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Abstract

We present a linear method for global camera pose reg-

istration from pairwise relative poses encoded in essential

matrices. Our method minimizes an approximate geomet-

ric error to enforce the triangular relationship in camera

triplets. This formulation does not suffer from the typi-

cal ‘unbalanced scale’ problem in linear methods relying

on pairwise translation direction constraints, i.e. an alge-

braic error; nor the system degeneracy from collinear mo-

tion. In the case of three cameras, our method provides

a good linear approximation of the trifocal tensor. It can

be directly scaled up to register multiple cameras. The re-

sults obtained are accurate for point triangulation and can

serve as a good initialization for final bundle adjustment.

We evaluate the algorithm performance with different types

of data and demonstrate its effectiveness. Our system pro-

duces good accuracy, robustness, and outperforms some

well-known systems on efficiency.

1. Introduction

Structure-from-motion (SfM) methods simultaneously

estimate scene structure and camera motion from multiple

images. Conventional SfM systems often consist of three

steps. First, relative poses between camera pairs or triplets

are computed from matched image feature points, e.g. by

the five-point [25, 23] or six-point [32, 40] algorithm. Sec-

ond, all camera poses (including orientations and positions)

and scene point coordinates are recovered in a global co-

ordinate system according to these relative poses. If cam-

era intrinsic parameters are unknown, self-calibration algo-

rithms, e.g. [30], should be applied. Third, a global non-

linear optimization algorithm, e.g. bundle adjustment (BA)

[41], is applied to minimize the reprojection error, which

guarantees a maximum likelihood estimation of the result.

While there are well established theories for the first and

the third steps, the second step in existing systems are of-

ten ad-hoc and heuristic. Some well-known systems, such

as [36, 2], compute camera poses in an incremental fashion,

∗These authors contributed equally to this work.

where cameras are added one by one to the global coordi-

nate system. Other successful systems, e.g. [11, 22, 17],

take a hierarchical approach to gradually merge short se-

quences or partial reconstructions. In either case, inter-

mediate BA is necessary to ensure successful reconstruc-

tion. However, frequent intermediate BA causes reconstruc-

tion inefficiency, and the incremental approach often suffers

from large drifting error. Thus, it is highly desirable that all

camera poses are solved simultaneously for efficiency and

accuracy. There are several interesting pioneer works in this

direction, e.g. [13, 19, 24, 46]. More recently, Sinha et al.

[35] designed a robust multi-stage linear algorithm to regis-

ter pairwise reconstructions with some compromise in accu-

racy. Arie-Nachimson et al. [3] derived a novel linear algo-

rithm that is robust to different camera baseline lengths. Yet

it still suffers from the same degeneracy as [13] for collinear

cameras (e.g. cameras along a street).

This paper presents a novel robust linear method. Like

most solutions, we first calculate the camera orientation (ro-

tations), e.g., using the method described in [24]. Unlike

earlier algebraic methods, we compute the camera positions

(translations) by minimizing a geometric error – the Eu-

clidean distance between the camera centers and the lines

collinear with their corresponding baselines. This novel ap-

proach generates more precise results, and does not degen-

erate with collinear camera motion. We want to stress that

the robustness with collinear motion is an important advan-

tage, since collinear motion is common (e.g., streetview im-

ages). Furthermore, our estimation of camera poses does

not involve reconstructing any 3D point. Effectively, we

first solve the ‘motion’ – camera poses, and then solve the

‘structure’ – scene points. This separation is advantageous,

because there are much fewer unknowns in camera poses.

Our algorithm is highly efficient and can be easily scaled

up as a result of this separation. Once the camera poses

are recovered, the scene points can be reconstructed from

nearby cameras.

In the special case of three cameras, our algorithm effec-

tively computes the trifocal tensor from three essential ma-

trices. In our experiment, we find that our method is more

robust than the four-point algorithm [26] which solves tri-

focal tensor from three calibrated images.
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Disambiguate 3D Reconstruction. Modern SfM sys-

tems (e.g. [36, 2]) can reconstruct unordered internet im-

ages, while conventional methods are mainly designed for

sequentially captured images. SfM with internet images

opens a new door in 3D vision. One of its key challenges

is to deal with incorrect epipolar geometries (EG) arising

from suspicious feature matchings, especially for scenes

with repetitive structures. Incorrect EGs cause ambiguity

in 3D reconstruction – multiple valid yet different 3D re-

constructions can be obtained from the same set of images.

Significant efforts [44, 45, 33, 18] have been put to solve

this ambiguity. Our method is applicable to both sequential

and unordered image sets, though we do not address the am-

biguity in this paper. Instead, we design a robust pipeline to

recover a particular valid 3D reconstruction. It is straight-

forward to combine our method with [18], which evaluates

multiple different 3D reconstructions and chooses the opti-

mal one, to solve the ambiguity.

2. Related Work

Conventional Approach. Many well-known SfM sys-

tems take a sequential [31, 36, 2] or hierarchical [11, 22, 17]

approach to register cameras incrementally to a global co-

ordinate system from their pairwise relative poses. How-

ever, frequent intermediate BA is required for both types of

methods to minimize error accumulation, and this results in

computation inefficiency.

Factorization. Factorization based 3D reconstruction

was proposed by Tomasi and Kanade [39] to recover all

camera poses and 3D points simultaneously under weak

perspective projection. This was further extended to more

general projection models in [38]. However, the presence of

missing data (often structured) and outliers poses theoreti-

cal challenges for both low-rank matrix approximation [6]

and matrix factorization [5, 20].

Global Methods. Some global methods solve all cam-

era poses together in two steps. Typically, they first com-

pute camera rotations and solve translations in the next step.

Our method belongs to this category. While global rotations

can be computed robustly and accurately by rotation aver-

aging [15], translations are difficult because the input pair-

wise relative translations are only known up to a scale. The

pioneer works [13, 4] solved translations according to lin-

ear equations derived from pairwise relative translation di-

rections. These earlier methods suffer from degeneracy of

collinear camera motion and unbalanced constraint weight-

ing caused by different camera baseline length. When dis-

tances between cameras are known beforehand, Govindu

[14] provided an algebraic framework for motion averaging.

For relatively small scale data, Courchay et al. [7] com-

puted homographies to glue individual triplet reconstruc-

tions by loop analysis and nonlinear optimization. Sinha

et al. [35] registered individual pairwise reconstructions by

solving their individual global scaling and translation in a

robust linear system. As reported in [3], this method gener-

ates less accurate results. Arie-Nachimson et al. [3] derived

a highly efficient linear solution of translations from a novel

decomposition of the essential matrix. This method is more

robust to different baseline lengths between cameras. How-

ever, it still suffers from the degeneracy of collinear camera

motion like [13, 4]. Unlike the previous algebraic methods,

we derive our linear solution from an approximate geomet-

ric error, which does not suffer from such degeneracy and

produces superior results.

Other global methods solve all camera poses and 3D

scene points at once. Kahl [19] used L∞-norm to measure

the reprojection error of a reconstruction, which leads to a

quasi-convex optimization problem. Later works along this

line proposed to speed up the computation by selecting only

representative points from image pairs [24], using fast op-

timization algorithms [29, 1], or customized cost function

and optimization procedure [46]. It is also well known that

L∞-norm is highly sensitive to outliers. Therefore, care-

ful outlier removal is required for the algorithm stability

[9, 28].

There are also methods exploiting coarse or partial 3D

information as initialization. For instance, with the aid of

GPS, city scale SfM can be solved under the MRF frame-

work [8].

Trifocal Tensor. In the special case of three cameras, the

camera geometry is fully captured by a trifocal tensor. Tri-

focal tensors can be computed by the four-point algorithm

[26] or the six-point algorithm [32, 40] from calibrated or

uncalibrated images respectively. Trifocal tensors can also

be estimated from three fundamental matrices [34] in the

uncalibrated case. Effectively, our method provides a linear

solution for trifocal tensor from three essential matrices (i.e.

the calibrated case).

3. Overview

We first derive our algorithm under the assumption of

known EGs without gross error. Later, this assumption is

relaxed to deal with incorrect EGs with large error in Sec-

tion 5.

The input to our system are essential matrices between

image pairs, which are computed by the five-point algo-

rithm [25]. An essential matrix Eij between two images

i, j provides the relative rotation Rij and the translation di-

rection tij . Here, Rij is a 3× 3 orthonormal matrix and tij
is a 3 × 1 unit vector. Our goal is to recover all the abso-

lute camera poses in a global coordinate system. We use a

rotation matrix Ri and a translation vector ci to denote the

orientation and position of the i-th camera (1 ≤ i ≤ N ).

Ideally, the following equations should hold

Rj = RijRi, Rj(ci − cj) ≃ tij . (1)
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Figure 1. Geometric explanation of Equation (3).

Here, ≃ means equality up to a scale. In real data, these

equations will not hold precisely and we need to find a set

of Ri, ci that best satisfy these equations.

We design our method based on two criteria. Firstly, the

solution should be simple and efficient. Approximate solu-

tions are acceptable, since a final BA will be applied. Sec-

ondly, the camera poses should be solved separately from

the scene points. There are often much more scene points

than cameras so that solving camera poses without scene

points will significantly reduce the number of unknowns.

We first apply the linear method described in [24] to

compute the global camera rotations Ri. We find it provides

good results in experiments, though a more sophisticated

method [15] might be used. Basically, it over-parameterizes

Ri by ignoring the orthonormal constraint on its column

vectors and solves all the rotation matrices at once from the

linear equations Rj = RijRi. Once all rotations are fixed,

we then solve all camera centers (ci, 1 ≤ i ≤ N ) without

reconstructing any 3D point.

4. Translation Registration

Given the global camera rotations computed in the previ-

ous section, we first transform each tij to the global rotation

reference frame as cij = −R⊤
j tij . The constraint on cam-

era centers in Equation (1) can be written as in [13],

cij × (cj − ci) = 0. (2)

Here, × is the cross product. This is a linear equation about

the unknown camera centers. However, equations obtained

this way degenerate for collinear camera motion. Further-

more, as discussed in [13], equations for image pairs with

larger baseline lengths are given larger weights. Careful it-

erative re-weighting is required for good results. In fact,

Equation (2) minimizes the cross product between cij and

the baseline direction cj−ci. Minimizing such an algebraic

error [16] is known to be sub-optimal in many 3D vision

problems. In the following, we derive a linear algorithm

that minimizes an approximate geometric error.

4.1. Triplet Translation Registration

We begin with the special case of three cameras. The

relative translation cij , cik, and cjk between camera pairs

are known. We need to estimate camera centers ci, cj , and

ck. Ideally, the three unit vectors cij , cik, and cjk should be

coplanar. However, various measurement noise often makes

them non-coplanar in real data, i.e. (cij , cik, cjk) �= 0.

Here, (·, ·, ·) is the scalar triple product.

We first consider cij as perfect and minimize the Eu-

clidean distance between ck and the two lines l(ci, cik) and

l(cj , cjk). Here, l(p, q) is the line passing through a point p
with the orientation q. Due to measurement noise, l(ci, cik)
and l(cj , cjk) generally are non-coplanar. Thus, the optimal

solution ck lies on the midpoint of their common perpendic-

ular AB as shown in Figure 1. In the following, we show

that the optimal position ck can be calculated as

ck ≈
1

2

(

(

ci + sikij ||ci − cj ||cik
)

+
(

cj + sjkij ||ci − cj ||cjk

))

.

(3)

Here, ||ci − cj || is the distance between ci and cj . sikij =

sin(θ′j)/ sin(θ
′

k) = ||ci − ck||/||ci − cj || and sjkij =
sin(θ′i)/ sin(θ

′

k) = ||cj − ck||/||ci − cj || are effectively the

baseline length ratios. The angles are depicted in Figure 1.

θ′k is the angle between cik and cjk. Please refer to the Ap-

pendix A for a derivation of this equation.

Equation (3) is nonlinear about the unknown camera cen-

ters. To linearize it, we observe that

||ci−cj ||cik = ||ci−cj ||Ri(θ
′

i)cij = Ri(θ
′

i)(cj−ci). (4)

Here, Ri(φ) is the rotation matrix around the axis cij ×
cik for an angle φ (counter-clockwise). Thus we obtain the

following linear equation,

2ck − ci− cj = Ri(θ
′

i)s
ik
ij (cj − ci)+Rj(−θ′j)s

jk
ij (ci− cj).

(5)

Note Rj(·) is a rotation matrix around the direction cij ×
cjk. Similarly, we can obtain the following two linear equa-

tions of camera centers by assuming cik and cjk are free

from error respectively,

2cj −ci−ck = Ri(−θ′i)s
ij
ik(ck−ci)+Rk(θ

′

k)s
jk
ik (ci−ck),

(6)

2ci−cj−ck = Rj(θ
′

j)s
ij
jk(ck−cj)+Rk(−θ′k)s

ik
jk(cj−ck).

(7)

Solving these three linear equations can determine the cam-

era centers. Note that Equation (5) does not require the ori-

entation cj − ci to be the same as cij . This introduces a

rotation ambiguity in the plane defined by the camera cen-

ters. We can solve it by computing the average rotation to

align cj − ci, ck − ci and ck − cj with the projection of cij ,

cik and cjk in the camera plane, respectively, after the initial

registration.

Collinear Camera Motion. Calculating baseline length

ratios by the sine angles as described earlier is only valid

when cij , cik and cjk are not collinear. In order to be ro-

bust regardless of the type of camera motion, we compute
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all baseline length ratios from locally reconstructed scene

points. Suppose a 3D scene point X is visible in all the three

images. From the pairwise reconstruction with image i, j,

we compute its depth dijj in the image j while assuming unit

baseline length. Similarly, we can calculate djkj which is the

depth of X in the image j from the reconstruction of image

j, k. The ratio sijjk is then estimated as djkj /dijj . In general,

we have more than one scene points visible in all three im-

ages. We discard distant points and use RANSAC[10] to

compute an average ratio. Note we only require local pair-

wise reconstructions to obtain baseline length ratios. The

translation registration does not involve reconstructing any

scene point in the global coordinate system.

4.2. Multi-view Translation Registration

Our method can be applied directly to register multiple

cameras. Given a triplet graph (see definition in Section 5),

we collect all equations (i.e. Equation [5–7]) from its

triplets and solve the resulting sparse linear system Ac = 0.

Here, c is a vector formed by concatenating all camera cen-

ters. A is the matrix formed by collecting all the linear

equations. The solution is a none trivial null vector of the

matrix A, and is given by the eigenvector associated with

the fourth smallest eigenvalue of A⊤
A. The eigenvectors

associated with the three zero eigenvalues correspond to the

three degrees of freedom of the origin of the world coor-

dinate system. In the special case where all cameras are

coplanar (i.e. the rotation ambiguity in all triplets share the

same rotation axis), there is a global in-plane rotation ambi-

guity similar to the three-camera case. We can use the same

method described before to compute this rotation.

In practice, every image participates in a different num-

ber of triplets. Therefore, the unknown camera centers are

implicitly given different weights depending on the number

of constraints containing that particular camera when we

solve for Ac = 0. Thus, for every camera i, we count the

number of triplet constraints containing its center, denoted

by Ki. Each triplet constraint involving camera i, j, k is

re-weighted by 1
min(Ki,Kj ,Kk)

. This generates more stable

results in practice.

5. Generalization to EG Outliers

The method described in Section 3 and Section 4 is appli-

cable when there is no gross error in the pairwise epipolar

geometries (EGs). However, many image sets, especially

unordered internet images, can generate incorrect EGs with

large error due to suspicious feature matching, especially

for scenes with repetitive structures. Incorrect EGs result in

wrong estimation of rotations and translations. We take the

following steps to build a robust system.

Match Graph Construction. For each input image, we

find its 80 nearest neighbors by the method described in

(a)

(b)
Figure 2. (a) A connected component of the match graph. (b) The

two corresponding connected triplet graphs.

[27]. The five-point algorithm [25] can compute EGs be-

tween these images. We then build a ‘match graph’, where

each image is a vertex, and two vertices are connected if an

EG can be computed between them. We only reconstruct

the largest connected component of the match graph.

EG Verification. We perform various verifications to iden-

tify incorrect EGs. This involves several steps. 1) We verify

every triplet in the match graph, and remove EGs which

participate in no triplet that passes the verification. Specif-

ically, we apply our translation registration to each triplet

and calculate the average difference between the relative

translation directions before and after the registration. If

this average difference is larger than a threshold δ1, we con-

sider the verification fails. We further require that at least

one good point (with reprojection error smaller than 4 pix-

els) can be triangulated by the registered triplet cameras. 2)

Among the edges of the match graph, we extract a subset of

‘reliable edges’ to compute the global camera orientations

as described in Section 3. We first weight each edge by its

number of correspondences and take the maximum span-

ning tree. We then go through all the valid triplets. If two

edges of a triplet are in the selected set of ‘reliable edges’,

we insert its third edge as well. We iterate this insertion

to include as many reliable edges as possible. 3) We fur-

ther use these camera orientations to verify the match graph

edges, and discard an edge if the geodesic distance [15] be-

tween the loop rotation matrix [45] and the identity matrix

is greater than δ2. Here, the loop rotation matrix in our case

is simply R⊤
ijRjR

⊤
i . 4) Finally, we only consider the largest

connected component of the remaining match graph. Typi-

cally, δ1 and δ2 is set to 3◦ and 5◦ respectively.

Connected Triplet Graph. We further extract connected

triplet graphs from the match graph, where each triplet is

represented by a vertex. Two vertices are connected if their

triplets have a common edge in the match graph. A sin-

gle connected component of the match graph could generate

multiple connected triplet graphs, as illustrated in Figure 2.

We then apply our method in Section 4 to compute the po-

sitions of cameras in each triplet graph respectively. We

triangulate 3D scene points from feature tracks after solv-
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Figure 3. The test geometry used in comparison with the four-point

algorithm [26].

Figure 5. Comparison with [3]. Our method is much more stable

in translation estimation for near collinear camera motions.

ing the camera positions. When there are multiple triplet

graphs, their reconstructions are merged to obtain the final

result. Specifically, we take their matched features to per-

form a 3D-to-3D registration for this merge.

6. Experiments

We verify our algorithm with various different experi-

ments. We conduct our experiments on a 64-bit windows

platform with Intel Xeon processor E5-2665, and 16 threads

enabled. We parallelized the geometric verification of cam-

era triplets. The ARPACK [21] is used to solve the sparse

eigenvalue problem and PBA [43] is used for the final

bundler adjustment.

6.1. Trifocal Tensor Estimation

We first evaluate our method with three synthetic input

images with known ground truth to quantitatively evalu-

ate our method. We use a similar test geometry as in [26]

(shown in Figure 3). Camera 0 is placed at the world ori-

gin and camera 2 is placed at a random location away from

camera 0 by 0.2 unit. The location of camera 1 is sampled

randomly in the sphere centered at the middle point between

camera 0 and 2, and passing through their camera centers.

We further require the distance between any two cameras to

be greater than 0.05 unit (which ensures the baseline length

between any two cameras is not too small with respect to the

scene distance, which is 1 unit here). The scene points are

generated randomly within the viewing volume of the first

camera and the distance between the nearest scene point and

the furthest scene point is about 0.5 unit. The dimension of

the synthetic image is 352×288 pixels and the field of view

is 45◦. Pairwise EG is computed using the five-point algo-

rithm [25]. Zero mean Guassian noise is added to the image

coordinates of the projected 3D points.

(a) (b) (c)
Figure 6. Input images and reconstructed point clouds of (a)

fountain-P11, (b) Herz-Jesu-P25, (c) castle-P30.

We evaluate the reconstruction accuracy with three met-

rics. The error of camera orientations Rerr is the mean

geodesic distance (in degrees) between the estimated and

the true camera rotation matrix. Translation angular error

terr is the mean angular difference between the estimated

and the true baseline directions. Absolute camera location

error cerr is the mean Euclidean distance between the es-

timated and the true camera centers. All these metrics re-

ported below are the average results of 50 random trials.

Comparison with [26]. We compare with the four-point

algorithm [26], which is the only practical algorithm to

compute trifocal tensor from three calibrated images as far

as we know. The reconstruction accuracy of both meth-

ods under different amount of noise is shown in Figure 4,

where the horizontal axis shows the standard deviation of

the Gaussian noise. Our linear algorithm outperforms the

four-point algorithm in all metrics under various noise lev-

els. It could be that the complex non-linear formulation in

[26] makes their optimization harder to get good results.

Comparison with [3]. We also compare with the recent

method [3] to demonstrate the robustness of our method on

near collinear camera motions. Here, we generate c0 and

c2 as described before. We sample c1 along a random direc-

tion spanning an angle of 0.1 to 5 degrees with the line c0c2.

Its location on that direction is randomly sampled while en-

suring the angle ∠c1c0c2 is the smallest angle in the triangle

c0c1c2. Gaussian noise with standard deviation of 0.5 pixels

is used. The reconstruction accuracy is reported in Figure 5.

It is clear that our method produces more stable results for

near collinear motion.

6.2. Multi-view Reconstruction

We test the performance of our method with some stan-

dard benchmark datasets with known ground-truth camera

motion to quantitatively evaluate the reconstruction accu-

racy. We also experiment with some relatively large scale

image collections (sequential and unordered) to evaluate its

scalability and robustness.

Evaluation on Benchmark Dataset. We compare our
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Figure 4. Comparison with the four-point algorithm [26] (3V4P). Our method generates better results in all the three metrics.

method with some well-known and recent works1 on the

benchmark datasets provided in [37]. All results reported

are computed using calibration information extracted from

the EXIF tags unless stated otherwise. By our linear

method, the average reprojection error is about 2 pixels for

fountain-P11 and Herz-Jesu-P25, and 4 pixels for castle-

P30, respectively. After the final BA, it is reduced to below

0.3 pixels for all three datasets. To provide a visual vali-

dation, we apply the CMVS algorithm [12] to reconstruct

dense point clouds with our recovered camera parameters

(after the final BA). The results are visualized in Figure 6.

Quantitatively, all methods produce equally good recon-

struction using ground truth calibration. Table 1 summa-

rizes the quantitative results given EXIF calibration. On av-

erage our method produces error in ci about 0.3% of the dis-

tance between the two farthest cameras. The results of our

linear solution before BA are provided as ‘Ours(L)’. Our

method provides good initialization for BA, and it gives bet-

ter accuracy than [35] on all available reported results. As

compared to VisualSFM and [3], our method produces bet-

ter results on fountain-P11, and performs similarly on Herz-

Jesu-P25. Results for castle-P30 are only available from

VisualSFM, and we achieves similar accuracy. Bundler [36]

produces similar or slightly inferior results as compared to

VisualSFM on these datasets.

To assess the robustness of our method with bad EXIF,

we added different levels of Gaussian noise to the ground

truth focal length of fountain-P11. The average rotation

(and location) errors are 0.2◦, 0.2◦, and 0.2◦ (0.028m,

0.031m, and 0.036m) when the standard deviation is 5%,

15%, and 25% of the true focal length. This experiment

demonstrates the robustness of our method to imprecise in-

formation in EXIF.

Scalability and Time Efficiency. We evaluate the scala-

bility and efficiency of our method with four relatively large

scale image collections. The Building2 example consists

of 128 sequentially captured images. Our method recovers

the cameras correctly regardless of the presence of a small

fraction of erroneous epipolar geometries arising from sym-

1The results by the method [3] are kindly provided by its authors. The

results by the method [35] are cited from [3].
2The dataset is available from the author’s website of [45].

fountain-P11 Herz-Jesu-P25 castle-P30

cerr Rerr cerr Rerr cerr Rerr

Ours (L) 0.053 0.517 0.106 0.573 1.158 1.651

Ours 0.014 0.195 0.064 0.188 0.235 0.48

VisualSFM[42] 0.036 0.279 0.055 0.287 0.264 0.398

Arie-Nachimson

et al.[3]

0.023 0.421 0.048 0.313 - -

Sinha et al.[35] 0.132 - 0.254 - - -

Table 1. Reconstruction accuracy of the three benchmark datasets.

The absolute camera rotation error Rerr and camera location error

cerr are measured in degrees and meters, respectively.

metric scene structures. The Trevi Fountain and Pisa ex-

ample consist of 1259 and 481 images 3 downloaded from

Flickr.com respectively. We also test our method with the

publically available Notre Dame example. We use 568 im-

ages with which we can extract EXIF tags from and the

largest connected component on the match graph consists of

371 views. Each internet image collection is reconstructed

as one single connected triplet graph by our algorithm. For

Pisa, we performed a second round of BA after removing

points with large reprojection errors due to large feature

matching ambiguity in the data. We list the detailed com-

parison with VisualSFM in Table 2 (the time for computing

pairwise matching and EGs is excluded). For fair compari-

son, we use the same set of EGs for both methods.

As we can see, more than 90% of the computation time

in VisualSFM is spent on BA. By avoiding all the interme-

diate BA, we are 3 to 13 times faster depending on the scale

of the problem. The speed advantage is clearer on larger

scale datasets. Typically, the average reprojection error is

about 5 pixels by our linear initialization, and is reduced to

1 pixel after BA.

We further manually identify the set of common cameras

registered by our method and VisualSFM, respectively, for

the Notre Dame example, and compute the difference be-

tween the estimated camera motion. The average rotation

difference is 0.3 degrees, and the average translation differ-

ence is 0.007 (when the distance between the two farthest

camera is 1).

To provide a visual validation, we feed our reconstructed

cameras to the CMVS [12] and visualize the dense recon-

struction in Figure 7.

3Images with irrelevant content or no EXIF tag are removed manually.
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example and # of

input images

# of reconstructed

cameras

# of reconstructed

points

running time (s)

registration BA total

Ours [42] Ours [42] Ours [42] Ours [42] Ours [42]

Building (128) 128 128 91290 78100 6 5 11 57 17 62

Notre Dame (371) 362 365 103629 104657 29 37 20 442 49 479

Pisa (481) 479 480 134555 129484 17 12 52 444 69 456

Trevi Fountain (1259) 1255 1253 297766 292277 74 75 61 1715 135 1790

Table 2. Comparison with VisualSFM on relatively large scale image collections. The time for computing pairwise matching and EGs is

excluded.

(a) (b) (c) (d)
Figure 7. Reconstruction results for relatively large scale datasets. (a) Building. (b) Trevi Fountain. (c) Pisa. (d) Notre Dame.

7. Conclusion

We present a novel linear solution for the global cam-

era pose registration problem. Our method is derived by

minimizing an approximate geometric error. It is free from

the common degeneration of linear methods on collinear

motion, and is robust to different baseline lengths between

cameras. For the case of three cameras, it produces more

accurate results than prior trifocal tensor estimation method

on calibrated images. For general multiple cameras, it out-

performs prior works on either accuracy, robustness or effi-

ciency.

In our method, the rotation and translation are still es-

timated separately. It will be interesting to solve them to-

gether. The simplification of match graph and the selection

of a subset of triplet constraints are important for even larger

scale image collection, we will leave this for future study.
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Appendix A. Derivation of Equation (3) We first show

that the length of the line segments ciA, cjB are approx-

imately sikij ||ci − cj || and sjkij ||ci − cj || respectively. The

three vectors cij , cik and cjk should be close to coplanar, so

the angle ∠Acick is close to zero, and the length of ciA is

close to that of cick. We can calculate the length of cick as:

sin(θj)

sin(θk)
||ci − cj || ≈

sin(θ′j)

sin(θ′k)
||ci − cj || = sikij ||ci − cj ||.

Note that θ′j ≈ θj , θ
′

k ≈ θk because the three vectors cij , cik
and cjk are close to coplanar. The 3D coordinate of A is

then approximated by ci + sikij ||ci − cj ||cik. Similarly, we

can obtain the coordinate of B as cj + sjkij ||ci − cj ||cjk. As

a result, the coordinate of ck, which is the midpoint of AB,

can be computed by Equation (3).
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