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Christian J Sanders16, Mark Spalding17 and Emily Landis17

1 Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540, United States of America
2 ISRIC — World Soil Information, Wageningen, The Netherlands
3 Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
4 Institute of Zoology, Zoological Society of London, Outer Circle, Regent’s Park, London NW1 4RY, United Kingdom
5 Blue Ventures Conservation, London, United Kingdom
6 Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, United Kingdom
7 Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, United States of America
8 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
9 Forests, Biodiversity and Climate Change Program, CATIE 7170, Turrialba, Costa Rica
10 Botany Department, Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
11 School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland
12 School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
13 Department of Forest Resources Management, University of British Columbia, Vancouver, BC, Canada
14 Institute of Fisheries and Aquatic Sciences, University of Douala, Doula, Cameroon
15 Graduate School of Agriculture, Kyoto University, Kyoto, Japan
16 National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, Australia
17 The Nature Conservancy, Arlington, VA, United States of America
18 School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
19 Washington State Department of Natural Resources, Olympia, WA United States of America
20 Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
21 Author to whom any correspondence should be addressed.

OPEN ACCESS

RECEIVED

29 June 2017

REVISED

10 April 2018

ACCEPTED FOR PUBLICATION

13 April 2018

PUBLISHED

30 April 2018

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 3.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

E-mail: jsanderman@whrc.org

Keywords: blue carbon, carbon sequestration, land use change, machine learning

Supplementary material for this article is available online

Abstract

With the growing recognition that effective action on climate change will require a combination of

emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon

sinks have become political priorities. Mangrove forests are considered some of the most

carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for

mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of

mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer

scale variability that would be required to inform local decisions on siting protection and restoration

projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove

soil carbon measurements and developed a novel machine-learning based statistical model of the

distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model,

which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to

capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of

10.9 kg m−3). Of the local variables, total suspended sediment load and Landsat imagery were the

most important variable explaining soil carbon density. Projecting this model across the global

mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil

with an 86–729 Mg C ha−1 range across all pixels. By utilizing remotely-sensed mangrove forest cover

change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C

with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products
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from this work are intended to serve nations seeking to include mangrove habitats in payment-for-

ecosystem services projects and in designing effective mangrove conservation strategies.

1. Introduction

Mangrove forests, occupying less than 14 million ha

(Giri et al 2011), just 2.5% of the size of the Ama-

zon rainforest, provide a broad array of ecosystem

services (Barbier et al 2011). Mangroves are critical

nursery habitats for fish, birds and marine mammals

(Mumby et al 2004, Nagelkerken et al 2008), act as

effective nutrient filters (Robertson and Phillips 1995),

buffer coastal communities from storm surges (Gedan

et al 2011) and support numerous rural economies

(Spalding et al 2014, Temmerman et al 2013). These

ecosystem service benefits have been valued at an aver-

age of 4200 US$ ha−1 yr−1 in Southeast Asia (Brander

et al 2012). Despite these ecosystem service bene-

fits, mangroves are highly threatened by both urban

expansion and other ‘higher value’ land uses because

of their close proximity to major human settlements.

There are no reliable estimates of original mangrove

cover, but some authors have suggested that 35% or

more of original cover may have been lost and wider

areas have been degraded (Valiela et al 2001, Spald-

ing et al 2010). Loss rates have slowed dramatically

in the past 10–20 years in most areas, however they

remain considerable, with rates up to 3.1% annu-

ally in some countries (Hamilton and Casey 2016).

The major drivers of loss are conversion for aquacul-

ture, especially shrimp farming, agriculture and urban

development (Alongi 2002, Valiela et al 2001, Spald-

ing et al 2010, Richards and Friess 2016) but loss due

to extreme climatic events are also becoming more

common (Duke et al 2017).

With the growing recognition that effective action

on climate change will require a combination of

emissions reductions and removals (Rockström et al

2017), protecting, enhancing and restoring natural car-

bon sinks have become political priorities (Boucher

et al 2016, Grassi et al 2017). Mangrove forests can

play an important role in carbon removals; in addition

to being some of the most carbon-dense ecosystems

in the world (Donato et al 2011), if kept undisturbed,

mangrove forest soils act as long-term carbon sinks

(Breithaupt et al 2012). As such, there is strong interest

in developing policy tools to protect and restore man-

groves through payment for ecosystem services (Friess

et al 2016, Howard et al 2017).

Mangroves can store significant amounts of car-

bon in their biomass (Hutchison et al 2014); however,

the vast majority of the ecosystem carbon storage is

typically found in the soil (Donato et al 2011, Mur-

diyarso et al 2015, Sanders et al 2016). For example,

Kauffman et al (2014) found that within the same estu-

ary, soil carbon contributed 78% of total ecosystem

carbon storage in tall mangroves but 96%–99% of

total ecosystem carbon in medium and low stature

mangrove stands. Importantly, Kauffman et al (2014)

found that conversion of these mangrove forests to

shrimp ponds resulted in the loss of 90% of this car-

bon from the top 3 m of soil (612–1036 Mg C ha−1).

In addition to avoided emissions, many mangrove for-

est soils are accreting as sea level rises (Krauss et al

2014), providing continual carbon sequestration on

the order of 1.3–2.0 Mg C ha−1 yr−1 (Breithaupt et al

2012, Chmura et al 2003). Clearly, there can be a

major climate benefit to halting or even slowing the rate

of mangrove conversion, with a rough potential esti-

mated to be 25–122 Tg C yr−1 (Pendleton et al 2012,

Siikamäki et al 2012). For nations with large mangrove

holdings, protection and restoration can make major

contributions to meeting climate mitigation targets

(Herr and Landis 2016).

While many mangrove forests do accumulate large

quantities of soil carbon, others do not. There can be

significant variability in soil carbon stocks across dif-

ferent mangrove forests (Jardine and Siikamäki 2014)

but also within the same mangrove forest (Adame

et al 2015, Kauffman et al 2011). Understanding the

distribution of soil carbon in mangrove forests will be

very important in prioritizing protection and restora-

tion efforts for climate mitigation. The controls on soil

carbon stocks are diverse and are likely scale dependent;

however, some generalizations can be made. Man-

grove forests, no matter how productive, will struggle

to have high soil carbon stocks in the upper meter

of soil if they receive large annual sediment loads.

Mangrove forests in river deltas, such as the Sundar-

bans (Banerjee et al 2012) and the Zambezi river delta

in Mozambique (Stringer et al 2016), typically only

contain a few percent organic carbon throughout the

soil profile. These locations may still have very high

carbons stocks, but the density of carbon is low due

to the high allocthonous input of mineral sediments.

Conversely, forests with moderately low productivity

can accumulate large amounts of soil carbon if they

are in an isolated hydrogeomorphic setting (Ezcurra

et al 2016). Within the same mangrove forest there

are typically steep hydrogeomorphic gradients from

the seaward to landward extent of the forest which

results in zonation of both vegetation (Snedaker 1982)

and soil carbon storage (Kauffman et al 2011, Ouyang

et al 2017, Ewers Lewis et al 2018) but not necessarily

for the same reasons. Within a similar hydrogeomor-

phic position, forest productivity and soil edaphic

conditions (e.g. redox potential, pH, salinity) driving

decomposition rates are often the dominant controls

on soil carbon density. Consideration of this nested
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hierarchy of controls will be necessary to successfully

capture the variability in soil carbon at both local and

global scales.

Accurate estimates and an understanding of the

spatial distribution of mangrove soil carbon stocks

are a critical first step in understanding climatic and

anthropogenic impacts on mangrove carbon stor-

age and in realizing the climate mitigation potential

of these ecosystems through various policy mecha-

nisms (Howard et al 2017). Previous global estimates

(Atwood et al 2017, Jardine and Siikamäki 2014),

do not capture enough of the finer scale spatial

variability that would be required to inform local deci-

sions on siting protection and restoration projects.

To close this information gap, we have: (1) com-

piled and published a harmonized global database of

the profile distribution of soil carbon under man-

groves, (2) used this database to develop a novel

machine-learning based data-driven statistical model

of the distribution of carbon density using spatially

comprehensive data at an ∼30 m resolution, (3) pro-

jected the model results across global mangrove habitat

for the year 2000 (Giri et al 2011), and (4) over-

laid estimates of mangrove forest change between

2000 and 2012 (Hamilton and Casey 2016) to esti-

mate potential soil carbon emissions from recent forest

conversion.

2. Methods

2.1. Mangrove soil carbon database

A harmonized globally representative database (avail-

able at: 10.7910/DVN/OCYUIT) was compiled from

peer-reviewed literature, grey literature and from con-

tributions of unpublished data from a number of

researchers and organizations. Details of database

development and a statistical summary of the data

are given in the supplemental information available

at stacks.iop.org/ERL/13/055002/mmedia.

2.2. Spatial modelling of soil organic carbon

In order to maximize the utilization of available soil

carbon data, we developed a machine learning-based

model of organic carbon density (OCD) which models

OCD as a function of depth (d), an initial estimate of

the 0–200 cm organic carbon stock (OCS) from the

global SoilGrids 250 m model (Hengl et al 2017), and

a suite of spatially explicit covariate layers (Xp):

OCD(xyd) = d + OCSSG +X1(xy)

+X2(xy) + ...Xp(xy)

where OCSSG is the aggregated organic carbon stock

estimated for 0–200 cm depth using global SoilGrids

250 m approach down-sampled from 250 m–30 m res-

olution, and xyd are the 3D coordinates northing

easting and soil depth (measured to center of a hori-

zon). Note here that we model spatial distribution

of OCD in three dimensions (soil depth used as a

predictor) using all soil horizons layers at different

depths, which means that a single statistical model

can be used to predict OCD at any arbitrary depth.

This 3D approach to modeling OCD reduces the need

for making complex assumptions about the downcore

trends in OCD, and maximizes the use of collected

data.

The derived spatial prediction model is then used

to predict OCD at standard depths 0, 30, 100, and

200 cm, so that the organic carbon stock (OCS) can

be derived as a cumulative sum of the layers down

to the prediction depth for every 30 m pixel identi-

fied as having mangrove forest in the year 2000 (Giri

et al 2011). Importantly, we found that there is a spatial

mismatch between the global mangrove forest dis-

tribution (GMFD) of Giri et al (2011) and satellite

imagery (figure S2). To best resolve this spatial mis-

match, we have adjusted the GMFD by growing all

vectors by one pixel (∼30 m) and then filtering out any

pixel that falls over water by using Landsat NIR band

(see SI for more details).

Environmental covariates have been compiled to

represent the postulated major controls on OCS in

soils generally (McBratney et al 2003) and specifi-

cally for mangrove ecosystems (Balke and Friess 2016).

Covariates included:

1. Vegetation characteristics including percent

forest cover (Hansen et al 2013) and Landsat

bands 3 (red), 4 (near infrared), 5 (shortwave

infrared) and 7 (shortwave infrared) for the year

2000 (Hanson et al 2013) retrieved from http://

earthenginepartners.appspot.com/science-2013-gl

obal-forest/download_v1.3.html;

2. Digital elevation data, which at or near sea-level

approximately follows forest canopy height (Simard

et al 2006), from the shuttle radar topography mis-

sion (SRTM GL1; NASA, 2013) was retrieved from

https://lpdaac.usgs.gov, maintained by the NASA

EOSDIS Land Processes Distributed Active Archive

Center (LP DAAC) at the USGS/Earth Resources

Observation and Science (EROS) Center, Sioux

Falls, South Dakota;

3. Long-term averaged (1990–2010) monthly sea sur-

face temperature (SST) averaged into four seasons

were generated in Google Earth Engine from NOAA

AVHRR Pathfinder Version 5.2 Level 3 Collated

data (Casey et al 2010) and downscaled to 30 m

resolution using bicubic resampling;

4. The M2 tidal elevation amplitude product

(FES2012) from a global hydrodynamic tidal model

which assimilates altimetry data from multiple plat-

forms was used to represent tidal range at each

location. The FES2012 product was produced by

Noveltis, Legos and CLS Space Oceanography Divi-

sion and distributed by Aviso, with support from

Cnes (www.aviso.altimetry.fr/);
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5. Averaged (2003–2011) monthly total suspended

matter (TSM) averaged into four seasons estimated

from MERIS imagery collected by the European

Space Agency’s Envisat satellite. Processed and vali-

dated TSM data was retrieved from the GlobColour

project (http://hermes.acri.fr).

6. A mangrove typology map delineating mangroves

into estuaries and then either organogenic or

mineralogenic based on an analysis of TSM and

tidal amplitude data (Zu Ermgassen, unpublished

data).

Sea surface temperature, tidal amplitude and TSM

are 4 km resolution ocean products and needed to

be extrapolated to each pixel containing mangrove

forest. Missing values in the sea surface tempera-

ture, tidal amplitude and TSM were first filled-in

using spline interpolation in SAGA GIS, then down-

scaled to 30 m resolution using bicubic resampling in

GDAL. Including SoilGrids and depth, there were a

total of 20 covariates used in building the mangrove

OCD model.

The ability of the training points to represent

the entire covariate space of the global mangrove

domain was assessed by conducting a principal com-

ponents analysis (PCA) on 15 000 randomly selected

points and the 1613 points used in the spatial

model. Spatial variables were detrended and centered

by subtracting the mean and dividing by the stan-

dard deviation (s.d.) before entering into the PCA

analysis.

Soil carbon typically varies in highly non-linear

ways with depth and across the landscape and as

such the ability of standard parametric models to cap-

ture this variation is limited (Jardine and Siikamäki

2014, Hengl et al 2017). Here we model the spatial

(xyd) distribution of OCD using a machine learn-

ing random forest model implemented in the ranger

package (Wright and Ziegler 2015) in the R environ-

ment for statistical computing (R Core Team 2000).

Given the clustered nature of the point data, we have

implemented a spatially balanced random forest model

design. Model performance was assessed with a 5

fold (Leave-Location-Out) cross-validation procedure

where 20% of complete locations were withheld in each

model refitting (Gasch et al 2015). The relative impor-

tance of using SoilGrids as a covariate was assessed by

implementing the cross-validation procedure with and

without this variable.

Finally, prediction error of OCS for 0–1 m depth

was derived for±1 s.d. based on the quantile regression

approach of Meinshausen (2006) and implemented

in R via the ranger package. This procedure is rela-

tively computationally demanding so a random subset

of approximately 15 000 points were selected to cal-

culate prediction errors. All modeling was run on

ISRIC High Performance Computing servers with

48 cores of 256 GB RAM.

2.3. Data analysis

Soil carbon stocks were calculated for the global extent

of mangroves for the year 2000 by summing the OCS in

each pixel for 1 and 2 m depths. Country level carbon

stocks were also calculated for the same depths. Given

the fringing nature of mangroves, a global spatial vector

data layer was built that allocated the offshore area for

each country where mangrove forests can be found. It

wasderived fromtheExclusiveEconomicZone for each

country. This layer was then dissolved with the onshore

areas for eachassociated country and subsequentlyused

to quantify mangrove OCS tonnage and areal extent.

Potential loss of OCS due to mangrove habitat

conversion was calculated between 2000 and 2015 by

summing the OCS in mangrove forest pixels which

were identified to be deforested. While this analysis

cannot distinguish between natural and anthropogenic

disturbance, human-driven land use change is believed

to be by far the dominant driver of deforestation

in mangrove ecosystems (Alongi 2002, Murdiyarso

et al 2015). We define deforested using the Global

Forest Change dataset (Hansen et al 2013) available

online from: http://earthenginepartners.appspot.com/

science-2013-global-forest. We chose to use this

approach for estimating deforestation instead of using

the derived mangrove tree cover loss data produced

by Hamilton and Casey (2016) as used by Atwood

et al (2017) because the Hamilton and Casey (2016)

analysis only considered forested area as area actually

covered by trees (i.e. if a 100 ha forest has 80% tree

cover then it is counted as 80 ha of forest). In our opin-

ion, this definition mischaracterizes forest area extent.

Next, an estimate of the soil carbon emissions associ-

ated with land use conversion is needed. The amount

of OCS lost can be highly variable and depends on

the new land use (Kauffman et al 2014, 2016b, Jones

et al 2015) and probably on soil properties. Pendle-

ton et al (2012) used a 25%–100% loss range. Donato

et al (2011) used a low estimate of 25% of the OCS

in top 30 cm and 75% in top 30 cm + 35% from

deeper layers as a high estimate. Expanding on ear-

lier work, Kauffman et al (2017) found that on average

54% of belowground carbon (soil + roots) to 3 m was

lost after conversion to shrimp ponds and pastures.

Given the limited number of studies comparing soil

OCS change with land use change, in this work we

adopt the same 25%–100% range as used by Pendleton

et al (2012) applied to the first meter of soil. Finally,

country level statistics for OCS loss were calculated as

described above. All global and country level analy-

ses were performed on the 30 m resolution dataset in

Google Earth Engine (Gorelick et al 2017).

3. Results

3.1. Model results

The random forest model was successful in captur-

ing the major variation in OCD across the mangrove
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Figure 1. Model fitting results: the corresponding 3D Random Forest model for soil organic carbon density (a) with cross-validation
results in (b), and relative variable importance plot (c). TSM = total suspended matter, SST = sea surface temperature (numbers
following TSM and SST refer to quarter of the year), NIR = Near Infrared, SW1 = Short wave mid infrared.

database (figure 1(a)) with an R2 of 0.84 and a root

mean square error (RMSE) of 6.9 kg m−3 compared to

the mean OCD value of 29.6 kg m−3. Cross-validation

results yield an R2 of 0.63 and an RMSE of 10.9 kg m−3

(figure 1(b)), which is the de-facto mapping accu-

racy to be expected on the field. Low OCD values

were slightly over-predicted and high OCD values

were under-predicted (figure 1(b)). The initial OCS

prediction from SoilGrids 250 m was the most impor-

tant variable explaining mangrove OCD. Running

the 5 fold cross-validation without and with Soil-

Grids indicated that this single variable explained

improved model performance by nearly 50% (R2

increased from 0.42–0.63). Seasonal total suspended

matter (TSM), depth of sample, mangrove tree cover,

Landsat Red band, sea surface temperature (SST), and

tidal range were the next ten most important vari-

ables, respectively (figure 1(c)). Quantile regression

analysis indicated that the full uncertainty (±1 s.d.)

about a mean prediction of carbon stocks to 1 m depth

averaged 40.4% of the mean OCS with lowest rel-

ative uncertainty in the most carbon-rich mangrove

forests (figure S7).

3.2. Mangrove soil carbon storage

Projection of the mangrove OCD model to global

mangrove forests revealed the distribution of soil car-

bon storage in these ecosystems (figure 2). The mean

(±1 s.d.) OCS to 1 m depth was 361± 136 Mg C ha−1

with a range of 86–729 Mg C ha−1. At the national

level (table S1), Bangladesh had the lowest per ha

stocks, averaging just 127 Mg C ha−1 followed by China

and the nations bordering the Persian Gulf and Red

Sea with an average OCS of 214 and 233 Mg C ha−1,

respectively. The highest per ha stocks were found

in many of the pacific island nations, averaging

505 Mg C ha−1 with much of Southeast Asia ranking

well above the global mean.

While the national level comparisons are reveal-

ing, by modeling at a 30 m resolution much richer

details of potential within forest variation in OCS are

seen (figure 2). Mangrove forests dominated by sed-

iment laden fluvial inputs typically have consistently

low OCS as seen in the Sundarbans and Madagascar

(figures 2(a) and (e)). In non-deltaic mangroves, the

model appears to have captured the large zonal vari-

ation in OCS that is often observed in field studies

(figures 2(b) and (c).

3.3. Soil carbon loss due to habitat loss

Utilizing the Hanson et al (2013) global deforesta-

tion analysis (figure S8), we found that 278049 ha

(1.67% of total) of area identified as mangrove habitat

in the year 2000 was deforested resulting in the com-

mitted emission of 30.4–122 Tg C (111–447 Tg CO2)

from mangrove forest soils due to land use change

between 2000 and 2015 (figure 3). The relative rank of

nations in terms of loss of mangrove forest area and

OCS were often not the same (table S1). Indonesia

alone was responsible for 52% of this global loss with

Malaysia and Myanmar representing another 25% of

the global total loss (figure 3(c)). When visualized as

a percent loss from year 2000 stocks, a slightly differ-

ent pattern emerged (figure 3(d)). Guatemala had the

highest percent loss of mangrove OCS (0.9%–6.8%)

followed by several southeast Asian nations, but high

percent losses were also found in several Caribbean

island nations as well as the United States and

several west African countries.

4. Discussion

4.1. Amount and distribution of Mangrove SOC

Our new estimate of global mangrove OCS of

6.4 Pg C in the upper meter and 12.6 Pg C to 2 m is

largely consistent with past efforts to calculate this

value (Donato et al 2011, Jardine and Siikamäki

2014, Sanders et al 2016). However, our estimate is

double that of Atwood et al (2017) primarily due to

their use of the Hamilton and Casey (2016) estimate of

mangrove extent instead of Giri et al (2011). Impor-

tantly, by using an environmental covariate model,

5
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Figure 2. Global distribution of mangrove soil carbon stocks for the top meter of soil (hex bin area ∼19 000 km2) and detailed maps
(30 m resolution) for selected mangrove regions of the world: (1) Sundarbans along the India/Bangladesh border, (2) Bahı́a de los
Muertos, Pacific coast of Panama, (3) southwest coast of Papua, Indonesia, (4) Hinchinbrook Island, Queensland, Australia, (5)
Ambaro Bay, Madagascar, and (6) Guinea-Bissau and Guinea along the West African coast. In top panel, data presented as mean stock
(Mg C ha−1) for mangrove forest area only within each hex bin.

we have been able to make plausible estimates for

regions where no sampling has taken place instead of

relying on global mean values (i.e. Atwood et al 2017).

The total amount of soil carbon was similar in

our analysis and the most comparable analysis, that

of Jardine and Siikamäki (2014), but the spatial distri-

bution of carbon-rich versus carbon-poor mangroves

varied substantially. For example, we found much

higher OCS levels in West Africa than in East African

nations (figure 2 and table S1) but the reverse was

found by Jardine and Siikamäki (2014). Large dis-

crepancies were also found for Colombia, Sri Lanka

and many of the countries bordering the Red Sea.

These differences were most likely driven by lack of

data in those regions at the time of the analysis by

Jardine and Siikamäki (2014) given that nearly half

the data in our database was collected after their

study was published. Additionally, our analysis sug-

gested a much larger range in OCS (86–729 Mg C ha−1)

compared to 272–703 Mg C ha−1 in the analysis of

Jardine and Siikamäki (2014). This difference in

range was likely due to the inclusion of more data

from sub-tropical and temperate mangroves (figure

S3).

The depth trend analysis (figure S6) and ran-

dom forest variable importance (figure 1(b)) both

indicated that depth should be considered in calcu-

lation of OCS. For locations that were either stable

peat domes or located in estuaries receiving large

annual sediment loads, a stable OCD profile distri-

bution would be expected and this was found for many

sites (figures S6(a) and (e)). However, where man-

groves are growing in a mineral matrix that is receiving

only low sediment loads, a decline in OCD may be

expected as the carbon inputs from the productive

mangrove forest would be concentrated in the sur-

face horizons (figure S6(b)). Still in other cases (figure

S6(c)), changes in hydrologic/sediment regimes can

lead to irregular depth patterns or even an increase in

OCD with depth.
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Figure 3. Top 20 nation rankings for (a) total mangrove area lost between the years 2000 and 2012, (b) area loss as a percent of year
2000 mangrove area, (c) total soil organic carbon stocks, (d) carbon loss as a percent loss of year 2000 soil carbon stock. Range in
values for (c) and (d) come from 25%–100% loss of carbon in upper meter of soil in pixels identified as being deforested between the
years 2000 and 2015.

While total area of mangroves was a key deter-

minant of total soil carbon storage, amongst the top

25 mangrove OCS holding nations, there was a nearly

even split between nations with smaller area of high

soil carbon density forests and those nations with lots

of low soil carbon density forests (figure 4). Indone-

sia was the clear exception to this trend with the

largest mangrove holdings which also contain rich car-

bon stocks resulting in Indonesia alone holding nearly

25% of the world’s mangrove OCS.

Compared to terrestrial carbon pools, mangrove

forests rank low due to their limited spatial extent. For

example in the upper meter of soil, permafrost affected

soils are estimated to store 472± 27 Pg C (Hugelius

et al 2014), tropical forests contain ∼188 Pg C, and

soils under permanent cropping contain ∼150 Pg C

(table 1). However, on an equal area basis, man-

grove forests on average store more soil carbon than

most other ecosystems (table 1). Importantly, our

analysis has demonstrated mangrove soil carbon is

highly variable and many mangroves actually store

fairly modest amounts of carbon in the upper one

or two meters of soil. While not the focus of this

analysis, it is important to point out that while some

mangrove forests store modest levels of OCS in the

upper meter of soil, they can have high sequestration

rates and conversely carbon-dense mangroves can have

low annual sequestration rates (Lovelock et al 2010,

MacKenzie et al 2016).

4.2. Drivers of soil carbon storage

Our spatial modelling framework, in which global pre-

dictions were combined with local high resolution

images, was successful as the general patterns of car-

bon variation from SoilGrids 250 m were maintained,

while the spatial detail was significantly improved by

moving from 250 m–30 m spatial resolution. The ini-

tial SoilGrids 250 m OCS prediction (Hengl et al 2017)

7
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Table 1. Soil organic carbon stocks (mean with 5th-95th percentile in parentheses) and total storage for different terrestrial ecosystems
compared to mangrove forests.

1 m soil organic carbon stock

Land cover category (IGBP code)a Area (106 ha) Pg C Mg C ha−1

Mangrove forestb 16.6 6.4 361 (94–628)
Gelisols (permafrost soils)c 1878 472.0 389 (178–691)
Evergreen Needleleaf forest (1)d 286 60.0 210 (121–346)
Evergreen Broadleaf forest (2) 1248 188.4 151 (85–271)
Deciduous Needleleaf forest (3) 116 29.3 253 (163–412)
Deciduous Broadleaf forest (4) 165 22.1 134 (83–223)
Mixed forest (5) 771 152.8 198 (93–343)
Closed shrublands (6) 56 6.2 110 (39–223)
Open shrublands (7) 1933 325.8 169 (49–329)
Woody savannas (8) 1179 185.8 158 (82–274)
Savannas (9) 1010 112.9 112 (52–201)
Grasslands (10) 1810 280.1 155 (56–289)
Permanent wetlands (11)e 104 25.1 241 (114–474)
Croplands (12) 1177 149.6 127 (60–200)
Cropland/Natural veg. mosaic (14) 868 117.7 136 (58–238)

a data for MODIS-based IGBP land cover classes (Friedl et al 2010) extracted from 1 m OCS map for the year 2010 produced by Sanderman

et al (2017).
b mangrove area and OCS data from this study.
c permafrost area from Tarnocai et al (Tarnocai et al 2009), OCS data from Hugelius et al (2014).
d some overlap between class 1 (evergreen Needleleaf forest) and gelisols.
e class 11 (permanent wetlands) likely has overlap with mangrove area.

Figure 4. Rank of nations by mangrove area plotted against
rank by soil carbon density for all nations containing
>30 Tg C. Bubble size is proportional to total carbon stock
(Tg C) within each nation.

was based upon machine learning algorithms using

237 covariates that covered the main state factors of

soil formation (Jenny 1994)—climate, relief, living

organisms (vegetation) and parent material—and was

four times more important in predicting mangrove

OCD than any of the local covariates. However,

the local covariates allowed for a much more refined

picture of the spatial variation in OCS within man-

grove forests (figure 2) which was not captured in the

250 m resolution SoilGrids 250 m prediction. Covari-

ates related to hydrogeomorphology (TSM and tidal

range), as hypothesized, were important predictors of

local variation in OCD. Both TSM and tidal range

were strongly negatively correlated with OCD suggest-

ing that locations with either high sediment loads or

strong tidal flushing do not accumulate large carbon

stocks. The mangrove typology ended up being unin-

formative likely because most of the data that went into

this classification was already captured in the model.

Covariates related to mangrove biomass (SRTM

elevation and Landsat bands) were also important in

explaining the local distribution of OCD (figure 1(b)).

However, as pointed out by Bukoski et al (2017), it is

unclear whether the importance of these vegetation-

related data are causal drivers of differences in OCD

or they just happen to co-vary in the same way as

OCD. To further explore the relationship between

forest biomass carbon and soil carbon storage, we

extracted aboveground biomass data from Hutchison

et al (2014) and compared it to our OCS results (fig-

ure 5). While a clear positive trend was found between

biomass and soil carbon storage (R2 = 0.26), there is

clearly a lot of variance especially at lower biomass levels

where nearly the full range in OCS can be found.

Depth below the soil surface was an important

covariate in modeling OCD distribution (figure 1(b)).

This finding was supported by the database depth

trend analysis (figure S6) which indicated that a flat

depth distribution of OCD would be an incorrect

assumption 37%–64% of the time. These findings sug-

gest that the simple scaling performed in figure S5

and in several previous assessments (Bukoski et al

2017, Jardine and Siikamäki 2014, Atwood et al 2017)

may not be an accurate estimation of total OCS

especially when extrapolating from a surface horizon

sample alone.

4.3 Soil carbon loss due to land conversion (2000–

2015)

Our analysis suggests that mangrove soils have lost

or are at least committed to losing 30.4–122 Tg C due

to the land use conversion that occurred between the
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Figure 5. Comparison of aboveground biomass carbon (Hutchison et al 2014) with organic carbon stocks (OCS) for the top meter
of soil. Points were generated by casting 10 000 random points into mangrove areas and extracting values from both maps. Linear
regression R2 = 0.26.

years 2000 and 2015 (figure 3). Given that at the global

level the rate of mangrove forest lost was consistent

over this time period (Hamilton and Casey 2016),

we estimated an annual soil carbon emission of 2.0–

8.1 Tg C yr−1. This value is significantly lower than

previous estimates (Donato et al 2011, Pendleton

et al 2012) for two reasons. First, we use remote

sensing-based measurements of actual mangrove loss

instead of applying a large range of annual conver-

sion rates, which are notoriously variable according to

their source (Friess and Webb 2011). Second, we have

summed the actual OCS values for each of the pix-

els where land conversion has taken place (i.e. figure

S8) instead of applying a conversion rate to a mean

OCS value.

The three nations of Indonesia, Malaysia and

Myanmar contributed 77% of global mangrove OCS

loss for this time period (figure 3). Despite similar area

loss (figure 3(a)), Malaysia lost approximately twice as

much soil carbon as Myanmar due to the large dif-

ferences in carbon density between these two nations

(mean OCS = 485± 57 versus 245± 63 Mg C ha−1,

respectively). This comparison highlights the impor-

tance of using local OCS values for estimating carbon

emissions attributed to mangrove conversion.

Not all land use conversions result in equal loss

of OCS. Conversion of mangrove forest to shrimp

ponds results in a rapid and near complete loss of car-

bon in the upper meter of soil (Kauffman et al 2014),

as well as losses deeper in the soil profile (Kauffman

et al 2017). Conversion to other agricultural uses such

as pasture for beef production (Kauffman et al 2016b)

and cereal crops (Andreetta et al 2016) also appear

to result in large soil carbon emissions. However,

mangrove degradation and loss due to over harvest-

ing for fuelwood (Jones et al 2015) or due to natural

disturbance (Cahoon et al 2003) likely leads to more

moderate emissions as decomposition and erosion

exceed new plant carbon inputs.

It is important to note that nearly all available

data on OCS loss due to conversion to other land

uses come from organogenic mangrove forests. In

a mineral-dominated mangrove systems with only a

few percent sediment OCC, we would not expect the

same level of carbon loss as when peat deposits are

drained or removed. In fact, reclamation of deltaic sed-

iments for paddy rice cultivation can lead to increases

in OCS (Kalbitz et al 2013), although methane emis-

sions would be expected to increase. Additionally, if

mangrove habitat is lost due to deforestation with-

out a change in hydrologic regime, mineral-dominated

mangroves can continue to accrete carbon, but at

a lower rate than in a system that has additional

organic matter inputs from the mangroves themselves

(Pérez et al 2017).

4.4. Limitations and uncertainties

While we endeavored to ensure that the model input

data was of the highest quality possible, there undoubt-

edly remain unknown errors in the database which

are contributing to model error. Machine learning

models are particularly sensitive to outlier values

and extrapolation (Murphy 2012). Various research

groups use different methods for determining the

organic carbon concentration (OCC) of a sample

with not all publications reporting whether or not

results were corrected for occurrence of inorganic car-

bon or whether or not roots were excluded before

further processing. Bulk density (BD) is a difficult

parameter to measure accurately in many soils, and

based on our analysis of BD versus OCC (figure S1)

some reported data are unlikely to be accurate. We
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developed a procedure to correct potential BD errors,

but a pedotransfer function gives only an approxi-

mation of the true value. Given the importance of

depth in our models (figure 1(b)), it was unfortu-

nate that so many investigations only report OCS for

large depth increments. We suggest that future studies

using the common practice of collecting subsamples

within larger horizon increments (e.g. Kauffman and

Donato 2012, Kauffman et al 2016a) report the spe-

cific depth increment of the sample rather than that of

the entire core. This additional level of transparency in

the data would allow mass-preserving splines (Bishop

et al 1999) to be fit through the distinct measurement

intervals, resulting in unbiased estimates of OCS.

The largest uncertainty in the input data likely

resulted from imperfect information on plot location.

Whether, accidental or purposeful (i.e. not wanting

to identify exact locations), spatially misplaced data in

publications are of limited utility in geospatial appli-

cations. All of the covariate data for each mangrove

point were selected from spatial layers resulting in

the potential for a mismatch between the recorded

OCS and the spatial predictors. In this study, we visu-

ally inspected all coordinates against Google Earth

imagery and our adjusted mangrove domain, and then

contacted many authors to seek further information

and manually adjusted coordinates when we were

confident that the adjustments lead to better spatial

location. In the final analysis, 199 soil profiles had to

be excluded from analysis because we could not confi-

dently locate these plots within the adjusted mangrove

spatial domain.

5. Conclusions

This work has produced three resources which we

hope to be of significant value to the blue carbon

research and management communities: 1) a large har-

monized database of soil carbon data from mangrove

ecosystems; 2) high-resolution (30 m) predictions

with error of soil carbon stocks across all mangrove

forests globally; 3) estimates of potential soil carbon

losses due to mangrove habitat loss between 2000

and 2015. By using a statistical data-driven model,

we have been able to produce credible estimates

OCS for the numerous mangrove regions where no

field data exist. We found that mangrove OCS is

highly variable (86–729 Mg C ha−1 in the top meter)

but that much of the variability could be captured

using spatially-comprehensivepredictors in amachine-

learning framework. Of the 6400 Tg C in the upper

meter of soil, 30–122 Tg have likely been lost due to

deforestation since the year 2000 with 77% of this

loss attributed to Indonesia, Malaysia and Myanmar.

These spatially-explicit estimates of mangrove soil car-

bon storage and loss will provide a practical first step

for enabling nations to prioritize mangrove protection

as part of their climate mitigation and adaptation plans.
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Gasch C K, Hengl T, Gräler B, Meyer H, Magney T S and Brown D J

2015 Spatio-temporal interpolation of soil water, temperature,

and electrical conductivity in 3D+ T: the cook agronomy farm

data set Spat. Stat. 14 70–90

Gedan K B, Kirwan M L, Wolanski E, Barbier E B and Silliman B R

2011 The present and future role of coastal wetland vegetation

in protecting shorelines: answering recent challenges to the

paradigm Clim. Change 106 7–29

Giri C, Ochieng E, Tieszen L L, Zhu Z, Singh A, Loveland T, Masek

J and Duke N 2011 Status and distribution of mangrove

forests of the world using earth observation satellite data Glob.

Ecol. Biogeogr. 20 154–9

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and

Moore R 2017 Google Earth engine: planetary-scale

geospatial analysis for everyone Remote Sens. Environ. 202

18–27

Grassi G, House J, Dentener F, Federici S, den Elzen M and Penman

J 2017 The key role of forests in meeting climate targets

requires science for credible mitigation Nat. Clim. Change 7

220–6

Hamilton S E and Casey D 2016 Creation of a high spatio-temporal

resolution global database of continuous mangrove forest

cover for the 21st century (CGMFC-21) Glob. Ecol. Biogeogr.

25 729–38

Hansen M C et al 2013 High-resolution global maps of 21st century

forest cover change Science 342 850–3

Hengl T et al 2017 SoilGrids 250 m: Global gridded soil information

based on machine learning PLoS ONE 12 e0169748

Herr D and Landis E 2016 Coastal blue carbon ecosystems.

Opportunities for Nationally Determined Contributions. Policy

Brief (Gland: IUCN and Washington, DC: TNC)

Howard J, Sutton-Grier A, Herr D, Kleypas J, Landis E, Mcleod E,

Pidgeon E and Simpson S 2017 Clarifying the role of coastal

and marine systems in climate mitigation Front. Ecol. Environ.

15 42–50

Hugelius G et al 2014 Estimated stocks of circumpolar permafrost

carbon with quantified uncertainty ranges and identified data

gaps Biogeosciences 11 6573–93

Hutchison J, Manica A, Swetnam R, Balmford A and Spalding M

2014 Predicting global patterns in mangrove forest biomass

Conserv. Lett. 7 233–40
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Pérez A, Machado W, Gutierrez D, Stokes D, Sanders L, Smoak J M,

Santos I and Sanders C J 2017 Changes in organic carbon

accumulation driven by mangrove expansion and

deforestation in a New Zealand estuary Estuar. Coast. Shelf Sci.

192 108–16

Richards D R and Friess D A 2016 Rates and drivers of mangrove

deforestation in Southeast Asia, 2000–2012 Proc. Natl Acad.

Sci. 113 344–9

Robertson A I and Phillips M J 1995 Mangroves as filters of shrimp

pond effluent: predictions and biogeochemical research needs

Hydrobiologia 295 311–21

Rockström J, Gaffney O, Rogelj J, Meinshausen M, Nakicenovic N

and Schellnhuber H J 2017 A roadmap for rapid

decarbonization Science 355 1269–71

Sanderman J, Hengl T and Fiske G J 2017 Soil carbon debt of 12 000

years of human land use Proc. Natl Acad. Sci. 114 9575–80

Sanders C J, Maher D T, Tait D R, Williams D, Holloway C, Sippo J

Z and Santos I R 2016 Are global mangrove carbon stocks

driven by rainfall? J. Geophys. Res. Biogeosci. 121 2600–9
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