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Abstract. To relate stability of malaria transmission to biologic characteristics of vector mosquitoes throughout the
world, we derived an index representing the contribution of regionally dominant vector mosquitoes to the force of
transmission. This construct incorporated published estimates describing the proportion of blood meals taken from
human hosts, daily survival of the vector, and duration of the transmission season and of extrinsic incubation. The result
of the calculation was displayed globally on a 0.5° grid. We found that these biologic characteristics of diverse vector
mosquitoes interact with climate to explain much of the regional variation in the intensity of transmission. Due to the
superior capacity of many tropical mosquitoes as vectors of malaria, particularly those in sub-Saharan Africa, antimalaria
interventions conducted in the tropics face greater challenges than were faced by formerly endemic nations in more
temperate climes.

INTRODUCTION

Maps representing the world-wide burden of malaria1 gen-
erally reflect the reported distribution of clinical episodes of
this disease. However, the scope and accuracy of these reports
are limited by the extent of health care coverage, the efficacy
of surveillance and reporting systems, and other factors that
have little to do with the underlying force of malaria trans-
mission. Schemes using the mortality rates of garrisoned Brit-
ish troops in the early 18th century offer novel insights into
the global distribution and variation of malaria risk,2–4 but
represent the experience of an archaic and geographically
limited population subject to peculiar behavioral constraints.
The underlying force of malaria transmission is better repre-
sented by maps representing the climatic determinants of ma-
laria, such as the schemes developed by the “Mapping Ma-
laria Risk in Africa” (MARA) collaboration, are less affected
by institutional limitations and are based on more objective
ecologic bases.5 Such maps derive from a “climatic suitability
index” that represents the climatic limits on vector distribu-
tion and parasite development as well as the presence of a
sufficiently long breeding period for the vector population.
These variables relate well to depictions in clinically based
maps, but do not consider all of the factors intrinsic to vector
mosquitoes that affect transmission intensity at a given level
of abundance. Temperature, for example, is used only to de-
fine the limits and relative suitability of the region as a trans-
mission site. Other maps attempt to bridge these clinically and
environmentally based approaches on a regional scale by con-
sidering statistical correlations between malaria incidence and
environmental characteristics.6 Such representations of ma-
laria risk improve the resolution of spatial depictions of trans-
mission intensity, but do not consider directly the properties
intrinsic to vector mosquitoes that contribute most powerfully
to vectorial capacity, such as focused feeding behavior and
longevity. Available maps depicting the relative intensity of
malaria transmission generally are constructed from surro-
gates or filtered outcomes that remain one or more steps
removed from the forces that govern the stability of malaria
transmission.

Malaria is said to be stable if it is transmitted throughout
the year by long-lived, anthropophilic vector anopheline mos-
quitoes. In his seminal 1952 malariologic analysis, Macdonald
used a/� to represent an index of stability based on the two
most important components of his vectorial capacity equa-

tion,7 in which a represents the human-biting tendency of the
vector and � the daily mortality rate. Although this index is
useful when applied within a given site or between climati-
cally similar sites, it does not account for ambient tempera-
ture, which profoundly affects the duration of extrinsic incu-
bation. Although vector longevity contributes to the force of
transmission as an exponent of this incubation period, Mac-
donald’s stability convention equates longevity with blood-
feeding preference, which participates only as a squared term
because at least two feedings are required to complete one
transmission cycle. Perpetual transmission is particularly im-
portant in the case of malaria caused by Plasmodium falci-
parum because infected people tend to become noninfectious
for mosquitoes within two months after they had been in-
fected.8 These characteristics of stable transmission of ma-
laria can provide a solid foundation for understanding varia-
tions in malaria transmission intensity. However, we lack a
synthesis of the various designated components of transmis-
sion stability that can be used to compare the resiliency of
malaria transmission in different sites.

It may be that a global depiction of the intrinsic contribu-
tion of mosquito vectors to malaria transmission would pro-
vide an objective measure of regional differences in the force
of transmission, uncolored by clinical externalities. To depict
these relationships, we derived a spatial index of the stability
of malaria transmission based on the most powerful intrinsic
properties of anopheline mosquito vectors of malaria that
interact with climate to determine vectorial capacity. Because
this index examines potential transmission stability, it in-
cludes regions where malaria is not currently transmitted, but
where it had been transmitted in the past or where it might be
transmitted in the future. This index, therefore, includes
“anophelism (with as well as) without malaria.”

MATERIALS AND METHODS

Distribution and characteristics of vectors. The peer-
reviewed scientific literature served as the main source of
information for characterizing the distribution and for de-
scribing certain biologic characteristics of selected anopheline
vectors of malaria (Table 1). Although information from pri-
mary sources was preferred, more general reviews and texts
were consulted. From these sources, we designated the dom-
inant vectors in each of the countries in which malaria is or
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has been endemic. Only the smallest island nations and pro-
tectorates were excluded from these analyses. The level of
resolution used also precluded detailed consideration of indi-
vidual cities. A regionally “dominant” vector was defined as
an anopheline that is demonstrably vector competent, fre-
quently contains sporozoites, tends to feed on human hosts,
and is more abundant than other anophelines. These consid-
erations were applied independently to each month of the
year to permit “swapping” of dominant vectors between sea-
sons within a region. Regions were subdivided when appro-
priate to permit more than one malaria vector in a country to
be designated as dominant.

To describe the seasonal distributions of each regionally
dominant malaria vector for each of the 12 months of the
year, we determined whether such a mosquito was locally
active, using the same body of literature that was used to
estimate vector bionomics. Sources of information were fa-
vored in which mosquito abundance was monitored system-
atically by means of landing counts, resting counts, light traps,
flit catches, or other such objective methods. Certain of these
sources described seasonal abundance in weekly, biweekly, or
monthly observations. When no entomologic information was
available, we relied on the recorded seasonality of malaria
incidence. We consulted as many such reports as could be
found and assigned values based on a “majority” of the avail-
able records. When no reliable information was available for
a site, records of the local climate were interpolated to indi-
cate whether a particular vector may be present there in a
given month. The algorithm for decision-making in such
anomalous cases varied according to the vector species. For
those vectors that breed mainly in temporary water, we used
a minimum precipitation threshold of 10 mm per month,
lagged one month, to judge when the vector would be present
in the site during a given month. Vectors that mainly ex-
ploited permanent or semi-permanent bodies of water were
considered to be independent of seasonal fluctuations in rain-
fall unless empirical evidence indicated otherwise. In temper-
ate or altitudinous regions, we used temperature thresholds to
determine whether vectors would be active in a particular
month, assuming that anophelines remain inactive when the
mean monthly temperature remains below 15°C.

Mapping methods. A map of vector distributions was cre-
ated using ArcView version 3.2105 geographic information
system software. An outline map of political borders was
color-coded according to the dominant vector indicated by
the literature review. In many cases, countries were divided
into one or more subregions to account for ecologic hetero-

geneity in anopheline distribution. Gaps and discrepancies in
the resulting preliminary map were corrected according to
features of the habitat and climate. Satellite-derived vegeta-
tion indices, as indicated by the Global Ecosystem classifica-
tion of the Global Land Cover Characteristics 1 km Data-
base,106 provided a means for defining ranges by identifying
areas with habitats suitable for vectors with such unique eco-
logic constraints as salt marshes or forests. The northern limit
of the Sahel, for example, was generally defined by the extent
of “hot and mild grasses and shrubs.” A digital elevation
model107 was used to further define the ranges of vector spe-
cies that were affected by maximum and, in some cases, mini-
mum altitudinal limits, as reported in the World Malaria Risk
Chart.108 Regions with more than 1.5 days of seasonal frost in
the summer109 served to define the limits of distribution of
vectors in the northern latitudes. Maps representing the ex-
trinsic incubation period of P. falciparum were based on the
1901–1990 mean monthly temperature records of the Inter-
national Panel on Climate Change.109 Human population
data were derived from the detailed Gridded Population of
the World data set.110 Data calculated for each month are
represented in 0.5° cells.

Our analysis of the distribution of dominant vectors of ma-
laria, therefore, was species specific and based on published
reports of anopheline bionomics, vegetation maps (defining
suitable, unsuitable habitat), altitude (maxima or minima),
monthly precipitation thresholds (minima), and monthly tem-
perature thresholds (minima, isotherms, length of frost-free
season).

RESULTS

Selection of regionally dominant vector Anopheles. We
first identified the countries in which malaria is endemic or
has been endemic and enumerated the vector Anopheles en-
demic to the site. Certain of these countries were divided into
as many as four regions to represent the diversity of habitats
there. To characterize the dominant vector in each region, we
selected those that were longest lived and that fed most fre-
quently on human hosts (Table 1). Dominant malaria vectors
were designated in each endemic or potentially endemic re-
gion (Figure 1). The 260 regions that we identified are in-
fested by a total of 34 dominant vector Anopheles.

Derivation of a vector stability index. To depict the relative
stability of malaria transmission for each of these potentially
malaria-endemic regions, we derived an index that expressed
those factors that most powerfully and perennially influence
the intensity of malaria transmission. We used, therefore, a
subset of the vectorial capacity equation without terms for
mosquito abundance or vector competence. We did not con-
sider a recovery rate for infected people. To calculate the
duration of the extrinsic incubation period “E,” the index (1)
was calculated for each month, and biting activity was desig-
nated based on the average monthly temperature and Mosh-
kovsky’s degree-day-based formulae111 (2,3).

�
m = 1

12

a
2

i,m p
E

i,m�−ln(pi,m�

where m � month (1−12), i � identity of dominant vector, a
� proportion biting people (0−1), p � daily survival rate
(0−1), and E � length of extrinsic incubation period in days

TABLE 1
Sources of information on anopheline distribution and seasonality

Region References

General 1, 9–11
Africa 12–23
South and Central America 8, 24–53
Middle East 54–71
Southeast Asia 72–79
Northern Asia 80–86
Western Asia 87–90
Australasia 91–95
Europe 96–103
North America 104
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where E � 111/T-16 for P. falciparum and E � 105/T-14.5 for
P. vivax.

Parameterization of the stability index. We first applied
our vector stability index to each of the regions designated as
infested by one or another of the 34 Anopheles vectors that
we considered to be dominant. Criteria used to estimate a
included field-derived estimates of the human biting index
(hbi) based on mosquitoes captured in various locations and
whose blood meals were identified by precipitin,112–117 en-
zyme-linked immunosorbent assay,118,119 or gel diffusion
methods.120 Data were excluded if they derived from con-
trived experiments in which human or other hosts were ex-
posed in a common space. In the case of mixed blood meals,
any mosquito yielding evidence of ingested human blood
was considered to be a human feeder in the calculation of a.
Criteria for estimating daily survival rate (p) in the peer-
reviewed literature variously used mark-release recapture
tracking of the daily rate of decrease in recaptures,115,121 the
ratio of Stage IV to Stage III ovarioles in dissected adults,122

the rate of increase in infection rate, parous rates, and directly
observed mortality in mosquitoes maintained in cages in the
laboratory. A common value for a was assigned to each vector
species throughout its range. Where the members of a species
complex were sympatric and not readily distinguished by
habitat (e.g., Anopheles punculatus s.l.), a combined median
estimate was used for all members of the taxon. In certain
other cases (e.g., An. fluviatilis s.l.), in which the habitat pref-
erence of the anthropophilic members of the complex (sibling
species S) differ from those that are zoophilic (T), the indi-

vidual members were differentiated. Observations made be-
fore species complexes were recognized or before these spe-
cies could readily be distinguished were excluded unless cur-
rent information on geography or habitat facilitated such a
distinction. This criterion excluded many older observations
from parts of Africa where An. arabiensis and An. gambiae
are sympatric and share in malaria transmission. The median
hbi value for all 34 vectors was 0.672, ranging from 0.01 to
0.98 (Table 2). These values representing a are varied, but
consistent.

Survival estimates for adult anophelines were highly vari-
able between studies. The median daily survival value was
0.846, ranging from 0.682 for An. albimanus to 0.966 for An.
atroparvus and An. quadrimaculatus (Table 3). Because sur-
vival was so infrequently estimated and because the methods
of estimation have such disparate biases (e.g., lower mortality
from population cages and higher mortality from mark-
recapture), the median value of p was applied to all species
across their ranges. A coherent value representing the stabil-
ity index can thus be applied to each dominant vector
anopheline.

Adaptation of the stability index to a fine geographic
scale. We then depicted our stability index on a geographic
scale finer than that represented by the 260 regions that we
designated as malarious or potentially malarious. Toward this
end, depictions of seasonality in malaria transmission were
refined by applying a 10-mm monthly precipitation threshold
with a one-month lag that determined whether index values
were calculated for individual 0.5° cells. Temperature data

FIGURE 1. Global distribution (Robinson projection) of dominant or potentially important malaria vectors.

KISZEWSKI AND OTHERS488



were applied on a similar scale to non-zero cells when calcu-
lating cell-level indices. The resulting cell-based index char-
acterized broad regions and countries much as did the simpler
region-based index while providing less abrupt transitions on
the fringes of vector distributions, especially in arid zones.
This inclusion of a micro-climate parameter in our index bet-
ter balances the influence of temperature with that of rainfall,
an effect that is more implicit than explicit in the region-based
indices. The adjusted monthly maps were combined to create
a final map of the malaria stability index (Figure 2). The
resulting map resembles other depictions of the intensity of
malaria risk throughout the world.1

DISCUSSION

Regional differences in stability. Both the region-based and
cell-based versions of our stability index demonstrate that
malaria is transmitted far more robustly in sub-Saharan Af-
rica than it is elsewhere in the world. In the savannah regions
of west and central Africa that border the Sahel, stability is
enhanced by the continuous heat that characterizes the re-
gion, the human-biting habit of the autochthonous vector
mosquitoes and the presence of a complementary vector (An.
funestus) that maintains transmission during the dry season
when the density of the wet-season vectors (An. gambiae s.l.)
wanes. Transmission is somewhat less stable in Papua New
Guinea, Irian Jaya, and the Solomon Islands where particular
members of the An. punctulatus complex are almost exclu-

sively anthropophilic but where transmission virtually ceases
during the rainy season. Malaria is less stable elsewhere in the
tropics and least stable in the more temperate parts of the
world. Tropical regions in general appear to face larger ob-
stacles in intervening against malaria, which these indices sug-
gest may be due more to the intrinsic properties of their vec-
tors and the effects of climate than to differences in health
systems or anti-malaria interventions. These indices also dem-
onstrate the advantages that once were enjoyed in temperate
nations that happened not to be burdened by anthropophilic
mosquitoes.

Sources of error and bias. The diverse methods that have
been used to estimate mosquito survival tend to bias compre-
hensive longevity estimates. Mark-release recapture methods
appear to be most conservative, possibly because mosquitoes
are damaged when they are captured and held prior to re-
lease. Estimates derived from laboratory-reared mosquitoes,
held in population cages, tend to exceed those derived in
other ways, reflecting perhaps the absence of such natural
hazards as predators. These biases are most apparent in the
case of vectors that are represented poorly in the literature.
The disproportionate effect of vector longevity on the index
further exacerbates the effect of such aberrations. The results
of the version of our index based on feeding habit alone are
more consistent with clinical experience1 than is the index
that includes both longevity and human-biting habit. The
anomaly introduced by the longevity parameter appears to
derive more from measurement error, sample size, and incon-

TABLE 2
Human blood index of each of the regionally dominant anopheline vector mosquitoes

Anopheles species
Median human

blood index
No. of

observations References

albimanus 0.102 16 123–129
anthropophagus 0.010 1 130
aquasalis 0.109 3 131–132, 249, 250
arabiensis 0.871 32 13, 20, 125, 133–150
atroparvus 0.245 8 151–154, 251
barbirostris 0.127 9 124, 125, 129, 155–158
culicifacies 0.052 55 125, 155, 159–172
darlingi 0.458 2 129, 173
dirus 0.355 18 124, 125, 174–176
farauti 0.658 19 124, 125, 129, 174, 177
flavirostris 0.300 9 125, 129, 174, 176
fluviatilis 0.034 27 58, 124, 125, 129, 155, 167, 169, 178–182
freeborni 0.019 8 104, 183, 184
funestus 0.980 30 12, 118, 125, 138, 139, 143, 185–189
gambiae ss 0.939 36 12, 13, 14, 133, 135, 138, 139, 142, 145, 146, 148, 149, 150, 185, 186, 190–192
labranchiae 0.151 17 103, 123, 124, 128, 193–195
maculatus 0.155 10 125, 155, 156, 158, 196–198
melas 0.690 6 23, 74, 133, 190
messeae 0.172 14 117, 154, 199, 200, 201–204
minimus 0.425 12 125, 151, 176, 197, 205–208
multicolor 0.008 15 62, 124, 125, 209–212
nuneztovari 0.222 11 30, 46, 49, 50, 213, 214
pharoahensis 0.520 17 124, 125, 129, 209, 211, 215–220
pseudopunctipennis 0.477 13 124, 126, 129, 221–223
pulcherrimus 0.062 12 124, 125, 129, 224–227
punctulatus sl 0.855 7 124, 125, 129, 174, 177
quadrimaculatus 0.111 27 228–230
sacharovi 0.087 47 125, 199, 231–241
sergentii 0.100 18 124, 125, 129, 210, 212
sinensis 0.018 21 124, 129, 151, 157, 158, 174, 206, 242–245
stephensi 0.023 37 63, 124, 125, 129, 155, 160, 166, 169, 170, 176, 246
superpictus 0.093 18 59, 124, 129, 193, 199, 231, 234, 240
sundaicus 0.611 17 124, 125, 129, 158, 247–248
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sistent methodology than any biologic property. For the pur-
pose of the present global analysis, therefore, we chose to
substitute a fixed value for longevity.

The methodology generally used for defining the blood-
feeding habit of a mosquito286 is considerably less diverse and
apparently more consistent than are methods used for esti-
mating survival. Such estimates generally derive from precip-
itin resting, a method that has been used since the early 1920s
and that has resulted in a considerable body of information on
many of the dominant vectors. Because the precipitin test
shows a relative lack of sensitivity,286 such results tend to be
less determinate than are those based on gel diffusion or gene
amplification. However, this diversity in the methods used
for discriminating between blood sources appears not to in-
troduce bias.

Rationale for using a single representative vector. In char-
acterizing regional force of transmission, we elected to base
our calculations on the single most dominant anopheline spe-
cies native to a particular place and during a given month. Not
all possible vectors were included in the analyses because
malaria prevalence rapidly becomes saturated as the entomo-
logic inoculation rate increases.287 The contribution of a
single dominant vector captures virtually all of the “signal”
that characterizes endemicity in a region, thereby rendering
secondary vectors irrelevant. This reasoning is based on the

rationale that even subtle differences in human biting behav-
ior and longevity lead to large differences in the force of
transmission. These terms contribute powerfully in a nonlin-
ear fashion. For similar reasons, additive weighting by relative
abundance is avoided because a weak vector would unrealis-
tically dilute the effect of the strong vector. A cumulative
index that sums the contributions of all vectors would, simi-
larly, be misleading.

Definition and contribution of a. Much of the regional
variation in the stability of malaria transmission can be ex-
plained solely by reference to vector feeding behavior. Al-
though this factor is not the most powerful component of
vectorial capacity, it may vary most widely as an intrinsic
property of diverse vector species. Feeding preference is
strongly influenced by the availability of particular hosts, and
certain innate and species-specific properties of the vector
affect choice. These behaviors range from complete zoophily
to complete anthropophily with a continuum of intervening
gradations. Longevity, as a trait, varies more subtly than does
blood-feeding habit.

The vectorial capacity term for anthropophilic biting be-
havior (a) is handled variously in the literature. The original
approach7 divided human biting preference by the length of
the gonotrophic cycle in days to derive a term that specified
the proportion of the vector mosquito population that ac-
tively sought hosts on a given day and likely to feed on human
hosts. Various investigators depict a as the human biting rate.
For the purpose of defining this index, however, we dissociate
human feeding preference from biting interval because of the
relative paucity of information on temperature-gonotrophic
relationships for many mosquitoes. However, such tempera-
ture relationships are included in the index in the calculation
for extrinsic incubation period length. Ideally, both tempera-
ture-dependent relationships would be included, thereby en-
hancing the differentiation between temperate and tropical
regions because the current temperature effect would effec-
tively be squared.

The effect of abundance and competence. Our index in-
cludes those factors that most powerfully and perennially in-
fluence the intensity of malaria transmission. Other vector
characteristics, such as abundance and competence, affect
transmission less powerfully. Mosquito abundance is also af-
fected by extreme inter-annual and inter-spatial variation that
would tend to obscure the innate epidemiologic capacities of
different types of mosquitoes. For the dominant vectors speci-
fied in our index, competence is less variable, but similarly
weak in its influence. Competence often separates into input
and output components,7 the probability that infected mos-
quitoes pass infection to a reservoir host (b) and the reverse
relationship (c). Each of these terms, like abundance, has a
linear effect on the force of transmission. Because we chose to
ignore the contribution of less competent secondary vectors,
the variation in competence between the vectors included in
our index is greatly reduced. Our list of dominant vectors,
therefore, represents an elite subset of the most competent
anophelines capable of transmitting malaria.

The effect of other missing factors on the index. The reso-
lution of our index might be sharpened by including other
estimators. In highland and in arid sites, where malaria trans-
mission is seasonal, the infectiousness of the human reservoir
population may periodically become reduced. A reservoir
competence factor that is adjusted for the duration of such

TABLE 3
Survival rate of each of the regionally dominant anopheline vector

misquitoes

Anopheles
Median daily
survival rate

No. of
observations References

albimanus 0.682 16 128, 252–254
anthropophagus 0.803 1 130
aquasalis 0.776 3 131, 255, 256
arabiesis 0.790 32 143, 144, 149, 257
atroparvus 0.966 8 258–262
barbirostris 0.980 9 157
culicifacies 0.831 55 69, 166, 170, 224,

263–265
darlingi 0.804 2 173
dirus 0.916 18 176, 207, 267–269
farauti 0.829 19 177, 266
flavirostris 0.961 9 176, 270
fluviatilis 0.735 27 167
freeborni 0.740 8 271
funestus 0.690 30 144, 257, 272–274
gambiae ss 0.860 36 42, 149, 185, 191, 192,

275, 276
labranchiae 0.850 17 195, 262
maculatus 0.800 10 157, 207, 277, 278
melas 0.860 6 (see An. gambiae)
messeae 0.881 14 261, 262
minimus 0.876 12 181, 207, 279
multicolor 0.865 15 219
muneztovari 0.766 11 49
pharoahensis 0.735 17 219
pseudopunctipennis 0.880 13 222
pulcherrimus 0.780 12 69, 227
punctulatus sl 0.855 7 177, 280
quadrimaculatus 0.966 27 222, 281, 282
sacharovi 0.858 47 261, 283
sergentii 0.950 18 215, 284
sinensis 0.857 21 243, 244
stephensi 0.810 37 166, 169, 170, 246,

263, 265
superpictus 0.945 18 283, 285
sundaicus 0.859 17 130, 157
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interruptions would tend to increase the contrast between the
index values of temperate regions and those of highly sea-
sonal tropical regions that include sites in which transmission
is uninterrupted. Exophilic feeding behavior may also affect
the force of transmission. Although difficult to quantify, en-
dophilic vectors contribute more to malaria risk than do those
that are exophilic. Incorporation of this property into our
index might be useful.

Increasing the resolution of the grid cells to something less
than the 0.5° dictated by our climate data would also improve
the index. With more finely resolved geographic data, more
spatial variability would be included, particularly for smaller
countries and islands omitted due to the large size of each grid
cell. The influence of focally important vectors such as urban
An. stephensi and oasis-breeding An. sergentii would also be
represented more accurately.

Anthropogenic conditions may modify our stability index
by influencing the distribution, survival rate, and feeding hab-
its of vectors. Insecticide use, improved house construction,
land-use changes, and pollution (such as detergent contami-
nation) would reduce the force of transmission. Anthropo-
genic changes that increase transmission would include accu-
mulations of puddled ground water and enhanced resting
sites. The latter condition can be a powerful determinant be-
cause it enhances longevity. Such artifactual conditions inter-
mingle in a complex manner and would be difficult to incor-
porate into our index.

The contribution of the density of the human population to
the stability of transmission might also be important because
malaria transmission depends on the interaction of humans
and mosquito vectors. Weighting by population density might

reduce the index in countries where dense human populations
inhabit non-malarious regions, such as the highlands of
Kenya. In certain other regions, such as the Sahel, where
people are compelled to reside where water is available, and
thus where transmission is most stable, the index may become
amplified. A parameter representing human density would
contribute to the specificity of our stability index.

Effect of species complexes. Many of the more broadly dis-
tributed anophelines represent complexes of heterogeneous
populations. Although our analysis would have benefited
from the finest possible resolution of such complexity, certain
of the parameters that we used were based on aggregated
estimates. In the case of An. fluviatilis, for example, the hbi
values clustered distinctly around two medians. The standard
deviation in this case approaches or surpasses the correspond-
ing mean, suggesting aggregation of heterogeneous popula-
tions. In the absence of evidence to the contrary or of a means
of applying such evidence to our parameters, we treated such
disparate estimates as though they represent values for a
single homogeneous population.

Summing up. Our index of malaria stability depicts the re-
gional resiliency of malaria perpetuation. It fills the gap be-
tween climatologically based and clinically based indices of
transmission by including the most powerful components of
vectorial capacity and their differing expression in the various
anopheline vectors of malaria. Thus, it explicitly depicts the
effects of ambient temperature on the force of transmission of
malaria, as expressed through the length of the extrinsic in-
cubation period, and the proportion of the vector population
able to survive long enough to become infectious. Therefore,
our map synthesizes the interaction of climate with malaria

FIGURE 2. Distribution (Robinson projection) of the actual and potential stability of malaria transmission based on regionally dominant vector
mosquitoes and a 0.5° gridded temperature and precipitation data set.
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pathogens and mosquito vectors more comprehensively than
do maps based on climate or clinical incidence alone. Our
index of malaria stability provides baselines for comparing
regional infectious throughputs in malaria vectors. These in-
dices can help in efforts to design antimalaria interventions
and to explore the links between malaria intensity and eco-
nomic development. One immediate use of the index is as a
statistical control in studies of the effects of malaria on eco-
nomic development. A traditional problem with analyses of
the correlation between malaria endemicity and economic de-
velopment is the tendency of causation to run in both direc-
tions: from malaria to poverty and from poverty to malaria.
The new index will be useful in measuring the extent of cau-
sation running from malaria to poverty because the index can
be used as an instrumental variable in regressions of eco-
nomic growth and income levels on malaria endemicity. The
first statistical results of this application underscore the im-
portance of malaria as an important causal factor in chronic
impoverishment of holoendemic regions.288 Global variation
in the stability of malaria transmission derives from interac-
tions between climate and the specific biological characteris-
tics of certain, dominant anopheline vectors.
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