypothesis set H (i.e. n) and, consequently, the computational
efficiency of the HV stage. As a further refinement, we run RANSAC on each
subset obtained out of the previous stage, the model being the 6DOF transfor-
mation provided via Absolute Orientation (AO) [17]. The consensus set tolerance
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Table 1. Parameters used for the proposed object recognition pipeline

Parameters

Det./descr. CG HV
Dataset σs σd τ ε ρe ρc κ λ

Laser Scanner 0.5 cm 4 cm 5 0.5 cm 0.5 cm 3 cm 5 3
Kinect 1 cm 5 cm 5 1.5 cm 1 cm 5 cm 5 3

and minimum cardinality for RANSAC are set, respectively, to ε and τ . Finally,
ICP is deployed on each subset to refine the 6DOF pose given by AO. At this
point, the hypothesis set H is ready to be fed to the proposed HV stage.

4 Experimental Results

Two experiments were conducted to validate the proposed HV algorithm and
the proposed 3D recognition pipeline, as well as to evaluate the suitability of
our approach with respect to different kinds of 3D data. The first experiment
is performed on a novel dataset, referred to hereinafter as Kinect, whereby we
match a set of CAD models against scenes acquired with a Kinect sensor. In this
experiment we compare our HV algorithm to that proposed in [5], as the latter
appears to be currently the best performing HV algorithm (see Fig. 4-a) and
is able to handle multiple model occurrences on the scene. For a fair compar-
ison, both algorithms are plugged into exactly the same 3D object recognition
pipeline, i.e. that described in Sec. 3.4. Furthermore, to validate the entire 3D
object recognition approach proposed in this paper, in the second experiment we
evaluate our proposal on the standard benchmark dataset for 3D object recog-
nition presented in [3], which comprises objects acquired by a laser scanner and
will be referred to as Laser Scanner.

Due to the different nature of the two datasets in terms of scene size, model
library size and noise – Kinect data is noisier than Laser Scanner data, espe-
cially as the distance to the camera increases – parameters were slightly tuned
to accommodate the algorithms to the underlying data (see Table 1). For the
implementation of [5], the same values of ρe reported in Table 1 were deployed,
while remaining parameters were tuned according to their performance on both
datasets: we used a support threshold of 0.08, a penalty threshold of 0.05 and
a value of 0.02 to decide when two hypotheses are in conflict. A TP is scored if
the id of the recognized model matches that in the ground truth and the RMSE
computed on the estimated model pose with respect to ground truth is under a
certain threshold, otherwise, a FP is scored.

Kinect Dataset. This dataset consists of 50 scenes and a library of 35 models
including typical household objects2. This dataset is particularly challenging

2 http://users.acin.tuwien.ac.at/aaldoma/datasets/ECCV.zip

http://users.acin.tuwien.ac.at/aaldoma/datasets/ECCV.zip
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(a) (b)

(c)

Fig. 3. Kinect dataset: a) results reported by the proposed HV algorithm and that
in [5]; the chart also reports the upper bound on the recognition rate related to the
deployed 3D pipeline. b-c): qualitative results yielded by the proposed algorithm on a
challenging dataset scene (b) and other simpler scenes (c).

given the different nature of the 3D data between scenes (2.5D acquired with a
Kinect) and models (fully 3D, mainly CAD, the remaining acquired with a laser
scanner). The relatively high number of models present in the library allows
testing how well the proposed approach scales with the library size. Another
relevant challenge of this dataset is represented by the traits of the models’ shape,
some of which are highly symmetrical and hardly descriptive (e.g. bowls, cups,
glasses), many of them being characterized by a high similarity (e.g. different
kinds of glasses, different kinds of mugs, ..), as also vouched by Fig. 3. Fig. 3-a)
shows the Recognition vs Occlusion curve and number of FPs of the proposed HV
algorithm and that in [5], both plugged in on the 3D pipeline presented in Sec.
3.4. The Figure also shows the upper bound curve, i.e. the maximum recognition
rate achievable with the proposed recognition pipeline. It can be seen that our
approach gets really close to the upper bound while dramatically reducing the
number of false positives. Our approach also outperforms that in [5], in terms
of Recognition rates as well as in terms of FPs. The overall recognition rate on
this dataset is 84.1% for the upper bound, 79.5% for the proposed approach and
73.8% for [5]. Qualitative results obtained by the proposed algorithm are also
provided in Fig. 3-b) and 3-c).

Laser Scanner Dataset. This dataset consists of 50 scenes and 5 models,
and it can be currently regarded as the most popular benchmark for 3D object
recognition. Fig. 4-a) shows the Recognition vs Occlusion curve reported by the
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(a) (b)

Fig. 4. Evaluation on Laser Scanner dataset. a) Comparison of the proposed recogni-
tion pipeline and the HV approach against results published in [5, 7, 6]. b) Comparison
of the proposed HV stage and our implementation of that in [5] plugged on the proposed
3D pipeline.

proposed 3D pipeline together with the results reported in [5–7]: our method
clearly outperforms the state of the art. Moreover, to the best of our knowledge,
we are the first to achieve a recognition rate of 100% without any false posi-
tive. Fig. 4-b) shows the Recognition vs Occlusion curve and number of FPs of
the proposed HV stage compared to that proposed in Papazov et al. [5], with
the recognition pipeline proposed in Sec. 3.4 for different ICP iterations. The
average time required by each combination is also reported. It is worth noting
that although the results obtained by both HV algorithms are equivalent at 0
and 10 ICP iterations in terms of recognition rate, the proposed algorithm is
able to yield less FPs (0 against 2). Then, at 30 ICP iterations, our method
accurately recognizes all models without yielding any FP, while the number of
FPs reported by [5] significantly increases due to the fact that a high number of
ICP iterations tend to locally align incorrect hypotheses to the scene points, so
that their respective support is large enough to be accepted by that method.

5 Conclusions and Future Work

We have proved the effectiveness of the proposed geometrical cues as well as
of simultaneously considering the interaction between model hypotheses as to
dramatically reduce the number of false positives while preserving those correct
recognitions that, due to occlusions, exhibit a small support in the scene. Over-
all, the potentialities of the HV stage to boost the performance of 3D object
recognition pipelines have also been highlighted, which to the authors’ opinion
have been underrated so far in literature.

Despite the relative efficiency of the proposed method in comparison to other
state-of-the-art strategies (see Fig. 4-b)), future work concerns exploiting GPU
parallelism for optimizing the main computational bottlenecks of the proposed
algorithm, namely the ICP stage and the initial computation of the cost terms
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during the SA stage. Another direction regards the use of additional cues, par-
ticularly with the aim of penalizing physical intersections between active visible
models. We plan to publicly release the implementation of the proposed HV
algorithm and recognition pipeline in the open source Point Cloud Library.
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