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S U M M A R Y

A large number of fundamental-mode Love and Rayleigh wave dispersion curves were de-

termined from seismograms for 3330 earthquakes recorded on 258 globally distributed seis-

mographic stations. The dispersion curves were sampled at periods between 25 and 250 s to

determine propagation-phase anomalies with respect to a reference earth model. The data set

of phase anomalies was first used to construct global isotropic phase-velocity maps at spe-

cific frequencies using spherical-spline basis functions with a nominal uniform resolution of

650 km. Azimuthal anisotropy was then included in the parametrization, and its importance for

explaining the data explored. Only the addition of 2ζ azimuthal variations for Rayleigh waves

was found to be resolved by the data. In the final stage of the analysis, the entire phase-anomaly

data set was inverted to determine a global dispersion model for Love and Rayleigh waves

parametrized horizontally using a spherical-spline basis, and with a set of B-splines to describe

the slowness variations with respect to frequency. The new dispersion model, GDM52, can

be used to calculate internally consistent global maps of phase and group velocity, as well as

local and path-specific dispersion curves, between 25 and 250 s.

Key words: Surface waves and free oscillations; Seismic anisotropy; Seismic tomography.

1 I N T RO D U C T I O N

Love and Rayleigh surface waves are the most prominent phases

on long-period seismograms recorded at regional and teleseismic

distances, especially for shallow-focus earthquakes and explosions.

In addition to their large amplitudes, these waves are character-

ized by laterally variable dispersion resulting from their sensitivity

to Earth’s shallow elastic structure, and especially the contrast-

ing crustal and shallow-mantle structure of continents and oceans.

Although early surface wave studies focused on characterizing dis-

persion along specific paths or across structurally homogeneous

regions (e.g. Oliver 1962), the deployment of global and digital

seismographic networks starting in the 1970s and 1980s led to the

development of new techniques for characterizing long-period sur-

face wave propagation globally (e.g. Masters et al. 1982; Nakanishi

& Anderson 1982, 1983, 1984; Woodhouse & Dziewonski 1984;

Tanimoto 1985; Tanimoto & Anderson 1985; Nataf et al. 1986;

Wong 1989; Montagner & Tanimoto 1990, 1991). In the 1990s,

progress was achieved through the accumulation of large data sets,

and the development of new methods for measuring the disper-

sion of shorter period surface waves (e.g. Trampert & Woodhouse

1995b, 1996; Laske & Masters 1996; Zhang & Lay 1996; Ekström

et al. 1997; van Heijst & Woodhouse 1999; Yoshizawa &

Kennett 2002). The two-dimensional mapping of surface wave

group and phase velocities is now a standard tool for investigating

the laterally varying internal elastic structure of the crust and shal-

low mantle, with surface wave velocities at different periods provid-

ing complementary integral constraints on radial elastic structure.

Complicating efforts to improve the lateral resolution and fi-

delity of mapped phase velocities on global and regional scales

are the anisotropic properties of crust and upper-mantle rocks,

which produce azimuthal variations in surface wave phase veloc-

ities. These effects were documented first by Forsyth (1975), who

demonstrated the existence of azimuthal variations of Rayleigh wave

phase velocities across the Pacific Plate. Several other early studies

mapped lateral variations of azimuthal anisotropy on regional (e.g.

Montagner & Jobert 1988; Nishimura & Forsyth 1988) and global

(e.g. Tanimoto & Anderson 1984, 1985; Montagner & Tanimoto

1990) scales. Recently, several authors have used large, modern

data sets to develop models of anisotropic heterogeneity (e.g.

Ekström 2000; Montagner & Guillot 2000; Trampert & Woodhouse

2003; Debayle et al. 2005; Beucler & Montagner 2006; Visser et al.

2008). Observations of azimuthal anisotropy are of value in part

because they help constrain the elastic fabric of mantle materials,

and thereby the deformation history and dynamic processes active

in the upper mantle. Some agreement has been documented be-

tween seismological surface wave results and predictions based on

geodynamic models of mantle flow and anisotropic fabric forma-

tion (e.g. Becker et al. 2003, 2007; Gaboret et al. 2003). Among

seismological models, there is, however, still a lack of consensus

on the pattern and strength of anisotropy, mainly as a result of the

trade-off between isotropic and anisotropic heterogeneity.
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Global dispersion model GDM52 1669

An additional mapping challenge arises from the complexities

of wave propagation, which become more evident as shorter period

waves are investigated and attempts are made to determine lateral

variations on shorter length scales. The benefits of including wave

refraction, Fresnel zone or scattering effects in the mapping of

observed surface wave dispersion to 2-D phase-velocity maps and

3-D intrinsic elastic properties have been stressed in a number of

recent publications (e.g. Spetzler et al. 2002; Yoshizawa & Kennett

2002; Zhou et al. 2005). The extent to which the inclusion of finite-

frequency effects in the interpretation of surface wave dispersion

data influences the derived models on global and regional scales is

not easily determined, however. The incremental advantage over a

geometric ray-based approach afforded by, for example, a 2-D or 3-

D scattering approach may be secondary to the effect on the solution

of parametrization and regularization choices in the inverse problem

(e.g. Boschi 2006; Trampert & Spetzler 2006; Ritsema et al. 2010).

Although most research interest in isotropic and anisotropic vari-

ations of surface wave phase velocities stems from the information

these variations carry about intrinsic elastic properties of the Earth,

path-specific dispersion curves and maps of surface wave velocities

are also important for studies of earthquake focal mechanisms, as

the propagation phase has to be predicted in order for the source

phase to be determined correctly. For example, it was only follow-

ing the development of intermediate-period phase-velocity maps

for Love and Rayleigh waves (Ekström et al. 1997) that these waves

could be included in the routine determination of centroid-moment

tensors (CMTs) in the Global CMT project (Dziewonski et al. 1981;

Arvidsson & Ekström 1998; Ekström et al. 2005). Similarly, accu-

rate prediction of propagation phase is important for efforts to detect

and locate seismic events using surface waves (Ekström 2006a). For

these types of applications, the geographical details of the derived

phase-velocity maps are secondary to the ability to predict the point-

to-point propagation effects.

The first objective of this paper is the development and presenta-

tion of a large data set of surface wave phase-delay measurements

and the analysis of these data in terms of isotropic phase-velocity

maps. This initial investigation is in part a continuation of the work

of Ekström et al. (1997) (hereafter referred to as ETL97), as simi-

lar measurement tools are employed here. Compared to the earlier

study, the new developments and results presented here include (1)

a significantly larger data set, (2) a broader period range (25–250 s)

compared to the earlier study (35–150 s) and (3) a spherical-spline

parametrization of the global maps.

The second objective is the determination of phase-velocity maps

that incorporate azimuthal anisotropy, and an investigation of the

ability of the new data set to resolve anisotropy of varying levels

of complexity on a global scale. Previous work (e.g. Trampert &

Woodhouse 2003) has addressed the statistical resolvability of ad-

ditional anisotropic parameters in global phase-velocity inversions.

Here, in a complementary approach, two experiments are presented

that address the physical plausibility of the determined anisotropic

structures.

The third objective is the derivation of a continuous dispersion

model for Love and Rayleigh waves, designed to obviate the cur-

rent need to interpolate phase-velocity maps at different periods

to determine path-specific dispersion curves, and to add the pos-

sibility of predicting group and phase velocity simultaneously and

consistently from the same dispersion model. For this purpose, a dis-

persion model fills the same role as a 3-D earth model, which can

also be used to predict local surface wave phase and group veloci-

ties. In terms of the complexity of the required analysis, the direct

determination of a global dispersion model is significantly simpler

than the determination of 3-D Earth structure. In particular, the non-

unique and non-linear relationship between the phase velocity and

the radial velocity profile is avoided, and no specific parametrization

choices are needed with respect to, for example, crustal thickness

and structure or the source region of intrinsic anisotropy.

The scope of this paper is deliberately limited. In particular, ray

theory is used in the derivation of the models, and the potential limi-

tations of this approach are not explored in this contribution. Future

investigations may find the surface wave traveltime data set pub-

lished here useful in deriving other models that incorporate more

sophisticated theory in the analysis. The current contribution does

not explore to any significant extent the implications of the derived

dispersion curves for Earth structure. Natural continuations of this

work are a comparison of dispersion predicted from published 3-D

Earth models with the dispersion models presented here, determina-

tion of a 3-D anisotropic Earth model consistent with the dispersion

models and incorporation of the dispersion models in CMT and

surface wave earthquake-detection algorithms. These topics will be

pursued in future work.

2 T H E O RY

The propagation of fundamental-mode Love and Rayleigh waves

can be described using ray theory on a sphere (e.g. Tromp & Dahlen

1992, 1993). The surface wave seismogram u(ω) is written

u(ω) = A(ω) exp[i�(ω)], (1)

where A(ω) and �(ω) are the amplitude and phase, respectively,

of the wave as functions of angular frequency ω. For a given

source–receiver geometry, the phase � is the sum of four terms

� = �S + �R + �C + �P , (2)

where �S is the source phase calculated from the earthquake focal

mechanism and geometrical ray take-off azimuth, �R is the receiver

phase, �C is the static phase contribution from each ray focus and

�P is the propagation phase

�P (ω) =

∫

ω

c(ω)
ds =

∫

ωp(ω) ds, (3)

where c is the local phase velocity and p is its reciprocal, the phase

slowness. The integration follows the ray path. The amplitude A can

be expressed as

A = AS AR A� AQ, (4)

where AS is the magnitude of the excitation at the source, AR is

the receiver amplitude, A� is the geometrical spreading factor and

AQ is the decay factor due to attenuation along the ray path. When

the location and focal mechanism of the earthquake are known, a

theoretical reference seismogram u0(ω) based on a spherical earth

model can be calculated and written as

u0(ω) = A0(ω) exp[i�0(ω)]. (5)

The propagation phase for the reference surface wave is

�0
P (ω) =

ωR�

c0
= ωR�p0 = ωX p0 (6)

where c0 is the spherical Earth phase velocity, p0 is the spheri-

cal Earth phase slowness, � is the angular epicentral distance, R

is the radius of the Earth and X is the propagation path length

measured along the great circle. The observed surface wave u(ω)

C© 2011 The Author, GJI, 187, 1668–1686
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1670 G. Ekström

can be expressed as a perturbation with respect to the reference

seismogram

u(ω) = [A0(ω) + δA(ω)] exp i[�0(ω) + δ�(ω)]. (7)

Assuming the source, receiver and ray-focus contributions to be

known, the phase anomaly δ� can be attributed to a perturbation in

the propagation phase

�P = �0
P + δ� =

ωX

(c0 + δc)
, (8)

where δc is the apparent average phase-velocity perturbation, cal-

culated for the distance X along the great circle.

Using ray theory, observations of phase anomalies can be inter-

preted as having accumulated along the path between a source at

(θS , ϕS) and a receiver at (θR, ϕR)

δ� = ω

∫ (θR ,ϕR )

(θS ,ϕS )

δp(θ, ϕ) ds, (9)

where δp(θ , ϕ) is the local phase-slowness perturbation. Since rela-

tive slowness variations (δp/p0) for Love and Rayleigh waves in the

period range analyzed in this paper can be larger than 20 per cent, we

avoid making the approximation 1/(1 + δc/c0) ≈ 1 − δc/c0, which

is otherwise commonly used to linearize the tomographic problem

with respect to small perturbations δc(θ , ϕ) in local phase velocity.

When, in the following, we present and discuss results in terms of

relative velocity variations (δc/c0), as is the common practice, these

variations are calculated from the slowness variations by

δc

c0
=

−δp

p0 + δp
. (10)

The group slowness g(ω) is the inverse of the group velocity

U(ω) and is related to the phase slowness by

g(ω) = p(ω) + ω
dp

dω
(ω). (11)

The group slowness perturbation δg(ω) with respect to a spherical

Earth’s reference value g0(ω) is then

δg(ω) = δp(ω) + ω
d(δp)

d ω
(ω). (12)

3 M E A S U R E M E N T T E C H N I Q U E

A N D DATA C O L L E C T I O N

We used the algorithm described in ETL97 to collect phase-anomaly

measurements. The method is based on phase-matched filtering and

minimization of residual dispersion between an observed seismo-

gram and a synthetic fundamental-mode surface wave seismogram.

The dispersion and amplitude of the synthetic waveform are it-

eratively modified until the residual dispersion and the misfit be-

tween the observed and synthetic waveforms are minimized. The

end result, for each measured Love and Rayleigh wave seismo-

gram, is a smoothly varying perturbation in amplitude δA(ω) and

apparent phase velocity δc(ω) valid for a range of periods, as well

as parameters quantifying the quality of the measurement. Fig. 1

shows an example of the waveform fitting and the resulting disper-

sion curve and frequency-dependent amplitude correction. Phase

anomalies δ� are obtained from the dispersion curves by evalua-

tion at discrete periods. For a detailed description of the method,

see ETL97.

PREM

NEW

NEW

a

b

c

d

e

Figure 1. (a) Comparison of an observed seismogram and the corresponding synthetic waveform calculated for the PREM model (Dziewonski & Anderson

1981) before adjusting the fundamental-mode phase and amplitude. Thin vertical lines correspond to group velocities of 4.8 and 3.0 km s−1. (b) Seismogram

comparison after adjustments. (c) Correlation of observed and model seismograms, and autocorrelation of the model seismogram. (d) Derived phase-velocity

perturbation (deviation from PREM) as a function of frequency. The shortest period considered is 23 s. (e) Derived amplitude (thick line) compared with

PREM prediction (thin line).
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Global dispersion model GDM52 1671

We applied the measurement algorithm to seismograms recorded

on globally distributed seismic stations. Specifically, we used data

recorded on the Global Seismographic Network (network codes

II and IU), the Chinese Digital Seismograph Network (CD and

IC), the Mednet (MN), Geoscope (G), Geofon (GE) and Caribbean

(CU) Networks, the Global Telemetered Seismograph Network

(GT) and on selected stations of the Canadian National Seismo-

graph Network (CN). We considered earthquake sources from 2000

to 2009, and used CMTs and centroid locations extracted from the

Global CMT catalogue (Dziewonski et al. 1981; Ekström et al.

2005) in the calculation of synthetic seismograms. Only shallow

sources (h < 50 km) were included to ensure that the fundamental-

mode surface waves were the dominant long-period phase in the

seismograms.

Two different sets of measurements were made. First, to accu-

mulate a large data set of minor-arc shorter period measurements,

analysis was attempted for earthquakes with MW ≥ 5.5. Varia-

tions in phase velocity and amplitude between 23 and 200 s were

parametrized using eight spline basis functions equally spaced in

frequency. To obtain a high-quality long-period set of dispersion

curves, a second set of measurements including both minor- and

major-arc arrivals (R1, R2; G1, G2) was collected using earthquakes

with MW ≥ 6.5 and parametrizing phase velocity and amplitude us-

ing four spline basis functions between 105 and 400 s. The first set

of measurements was subsequently used to constrain phase veloci-

ties for periods 125 s and shorter; the second set to constrain phase

velocities for periods 150 s and longer.

Rayleigh wave dispersion was determined from the vertical

component seismograms and Love wave dispersion from trans-

verse seismograms constructed by rotation of the horizontal com-

ponents using the great-circle back azimuth. Nearly one million

earthquake–receiver paths were analyzed, but only a fraction of these

yielded useful measurements. In particular, many of the smaller

earthquakes were recorded with high signal-to-noise ratios only at

the quietest stations.

For the shorter period set of measurements, dispersion curves

were first determined between 200 and 50 s, then between 200 and

32 s and finally between 200 and 23 s. As the short-period limit

of the analysis is extended, fewer paths yield acceptable dispersion

curves, in part due to complexities of wave propagation not matched

by the model seismograms. For the minor- and major-arc measure-

ments at long periods, a single dispersion curve was determined

between 400 and 105 s. The dispersion curves were subsequently

evaluated to determine phase anomalies at specific periods. To iden-

tify acceptable measurements, we used the same selection criteria

as in ETL97. Acceptable measurements were determined to be of

quality A, B or C, depending on the values of the fitting parameters.

The total number of phase anomalies collected at each period is

shown in Table 1. The jumps in the number of observations seen

between 30 and 32 s, 45 and 50 s and 125 and 150 s result from the

data being derived from different sets of dispersion curves.

Fig. 2 shows the locations of earthquakes and stations that con-

tributed at least one observation to this study. Although the geo-

graphical distribution of earthquakes is similar to that in ETL97,

this study includes many stations in new locations, notably several in

the Pacific Ocean Basin. Large areas in the southern oceans still lack

good station coverage. Fig. 3 shows the rms of the phase anomalies

after removing a global average phase-velocity contribution at each

period. The phase-anomaly signal strength increases roughly as the

square of the frequency and is approximately three full cycles for

both Love and Rayleigh waves at 25 s.

Table 1. The number of phase anomalies at each period. The re-

duced number Nr refers to the effective number of data following

the weighting that accounts for uneven spatial sampling.

Period N (Love) Nr (Love) N (Rayleigh) Nr (Rayleigh)

25 18 670 8308 103 633 36 109

27 19 034 8420 104 820 36 366

30 19 187 8465 105 796 36 592

32 35 858 14 558 178 997 54 253

35 35 935 14 578 179 296 54 313

40 35 977 14 591 179 657 54 369

45 36 022 14 607 179 802 54 404

50 82 958 30 822 282 579 72 488

60 85 646 31 640 286 132 72 970

75 85 742 31 674 286 302 72 972

100 83 463 31 199 282 996 72 565

125 62 829 25 668 247 410 65 826

150a 43 999 25 025 83 093 39 123

200a 30 870 19 170 82 518 38 892

250a 36 991 21 563 78 291 37 172

aFor periods 150 s and longer, the numbers reflect minor- and

major-arc data.

3.1 Data errors and uncertainties

Errors in the measured phase anomalies arise from several sources.

These include (1) error in the source location, (2) error in the CMT

focal mechanism, (3) error in the source excitation, caused by an

inappropriate source depth or the assumed local structure, (4) in-

terference of the fundamental mode with other phases in the seis-

mogram, (5) errors in the instrument-response function and (6)

measurement errors caused by seismic noise. Following ETL97, we

estimated observational uncertainties for the phase anomalies by

comparing measurements for similar paths. Table 2 gives the values

for A-, B- and C-quality observations. Fig. 4 shows the estimated

uncertainty for quality-A observations as a function of frequency,

indicating a roughly linear increase in the phase uncertainty with

respect to frequency. This trend is consistent with an error related

to the epicentral distance, as suggested by the lines in Fig. 4, which

illustrate the phase error that would be introduced by a source mis-

location of 15 km in the direction to or from the station. Smith

& Ekström (1997) estimated that CMT centroid locations deviate

from true earthquake locations by approximately 25 km on average,

which indicates that source mislocation is likely to be an important

contributor to the data errors.

It is likely, however, that the empirical uncertainty is an underes-

timate of the true uncertainty. Errors associated with regional bias in

source locations (e.g. Engdahl et al. 1982; Smith & Ekström 1996;

Yang et al. 2004) will not contribute to uncertainty estimates based

on similar paths, for example. Other types of errors, such as those

associated with the instrument response, also will not contribute,

when measurements at the same station are compared. However, the

estimated uncertainties reflect the combined effects of several of the

error sources, and allow us to interpret and model the observations

with quantitative consideration of quality-of-fit parameters.

An additional source of error and uncertainty is associated with

the underlying assumption of the measurement technique that the

seismic signal contains a smoothly dispersed fundamental-mode

surface wave for which it is possible to measure a meaningful phase

and amplitude. Even for a simple and smooth velocity structure, this

assumption can be violated for near-nodal take-off angles and for

paths that generate multipathing and diffraction. Seismograms that

suffer such complications are unlikely to be fit well by the synthetic

C© 2011 The Author, GJI, 187, 1668–1686
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1672 G. Ekström

Figure 2. Global map showing the locations of 3330 earthquakes (hexagons) and 258 stations (squares) that contributed to the analysis. Plate boundaries (Bird

2003) are shown in light blue.

Figure 3. The rms phase-anomaly signal for (squares) Love and (triangles)

Rayleigh waves at different frequencies.

waveform used in the measurement algorithm, and are therefore

also unlikely to yield dispersion curves of acceptable quality. The

removal of low-quality measurements is an important step in reduc-

ing the overall observational uncertainties in the data set.

4 P H A S E - V E L O C I T Y M A P S

4.1 The forward problem

In Section 2, we made use of ray theory to describe the propagation

phase of a fundamental-mode surface wave seismogram, and to

define the phase anomaly δ�. Our measurement method is, however,

not strictly dependent on the validity of ray theory and, to the extent

that part of the wavefield can be represented by a surface wave with

smooth dispersion, the measured phase anomalies can be interpreted

using any appropriate theory. With ray theory, we can use eq. (9) to

interpret the observed phase anomaly; with 2-D wave-propagation

theories (e.g. Born scattering) we would instead write

δ� = ω

∫

	

K 2D(θ, ϕ)δp(θ, ϕ) d	, (13)

Table 2. Empirical uncertainties (radians) estimated from

pairwise similar paths.

Love waves Rayleigh waves

Period σA σB σC σA σB σC

25 0.903 1.654 3.130 0.951 1.778 3.824

27 0.757 1.199 1.939 0.833 1.248 2.284

30 0.589 0.860 1.261 0.709 0.963 1.525

32 0.595 0.956 1.532 0.759 1.247 2.181

35 0.477 0.677 1.086 0.648 0.987 1.748

40 0.385 0.509 0.759 0.533 0.769 1.298

45 0.338 0.430 0.595 0.454 0.643 1.033

50 0.403 0.655 0.988 0.569 1.038 1.771

60 0.319 0.503 0.690 0.437 0.749 1.220

75 0.262 0.406 0.519 0.331 0.528 0.792

100 0.215 0.350 0.411 0.250 0.393 0.544

125 0.226 0.357 0.366 0.226 0.348 0.401

150a 0.122 0.224 0.410 0.146 0.216 0.394

200a 0.099 0.212 0.351 0.106 0.167 0.262

250a 0.117 0.256 0.272 0.106 0.179 0.252

aFor periods 150 s and longer, the numbers reflect minor- and

major-arc data.

where K2D(θ , ϕ) is an appropriate phase-slowness sensitivity func-

tion (e.g. Spetzler et al. 2002) defined across the surface 	 of the

Earth. 3-D theoretical expressions lead to a relationship

δ� = ω

N
∑

i=1

{∫

V

K 3D
i (θ, ϕ, r)δξi (θ, ϕ, r) dV

}

, (14)

where K3D
i (θ , ϕ, r) is the appropriate sensitivity function for the

phase anomaly δ� and the ith of N intrinsic 3-D variables ξ i (e.g.

S-wave velocity, P-wave velocity and density) defined throughout

the volume V of the Earth’s interior (e.g. Zhou et al. 2004).

Higher order theories, such as scattering theory, describe how

the wavefield (not the phase) is modified by perturbations in the

structure. Since, in practice, δ� is a measurement of the wavefield

obtained using a particular technique, the specific form of the sen-

sitivity functions K2D(θ , ϕ) and K3D
i (θ , ϕ, r) will also depend on

the measurement technique (Dahlen et al. 2000; Zhou et al. 2004).

In general, higher order sensitivity functions also depend on the

C© 2011 The Author, GJI, 187, 1668–1686
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Global dispersion model GDM52 1673

Figure 4. Estimates of observational uncertainties for (squares) Love and

(triangles) Rayleigh waves based on observations from pairwise similar

paths. The lines show the phase error that would result from an error in

epicentral distance of 15 km, assuming PREM phase velocities.

earthquake focal mechanism. Here, we use surface wave ray theory

and great-circle paths in our analysis of the phase-anomaly data set;

with appropriate developments, the measurements could be inter-

preted within other theoretical frameworks.

4.2 Model parametrization

To formulate an inverse problem of finite dimensions based on the

relationship between phase anomalies and laterally varying veloc-

ities, the laterally varying slowness perturbation δp(θ , ϕ)/p0 at a

given period can be parametrized in terms of a set of basis functions

on the surface of the sphere

δp(θ, ϕ)

p0
=

N
∑

i=1

ai Bi (θ, ϕ), (15)

where Bi(θ , ϕ) is a basis function, such as a latitude–longitude pixel,

a spherical spline or a single spherical harmonic, ai is a model

coefficient and N is the total number of basis functions used in

the representation. Here, we use a spherical-spline parametrization.

The basis functions are centred on N knot points i = 1, 2,. . ., N

distributed across the surface of the Earth, to provide either uniform

or variable resolution. The value fi(θ , ϕ) of each basis function i

depends on the distance � from the ith knot point

fi =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

3
4

(

�/�0
i

)3
− 3

2

(

�/�0
i

)2
+ 1,

� ≤ �0
i

− 1
4

(

�/�0
i

)3
+ 3

2

(

�/�0
i

)2
− 3(�/�0

i ) + 2,

�0
i ≤ � ≤ 2�0

i , (16)

where 2�0
i is the full range of the ith spline basis function. When

the knot points are distributed nearly uniformly across the Earth’s

surface according to the tessellation scheme described by Wang &

Dahlen (1995), �0
i is chosen to be the average distance between

knot points. This is the approach we use here. The geographical dis-

tribution of isotropic phase-slowness perturbations is then written

δp(θ, ϕ)

p0
=

N
∑

i=1

ui fi (θ, ϕ), (17)

where ui are the model coefficients.

Smith & Dahlen (1973) showed that, in the case of a weakly

anisotropic Earth, the azimuthal variations in Love and Rayleigh

wave velocities can be described by patterns having simple twofold

and fourfold azimuthal symmetry with respect to the propagation

azimuth ζ . We use this result to write

p⋆(ζ ) = p0
(

1 +
δp

p0
+ A cos 2ζ + B sin 2ζ

+ C cos 4ζ + D sin 4ζ
)

, (18)

where p⋆(ζ ) is the azimuthally varying phase slowness and A, B,

C and D are coefficients describing azimuthal variations in phase

slowness with respect to the reference isotropic slowness p0. The

azimuth ζ is measured with respect to the local meridian.

To describe lateral variations in velocity, including variations in

anisotropic properties, we write

δp⋆(θ, ϕ; ζ )

p0
=

δp(θ, ϕ)

p0
+ A(θ, ϕ) cos 2ζ + B(θ, ϕ) sin 2ζ

+ C(θ, ϕ) cos 4ζ + D(θ, ϕ) sin 4ζ. (19)

The laterally varying coefficients A(θ , ϕ), B(θ , ϕ), C(θ , ϕ) and D(θ ,

ϕ) can be expanded using some appropriate set of basis functions.

For an expansion in spherical harmonics, generalized spherical har-

monics are needed (e.g. Trampert & Woodhouse 1995a, 2003), as

an expansion of the coefficients A, B, C and D in scalar spheri-

cal harmonics leads to singularities at the geographic poles, where

constant azimuths ζ at nearby points do not correspond to parallel

directions. An alternative method based on spherical splines (eq.

16) was described by Ekström (2006b), and is the one we adopt

here. To make it possible to represent a smoothly varying direction

in regions close to the poles, Ekström (2006b) introduced the con-

cept of a ‘local parallel azimuth’ with which it is possible to write

the spherical-spline representation of the phase-slowness variations

δp⋆(θ, ϕ; ζ )

p0
=

N
∑

i=1

[ui fi (θ, ϕ) + ai fi (θ, ϕ) cos 2ζi

+ bi fi (θ, ϕ) sin 2ζi + ci fi (θ, ϕ) cos 4ζi + di fi (θ, ϕ) sin 4ζi ] ,

(20)

where ζ i(θ , ϕ; ζ ) is the local parallel azimuth defined at the ith knot

point. The local parallel azimuth is defined by

ζi (θ, ϕ; ζ ) = (ζ (θ, ϕ) − (αi (θ, ϕ) − βi (θ, ϕ) − π )), (21)

where αi is the azimuth from (θ , ϕ) to the ith spline point and β i is

the back azimuth from the ith spline point to (θ , ϕ).

4.3 Data weighting

In the inverse tomographic problem, we wish to determine the model

coefficients that best explain the set of observed phase anomalies.

We form the misfit function to be minimized from the observed

anomaly δ�obs. and the predicted anomaly δ�pred.

χ 2 =

N
∑

j=1

w2
j

σ 2
j

(

δ�obs.
j − δ�

pred.

j

)2

, (22)

where j is the index of the observation, N is the total number of

observations, σ j is the observational uncertainty and wj is a weight

applied to the jth observation. Weighting is introduced to reduce the

impact on the model of repeated observations of some particular

paths. One such path is that leading from the many earthquakes

in the Tonga–Kermadec subduction zone to the large number of

stations in North America.
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1674 G. Ekström

We implement the weighting in the following way. Starting with

a set of 1442 evenly distributed gridpoints on the sphere we deter-

mine, for each earthquake–station path, the gridpoints closest to the

earthquake and the station. The number of observations that share

the same starting and ending gridpoints is designated NP, and each

observation corresponding to this path is assigned a weight

w j = (1 + log10 NP )−1. (23)

This, for example, makes observations corresponding to a path sam-

pled 10 times contribute to χ2 only 2.5 times as much as an obser-

vation corresponding to a path sampled just once. The total number

of effective observations is reduced by the weighting; Table 1 gives

the reduced number of observations,

Nr =

N
∑

j=1

w j , (24)

for Love and Rayleigh waves at each period.

4.4 Model estimation and regularization

When the number of observations is large in comparison with the

number of parameters to be estimated, the inverse problem can

be overdetermined and no regularization of the inverse problem is

necessary. When regularization is necessary, this is introduced by

minimizing the sum of χ 2 and some additional function that reflects

the size or roughness of the phase-slowness model. We define the

strength S of the isotropic phase slowness as the rms value of the

variations

S =

[

1

4π

∫

	

(

δp

p0

)

·

(

δp

p0

)

d	

]1/2

, (25)

and the roughness R as the rms gradient of the global isotropic

phase-slowness variations

R =

[

1

4π

∫

	

(

∇
δp

p0

)

·

(

∇
δp

p0

)

d	

]1/2

. (26)

Similarly, we define the anisotropic strengths S2ζ and S4ζ , and

roughnesses R2ζ and R2ζ

Snζ =

[

1

4π

∫

	

(

s2
nζ + c2

nζ

)

d	

]1/2

, (27)

and

Rnζ =

[

1

4π

∫

	

{

(∇snζ ) · (∇snζ ) + (∇cnζ ) · (∇cnζ )
}

d	

]1/2

, (28)

where snζ and cnζ are the spatially varying sine and cosine coeffi-

cients of 2ζ and 4ζ anisotropy. In a full inversion for isotropic and

2ζ and 4ζ anisotropic phase-slowness variations, we then choose to

minimize the quantity χ̃ 2, where

χ̃ 2 =
(

χ 2 + γR2 + γ2ζR
2
2ζ + γ4ζR

2
4ζ

)

, (29)

and γ , γ 2ζ and γ 4ζ are parameters that define the relative weights

assigned to fitting the observations and to obtaining a smooth model.

Solutions to the inverse problem are obtained using Cholesky fac-

torization.

4.5 Isotropic inversions

At all periods, the phase-anomaly data are sufficient to constrain

global isotropic slowness anomalies expanded on a spherical-spline

basis with 362 nodes and an average node separation of 11.5◦ with-

out imposing smoothness constraints. Only for Love waves at peri-

ods shorter than 32 s is there an indication of minor instability in

the resulting models in poorly sampled areas, such as the southern

oceans. The purpose of determining these coarse maps is to obtain

baseline estimates of the strength of model anomalies, as well as

reference quality-of-fit values for a simple model parametrization.

Table 3 lists the residual normalized variance as well as the quality-

of-fit estimate, for which we use χ 2/Nr. Although the models are

smooth, they explain more than 90 per cent of the signal at many

periods. This is a consequence of the path-averaging nature of trav-

eltime data, as well as the dominance of long-wavelength anomalies

in the velocity field, mainly owing to the sizes and shapes of oceanic

and continental areas.

Fig. 5 shows the rms phase-slowness variations of the 362 spline

models as a function of period. The rms strength of the anoma-

lies shows some structure as a function of frequency, with rapid

increases at higher frequencies. A change in slope occurs at around

15 mHz for Love waves and around 25 mHz for Rayleigh waves.

As discussed in ETL97, the strong anomalies at shorter periods

are highly spatially correlated with predicted anomalies based on a

model of the Earth’s crust.

4.5.1 High-resolution isotropic inversions

We next inverted the same data set for isotropic slowness variations

using a spline basis with 1442 nodes and an average node separation

of 5.7◦. The nominal resolution for this parametrization is equivalent

to an expansion in spherical harmonics to degree 38. Although

we found that it is possible to invert the data without damping

for the best and most extensive data sets (e.g. Rayleigh waves at

60 s), this was not true in general. In particular, the smaller data

sets corresponding to short-period Love waves and the noisier very

long period data sets required regularization to yield stable and

meaningful inversion results.

The choice of the weighting parameter γ in eq. (29) typically re-

quires subjective judgement in addition to assessment of objective

variables. One reason for this is that the true errors in the data and

in the theories used in the modelling of the data are partly unknown.

These errors are also unlikely to be random, which makes standard

statistical tools less useful. Many investigators have used the cal-

culation and assessment of trade-off curves, aided by qualitative or

quantitative evaluation of the resulting models, to determine the ap-

propriate balance between fitting the data and obtaining meaningful

and realistic models. This is also the approach we followed here.

For each data set, we minimized χ̃2 in eq. (29) repeatedly for dif-

ferent values of γ and examined the trade-off between the roughness

R and the quality-of-fit χ 2/Nr. Fig. 6 shows examples for several

periods. Typically, a range of solutions is acceptable at each period,

but we found that it was not possible to find a single γ that resulted

in acceptable models for all data sets. This is not unanticipated,

given the variations in signal strength (Fig. 3) and observational

uncertainties (Fig. 4) that exist between 25 and 250 s period. We

found that at shorter periods, we needed a relatively smaller γ to

obtain an acceptable model, and that by making γ vary inversely

with respect to frequency

γ ( f ) =
f0

f
γ ( f0), (30)

where f is the frequency and f 0 is an arbitrary reference frequency

(chosen to be 4 mHz), we were able to obtain acceptable models

from all of the data sets.
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Global dispersion model GDM52 1675

Table 3. Residual normalized variance ν =
∑

N
i=1(δ�obs.

i − δ�
pred.
i )2/

∑

N
i=1(δ�obs.

i )2, quality of fit χ2/Nr, model strength

S and roughness R/S for the undamped 362-spline isotropic inversions and the damped 1442-spline isotropic inversions.

The last four columns give the parameters corresponding to the phase-velocity maps predicted from the Love and Rayleigh

dispersion models GDM52L and GDM52R. Maps predicted from GDM52R include 2ζ anisotropic variations. Only the

isotropic part is included in the calculation of S and R.

Period Undamped Inversion Damped Inversion Dispersion Model GDM52

ν χ2/Nr S R/S ν χ2/Nr S R/S ν χ2/Nr S R/S

L 25 0.041 4.45 6.33 6.39 0.033 3.45 6.07 6.32 0.033 3.59 6.01 6.51

L 27 0.028 4.80 5.71 6.13 0.020 3.42 5.59 6.72 0.020 3.43 5.65 7.01

L 30 0.020 4.61 4.96 6.03 0.013 3.05 4.89 6.93 0.013 3.07 4.99 7.43

L 32 0.023 4.08 4.57 5.81 0.017 2.87 4.55 7.17 0.017 2.89 4.58 7.65

L 35 0.022 4.82 4.02 5.91 0.016 3.37 4.03 7.62 0.016 3.37 4.06 7.94

L 40 0.024 5.04 3.34 6.23 0.018 3.55 3.34 8.18 0.018 3.56 3.37 8.43

L 45 0.030 4.90 2.85 6.58 0.022 3.43 2.86 8.64 0.022 3.51 2.86 8.81

L 50 0.064 3.72 2.48 6.85 0.055 3.02 2.51 9.13 0.054 3.07 2.52 9.15

L 60 0.084 3.38 2.08 7.22 0.072 2.76 2.11 9.54 0.072 2.78 2.11 9.48

L 75 0.114 2.91 1.82 7.51 0.101 2.47 1.84 9.44 0.101 2.49 1.83 9.19

L 100 0.155 2.22 1.60 7.34 0.144 2.00 1.59 8.62 0.145 2.02 1.58 8.38

L 125 0.205 1.90 1.47 7.12 0.197 1.78 1.43 7.63 0.200 1.84 1.44 7.56

L 150a 0.229 3.37 1.36 6.35 0.222 3.16 1.36 7.87 0.224 3.24 1.33 7.01

L 200a 0.300 2.11 1.18 6.10 0.294 2.01 1.15 6.64 0.297 2.05 1.15 6.48

L 250a 0.422 2.12 1.03 6.17 0.416 2.06 0.99 6.24 0.417 2.08 1.00 6.32

R 25 0.060 4.42 4.37 5.62 0.049 3.32 4.52 8.39 0.048 3.19 4.43 7.63

R 27 0.042 4.58 3.86 5.84 0.031 3.22 4.00 8.81 0.029 2.99 3.97 8.28

R 30 0.038 4.27 3.24 6.19 0.026 2.87 3.37 9.20 0.024 2.57 3.33 8.63

R 32 0.055 3.15 2.90 6.34 0.044 2.32 3.01 9.10 0.040 2.09 2.99 8.81

R 35 0.060 3.29 2.57 6.72 0.047 2.40 2.68 9.66 0.043 2.11 2.64 9.13

R 40 0.065 3.38 2.23 7.19 0.051 2.47 2.34 10.28 0.045 2.12 2.28 9.61

R 45 0.067 3.43 2.05 7.40 0.052 2.53 2.17 10.56 0.045 2.14 2.09 9.56

R 50 0.120 2.51 1.97 7.30 0.108 2.08 2.05 10.01 0.099 1.81 2.00 9.27

R 60 0.111 2.62 1.86 7.27 0.100 2.19 1.94 9.89 0.089 1.86 1.88 8.88

R 75 0.102 2.53 1.72 7.24 0.092 2.13 1.78 9.73 0.077 1.72 1.72 8.38

R 100 0.135 2.10 1.40 7.16 0.126 1.86 1.44 9.54 0.107 1.51 1.39 8.08

R 125 0.202 1.89 1.14 7.10 0.194 1.75 1.16 9.30 0.173 1.55 1.12 7.83

R 150a 0.211 2.52 0.92 6.78 0.199 2.31 0.95 9.92 0.180 2.02 0.89 7.89

R 200a 0.319 2.23 0.67 6.49 0.309 2.10 0.70 9.99 0.293 1.94 0.66 8.63

R 250a 0.496 1.98 0.55 6.68 0.484 1.89 0.57 9.98 0.466 1.79 0.55 9.24

aFor periods 150 s and longer, the numbers reflect minor- and major-arc data.

Figure 5. Strength (rms) of the (squares) Love and (triangles) Rayleigh

wave phase-slowness models at different frequencies. The results correspond

to the undamped isotropic inversion using 362 spline functions to represent

the laterally varying slownesses.

Fig. 7 shows phase-velocity maps converted from the phase-

slowness models of Love and Rayleigh waves at the longest and

shortest periods considered in this study, 250 s and 25 s. The

250-second Rayleigh wave map has a strength S = 0.57 per cent,

Figure 6. Trade-off curves for the high-resolution isotropic inversion for

(squares) Love and (triangles) Rayleigh waves at 25, 100 and 250 s. The

larger, filled symbols indicate the preferred inversion results.

and a spherical harmonic degree-two pattern with slower veloc-

ities in the Pacific and Africa. At 250 s, the Love wave map is

stronger (S = 0.99 per cent), and the anomalies show a clear cor-

relation with surface tectonics with fast velocities correlating with

C© 2011 The Author, GJI, 187, 1668–1686
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1676 G. Ekström

Figure 7. Maps of phase-velocity anomalies with respect to PREM resulting from the damped inversion of only isotropic variations. (Top left) Rayleigh waves

at 250 s, (bottom left) Rayleigh waves at 25 s, (top right) Love waves at 250 s, (bottom right) Love waves at 25 s. Plate boundaries (Bird, 2003) are shown in

white.

old seafloor age and the cratonic portions of the continents. The

Love and Rayleigh wave maps at 25 s show a very clear correlation

with the thickness of the crust and, for Love waves, the thickness of

low-velocity sediments in deep basins such as the Gulf of Mexico.

Considering the very large velocity anomalies in the short-period

maps, and the large wave-refraction effects that they must cause, it

is surprising that the inversion leads to such spatially well-defined

anomalies.

The new results agree well with the phase-velocity maps devel-

oped in ETL97 across the period range spanned by the earlier study

(35–150 s). This agreement is not surprising considering the similar-

ities of the two studies, but it is still encouraging considering that the

data sets are entirely independent. The spatial correlation of phase-

velocity maps from the two studies is greater than 0.92 for 100 s and

shorter periods, and smaller for 150 s (0.86 for Rayleigh waves and

0.91 for Love waves). The slightly worse correlation at 150 s may

be related to the fact that ETL97 included only minor-arc data; in

this study both minor and major-arc data are used at this period. In

general, the new maps have stronger short-wavelength features than

those of ETL97, especially in the Rayleigh wave maps. However,

as discussed in the next section, some of these short-wavelength

features are likely to be artefacts resulting from the omission of

azimuthal anisotropy in this stage of the analysis.

4.6 Anisotropic inversions

It is well established that azimuthal anisotropy influences the prop-

agation of intermediate-period Rayleigh waves (e.g. Forsyth 1975;

Nishimura & Forsyth 1988; Montagner & Tanimoto 1990), es-

pecially for waves traversing oceanic lithosphere. While much

progress has been made in mapping anisotropic properties of the

crust and upper mantle in recent years, key questions remain only

partly answered. For example, regarding surface wave anisotropy,

three open issues are (1) the fidelity with which azimuthal anisotropy

can be imaged globally, (2) the nature and extent of trade-offs be-

tween isotropic and anisotropic structure and (3) the absolute mag-

nitude of anisotropy. In addition, while most studies of surface wave

anisotropy have investigated the 2ζ azimuthal variations in Rayleigh

wave velocities, the 4ζ variations that are also predicted to exist (e.g.

Montagner & Nataf 1986; Montagner & Anderson 1989) have been

harder to detect and constrain. In studies that have found Love wave

azimuthal anisotropy of any kind, the signal has been weaker than

for Rayleigh waves, and less clearly correlated with any plausible

fabric-generating geodynamic processes.

To investigate the extent to which azimuthal anisotropy can be

constrained with the data sets collected in this study, we first per-

formed a number of experiments using the Love and Rayleigh wave

data sets at a period of 60 s. This period falls in the range where we

have the largest number of good measurements, and the best global

path coverage. In the experiments, we parametrized the model using

the same 1442-node basis as in the high-resolution isotropic inver-

sions. We started by imposing the same level of isotropic damp-

ing (γ ) preferred in the isotropic inversions, and then varied γ 2ζ

and γ 4ζ , with γ 2ζ = γ 4ζ . Fig. 8 shows the maps that result when

γ 2ζ and γ 4ζ are chosen to be approximately 4γ . The anisotropic

patterns displayed in the Rayleigh wave map share the general
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Global dispersion model GDM52 1677

Figure 8. Anisotropic phase-velocity maps for (top) Rayleigh and (bottom) Love waves at 60 s period. The red sticks indicate the fast directions of the 2ζ

anisotropic component and the white crosses indicate the two fast directions corresponding to the 4ζ component. The maximum peak-to-peak azimuthal

anisotropy is 3.3 per cent for Rayleigh waves and 2.6 per cent for Love waves. The background shading shows the isotropic phase-velocity variations.

characteristics of those seen in previous studies (e.g. Montagner

& Tanimoto 1990; Trampert & Woodhouse 2003). In particular, the

2ζ pattern contribution dominates, and has a broad maximum in

the eastern Pacific, with fast axes in the E–W or SE–NW direction.

The 4ζ pattern is much more variable in terms of orientation and

amplitude, and there is no clear correlation with results of previous

studies (e.g. Trampert & Woodhouse 2003). For Love waves, the

amplitudes of the anisotropic parts of the models are smaller than

for the Rayleigh waves, and there are no clear, large-scale patterns.

Choosing values for γ 2ζ and γ 4ζ that are smaller than γ leads to

unstable results. When progressively larger values for γ 2ζ and γ 4ζ

are chosen, the last feature to be subdued and eventually disappear

is the large-scale pattern of E–W fast directions for Rayleigh waves

in the Pacific Ocean Basin.

Qualitatively, the inversion results from this experiment are simi-

lar to those of previous studies (e.g. Trampert & Woodhouse 2003).

Only the 2ζ anisotropy imaged with Rayleigh waves exhibits long-

wavelength, smooth anomalies. The 4ζ Rayleigh wave anomalies,

and the 2ζ and 4ζ Love wave anomalies, vary over short wave-

lengths, and have an apparently random orientation and geographi-

cal distribution.

The question then arises whether any of these anisotropy results

are significant or meaningful. Earlier studies have differed in their

conclusions regarding the significance of anisotropic results other

than the 2ζ variations for Rayleigh waves. Several authors have

chosen to consider only the 2ζ anisotropy of Rayleigh waves in

their studies (e.g. Nishimura & Forsyth 1988; Maggi et al. 2006).

Trampert & Woodhouse (2003), whose data sets and techniques are

similar to those used here, concluded that all types of variations

except 2ζ variations for Love waves were significant, based on

the observed improvement in fit and the application of a standard

statistical test. Visser et al. (2008) arrived at a similar conclusion in

their study of Love and Rayleigh wave overtones.

The improvement in data fit resulting from the introduction of

anisotropic terms in the inverse problem is shown in Table 4. For the

models shown in Fig. 8, the improvement in the quality-of-fit pa-

rameter is 20 per cent for the Rayleigh wave data set and 11 per cent

for the Love wave data set. We have also tabulated results from

C© 2011 The Author, GJI, 187, 1668–1686
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1678 G. Ekström

Table 4. Quality-of-fit parameters for inversions with various combinations

of isotropic (0) and anisotropic (2ζ , 4ζ and 8ζ ) parametrizations.

Data set χ2/Nr

0 0 + 2ζ 0 + 4ζ 0 + 8ζ 0 + 2ζ + 4ζ 0 + 2ζ + 8ζ

L 60 2.76 2.59 2.56 2.53 2.47 2.42

R 60 2.19 1.81 1.89 1.94 1.75 1.73

inversions where only 2ζ or 4ζ variations were allowed, keeping

the damping parameters the same. The greatest improvement in fit

resulting from the addition of a single azimuthal term is obtained for

the Rayleigh wave data set, for which the fit improves by 17 per cent

when the 2ζ terms are added. However, the addition of any single

azimuthal variation improves the fit to either data set by 6 per cent

or more which, owing to the large number of data, is statistically

significant at a high level of confidence, using standard statistical

assumptions.

There exist, however, reasons to question the real significance of

the observed improvement in fit. We have included in Table 4 the

results for a set of additional inversions in which sin 8ζ and cos 8ζ

azimuthal variations were allowed. There is no simple physical basis

for such variations, and no reason to expect such variations to occur

in the real Earth, but they allow the same level of freedom in the

inversions as do the inclusions of 2ζ or 4ζ azimuthal variations.

For the Love wave data set, the 8ζ anisotropy leads to a greater

improvement in fit than does the 4ζ anisotropy, both when it is

the only azimuthal variation allowed, and in combination with a 2ζ

variation. For the Rayleigh wave data set, inclusion of 8ζ variations

provides similar improvements in fit to the inclusion of 4ζ terms.

The lack of a clear difference in the improvement in fit resulting from

inversions with the physically plausible 2ζ and 4ζ variations and

those including the implausible 8ζ variations suggests that criteria

other than fit are needed in evaluating whether the inversion results

are meaningful.

4.6.1 Isotropic–anisotropic trade-offs

One of the difficulties in assessing the trade-off between isotropic

and anisotropic structures in the inversions is that regularization typ-

ically is needed to smooth or damp both the isotropic and anisotropic

structures. As a consequence, the resulting models will naturally

evolve in the direction dictated by the regularization constraints as

new variables are introduced in the inverse problem. However, with

the data sets of intermediate-period Rayleigh waves assembled here,

no damping of the isotropic structure is strictly necessary even with

the high-resolution set of basis functions. This allows us to examine

the impact that adding anisotropic structure has on the isotropic

structure when no preference for smoothness of the isotropic struc-

ture has been imposed through the addition of regularization.

Two characteristics that can be investigated to assess the plausi-

bility of the anisotropic results are (1) whether the introduction of

anisotropic parameters influences the retrieved isotropic structure

in a way that makes it more plausible and (2) whether the retrieved

anisotropic structure can be interpreted using likely physical mech-

anisms.

The top panels of Fig. 9 show the isotropic inversion results

for Rayleigh waves at 75 s with the preferred isotropic damping

parameter (as in Table 3) as well as with no damping (γ = 0). The

models are very similar, and the most notable unexpected feature in

the maps is the short-wavelength ripple or streak crossing the Pacific

from the northeast to the southwest. This ripple is a stable feature of

all high-resolution isotropic inversions of Rayleigh waves between

50 and 100 s period that we have conducted, and it only disappears

when a large value for the damping parameter γ is used. The bottom

panels of Fig. 9 show the results from inversions in which a 2ζ

anisotropic variation is included. The isotropic damping is as in the

top panels, and the anisotropic damping is chosen as before (γ 2ζ =

4γ ). For clarity, the anisotropic part is omitted from the map in the

bottom right panel. The isotropic velocity ripple disappears in both

cases and instead the isotropic velocity anomalies display a smooth

increase from east to west, consistent with the pattern expected

based on increasing lithospheric age and cooling of the lithosphere

(e.g. Stein & Stein 1992). Since no regularization of the isotropic

structure was applied in the inversions on the right, the smoother

structure in the bottom panel results directly from the inclusion of

the anisotropic terms.

The 2ζ anisotropic pattern obtained in the inversions is character-

ized by a strong, large-scale anomaly associated with the younger,

eastern half of the Pacific Plate. The orientations of the fast direc-

tions are not uniform, but largely in agreement with fossil spread-

ing directions or absolute-plate-motion directions. This result is

qualitatively similar to those of earlier studies (e.g. Forsyth 1975;

Nishimura & Forsyth 1988; Maggi et al. 2006), and has been in-

terpreted in terms of the anisotropy caused by lattice-preferred ori-

entation of olivine resulting from current and past mantle flow and

strain (e.g. Nishimura & Forsyth 1989; Gaboret et al. 2003; Becker

et al. 2003).

The introduction of 2ζ anisotropy in the inversion for Rayleigh

wave slowness variations produces isotropic variations that are in

better agreement with patterns predicted based on a lithospheric-

cooling model of the oceanic lithosphere. In addition, the

anisotropic heterogeneities agree qualitatively with the olivine fab-

ric predicted to exist in the deformed lithosphere and asthenosphere

beneath the Pacific Plate. These results, in addition to the signifi-

cant gain in data fit resulting from the inclusion of 2ζ anisotropy

for Rayleigh waves, lead us to believe that the 2ζ results are mean-

ingful. The introduction of 4ζ anisotropy for Rayleigh waves, or

any kind of azimuthal anisotropy for Love waves, does not lead to

as large improvements in fit, and does not produce models that are

readily interpreted in terms of physically plausible mechanisms or

that are consistent with geodynamic predictions. In our preferred

models, we therefore permit only the 2ζ contributions to Rayleigh

wave slowness. The dominant role of the 2ζ variations of Rayleigh

waves is predicted by petrological studies (e.g. Montagner & Nataf

1986; Montagner & Anderson 1989). There is no reason to believe

that the other components of anisotropy are absent in the Earth, but

we are not able to constrain these components on a global scale with

the data and methods employed here.

5 D I S P E R S I O N M O D E L S

In this step of the analysis, we use the phase-anomaly data sets

to determine dispersion models for Love and Rayleigh waves. The

distinction we make here between a collection of phase-slowness

maps and a dispersion model is that a dispersion model can be used

to evaluate the phase slowness, and its frequency derivative, at ar-

bitrary frequencies. This property is useful for the calculation of

group-slowness variations, for example. Based on our results from

the inversions of phase slowness, we parametrize the Rayleigh wave

phase slowness with isotropic variations and 2ζ anisotropic varia-

tions, and Love waves with only isotropic variations. Generalizing

C© 2011 The Author, GJI, 187, 1668–1686
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Global dispersion model GDM52 1679

Figure 9. Maps of Rayleigh wave phase velocities in the Pacific at 75 s obtained using a global basis of 1442 spherical splines. Top left panel shows the

map corresponding to the preferred damped isotropic inversion (Table 3). Bottom left panel shows map with the same isotropic damping as the map above,

but including 2ζ anisotropic variations in the inversion. Top right panel shows the map resulting from an undamped isotropic inversion. Bottom right panel

shows the isotropic part of the model resulting from an inversion that also includes 2ζ variations. The anisotropic part (not shown) is indistinguishable from

the results on the left. In both the damped and undamped inversions, the isotropic velocity patterns in the Pacific become simpler and smoother after inclusion

of anisotropic variations. The anisotropic part of the model is shown by the sticks indicating fast directions.

eq. (20) to include frequency variations, we write for the absolute

phase-slowness perturbation

δp⋆(θ, ϕ, ω, ζ ) =

M
∑

j=1

B j (ω)

N
∑

i=1

[

ui j fi (θ, ϕ)

+ ai j fi (θ, ϕ) cos 2ζi + bi j fi (θ, ϕ) sin 2ζi

]

,
(31)

where Bj(ω) are a set of M B-spline basis functions spanning the

period range 25–250 s. The total number of parameters to estimate

is thus N × M for Love waves and 3N × M for Rayleigh waves.

From the phase-slowness perturbation, the group-slowness per-

turbation δg⋆(θ , ϕ, ω, ζ ) is easily calculated. We write

δg⋆(θ, ϕ, ω, ζ ) = δp⋆(θ, ϕ, ω, ζ ) + ω

M
∑

j=1

dB j

dω
(ω)

N
∑

i=1

[

ui j fi (θ, ϕ)

+ ai j fi (θ, ϕ) cos 2ζi + bi j fi (θ, ϕ) sin 2ζi

]

.
(32)

We use the same 1442-node spherical-spline basis as previously

to parametrize the dispersion model in the horizontal dimension;

we use 12 unevenly spaced B-splines to describe the frequency

Figure 10. Spline functions used to parametrize the dispersion model with

respect to frequency.

variations (Fig. 10). The two data sets used to constrain the coef-

ficients uij, aij and bij are the approximately 750,000 Love wave

and 2.75 million Rayleigh wave phase-anomaly observations. We

form the data-misfit portion of χ̃ 2 as in eq. (22). The problem
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1680 G. Ekström

requires regularization, and we choose to minimize the lateral rough-

ness of phase and group slowness. For phase slowness, we write

RP =

[∫ 40

4

W ( f )
1

4π

∫

	

(∇δp) · (∇δp) d	 d f

]1/2

, (33)

where the first integral is from 4 to 40 mHz and W (f ) is a function

that is chosen to equalize the contributions at different frequencies,

since slowness variations are larger at shorter periods. Similarly, for

group slowness, we write

RG =

[∫ 40

4

W ( f )
1

4π

∫

	

(∇δg) · (∇δg) d	 d f

]1/2

, (34)

where W (f ) is the same weighting function. The function to mini-

mize is then

χ̃ 2 =
(

χ 2 + γPR
2
P + γGR

2
G

)

, (35)

where γ P and γ G are regularization parameters that need to be

chosen.

The horizontal roughness of the slowness is effectively controlled

by the γ P parameter, which we choose so that the dispersion model

predicts slowness maps at the observed periods of similar rough-

ness to those derived at individual periods. With phase-anomaly

data from 15 different periods and only 12 spline functions describ-

ing the variations over frequency, the dispersion-model inversion is

overdetermined, and, with γ G = 0 yields results similar to those of

a spline interpolation of the phase-slowness models at different pe-

riods. However, such interpolated models predict group-slowness

maps that are rough and unrealistic. This is not surprising, since

group slowness is highly sensitive to the frequency derivative of

phase slowness. The purpose of introducing the damping parameter

γ G is thus to smooth the frequency variations of phase slowness

in a realistic manner by requiring the lateral variations of group

slowness to be smooth.

5.1 Love waves

In our preferred inversion for the Love wave portion of the disper-

sion model, we chose γ P = 4γ G and the weighting function W (f )

is

W ( f ) =
1

f
. (36)

The factor of four difference in the damping of phase- and group-

slowness variations compensates for the approximately factor-of-

two greater rms signal of the group slowness at a given period,

and W (f ) compensates for the nearly order-of-magnitude range in

slowness variations between 4 and 40 mHz. These choices result

in a dispersion model that predicts phase-velocity maps with very

similar characteristics to those obtained in the period-specific in-

versions. Correlation coefficients between the phase-velocity maps

predicted by the dispersion model and those inverted directly are

larger than 0.98 at all periods, and the rms and roughness param-

eters differ by less than 10 per cent. Phase-velocity maps derived

from the preferred Love wave dispersion model, which we refer to

as GDM52L, are shown in Fig. 11. Strength, roughness and quality-

of-fit parameters for GDM52L are given in Table 3.

Figure 11. Phase-velocity maps for Love waves at different periods evaluated from the Love wave dispersion model GDM52L: top left, 250 s; top right, 75 s;

bottom left, 40 s and bottom right, 25 s. Note the different scales. All deviations are with respect to PREM predictions.
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Global dispersion model GDM52 1681

Figure 12. Group-velocity maps for Love waves at different periods evaluated from the Love wave dispersion model GDM52L: top left, 250 s; top right,

75 s; bottom left, 40 s and bottom right, 25 s. Note the different scales. All deviations are with respect to PREM predictions.

Group-velocity maps predicted from GDM52L at four periods

are shown in Fig. 12. At 25 s, the group-velocity map exhibits very

large variations (−23 to +31 per cent). Although the map is very

smooth, the slowest velocities appear to be spatially correlated with

known regions of very thick sediments: the Gulf of Mexico, the

Barents Sea and the Black Sea. The very high velocities in some

areas of the oceans are probably spurious and the consequence of

poor station coverage. With lower damping (γ G), the short-period

group-velocity maps rapidly become unstable. At 40-s period, the

range of anomalies is similar, but the extreme values are more

localized. The slowest anomaly (−25 per cent) is associated with

the Gulf of Mexico. The group-velocity maps at longer periods (75

and 250 s in Fig. 12) display patterns that are also seen in phase-

velocity maps, although shifted in period; the 75 s group-velocity

map is correlated very well (0.98) with the phase-velocity map at

50 s, and the 250-s map is very well correlated with the phase-

velocity map at 150 s (0.98). This pattern of correlations reflects

the different sensitivities of group and phase velocity to radial Earth

structure.

Few global tomographic maps of Love wave group velocity have

been published. Larson & Ekström (2001) derived isotropic Love

and Rayleigh wave group-velocity maps between 35 and 175 s from

group-velocity measurements based on dispersion curves of the

same kind analyzed here. We calculate the spatial correlation of

group-velocity maps derived from GDM52L at 35, 50, 100 and

150 s, with the corresponding maps from Larson & Ekström (2001).

The correlation is greater than 0.80 at all four periods, reflecting

good agreement. The new maps are marginally rougher and visually

they appear to have more sharply defined anomalies, such as mid-

ocean ridges and cratonic roots.

5.2 Rayleigh waves

In our preferred Rayleigh wave inversion, we chose the same rel-

ative damping for the phase and group slowness as in the Love

wave inversion, γ P = 4γ G, and the same weighting function W (f ).

We used a damping parameter for the azimuthal anisotropy that

yields results similar to those obtained in the single-frequency in-

versions. We refer to the preferred Rayleigh wave dispersion model

as GDM52R; strength, roughness and quality-of-fit parameters for

GDM52R are given in Table 3.

Fig. 13 shows phase-velocity maps evaluated from GDM52R at

four periods. The variations in isotropic velocity display a striking

correlation with the distribution of continents and oceans at 25 s

period, and a pattern that is distinctly uncorrelated with surface

geology and tectonics at 250 s. The 2ζ anisotropic variations vary

in strength at different periods, but the patterns are similar for the

maps at 25, 40 and 75 s period.

The isotropic parts of the group-velocity maps calculated from

GDM52R are shown in Fig. 14. Mapped variations at 25 s are

very large (−30 to +18 per cent), and strongly correlated with the

distribution of continents and oceans. As with the Love wave maps,

the longer period isotropic components of the Rayleigh wave group-

velocity maps show similar patterns to those exhibited by the phase-

velocity maps, although shifted in period: the group-velocity map

at 40 s is best correlated with the 25-s phase-velocity map (0.97),
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1682 G. Ekström

Figure 13. Phase-velocity maps for Rayleigh waves at different periods evaluated from the Rayleigh wave dispersion model GDM52R: top left, 250 s; top

right, 75 s; bottom left, 40 s and bottom right, 25 s. Note the different scales for the isotropic velocity variations. All deviations are with respect to PREM

predictions. The anisotropic fast directions are indicated with the red sticks, and the scale of the sticks is the same in all maps. The longest stick corresponds

to a peak-to-peak anisotropy of 2.6 per cent.

the 75-s map with the 50-s phase-velocity map (0.98) and the 250-s

map with the 150-s phase-velocity map (0.93).

The correlation of the new group-velocity maps with the group-

velocity maps of Larson & Ekström (2001) is 0.87 at 35 s, but

significantly less at longer periods: 0.75 at 50 s, 0.57 at 100 s and

0.64 at 150 s. The worse correlation at longer periods is likely a

consequence of the lack of consideration of azimuthal anisotropy in

the Larson & Ekström (2001) study. The intermediate-period maps

of Larson & Ekström (2001) exhibit similar streaks in the Pacific

Ocean to those described earlier as resulting from the neglect of

anisotropic terms. In fact, Larson & Ekström (2001) comment on

the possibility that these features are the result of modelling an

anisotropic structure with an isotropic model.

6 D I S C U S S I O N

The main result of this study is the surface wave dispersion model

GDM52, consisting of the isotropic Love wave model GDM52L

and the anisotropic Rayleigh wave model GDM52R. The model pro-

vides global average and local constraints on elastic Earth structure,

and can be used to calculate path-specific surface wave dispersion

between two arbitrary locations on the Earth.

The average phase and group velocities of the Earth in the range

25–250 s are well constrained in this study. Fig. 15 shows the de-

viations of average Rayleigh and Love wave phase velocities from

PREM. As also pointed out in ETL97, PREM underestimates phase

velocities of Rayleigh waves around 50 s period, probably as a con-

sequence of a too-strong global average radial anisotropy in the

PREM lithosphere. In this study, we also find that Love wave phase

velocities are too slow in PREM at short periods. This may indicate

that the PREM average crust is too thin. The deviations of the ob-

served dispersion from that predicted by PREM is also evident in the

global average group velocities (Fig. 16). Observed Rayleigh wave

group velocities are faster than PREM by 1–2 per cent at 40–100 s

period, and slower than PREM at shorter periods. Love wave group

velocities deviate from PREM predictions mainly at short periods,

where they are as much as 5 per cent faster at 25 s period.

The horizontal separation of spherical-spline knots in GDM52,

approximately 650 km, establishes the shortest length scale over

which the model can represent a sharp contrast in dispersion. The

close correspondence of continent–ocean boundaries with rapid

changes in phase and group velocity (Figs 11–14) suggests that in

many areas, the nominal resolution is nearly achieved, especially at

shorter periods. The continent–continent plate boundary separating

Eurasia from India is also very distinct in both Love and Rayleigh

wave dispersion over a broad range of periods. Fig. 17 illustrates

the difference in local dispersion in central Tibet (32◦N, 90◦E) and

central India (20◦N, 78◦E).

For Rayleigh waves, GDM52 describes anisotropic propagation

characteristics, and the 2ζ variations of Rayleigh wave phase ve-

locities are shown in map view in Fig. 13. A broad maximum in

the strength of anisotropy is associated with the eastern portion of

the Pacific Plate, with fast directions primarily in the east–west

and southeast–northwest directions. The patterns at short and
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Global dispersion model GDM52 1683

Figure 14. Group-velocity maps for Rayleigh waves at different periods evaluated from the Rayleigh wave dispersion model GDM52R: top left, 250 s; top

right, 75 s; bottom left, 40 s and bottom right, 25 s. Note the different scales. All deviations are with respect to PREM predictions.

Figure 15. Global average phase-velocity variations from GDM52 for (red)

Love and (green) Rayleigh waves, with respect to the PREM model.

intermediate periods show strong correlation, with the map at 250 s

displaying less coherent patterns and a less pronounced strength

maximum associated with the Pacific Plate. Variations of strength

and direction of surface wave azimuthal anisotropy with wave period

result from the distribution of intrinsic anisotropy and variations in

the depth sensitivity to anisotropy. Observations therefore have the

potential to constrain the current or past mechanisms giving rise to

the anisotropic fabrics. Fig. 18 shows the strength (peak-to-peak)

and fast direction of anisotropy at three different locations in the

Figure 16. Global average group-velocity variations from GDM52 for (red)

Love and (green) Rayleigh waves, with respect to the PREM model.

Pacific Basin as a function of frequency. The variation in the north-

eastern Pacific (35◦N, 135◦W, red line in Fig. 18) shows a maximum

strength at around 75 s period, and a fast azimuth that rotates from

110◦ at 100 s to 92◦ at 25 s. In the southern Pacific (35◦S, 135◦W,

green line), the strength of anisotropy is less, and the rotation fol-

lows a different trend, from 135◦ at 100 s to 150◦ at 25 s. For a

point in the middle of the Nazca Plate (15◦S, 90◦W), the maximum

anisotropy occurs at 40 s, and the fast azimuth rotates from 60◦ at

100 s to 85◦ at 25 s. Although the fast directions for the northern
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1684 G. Ekström

Figure 17. Isotropic phase-velocity dispersion across the India–Eurasia

plate boundary. Solid lines give the local (red) Love and (green) Rayleigh

wave dispersion calculated for a point in Tibet (32◦N, 90◦E). Dashed lines

give the local dispersion for a point in central India (20◦N, 78◦E).

Figure 18. Strength and fast direction of 2ζ anisotropy at three locations

in the Pacific Basin evaluated from the Rayleigh wave dispersion model

GDM52R: 35◦N, 135◦W (red), 35◦S, 135◦W (green) and 15◦S, 90◦W (blue).

The azimuths are clockwise with respect to North and the strength is given

as the peak-to-peak value.

point are in qualitative agreement with both the absolute motion

of the Pacific Plate and the fossil spreading direction, the fast di-

rections at the southern point clearly deviate strongly at all periods

from the nearly east–west spreading direction, perhaps suggesting

a more complicated relationship to past and current plate motions.

An important use for tomographic models of the Earth is the

prediction of wave propagation, primarily traveltimes, between ar-

bitrary source locations and seismic stations. For body waves, the

Figure 19. Dispersion curves calculated from GDM52 for (red) Love and

(green) Rayleigh waves for paths originating at Helheim Glacier, Greenland

(66◦N, 38◦W) to the 194 stations on Fig. 2 located at a distance less than

90◦ from Helheim Glacier.

improved ability to account for propagation delays can result in

more accurate and precise determinations of earthquake hypocen-

tres. For surface waves, a more accurate prediction of frequency-

dependent propagation delays can allow the remaining surface wave

phase to be interpreted in terms of source phase, and thereby the

source mechanism. In addition, since propagation-phase delays at

short periods can amount to several cycles (Fig. 3), corrections for

propagation phase are very important for any analysis that relies

on signal enhancement by phase-coherent stacking of surface wave

phases. For example, in their development and application of a long-

period event detector based on surface waves, Ekström et al. (2003)

and Ekström (2006a) found that application of propagation-phase

corrections greatly improved the detection and location of seismic

sources in the period band 35–150 s. Fig. 19 illustrates the vari-

ability of dispersion predicted by GDM52 from Helheim Glacier in

Greenland, a source area of so-called glacial earthquakes (Ekström

et al. 2003; Nettles et al. 2008). Because of their spectral character-

istics, these earthquakes are best detected and located using surface

waves. Dispersion curves to existing seismic stations within 90◦ are

shown, illustrating the wide range of propagation characteristics

that need to be accounted for in the analysis of events from this site.

No earthquakes from this region were used in the determination of

the GDM52 model.

The dispersion model GDM52 was derived using ray theory,

and it is therefore most suitable for making predictions using the

same theory. Though not pursued here, the phase-anomaly data

collected and developed in this study could alternatively be inves-

tigated using other wave-propagation theories. To facilitate further

analyses of the model and the data, the phase-anomaly data set,

the model coefficients for GDM52 and programs to evaluate the

dispersion model at arbitrary periods and locations are available at

www.ldeo.columbia.edu/∼ekstrom.
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