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A global multi-hazard risk analysis of road
and railway infrastructure assets
E.E. Koks1,2, J. Rozenberg3, C. Zorn 1, M. Tariverdi3, M. Vousdoukas4,5, S.A. Fraser3, J.W. Hall1 & S. Hallegatte3

Transport infrastructure is exposed to natural hazards all around the world. Here we present

the first global estimates of multi-hazard exposure and risk to road and rail infrastructure.

Results reveal that ~27% of all global road and railway assets are exposed to at least one

hazard and ~7.5% of all assets are exposed to a 1/100 year flood event. Global Expected

Annual Damages (EAD) due to direct damage to road and railway assets range from 3.1 to 22

billion US dollars, of which ~73% is caused by surface and river flooding. Global EAD are

small relative to global GDP (~0.02%). However, in some countries EAD reach 0.5 to 1% of

GDP annually, which is the same order of magnitude as national transport infrastructure

budgets. A cost-benefit analysis suggests that increasing flood protection would have posi-

tive returns on ~60% of roads exposed to a 1/100 year flood event.
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R
eliable transport infrastructure is one of the backbones of a
prosperous economy, providing access to markets, jobs,
and social services1. For this reason, the sustainable

development goal (SDG) 9 calls for increased access to sustainable
transport infrastructure in low and middle income countries.
Collectively, new estimates show that low and middle income
countries will need to spend between 0.5 and 3.3% of their gross
domestic production (GDP) annually (US$157 billion to 1 tril-
lion) in new transport infrastructure by 2030—plus an additional
1–2% of their GDP for maintaining the network—depending on
their ambition and their efficiency in service delivery2,3. Securing
resources for maintenance is crucial to ensure the continued
safety and reliability of transport systems, and yet many countries
have struggled so far to secure the resources for sustainable
maintenance spending2,3.

At the same time, due to the wide spatial distribution of
transport infrastructure, many transport assets are exposed and
vulnerable to natural hazards, increasing the costs for national
transport agencies and operators. Examples are the major infra-
structure damages during Hurricane Maria in Puerto Rico in
20174, large-scale road and bridge damages in Sulawesi (Indo-
nesia) during the 2018 earthquake, and widespread infrastructure
damage following the Tohoku Earthquake in 2011 in Japan5.
During the 2015 floods in Tbilisi, Georgia6, the repair of transport
assets contributed approximately 60% of the total damage cost.

The economic and social consequences of natural disasters
have attracted more attention recently and the international
community, through both the SDG 11 (make cities and human
settlements inclusive, safe, and sustainable) and the Sendai Fra-
mework for Disaster Risk Reduction, which has called for
improved risk management when building and managing infra-
structure networks. Further evidence on the damages that infra-
structure networks face due to natural hazards at the global level
is required to bring useful policy insights and guide possible
revisions of infrastructure planning and design standards
worldwide. Such results would be particularly important for low
income countries where investment needs are the highest, but risk
assessments are scarce and disasters impacts on the economy are
typically underestimated7.

However, the scientific evidence is still limited on the global
impacts of natural disasters on infrastructure networks, both
through direct infrastructure damage and indirect impacts on
users and supply chains. Many existing global disaster risk models
focus on damaged buildings or affected populations8–10, with
infrastructure exposure being modeled using generalized
assumptions on infrastructure density rather than detailed asset
mapping. To our knowledge, no global study addresses damaged
networked infrastructure at the asset level, such as individual road
segments or bridge structures.

Moreover, most studies8–10 have focused on single hazards in
isolation (i.e., flooding), while a full evaluation of risks from
natural disasters need to account for the different specific char-
acteristics and geographical extents of natural hazards. Compar-
isons and quantification of global transportation asset exposure
and potential damages under a wider range of hazards is required
at the global level to assess the fiscal burden of damage from
natural hazards and to quantify the potential benefits of adapta-
tion action.

To fill these gaps, this study presents first estimates of global
exposure and risk of road and railway assets to the most fre-
quently recorded and costliest disasters: tropical cyclones (wind
speed only), earthquakes, surface flooding, river flooding, and
coastal flooding7. Other natural climatic and geomorphological
hazards (i.e., landslides) are absent from the analysis due to the
limited availability of consistent global data. Our study makes use
of the latest road and railway asset data available through

OpenStreetMap (OSM) and state-of-the-art global hazard maps.
As recent studies have shown, OSM can be considered a globally
reliable and complete source of transport infrastructure data11,12

though never previously has this dataset been used for a global
risk assessment.

In this study, the global estimates of risk to transport infra-
structure are calculated using a conventional risk-modeling fra-
mework. We define risk as a function of hazard—the probability
and severity of an event with potential to cause harm; exposure—
the value of assets subject to the hazard; and vulnerability—the
sensitivity of the asset to hazards of given severity13,14. Due to
limited empirical information and existing research on this topic
at a global scale, many assumptions had to be made to conduct
this study. For transparency and ease of interpretation, assump-
tions are clearly set out in both the “Methods” section and in
Supplementary Table 1 in the Supplementary Materials. Fur-
thermore, as most assumptions on vulnerability and cost of the
infrastructure assets are uncertain, a global sensitivity analysis is
performed on the reported infrastructure risk assessments. This
results in both a realistic range for the estimated risk and a better
understanding of the main factors that influence risk. This
assessment allows us to present, for the first time, the annual cost
of repairing transport infrastructure damaged by natural hazards
(globally and by country), and the direct economic benefits of
improving infrastructure standards against flooding. Indirect
benefits for users and the economy are left for future research.

We find that ~27% of all global road and railway assets are
exposed to at least one hazard. The greatest absolute expected
annual damages (EAD) is observed in high income countries,
however, relative to GDP, middle income countries are at higher
risk. Overall, we estimate that global multi-hazard EAD to
transport infrastructure ranges from 3.1 to 22 billion US dollars.
On a national level, EAD can reach 0.5–1% of GDP annually.
Improving road design by spending about 2% of the road value in
better drainage and flood barriers could yield positive return for
60% of the roads that are exposed to at least one flood event. We
conclude that it is crucial that countries, when exposed to natural
hazards, improve transport planning by systematically including
risk information and improving the protection of their most
vulnerable and critical assets. Better risk information, obtained
from studies like this, will help to avoid spending more on all
assets and make it possible to spatially target improvements.

Results
Global exposure to natural hazards. Global exposure of trans-
port infrastructure assets is presented in Fig. 1 across 46,566
regions (Methods). We find that ~27% of the network is exposed
to at least one hazard with a 1/250 return period and ~7.5% of the
road and railway assets are exposed to a 1/100 years flood event,
while in terms of expected annual exposure (EAE, defined as the
sum of exposure levels multiplied by their respective return
periods), about 0.5% of global assets are exposed to natural
hazards. The lowest (relative) EAE is for high-income countries
(0.42%) and the highest for lower middle income countries
(0.68%). Highest EAE is to surface flooding (Fig. 1d), followed by
tropical cyclones (Fig. 1b), river flooding (Fig. 1e), and earth-
quakes (Fig. 1c). Surface flooding is caused by intense rainfall as a
result of local accumulations of water, which can occur in many
locations, though the local area and depth of inundation may be
small. Tropical cyclones are more extensive in the geographical
regions where they occur, while river flooding is constrained to
floodplains. The locations of earthquakes correspond to seismi-
cally active regions and have greatest impacts in locations where
soils are subject to liquefaction. In this study, assets are only
considered to be exposed when the probability of occurrence of
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the hazard exceeds the assumed design protection standards of
the assets (Supplementary Table 7). For coastal, surface and river
flooding specifically, it means that we only assume that infra-
structure assets are exposed, and the area inundates, if the severity
of the hazard exceeds the design standard.

High income countries have the greatest cumulative length of
transport infrastructure (see Supplementary Table 2 for an
overview of countries’ income group), followed by upper middle
income countries and lower income countries. For earthquakes
and surface flooding in particular, we see that the amount of
exposed kilometers of assets correlates well with the relative
shares of each income group in the total amount of infrastructure
assets globally (Supplementary Table 5). For river and coastal
flooding, however, due to higher flood protection standards15,
High income countries have fewer kilometers exposed. For
tropical cyclones and earthquakes, the large share of exposed
infrastructure in upper middle income and high income countries
is predominantly caused by the geographic occurrence of the
hazard. Many of the areas of highest exposure in Fig. 1a align
with high cyclone hazard areas: Caribbean, US Gulf and East
Coast, Eastern China, South Asia, Japan. This is clearly visible in
Fig. 2, where tropical cyclones are the dominant hazard in most of
these areas. Earthquake is, for instance, the dominant hazard
along the San Andreas Fault and the coastline of Chile and Peru.

A further exploration of Fig. 2 shows that surface and river
flooding are the hazards causing the highest expected annual
exposure levels in most countries and regions globally (39% and
34%, for, respectively surface and river flooding). Africa is

predominantly exposed to river flooding, which is also translated
into the largest share of low income and lower middle income
countries’ risk in Fig. 1e. Europe and central North America, on
the other hand, see a predominant exposure to surface flooding.
At a country level, results show that multi-hazard exposure in
absolute terms is highest in Japan and China. In relative terms,
South Sudan (2.1%) and Madagascar (1.4%) are the countries that
experience the highest multi-hazard exposure to their transport
infrastructure. These high levels of exposure are primarily driven
by fluvial flooding and cyclones for, respectively, South Sudan
and Madagascar.

Vulnerability and risk. The global EAD to transport infra-
structure assets are presented in Fig. 3. These represent direct
damages to road and rail assets, and do not include the costs from
transport delays and disruption, or wider economic impacts. The
total global EAD for all hazards combined ranges from 3.1 to 22
billion US dollars (Fig. 3b), depending on the assumptions made
on the vulnerability of roads and construction and repair costs.
These values represent between 0.2 and 1.5% of annual global
maintenance needs, using the assumptions described in the cost-
benefit methods section to assess maintenance needs. The mean
EAD for transport infrastructure assets is 14.6 billion USD (1% of
annual global maintenance needs).

Approximately, 73% of the global EAD is caused by surface
and river flooding (Fig. 3a), followed by coastal floods (15.5%),
earthquakes (7.3%), and tropical cyclones (3.8%). Tropical
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Fig. 1 Global multi-hazard transport infrastructure exposure. Panel a presents the exposure for each region in the world. The classification is based on 20th

percentiles. Panels b–f presents the exposure for the four income groups per hazard and per hazard intensity band. See Methods for further discussions on

the justification on these hazard bands
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cyclones cause relatively fewer damages compared to their
exposure—there are twice as many kilometers of infrastructure
exposed to high intensity cyclones than to coastal floods (Fig. 1),
and yet cyclone risk is around four times lower. This is because
the impact of cyclone winds is largely limited to bridge damage
and the cost of removing trees fallen on road carriageways and
railway tracks (see Methods and Supplementary Fig. 5). Overall,
the EAD in this study are higher compared to the few available
estimates on global risk to infrastructure assets. For river flooding,
for instance, our EAD values are ~250% higher compared to the
global infrastructure risk estimates published in Alfieri et al.16. In
our view, this is mainly due to the high-resolution representation
of infrastructure assets in our study, instead of using a proxy
representation as done in Alfieri et al.16.

Figure 4 presents the results per income group. Intuitively, one
would expect exposure of transport infrastructure to natural
hazards to increase with income under the assumption that
countries accumulate more infrastructure as GDP increases.
Indeed, about 50% of global transport infrastructure can be found
in high income countries, while only a third is in upper middle
income countries and the rest is shared between low and lower
middle income countries (Supplementary Table 5). However,
high income countries only bare approximately a quarter of the

global risk, while upper middle income countries bare half of the
global risk and lower middle income almost a third. This is
because as countries move from upper middle income to high
income, they invest more in higher protection standards of flood
defense15.

To further explore this and to control for the difference in
infrastructure length, we analyze the total EAD per kilometer of
infrastructure (Fig. 4). We find a steep increase in total risk per
kilometer from low income countries to lower middle income
countries, and then a decrease as countries income grows. This
bell-shaped curve peaking around the lower middle-income level
for total risk per kilometer is largely due to surface and coastal
flooding, followed by earthquakes. This can also be observed from
Fig. 2, showing that several Central Asian and African countries
from this income group have high surface flooding exposure.
These results recall the Kuznet curve for environmental
degradation17. As countries grow richer, they invest in more
infrastructure, which increases disaster exposure (and environ-
mental degradation in the case of the initial Kuznet theory)18.
Absolute disaster damages thus increase as more infrastructure is
built. After they reach a higher level of income (in the middle
income category), they have enough resources to prioritize higher
resilience and they reduce the vulnerability of their infrastructure
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assets through investments in more rigorous design standards for
transport assets standards and increased flood protection.

The relative distribution of the EAD across transport assets is
presented in Supplementary Fig. 5. For most hazards and for
most income groups, primary and tertiary roads drive the risk:
primary roads as they contribute the highest relative damages,
tertiary because they have the greatest cumulative length in all
income groups (Supplementary Table 5) and, to a lesser extent,
because they are less protected against flooding (Supplementary
Table 7).

Road bridges also play an important role in total EAD, for all
hazards except surface flooding. For coastal flooding in upper
middle income countries, for example, road bridges cause
approximately 29% of the EAD, because of a large number of
bridges on the coast of China exposed to high coastal inundation
levels. In high income countries, over half of the EAD due to
tropical cyclones is driven by bridge damages, because, as
mentioned before, normal roads and railways only require
removal of trees and quick repairs, while a bridge can collapse
due to extreme wind levels (see Methods and Supplementary
Table 1 for an overview of the assumptions).

The 20 countries in which the transport infrastructure is most
affected by natural hazards are presented in Fig. 5 for a range of
EAD metrics. When looking at EAD in absolute terms, as shown
in Fig. 5a, we find that China and Japan have the highest absolute
risk, contributing ~24% and ~11% to global EAD, respectively. In
comparison, China comprises ~18% of the global GDP and ~6%
of the length of road and rail, whereas Japan comprises around
6% of the global GDP and only 3% of the length. Generally, the
countries in this list have either a very high exposure to multiple
hazards or high value infrastructure. Isolating these damages per
hazard suggests that China’s EAD is primarily driven by fluvial

(~40%) and pluvial (~22%) flooding, whereas Japan’s EAD is
almost fully driven by earthquakes (~67%) and pluvial flooding
(~23%). Supplementary Materials provide an overview of these
numbers for each country considered in this study.

When looking at EAD as a percentage of GDP (Fig. 5b), the 20
countries with the highest risk are predominately low or middle
income countries, consistent with the bell-shaped relationship
between damage per kilometer and income apparent in Fig. 4 and
discussed in previous paragraphs. For the top five, the median
risk is estimated to be between ~0.25 and ~0.42% of the countries’
GDP. Interestingly, the EAD as percentage of the total
infrastructure value in a country (Fig. 5c) show a somewhat
different list of highest affected countries. In particular, the list
contains several small islands developing states (SIDS). Results
show that the EAD relative to the total infrastructure value is over
100% higher for SIDS compared to the global average, despite the
share of primary and secondary roads being comparable (~15%
for SIDS vs. ~16% globally). This suggests that these countries
have a relatively large amount of high value transport assets
exposed to multi-hazards, compared to the global average. This is
because in SIDS, most of the available land is exposed to multiple
hazards. Finally, EAD in USD/km (Fig. 5d) mainly shows
countries which are either heavily exposed, such as Taiwan
(China) and Japan, or countries that are small with comparatively
few infrastructure assets, such as French Guiana and Fiji.

Several countries appear in three panels in Fig. 5 and can be
listed as particularly vulnerable. Myanmar, for instance, is
experiencing one of the highest absolute levels of risk to its
transport infrastructure, but also the highest risk as a percentage
of GDP and one of the highest per kilometer of road. Papua New
Guinea shows one of the highest EAD as a percentage of
infrastructure value, the second highest per kilometer and is
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among the countries with the highest EAD as percentage of GDP.
For Papua New Guinea, this means that not only its estimated
infrastructure value is relatively high compared to its GDP, but
also that a relatively high share of its infrastructure is exposed to
multiple hazards. Multiple countries experience both high
absolute EAD and EAD per kilometer such as Japan, the
Philippines, Indonesia, Taiwan (China) and Vietnam. This
indicates that for these countries, the infrastructure at risk is
predominately of higher value. Overall, the countries in this study
which we identify as most vulnerable are consistent with the
reported global economic losses and human cost of disasters
between 1998 and 20177.

Reducing risk by improving road design. Figure 6 shows how
increasing flood protection standards for roads—by providing
barriers or increasing the drainage size—can substantially reduce
the global transport infrastructure risk to flooding. Global risk
estimates of all floods combined can be reduced up to 42% when
upgrading the roads to design standards (Supplementary Table 7)
that halves the annual probability of flooding (i.e., upgrading the
design standard to withstand a flood with 1/100 return period
instead of a flood with 1/50 return period). This would be a
0.1–0.9% reduction in global maintenance costs annually3

(Methods).
In absolute terms (Fig. 6b), the largest reduction in damages

can be achieved by upgrading the design standards for surface
flooding, as this type of flood is dominant in all income groups. In
relative terms (Fig. 6c), the largest gains can be made for coastal
flooding in low income countries, with a reduction of up to 80%
in risk. This large gain is primarily due to higher inundation
depths for coastal flooding compared to surface and river flooding
(Fig. 1e). In spatial terms (Fig. 6a), we observe the largest decrease
in risk in Sub-Saharan Africa, South-America, Southeast Asia,
and most of Russia and Mongolia. Lowest reductions are mainly
observed in North America and South Africa. When comparing
Fig. 6a with Fig. 1a, we see that the areas with the largest
decreases are also areas that have the highest levels of road
exposure. The opposite is true for the areas with the lowest
reductions.

Assessing the cost of providing higher flood protection for
roads and railways globally is challenging. For new roads, it is
estimated that upgrading the drainage system or providing
barriers—to increase the design standard or approximately halve
the expected damages—costs about 2% more in capital expen-
ditures19,20. However, for some existing paved roads, increasing
standards would mean rebuilding road sections almost entirely to
replace culverts and drains. It thus would not usually make sense
to upgrade the standard until the road requires a major
rehabilitation. For rural roads, on the other hand, cheaper
adjustments can be made to existing roads by digging trenches on
the side, also for about 2% of the road cost. As for bridges,
foundations can be protected against erosion and scour caused by
floods for 1% of the bridge capital value19,20. Modern design
practice can ensure resistance to wind damage in all but the
severest of cyclones.

Despite the difficulties, it is interesting to get a sense of the
potential benefit-cost ratio of upgrading roads to reduce the risk
of flooding to road assets. To do so, we perform a cost-benefit
analysis on each road segment (CBA, Methods). The CBA
estimates the benefit-cost ratio (BCR) of upgrading the road by
spending 2% of the road’s value on barriers and better drainage.
For roads that are not exposed to any hazard, such an investment
does not have any benefit and thus has negative returns. For roads
that are exposed to floods, we assume that this 2% cost increase
allows to multiply the standard of the roads expressed in return
period by two (i.e., the road can withstand a flood with 1/100
return period instead of a flood with 1/50 return period).

We find that such an improvement only has a BCR higher than
1 for 4.5% of all kilometers of roads. This is not surprising given
that only 7.5% of all roads are exposed to at least one flood event
with a 1/100 year return period. Zoomed in on the different
income groups and road types, the highest share of kilometer of
roads with a BCR higher than 1 is around 10%, which is for
upgrading secondary roads in lower middle income countries. For
several income and road type categories, the share of kilometers
of roads with a BCR higher than 1 is below 1% or even zero
(Supplementary Fig. 7).

However, results show a BCR higher than 1 for around 60% of
all kilometers of exposed roads (to at least one flood event with a
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1/100 year return period). Improving design standards of exposed
primary and secondary roads in upper middle income countries
to better cope with surface flooding is beneficial for ~85% of these
roads, with an average BCR of ~6. Important to emphasize is that
in this study, we only focus on the direct asset damages. When
including network disruptions and the wider economic impacts,
total avoided losses are expected to increase, making investments
in adaptation potentially more beneficial in more places. These
results highlight the value of having hazard information for
designing roads, which makes it possible to target improvements
on exposed roads only. In the absence of any hazard information,
spending 2% more on every road would be very cost inefficient.

Model sensitivity. An inherent problem with global studies, and
for disaster risk modeling on this scale in particular, is the large
number of assumptions required to make in such a data-scarce
analysis. This is not only the case for the assumptions taken in
the analysis of this study (Supplementary Table 1), but also for
the approaches taken in the development of the external input
data that is being used. As addressed by Ward et al.21, it is
essential to quantify and understand the model uncertainties
when applying such global models for disaster risk management.
For flood risk analysis in particular, a large part of the uncertainty
is on the hazard side. A recent study on uncertainty in coastal
flood risk assessment shows that a change in resolution from 10
to 100 m of the digital elevation map could change the estimated
EAD by 200%. Moreover, existing errors in flood defense height
datasets can change the risk up to 60%22.

As we do not create any hazard maps in this study, we focus on
the quantification of the uncertainties in the loss estimation. As

shown in De Moel and Aerts23, large uncertainties arise in maximum
loss values and the shape of the fragility curves. According to De
Moel et al.24, the shape of the damage curve accounts for up to 45%
of the total sensitivity in loss modeling outcomes, and the value of the
elements at risk accounts for up to 10% of the total model sensitivity.
Supplementary Fig. 7 presents the outcome of a global sensitivity
analysis of the risk analysis in this study. For road and railway assets,
we find similar results across the hazards. Across earthquakes and
floods (coastal, surface, and river), road carriageway damages are
particularly sensitive to the choice of fragility curve and the assumed
repair costs.

Variation in fragility models contribute the most to the
uncertainty in the loss estimates, with around 60% of damage
explained through this assumption and with the variation in
reconstruction costs responsible for 20% of the total loss. For road
and railway bridges, on the other hand, the reconstruction cost is
found to be the most dominant driver of the damage estimations,
constituting up to ~60% of the losses for cyclones and earthquakes,
and up to ~40% of the flood damages. Reducing this uncertainty is
particularly challenging as it would require location-specific damage
curves and repair costs, which depend on local geographic and
economic circumstances. For example, repair costs depend on the
efficiency of the local transport authorities and the local cost of raw
materials. Despite the difficulties, these geographically varying
fragility curves should be developed in the future to reduce
uncertainty and improve the damage estimates.

Discussion
This is the first study to have quantified the global risk to transport
infrastructure assets for multiple natural hazards. We have used
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state-of-the art global hazard mapping, combined with innovative
analysis of approximately 50 million km of transport network data
included in OSM, and assumptions about the fragility of transport
infrastructure derived from a variety of sources. The study
demonstrates the potential for conducting infrastructure risk ana-
lysis at a high spatial resolution on a global scale.

The total global EAD for all hazards combined ranges from 3.1
to 22 billion US dollars, with a mean EAD of 14.6 billion USD.
Approximately, 73% of the global EAD is caused by surface and
river flooding, followed by coastal floods (15.5%), earthquakes
(7.3%), and tropical cyclones (3.8%). Sensitivity analysis has
revealed the importance of understanding asset fragility. The
results for overall transport infrastructure exposure and risk are
broadly in line with previous risk analyses of natural hazards (e.g.,
IPCC SREX25), which demonstrate greatest absolute levels of risk
in high income countries, but higher risk as a percentage of GDP
in middle income countries.

At the global level, EAD are small compared to the budget
required for maintaining reliable transport networks (0.2–1.5%).
One might thus conclude that building more resilience is further
down the list of priorities, after ensuring sustainable sources of
funding for regular maintenance. However, our results reveal
geographical disparities in exposure and risk, with for example
the particular vulnerability of transport infrastructure in small
island developing states. Countries like Fiji already spend 30% of
their government budget every year in maintaining their trans-
port network26, and the bill becomes prohibitive when damages
from natural hazards are added on top. In other words, we find
that for several countries and regions, investing in transport asset
resilience should be a priority.

We have found that improving road design by spending about
2% of the road value in better drainage and flood barriers could
yield positive return for 60% of the roads that are exposed to at least
one flood event and over 80% of the primary and secondary roads
flooded on average every year in upper middle income and tertiary
roads in lower and middle income countries. Of course, care should
be taken with the interpretation of these results, as local road
conditions are unknown in this study and a generalized approach is
taken. Nonetheless, it is clear that there are significant benefits to be
gained from improving the resilience of exposed transport infra-
structure. These are expected to be low-regrets investments in the
context of a changing climate8,9,27. Multiple studies indicate
upwards trends in flood risk, which we would also expect for
transport infrastructure, as flooding constitutes a large share of the
total EAD (all flood hazards constitute 89% of the risk).

We conclude that it is crucial that countries, when exposed to
natural hazards, improve transport planning by systematically
including risk information and improving the protection of their
most vulnerable and critical assets. There is a need for better risk
information to avoid spending more on all assets, but being able
to spatially target improvements. The economic and social ben-
efits to be gained from doing so would go well beyond direct
infrastructure damage. Indeed, studies28–31 that estimate the
economic impact of disasters through transport-economic models
that account for the impact of transport interruption on the
ability of supply chains to maintain production, conclude that
indirect losses as a result of infrastructure failure represent a large
share of the total cost of disasters. Further, the additional cost of
building in more resilience (about 2%) can easily be offset by
better planning and higher efficiency in spending and service
delivery, which can halve total spending needs3.

Methods
General approach. An overview of the approach taken is presented in Supple-
mentary Fig. 1. Due to the large size of all data sources (both in storage and in
information), we have split the analysis over 46,566 regions based on the GADM

administrative level 1 and 2 datasets32. By using parallel and cloud computing,
runtimes have been brought down to a reasonable time-scale, allowing for a global
risk analysis with this level of detail. The remainder of this section will explain the
analysis in depth.

Global hazard data. This study includes earthquakes, tropical cyclones, and sur-
face, river and coastal flooding. For the exposure analysis, hazard data is reclassified
into hazard intensity bands, as shown in Supplementary Table 3. The earthquake
bands are based on USGS ShakeMap intensity mapping to peak ground accel-
erations (PGA). For tropical cyclones, we take a similar approach using the
Saffir–Simpson scale33. There are no widely recognized intensity bands available
for floods, so these bands are based on empirical evidence of loss intensity.

In recent major earthquakes (e.g., Loma Prieta 1989, Kobe 1995, Canterbury
Earthquake Sequence 2010–2011, Sulawesi 2018), roads and railway tracks have
been widely damaged through soil liquefaction leading to irregular settlement of
surfaces, lateral spreading toward waterways, and the uplift of buried services. With
direct shaking damage to road and rail expected to be minimal, we adopt
liquefaction susceptibility as a proxy for potential road and rail damage across the
different studied return periods. Damages can range from superficial with minimal
clean-up costs, to complete replacement34,35. The likelihood of surface rupture
damage to assets in close proximities to fault lines and permanent ground
displacements are not considered herein.

As state-of-practice in situ testing for assessing liquefaction potential is not
feasible at the global scale, we adopt the geospatial prediction models of Zhu et al.36

to create a global liquefaction susceptibility map37. The models relate common
ground-motion intensity measures with geospatial parameters relevant to
liquefaction susceptibility. Calibrated to 27 earthquake events, the models have
since shown promising predictive capacity at high resolutions38. For our global
susceptibility model we combine the inland and coastal models of Zhu et al., with
the coastal model applied within 20 km of a coastline. Liquefaction susceptibility is
computed at a 1.2 km grid resolution based on a global VS30 (30 m averaged shear-
wave velocity) dataset39. Other required datasets are collated for: rivers40–42,
ground water43, precipitation44, and land mass45. Susceptibility is grouped into five
classes: very low, low, moderate, high, and very high34,36. Very low liquefaction
susceptibility is assumed where VS30 > 620 m/s. The compiled dataset is available in
the supplementary material (Supplementary Fig. 4).

Liquefaction susceptibility is combined with earthquake ground shaking hazard
as a trigger for liquefaction; the damage ratio is greatest in areas with high
liquefaction susceptibility combined with high ground shaking intensity. Ground
shaking hazard is represented by the global earthquake hazard maps produced for
the UNISDR Global Assessment Report 201546. These maps present the expected
severity of ground shaking as PGA (in cm/s2), for five return periods between 1/250
and 1/2475 years. The hazard maps are an output of probabilistic seismic hazard
analysis with global coverage. The coarse resolution of the analysis allows for global
coverage, but a trade-off is that it limits the consideration of local or unknown
faults not previously captured in historical catalogs, therefore they could
underestimate hazard locally in some areas.

Tropical cyclone hazard is represented by global cyclone hazard maps generated
for the UNISDR Global Assessment Report 201546. These maps provide
the distribution of cyclone wind speed (peak wind speed of 3-s gusts, in km/h) for
five return periods between 1/50 and 1/1000 years. The maps are an output of
probabilistic cyclone analysis based on perturbation of historical cyclone tracks and
wind-field modeling. The data provides coverage of the Northeast Pacific,
Northwest Pacific, South Pacific, North Indian, South Indian, and North Atlantic
basins. The data does not include the effects of extratropical cyclones or convective
storms in these basins or other areas.

River (caused by rivers overtopping their banks) and surface (caused by extreme
local rainfall) flood hazards are represented by the Fathom Global pluvial and
fluvial flood hazard dataset47. This is a 3-arcsecond (c. 90 m) resolution gridded
dataset showing the distribution of maximum expected water depth in meters. The
hazard maps are provided for ten return periods (1/5–1/1000) with global coverage
between 56°S and 60°N. We apply the undefended flood hazard maps, which do
not consider the effects of flood protection on inundation. Instead, the flood design
standards for road and rail are implemented from the FLOPROS database15, as
discussed below. As reported by Sampson et al.47, the global model shows
reasonable agreement with local flood hazard data, particularly for large rivers,
though for smaller rivers there is potential that this data underestimates flood
hazard, typically capturing between two-thirds and three-quarters of flooded area
shown in local data.

Coastal inundation maps are generated using the hydrological model
LISFLOOD-FP48. Topographic information at 3″ horizontal resolution is available
from the MERIT-DEM49. Inundation simulations take place at 90 m resolution,
along coastal segments that include 75 km of coastline each and land up to 100 km
from the coast. Neighboring segments are overlapping along approximately 25 km
of coastline to avoid gaps in the resulting inundation maps. Further details about
the implementation of the inundation modeling can be found in Vousdoukas
et al.50.

Flood simulations are forced by extreme sea levels (ESLs) obtained from wave
and storm surge reanalysis, combined with tidal information27. Waves are
simulated using the WAVEWATCH-III model51, and storm surges using the
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DFLOW-FM model52. Wave contributions to ESLs are considered equivalent to the
wave setup, expressed as 20% of the significant wave height. Following,
nonstationary extreme value analysis is applied to estimate ESLs at seven different
return periods (1/10–1/1000)53. Flood simulations are forced by ESLs obtained
from reanalysis of waves and storm surges, combined with tidal information27,
including also the effect of tropical cyclone storm surges.

Global infrastructure data. All road and railway data are based on open access
data from OSM. Supplementary Table 5 provides summary statistics of the road
and rail network used in this study. Recent studies have shown that the accuracy of
OSM has increased substantially over the last few years11,12. Meijer et al.12 shows
that the most comprehensive open global road datasets range from 7 to 32 million
kilometers of roads. The total length of road infrastructure assets extracted from
OSM is over 63 million kilometers and according to Barrington-Leigh et al.11, OSM
was over 80% complete in January 2016, with missing data most likely in lower tier
roads. The other main caveat of OSM data is the correct classification of the
infrastructure54, which is accounted for by aggregating the roads to only four
classes (primary, secondary, tertiary and other roads; Supplementary Table 4 shows
the mapping of the OSM classification to these five classes). Primary roads can be
described as all major highways and trunk roads. Secondary roads as all major
provincial and subnational roads. Tertiary roads are considered to be important
local roads, often linking secondary or primary roads with each other. For this
study, we only consider a subset of all roads, namely those classified as primary,
secondary, or tertiary roads (Supplementary Table 4). However, the total length of
included carriageways still amount to ~50 million kilometers. All roads classified as
other are not included. Bridges considered in this analysis are those road and
railway assets that are tagged as bridges in the OSM database. Due to a lack of a
global bridge database, we believe this is the most complete and readily available
open dataset.

Estimation of damage and risk. The conditional probability of failure of an
infrastructure asset when subject to an extreme hazard depends upon the design of
the asset and a variety of site-specific conditions, which are difficult to incorporate
in a global assessment. However generic understanding of the fragility of infra-
structure assets with respect to some natural hazards does exist (as documented
below) and where it does not exist we have made well-informed and transparent
assumptions which were then subject to a sensitivity analysis (Supplementary
Table 1).

Infrastructure damages are estimated using a variety of sources of replacement
cost data and fragility curves. For the uncertainty and sensitivity analysis, we make
use of the SALib Python library55, allowing us to identify the relative importance of
each parameter in the loss estimation. The range of parameters tested for each
hazard and asset combination is given in Supplementary Table 1. Estimation of
road development costs and maximum replacement costs are based on the road
costs knowledge system (ROCKS), an empirical study of road-related projects56.
The ROCKS database provides construction cost per kilometer for different
infrastructure types, based on historic infrastructure projects. As the database does
not include statistics for all countries and all road types, we use the average cost of
construction for paved 4 lanes, paved 2 lanes and gravel roads for different World
Bank regions (Supplementary Table 8). For each unique asset, we calculate the
damages between 40 and 60 times for each hazard and for each return period,
depending on the number of parameters that are varied (see
Supplementary Table 1). For each asset type, a set of parameter values is
determined using a Morris sampling approach57, allowing for an optimal
distribution of parameter values between the bounds. The results of the sensitivity
analysis show how changes in each parameter that is included influences the
estimate risk value.

Using this set of unique parameter values, damage states are estimated by
relating the intensity of the hazard to a damage probability using predetermined
fragility functions, such as depth-damage curves used in flood risk literature. For
each asset in each hazard scenario, this damage probability is multiplied by our
assumed reconstruction cost for the respective asset (Supplementary Table 8).
When knowing the damage to this asset for each hazard event, the risk is calculated
by using a trapezoid function to estimate the area under the exceedance probability
loss curve8,23,24.

To estimate the infrastructure value (as used in Fig. 5), we used a similar
approach as estimating the possible damage to a road. For the infrastructure value,
we would also need to know the type, the width and, in the case of a road, whether
it’s paved or unpaved. As such, we again take the set of parameters we use for the
sensitivity analysis and use this to calculate a range of possible infrastructure values
for each infrastructure asset. To get one best guess value, we use the median of
these outcomes.

Seismic fragility curves generally relate ground shaking intensity to a damage
ratio. As established earlier, damage to road and rail infrastructure is generally due
to liquefaction or ground displacement. Due to the lack of local data to inform the
potential for ground displacement, we combine the global liquefaction map
developed for this study with global PGA to estimate damage due to earthquakes.
Because of the limited availability of globally appropriate fragility curves
concerning the relation between PGA, soil liquefaction, and road and railway
damages, we use a fragility matrix, assuming a different level of damage to the

infrastructure, based on the combination of PGA and liquefaction susceptibility
(Supplementary Table 6).

We have found very little empirical information about direct cyclone wind
damage to road and railway assets. As such, we assume that extreme cyclone winds
mainly result in the clean-up cost of trees and minor reparations. We assume that
trees will fall if the cyclone winds exceed 42 m/s (151 km/h), as presented in Virot
et al.58. To estimate whether a road carriageway or railway track may be affected by
tree fall, we make use of a global tree density map, developed by Crowther et al.59.
We consider a 100% probability of a tree falling on the infrastructure asset if the
tree density around the asset is at least 10/km2.

For flooding, the fragility curves for road carriageways and railway tracks are
shown in Supplementary Fig. 2. The curves are based on the studies of Espinet
et al.31 for paved roads and for unpaved roads. Flood curves for infrastructure tend
to be linear in shape, mainly due to the limited empirical information available to
improve them. Unfortunately, for most of the roads extracted from OSM, we do
not know whether they are paved or unpaved. By using the kilometers of paved and
unpaved roads from the CIA World Factbook, we were able to get the percentage of
paved roads for each country. This, however, only gave us a total percentage based
on all roads in the country. To get a percentage for each road type in a country, we
compared the share of each road type with this total percentage of paved roads. Let
us explain this through an example. Let us say the total percentage of paved roads
in a country is 80%. We first compare this number with the percentage of primary
roads in the country. If the percentage of primary roads in a country is 30%, we
assume that all the primary roads are paved. This means we have 50% of paved
roads left. Now we compare this with the secondary roads. Let us say 30% of the
roads in the country are secondary roads. Following the same reasoning, this means
all the secondary roads are paved and we have 20% of paved roads left. The share of
tertiary roads in this country is 40%. As we only have 20% of paved roads left, we
assume that half of the tertiary roads are paved and the other half is unpaved. All
other roads in the country are considered to be unpaved. For many countries, it is
unknown what the percentage of electrified railway is in that country. As such, the
percentage electrified vs non-electrified is fully incorporated into the sensitivity
analysis.

Flood design standards for road carriageways and railway tracks are shown in
Supplementary Table 7. Due to the limited availability of studies, we keep the
design standards constant among countries within each income group. We assume
that protection design standards differ between income levels, not because of
design but because of deterioration over time. We assume that countries with
higher GDP levels have more funding available for periodic and routine
maintenance of their assets, therefore keeping the design protection standards up
to the initial level.

For road and railway bridges, the relation between PGA and damage ratio has
been more widely studied. Hence, we are able to make use of already developed
fragility curves60. The curves are presented in Supplementary Fig. 3. For cyclone
and flooding, we assume that bridges are designed to withstand hazards at half the
exceedance probability of road carriageways or railway tracks (Supplementary
Table 5). For example, if a road carriageway is designed to a 1/100-year event, a
bridge structure is designed for a 1/200-year event for the same road type (i.e.,
primary). We assume that bridges are built up to a certain design standard and a
certain hazard threshold (i.e., wind speeds of >250 km/h or inundation levels of >5
m). If both the hazard threshold and the design standard are exceeded, the bridge is
assumed to collapse, resulting in 100% loss.

Cost-benefit analysis and global maintenance costs. As acknowledged in the
main text, estimating the cost of adaptation, and the corresponding net benefits, is
difficult. As we think that it is still interesting to get a sense about the potential
benefits of adaptation, we performed a cost-benefit analysis on each road segment.
The CBA estimates the BCR of upgrading the each road by spending 2% of the
road’s value on barriers and better drainage (assuming roads are upgraded at the
end of their lifetime). High level estimates suggest that these interventions would be
sufficient halve the annual probability of flooding19,20. For roads that are not
exposed to flooding, this investment of 2% of the road value would of course be at
lost. We like to emphasize that this is an ad hoc approach, purely for illustrative
purposes of what the net benefits could look like.

The benefits are assumed to be the net present value (NPV) of the avoided
losses as a result of upgrading the road to protection standards that halves the
annual probability of flooding (i.e., upgrading the design standard to withstand a
flood with 1/100 return period instead of a flood with 1/50 return period). The
costs are estimated based on the NPV of the road upgrade cost to the higher design
standard, periodic maintenance and routine maintenance, and are kept equal for all
countries and income groups. The upgrade costs are assumed to be 2% of the road
value19, periodic maintenance is assumed to be occurring yearly with a cost of
0.075% of the road value, and the routine maintenance is assumed to happen every
6 years with a cost of 5% of the road value. These assumptions were taken from
several calibrations of the HDM4 model61 on various countries in which the World
Bank recently invested in road projects. Primary roads are assumed to last 20 years,
secondary roads 15 years and tertiary roads 6 years. The main assumption that
differs between the income groups is the discount rate, which we set at 12% for Low
Income countries, 9% for lower middle income countries, 6% for upper middle
income countries and 3% for high income countries. The difference in discount
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rates can be interpreted as the different cost of capital in each of the different
income groups and reflect higher risks in low income countries. They are also
representative of the discount rates used for public investments in these country
groups. The sum of the estimated periodic and routine maintenance over all road
segments is used in the paper as the total global maintenance costs.

Data availability
All transport data is based on OpenStreetMap (OSM), which can be freely downloaded.
The planet file used in this study is downloaded at July 17, 2018. Global earthquake and
cyclone hazard data is available from UNISDR Global Assessment Report 2015 data
portal (https://risk.preventionweb.net). Global fluvial and surface flood hazard data (May
2017 version) is used with the permission of Fathom Global. The coastal flood maps are
developed by the Joint Research Centre of the European Commission. The global
liquefaction map is freely available to download (https://doi.org/10.5281/
zenodo.2583745). Other data sources are provided in the main text and Methods. The
source data underlying Figs. 1–6 and Supplementary Figs. 5 and 7 are provided as a
Source Data file.

Code availability
All source code is available through https://github.com/ElcoK/gmtra. All results and
figures can be reproduced through the source code.
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