

microcopy resolution test chart
naitonal burlal of siandarde jurta

MRC Technical Summary Report \#2791

A GLOBAL OPTIMIZATION ALGORITHM USING STOCHASTIC DIFFERENTIAL EQUATIONS

Filippo Aluffi-Pentini, Valeric Parisi and Francesco Zirilli

Mathematics Research Center
 University of Wisconsin-Madison
 610 Walnut Street
 Madison, Wisconsin 53705

February 1985
(Received December 13, 1984)

DISC FILE COPY

Sponsored by
U. S. Army Research Office
P. O. Box 12211

Research Triangle Park
North Carolina 27709

Approved for public release
Distribution unlimited

85
4
10
1.:

UNIVERSITY OF WISCONSIN-MADISON MATHEMATICS RESEARCH CENTER

A GLOBAL OPTIMIZATION ALGORITHM USING STOCHASTIC DIFFERENTIAL EQUATIONS

Filippo Aluffi-Pentini ${ }^{1}$, Valerio Parisi ${ }^{2}$, and Francesco Zirilli ${ }^{3}$

Technical Summary Report \#2791
February 1985

Abstract

SIGMA is a set of FORTRAN subprograms for solving the global optimization problem, which implement a method founded on the numerical solution of a Cauchy problem for stochastic differential equations inspired by quantum physics.

This paper gives a detailed description of the method as implemented in SIGMA, and reports on the numerical tests which have been performed while the SIGMA package is described in the accompanying Algorithm.

The main conclusions are that SIGMA performs very well on several hard test problems; unfortunately given the state of the mathematical software for global optimization it has not been possible to make conclusive comparisons with other packages.

AMS (MOS) Subject Classifications: 65K10, 60H10, 49D25
Key Words: Algorithms, Theory, Verification, Global Optimization, Stochastic Differential Equations,

Work Unit Number 5 (Optimization and Large Scale Systems)
${ }^{1}$ Dipartimento di Matematica, Università di Bari, 70125 Bari (Italy).
${ }^{2}$ Istituto di fisica, $2^{\text {a }}$ Università di Roma "Tor Vergata", Via Orazio Raimondo, 00173 (La Romanina) Roma (Italy).
${ }^{3}$ Istituto di Matematica, Università di Salerno, 84100 Salerno (Italy).
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the U. S. Gover ninent through its European Research office of the U. S. Army under Contract n. DAJA-37-81-C-0740 with the University of Camerino, Italy.

The paper reports about a new and very successfui method for finding a "global" (or "absolute") animual of a fancticr of N reai variables, i.e. the
 oniy the function increases $i=$ me moves dway thon x in any direction, ("loca)" or "relative" min:- m), but ilso juch that no ofier poist exists where f has a lower value.

The method, which was fy- moposed by the presert futhors in a paper which is to dppear in the Jouran of optimization Theory and Applications, is rased on ideas Erom statistical menhaniss, and looks foc a point of global manimura by following the solution twajectories of a stochastic differential equation representing the motion of a parti-lc (in v-space) under the action of a potential field and of a random pert:irbing forze

The paper gives a detailed description of the somplete algorithm based on auch a metnod, and sumarizer the results of extensive numerical testing of the FORTRAN program implementing the algoxithm (the FORMRAN program is described in a companion paper of the same authors: Algorithm SIGMA. A Stuchastic-Integration Global Minimization Algorithm).

The tests have been performed by running the program on an extensive set , f varefuily selected test problems of varying difficulty, and the performance rä́ been remarikably successful, even on very hard problems (e.g. problems with a single point. of global minimum and up to about 10^{10} points of local minimum.)

The method is now being sliccessfully tested on some real-world problems in appijec chemistry, concerning the analysis of complex molecules, where one l木反s Ec, spatial patterns which are not onl! stable (local minima of puteridai energyj, but have also an absolinte minimum of the potential energy.

Abstract

More generally there are many probiems in which the solution depends on the folues of several parameters, and the quality of the solution can be neasures by a single "performance figure" (which is therefore a function of tice purameters), e.g. a cost, or a loss, or a cost/effectiveness ratio, which shishi he iow, or a gain, a utility, which should be high.

In such sitlations the method can be usefully applied if one is not sa:jafied by finding a "sub-ontimal" solution, i.e. a solution which is the best amony many other solutions, but one requires a truly optimal solution, i.e. the vest anong all possible solutions. ${ }^{-t}$ is finally to be noted that the majority of the optimization methods rits:-.i ; : \quad ilable deal with the local ontimization problem, and that no methoys of comparable power seem to he available in the field of global cptimzzitirn.

[^0]A GLOBAL OPTIMIZATION ALOORITHM USING STOCHASTIC DIFFERENTIAL EQUATIONS
Filippo Aluffi-Pentini ${ }^{1}$, Valerio Parisi ${ }^{2}$, and Francesco Zirilli ${ }^{3}$

1. Introduction.

In [1] a method for solving the global optimization problem was proposed. The method associates a stochastic differential equation with the function whose global minimizer we are looking for.

The stochastic differential equation is a stochastic perturbation of a "steepest descent" ordinary differential equation and is inspired by quantum physics. In [1] the problem of the numerical integration of the stochastic equations introduced was considered and a suitable "stochastic ${ }^{\prime \prime}$ variation of the Euler method was suggested.

SIGM is a set of FORTRAN subprograms implementing the above method.

In sect. 2 we describe the method as implemented in SIQMA; in sect. 3 we give a general description of the method and some details on the implementation; in sect. 4 some numerical experience on test problems is presented and in sect. 5 conclusions are given.

Unfortunately, given the state of the art of mathematical software in global optimization, it has not been possible to make conclusive comparisons with other packages.

The SIGMA package and its usage are described in the accompanying Algorithm.

1Dipartimento di Matematica, Università di Bari, 70125 Bari (Italy).
2Istituto di Fisica, $2^{\text {a }}$ Università di Roma 'Tor Vergata', Via Orazio
3Raimondo, 00173 (La Romanina) Roma (Italy).
Istituto di Matematica, Università di Salerno, 84100 Salerno (Italy).
Sbonsored by the United States Anmy under Contract No. DAAG29-80-C-0041 and the U. S. Govermment through its EuroDean Research Office of the U. S. Army under Contract n. DAJA-37-81-C-0740 with the University of Camerino, Italy.
2. The method.

Let \mathbb{R}^{N} be the N-dimensional real euclidean space and let $f: \mathbb{R}^{N}+\mathbb{R}$ be a real valued function, regular enough to justify the following considerations.

In this papar we consider the problem of finding a global minimizer of f, that is, the point $\underline{x}^{\star} \in \mathbb{R}^{V}$ (or possible one of the points) such that

$$
\begin{equation*}
f\left(\underline{x}^{*}\right) \leq f(\underline{x}) \quad \forall \underline{x} \in \mathbb{R}^{N} \tag{2.1}
\end{equation*}
$$

and we propose a mechod introduced in [1] inspired by quantum physics to compute nuaterically the global minimizers of f by following the paths of a stochastic differential equation.

The interest of the global optimization problem both in mathematics and in many applications is well known and will not be discussed here.

We want just to remark here that the root-finding problem for the system $g(x)=\underline{0}$, where $\underline{g} \cdot \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ can be formulated as a global optimization problem considering the function $F(\underline{x})=\|\underline{g}(\underline{x})\|_{2}^{2}$, where $\|\cdot\|_{2}$ is the euclidean norm in \mathbb{R}^{N}. *

Despite its importance and the efforts of many researchers the global optimization problem is still rather open and there is a need for methods with solid mathematical foundation and good numerical performance.

[^1]Such more satisfactory is the sitiuation for the problem of finding ite local minimizers of f, where a large body of theoretical and awnerical results exists; see for instance [5], [6] and the references swe therean.

Ordary differential equations have been used in the study of the 10cai optemization problem or of the root finding problem by several autrovs; for a review see [2].

The Suie methods usually obtain the local minimizers or roots by Goldivig the trajectories of suitable ordinary differential equations. However, since the property (2,1) of being a global minimizer is a globai net, thet is, depends on the behaviour of f at each point of \mathbb{R}^{N}, and che athods that follow a trajectory of an ordinary differential equation are local, that is, they depend only on the behaviour of f 3iong the trajectory, there is no hope of building a completely satisfastory metnce for global optimization hased on ordinary differential zquations.

The situntion is different if we consider a suitable stochastic peurbation of on ordinary differential equation as explained in the soliownes.

Let us firct consider the (1 to stochastic differential equation
$(2.2) \quad$ 奖 $=8 f(\underline{\underline{g}}) d t+\varepsilon d \underline{w}$
ar: is the suaitut of f and in: is a standard N-amensional insur paues, ef.

Equation (2.2) is kncim as the G-whohowski-kiamers equation [7]; thas equation $1=$ a singhiar imit of iae Langerin's equation when the anorial terss Pre mbleded.

The Smoluchowski-Kramers equation has been extensively used by solid state physicists and chemists to study physical phenomena such as atomic diffusion in crystals or chemical reactions.

In these applications (2.2) represents diffusion across potential barriers under the stochastic forces $\varepsilon d \underline{w}$, where $\varepsilon=\sqrt{\frac{2 k T}{m}}, T$ is the absolute temperature, k the Boltzmann constant, m a suitable mass coefficient, and f is the potential energy.

We assume that

$$
\begin{equation*}
\lim _{\underline{x} \|_{2} \rightarrow \infty} f(\underline{x})=+\infty \tag{2.3}
\end{equation*}
$$

in such a way that:

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} e^{-\alpha^{2} f(\underline{x})} d \underline{x}<\infty \quad \forall \alpha \in(\mathbb{R} \backslash\{0\}) \tag{2.4}
\end{equation*}
$$

and that the minimizers of f are isolated and non degenerate.
It is kell known that if $\underline{\xi}^{\varepsilon}(t)$ is the solution process of (2.2) starting from an initial point \underline{x}_{0}, the probability density function $p^{\varepsilon}(t, \underline{x})$ of $\underline{\xi}^{\varepsilon}(t)$ approaches as $t \rightarrow \infty$ the limit density $p_{\infty}^{\varepsilon}(\underline{x})$ where

$$
\begin{equation*}
p_{\infty}^{\varepsilon}(\underline{x})=A_{\varepsilon} e^{-\frac{2}{\varepsilon^{2}} f(\underline{x})} \tag{2.5}
\end{equation*}
$$

where A_{ε} is a normalization constant. The way in which $p^{\varepsilon}(t, \underline{x})$ for a class of one-dimensional systems approaches $p_{\infty}^{\varepsilon}(\underline{x})$ has been studied in detail by considering the spectrum of the corresponding Fokker-Planck operators in [8].

We note that p_{∞}^{ε} is independent of \underline{x}_{0} and that as $\varepsilon \rightarrow 0 p_{\infty}^{\varepsilon}$ becomes more concentrated at the global minimizers of f. That is,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \underline{\xi}^{\varepsilon}(t)=\underline{\xi}_{\infty}^{\varepsilon} \quad \text { in law } \tag{2.6}
\end{equation*}
$$

where $\underline{\xi}_{\infty}^{\varepsilon}$ has a probability density given by (2.5) and

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \underline{\xi}_{\infty}^{\varepsilon}=\underline{\xi}_{\infty}^{0} \quad \text { in } 1 a w \tag{2.7}
\end{equation*}
$$

where $\underline{\xi}_{\infty}^{0}$ is a random variable having as its probability density a weighted sum of Dirac's deltas concentrated at the global minimizers of f. For example if $N=1$ and f has two global minimizers x_{1}, x_{2}, with $\frac{d^{2} f}{d x^{2}}\left(x_{i}\right)=c_{i}>0, i=1,2$, we have (in distribution sense)

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} p_{\infty}^{\varepsilon}(x)=\gamma \quad \delta\left(x-x_{1}\right)+(1-\gamma) \dot{\delta}\left(x-x_{2}\right) \tag{2.8}
\end{equation*}
$$

where $\gamma=\left(1+\sqrt{c_{1} / c_{2}}\right)^{-1}$. In order to obtain the global minimizes of f as asymptotic values as $t \rightarrow \infty$ of a sample trajectory of a suitable symfem of stochastic differential equations it seems natural to try to perform the limit $t \rightarrow \infty$ (i.e. (2.6)) and the limit $\varepsilon \rightarrow 0$ (i.e. (2.7)) together. That is, we want to consider:

$$
\begin{equation*}
d \underline{\xi}=-\nabla f(\underline{\xi}) d t+\varepsilon(t) d \underline{w} \tag{2.9}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
\underline{\xi}(0)=\underline{x}_{0} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \varepsilon(t)=0 . \tag{2.11}
\end{equation*}
$$

In physical terms condition (2.11) means that the temperature T is jecreased to 0 (absolute zero) when $t \rightarrow \infty$, that is, the system is 'frozen'.

Since we want to end up in a global minimizer of f, that is, a global minimizer of the (potential) energy, the system has to be frozen very slowly (adiabatically). The way in which $\varepsilon(t)$ must go to zero, in order to have that when $t \rightarrow \infty$, the solution $\xi(t)$ of (2.9) becomes concentrated at the global minimizers of f, depends on f. In particular, it depends on the highest barrier in f to be overcome to reach the global minimizers.

This dependence has been studied using the adiabatic perturbation theory in [1]. Similar ideas in the context of combinatorial optimization have been introduced by Kirkpatrick, Gelatt, Vecchi in [9].

In this paper we restrict our attention to the numerical implementations of the previous ideas, that is, the computation of the global minimizers of f by following the paths defined by (2.9), (2.10), disregarcing mathematical probiems such as the difference between the convergence in law of $\underline{\xi}(t)$ to a random variable concentrated at the global rinirizers of f, and the convergence with probability one of the paths of $\xi_{z}(t)$ to the global minimizers of f.

We consider the problem of how to compute numerically these paths keeping in mind that we are not really interested in the paths, but only in their asymptotic values.

We discretize (2.9), (2.10) using the Euler method, that is $\xi_{(}\left(t_{k}\right)$ i : approximated by the solution ξ_{k} of the following finite difference equations:

$$
\begin{align*}
& \underline{\xi}_{k+1}-\underline{\xi}_{k}=-h_{k} \nabla f\left(\underline{\xi}_{k}\right)+\varepsilon\left(t_{k}\right)\left(\underline{w}_{k+1}-\underline{w}_{k}\right) \quad k=0,1,2, \ldots \tag{2.12}\\
& \underline{\xi}_{0}=\underline{\lambda}_{0}
\end{align*}
$$

where $t_{0}=0, t_{k}=\sum_{i=0}^{k-1} h_{i}, h_{k}=0$, and $\left.\underline{w}_{k}=\underline{w}^{(} t_{k}\right), k=0,1,2, \ldots$.
The computationally cheap Euler step seems a good choice here since in order to obtain the global minimizers of f as asymptotic :alues of the paths $\varepsilon(t)$ should go to zero very slowiy when $t+\infty$, and therefore a large number of time integration steps must be computed.

On the right hand side of (2.12) we add the random term $E\left(t_{k}\right)\left({\underline{w_{k}}+1}-\underline{w}_{k}\right)$ to the deterministic term $-h_{k} \nabla f\left(\underline{\xi}_{k}\right)$, which is computationally more expensive (e.g. $N+1$ function evaluations if a forward-difference gradient is used), so that the effort spent in evaluating $\nabla f\left(\bar{j}_{k}\right)$ is frequently lost.

In order to avoid this inconvenience we substitute the gradient $\nabla E(\underline{\xi})$ with a "random gradient" as follows. Let \underline{r} be an N-dimensional random.vector of length 1 uniformly distributed on the N -dimensional unit sphere. Then for any given (non-random) vector $\underline{v} \in \mathbb{R}^{N}$ its projection along r is such that:

$$
(2 . \therefore 1) \quad N \cdot E(\langle\underline{I}, \underline{v}\rangle \underline{I})=\underline{v}
$$

where $E(\cdot)$ is the expected value, and $\langle\cdot, \cdot\rangle$ is the euclidean inner product in \mathbb{R}^{N}.

So that in order to save numerical work (i.e. functions evaluations) in (2.12) we substitute $\nabla \mathrm{f}_{\left(5_{k}\right)}$ with the "random gradient"

$$
\begin{equation*}
\underline{r}\left(\underline{\xi}_{k}\right)=N<\underline{r}, \nabla f\left(\underline{\xi}_{k}\right)>\underline{r} . \tag{2.15}
\end{equation*}
$$

Ne note that since $\frac{1}{N} \underline{\gamma}\left(\underline{\xi}_{k}\right)$ is the directional derivative in the direction $\underset{\sim}{r}$, it is corputationally much cheaper (e.g. when forward differences are used, only 2 function evaluations are needed to approximate $\underline{\gamma}(\underline{\xi})$). Therefore, the paths are computed approximating $\underline{\xi}\left(t_{k}\right)$ with the solution \bar{i}_{k} of the following differences equations:

$$
\begin{equation*}
\underline{\xi}_{k+1}-\underline{\xi}_{k}=-h_{k} \tilde{\underline{\gamma}}\left(\xi_{k}\right)+\varepsilon\left(t_{k}\right)\left(\underline{w}_{k+1}-\underline{w}_{k}\right) \quad k=0,1,2, \ldots \tag{2.16}
\end{equation*}
$$

where $\tilde{\underline{y}}\left(\xi_{k}\right)$ is a finite difference (forward or central) approximation to $\underline{i}\left(\xi_{k}\right)$.

The complete algorithm is described in the next section.
3. The complete algorithm.

We give in sect. 3.1 a general description of the algorithm, while irplementation details are given in sect. 3.2.
3.1. General description of the algorithm.

The basic time-integration step (eq. (2.16) and sect. 3.2.1) is used to generate a fixed number $N_{\text {TRAJ }}$ of trajectories, which start at time zero from the same initial conditions with possibly different values of $\varepsilon(0)$ (note that even if the starting values $\varepsilon(0)$ are equal the trajectories evolve differently due to the stochastic nature of the integration steps).

The trajectories evolve (simultaneously but independently) during an "observation period" having a given duration (sect. 3.2.5), and within which the noise coefficient of each trajectory is kopt at a constant value ε_{p}, while the values of the steplength h_{k} and of the spatial discretization increment Δx_{k} for computing the random gradient (eq. (2.15) and sect. 3.2.2) are automatically adjusted for each trajectory by the algorithm (sects. 3.2.3 and 3.2.4).

At the end of every observation period the corresponding trajectories are compared, one of them is discarded (and will not be considered any more), all other trajectories are naturally continued in the next observation period, and one of the trajectories is selected for 'branching' (sect. 3.2.6), that is for generating also a second continuation trajecton differing from the first one only in the starting values for ε_{p} and Δx_{k} (sect. 3.2.7), and which is considered as having the same "past history" of the first one.

Let λ_{3} be the largest eigenvalue of the (symmetric and non-negative definite) matrix C.

We adopt the updating matrix

$$
F_{A}=B \lambda_{1} I-C
$$

where I is the $N \times N$ identity matrix, $\beta>1 \quad(\beta=1.3$ in the present implementation), and we obtain the updated value A^{\prime} of A by means of the formula

$$
A^{\prime}=\alpha \dot{A} F_{A}
$$

where α is a nomalization factor such that the sum of the squares of the elements of A^{\prime} is equal to N (as in the identity matrix).

The matrix F_{A} seems one of the possible reasonable choices, since it is positive definite for $\beta>1$, it has the same set of eigenvectors as C, its eigenvalue spectrum is obtained from the spectrum of C by reflection around $\lambda=\frac{B \lambda_{2}}{2}$, and it therefore acts in the right direction to counter the ill-conditioning of \tilde{f}.

The magnitude of the counter-effect depends on B : the adopted value has been experimentally adjusted.

The updated bias vector \underline{b}^{\prime} is chosen in order that the scaling at \underline{x} does not alter \tilde{x}, i.e. in order that

$$
A^{\prime} \underline{x}+\underline{b}^{\prime}=A \underline{x}+\underline{b}
$$

3.2.13 Criteria for numerical equality.

The following two criteria are used in a number of places in the algorithm to decide if two given numbers x and y are sufficiently close to each other (within given tolerances) to be considered "numerically equal'".
$\because 2$ onsider (for each traiectory) the rescaled variable $\underline{\tilde{x}}=A \underline{x}+\underline{b}$, \therefore :s the rescaling matrix and \underline{b} is a bias vector, and, instead of murine with respect to \underline{x} the function $\tilde{f}(\underline{x})=f(\underline{x})=f(A \underline{x}+b)$, \cdots to counter the 11 -conaitioning of \tilde{f} with respect to \underline{x} b: wurting A (nd \underline{b} is adjusted in order not to alter \tilde{x}). … iphating of A is obtained by means of an updating matrix F_{A}, Anciole (see below), and if the number of elapsed observation periods

Th: piating matrix F_{A} is computed as described belok, keeping in $\therefore \therefore .$. that the random gradients are the only simply-usable data on the Wima lar of computed by the algorithm.

Let '(i), $i=1,2, \ldots, N_{g}$, be the columm vectors of the components
 wamiva along the trajectory (also for rejected steps) from the last scaing.

It sufficient data are available (i.e. if $N_{g} \geqslant 2 N^{2}$) we compute the arace

$$
\begin{equation*}
\bar{y}=\frac{1}{N_{g}} \sum_{i=1}^{N_{g}} \tag{i}
\end{equation*}
$$

\therefore an estmated covariance matrix

$$
C=\frac{1}{S}{\underset{B}{g}}_{i=1}^{N_{g}}\left[\left(i_{(i)}\right)^{-\bar{y}}\left(i(i)^{-\bar{y}}\right)^{T}\right]
$$

A. an to a rencmble indicator, given the available data, of an ond contiong of i, as having the larger eigenvalues fated with the jirections alone which the second directional deriva$+i n$ of i is, on the avarage, larger.

We note that each integration step can be rejected only a finice number of times, each observation period lasts a finite number of accepted integration steps, and there is a finite number of otservation periods in a trial; since a finite number of trials is allowed, the algorithm will stop after a finite total number of steps and of function evaluations.

3.2.11 Admissible region for the x-values.

In order to help the user in trying to prevent computation failures (e.g. overflow) the present implementation of the method gives the possibility of defining (for any given problem and machine dynamic range, and based on possible analytical or experimental evidence) an admissible region for the x-values (hopefully containing the looked-for global minimizer) within which the function values may be safely computed. We use an N -dimensional interval

$$
R_{i}^{M I N} \leqslant x_{i} \leqslant R_{i}^{M A X}, \quad i=1,2, \ldots, N,
$$

where the interval boundaries must be given before trial start.
Outside the admissible region the function $f(x)$ is replaced by an exponentially increasing function, in such a way that the values of f and of the external function are matched at the boundary of the region.

3.2.12 Scaling.

In order to make ill-conditioned problems more tractable, rescaling is performed by the algorithm as follows.
the preceding trial, according to the outcome (stopping condition) of the preceding trial and to the number t of trials performed from algorithm start, as compared to the given maximum number of trials $N_{\text {TRIAL }}$
successful stop: $\alpha=10^{3}$
unsuccessful uniform stop:

$$
\begin{aligned}
& \alpha=10 \text { if } t<\left[\left[(2 / 5) N_{\text {TRIAL }}\right]\right] \\
& \alpha=10^{-4} \text { otherwise, } \\
& \text { where }[[x]] \text { is the smallest integer not smaller than } x
\end{aligned}
$$

unsuccessful non-uniform stop: $\alpha=10^{-4}$
The initial point \underline{x}_{0} is selected as follows:
if $t<\left[\left[(2 / 5) N_{\text {TRIAL }}\right]\right]$ take the value of \underline{x}_{0} at algorithm start otherwise take $\underline{x}_{0}=x_{0 P T}$ where $\underline{x}_{0 P T}$ is the current best minimizer found so far from algorithm start.

All other initial values are those of the first trial, except the initial values of h and $\Delta \alpha$ which are the values reached at the end of the preceding trial.

3.2.10 Stopping criteria for the algorithm.

The complete algorithm is stopped, at the end of a trial, if a given number $N_{\text {SUC }}$ has been reached of uniform trial stops all at the current $f_{\text {OPT }}$ level, or in any case if a maximm given number $N_{\text {TRLAL }}$ of trials has been reached.

Success is clained by the algorithm if at least one uniform stop occurred at the current $f_{O P T}$ level.
and the best minimm function falue $f_{O P T}$ found so far from algorithm start: if $f_{T P M N}$ and $f_{O P T}$ satisfy at least one of the above criteria, with the same tolerances, the trial is considered successful at the level $f_{O P T}$; otherwise the trial is again considered unsuccessful.

Checking of the stopping criteria is activated only if a minimum given number $N_{\text {PMIN }}$ of observation periods has been reached.

3.2.9 Characteristics of the successive trials.

The operating conditions which are changed when another trial is started are:

- seed of the random number generator
- maximum duration of the trial
- policy for choosing ε_{p} for the second continuation of a branched trajectory
- value of ε_{p} at trial start
- initial point \underline{x}_{0}.

The maximum duration of a trial, i.e. the maximum number $N_{\text {PMAX }}$ of observation periods, is obtained as follows:
if the preceding trial had a uniform stop (sect. 3.2.8) take the value of the preceding trial
otherwise take a value obtained by adding to the preceding value a fixed given increment $I_{\text {NPMAX }}$

The policy for selecting ε_{p} for the second continuation of a branched trajectory was described in sect. 3.2.7.

The value of ε_{p} at the start of a new trial is obtained by means of a multiplicative updating factor α applied to the starting value of

The updating factor F_{ε} for ε_{p} is as follows: for the first trial and for any trial following an unsuccessful trial
$F_{\varepsilon}=10^{x-\frac{1}{2}}$ where x is a random sample from a
standard nomal distribution
for all other trials
$F_{\varepsilon}=2^{y-\frac{1}{2}}$ where y is a random sample from a
standard Cauchy distribution, i.e. with density
$f(y)=1 /\left(\pi\left(1+y^{2}\right)\right)$
The updating factor for Δx_{k} is: $F_{\Delta x}=10^{3 z}$ hhere z is a random sample from a standard normal distribution.

3.2.8 Stopping criteria for a trial.

A trial is stopped, at the end of an observation period, and after having discarded the worst trajectory, if all the final function values of the remaining trajectories (possibly at different points x) are 'numerically equal', i.e. if the maximm, $f_{\text {TFMAX }}$, and the minimum, fTRIIN, among the trial final values satisfy at least one of the criteria in sect. 3.2.13, the relative difference criterion with a given stopping :olerance $\tau_{R E L}$ and/or the absolute difference criterion with given storping tolerance ${ }^{\tau_{A B S}}$ ("umiform stop at the level $f_{\text {TFMIN }}$ ").

The trial is also anyway stopped, at the end of the observation period, if a maximum given number $N_{\text {PMAX }}$ of observation periods has been rached.

In the latter case the trial is considered unsuccessful, while in the former case a comparison is made between the final value f TFMIN

From the point of view of the noise coefficient ε_{p} a trajectory with larger ε_{p} is considered better if the comparison is made in an early observation period (as long as $k_{p}<M_{p} \cdot I_{b}$, where k_{p} is the number of elapsed observation periods, and M_{p}, I_{b} are defined below) and worse otherwise.

A basic partial ordering of the trajectories is first obtained on the basis of past function values, and a final total ordering is then obtained, if needed, by suitably exploiting the noise-based ordering.

The discarded trajectory is always the worst in the ordering, while the trajectory selected for branching is usually not the best one, to avoid to be stuck in a non-global minimum.

Normal branching is performed on the trajectory which, in the ordering, occupies the place I_{b} (a given integer); exceptional branching, where the best trajectory is selected, occurs for the first time at the end of observation period $k_{p o}$, and then every M_{p} periods $\left(k_{p o}\right.$ and M_{p} are given integers); i.e. exceptional observation periods are those numbered

$$
k_{p}=k_{p o}+j M_{p} \quad(j=0,1,2, \ldots)
$$

3.2.7 The second continuation of a branched trajectory.

While the first (unperturbed) continuation of a trajectory that undergoes branching starts with the current values of ε_{p} and Δx_{k}, the second continuation starts with values obtained by means of multiplicative random updating factors applied to the current values.

In phase 6a: $\gamma=0.1$
We finally remark that h_{k} and Δx_{k} are bounded by suitable constants to avoid computational failures.
3.2.5 Duration of the observation period.

The duration of observation period numbered k_{p} from trial start, defined as the number $N_{h p}$ of time integration steps in period k_{p}, is computed as a function of k_{p} by means of a formula which must be chosen before algorithm start among the following three formulas:

1) $N_{h p}=1+\left[\log _{2}\left(k_{p}\right)\right]$ ("short'" duration)
2) $\mathrm{N}_{\mathrm{hp}}=\left[k_{p}\right]$ ("medium-size" duration)
3) $\mathrm{N}_{\mathrm{hp}}=\mathrm{k}_{\mathrm{p}}$ ('long' duration)
where $k_{p}=1,2, \ldots$, and $[x]$ is the largest integer not greater than x.

3.2.6 Trajectory selection.

In order to decide, at the end of an observation period, which trajectory is to be discarded, and which one should be selected for branching, we compare the trajectories on the basis of the values of their noise coefficient in the observation period, and of the function values obtained from trial start.

From the point of view of past function values a trajectory is considered better than another if it has attained a lower function value than the other (excluding a possible initial part common to both trajectories).

We test f_{k} and $\hat{f}_{k}=f_{k}+\hat{\Delta} f_{k}$ for numerical equality according to the relative difference criterion (sect. 3.2.13) with tolerances $\tau_{R 1}=10^{-11}$ and $\tau_{R 2}=10^{-5}$, and take
$B=2$ if f_{k} and \hat{f}_{k} are "equal" within $\tau_{R 1}$ $B=\frac{1}{2}$ if f_{k} and \hat{f}_{k} are not "equal" hithin $\tau_{R 2}$ $3=1$ otherwise.

The interval $\left(10^{-22}, 10^{-5}\right)$ has been adopted since it contains both the square root and the cubic root of the machine precision of most computers in double precision (the square root is appropriate for forward differences, while the cubic root is appropriate for central differences).

Updating factors γ for h_{k}
In phase 4a:
$\gamma=1 / 1.05$ for the first attenpt to the first half-step
$\gamma=\frac{1}{2}$ for the second attempt
$\gamma=1 / 10$ for all other attempts
In phase 5 the value of γ depends on the current number a of accepted time integration steps in the current observation period, and on the current total number r of half-steps rejected so far in the current trial (excluding those possible rejected while attempting the first step).

$$
\text { If } \begin{array}{rlrl}
r & >0 & & \\
r & =1 & & \text { (if } a \leqslant 2 r \text {) } \\
r & =1.1 \\
& r & =2 & \\
\text { If } r & =0 & & \text { (if } 2 r<a \leqslant 3 r \text {) } \\
r & =2 & & \\
r & =10 & & \text { (if } a=1) \\
r & & \text { (if } a>1)
\end{array}
$$

6a. If the half-step is rejected: reject also the first half-step, update (decrease) h_{k}, and go back to 1.
60. Otherwise: accept the whole step and try the next one.

Note however that if the same half-step is rejected too many times the half-step is nevertheless accepted in ordernot to stop the algorithm; this is not too harmful since several trajectories are being computed, aad a "bad" one will be eventually discarded (in the present implementation the bound is given explicitly for the first half-step (50 times), and impicitiy for the second half-step (if h_{k} becomes smaller than 10^{-30})).
3.2.4 The updating of h_{k} and Δx_{k}.

The time-integration steplength h_{k} and the spatial discretization increment Δx_{k} for the trajectory under consideration are updated while performing the integration step, as described in the preceding section.

Updating is always performed by means of a multiplicative updating factor which is applied to the old value to obtain the new one.

The magnitude of the updating factors, as used in the various
phases of the sequence in the preceding sect. 3.2.3, is as follows:

Updating factors B for Δx_{k}
In phase $1 \mathrm{~b}: \beta=10^{6}$
In phase $2 a: \quad B=10$
In phase $4 \mathrm{~b}: \quad B=10^{-4}$

In phase 5 the value of B depends on the magnitude of the current estimated function increment $\hat{\Delta} f_{k}=\left|\tilde{n}_{k}\right| \Delta x_{k}$ (where $\tilde{\eta}_{k}$ is $\tilde{\eta}_{k}^{F}$ or $\tilde{\eta}_{k}^{C}$ as appropriate), and the function value $f_{k}=f\left(\underline{\xi}_{k}\right)$.

All attempts are with the current (i.e. updated) values of h_{k} and Δx_{k}.

The sequence of attermpts is as follows:

1. Pick up a random unit vector \underline{r}_{k}.

1a. Compute the random increment s_{s} (sect. 3.2.2).
1b. If \underline{s}_{k} (and therefore Δx_{k}) is too small (i.e. if the square of the euclidean norm of the difference between the computed values of $\underline{\xi}_{-k}+\underline{s}_{k}$ and $\underline{\xi}_{k}$ is zero, due to the finite arithmetics of the machine): update (increase) Δx_{k} and go back to la.
2. Compute \tilde{n}_{k}^{F} (eq. (3.2.2.2)).

2a. If the computed value of $\left(\tilde{n}_{k}^{F}\right)^{2}$ is zero (due to the finite arithmetics): update (increase) Δx_{k} and go back to la.
3. Compute the first half-step with $\tilde{\underline{r}}_{k}^{F}$.

Compute $\Delta^{\prime} f_{k}$ (eq. (3.2.3.1)).
3a. If $\Delta{ }^{\prime} f_{k} \leqslant\left|\tilde{\eta}_{k}^{F}\right| \Delta x_{k}$
accept the first half-step and jump to 5 .
4. Compute the first half-step with \tilde{Y}_{k}^{C} to check the appropriateness of Δx_{k}.
Compute $\Delta^{\prime} f_{k}$ (eq. (3.2.3.1)).
4a. If $\Delta^{\prime} f_{k}>\left|\tilde{n}_{k}^{F}-\tilde{n}_{k}^{C}\right| \Delta x_{k}$
reject the half-step, update (decrease) h_{k}, and go back to 1 .
$4 b$. Otherwise: accept the half-step, and update (decrease) Δx_{k}.
5. Update (increase) h_{k}.

Update (decrease) Δx_{k}.
6. Compute the second half-step.

Compute $A^{\prime \prime} f_{k}$ (eq. (3.2.3.2)).
and the forward- and central-differences random gradients

$$
\begin{equation*}
\tilde{\underline{\gamma}}_{k}^{F}=N \tilde{n}_{k}^{F} \underline{r}_{k} \quad \tilde{\underline{\gamma}}_{k}^{C}=N \tilde{n}_{k}^{C} \underline{r}_{k} \tag{3.2.2.3}
\end{equation*}
$$

We use $\underline{\underline{y}}_{k}^{F}$ or $\underline{\underline{Y}}_{k}^{C}$ for $\underline{\tilde{Y}}\left(\underline{\xi_{k}}\right)$ in the first half-step as described in the next section.
3.2.3 Accepting and rejecting the half-steps.

The computation of the first half-step can be attempted with the forward- or central-differences random gradient ($\tilde{\underline{r}}_{k}^{F}$ or $\tilde{\underline{y}}_{k}^{C}$ eq. (3.2.2.3)) as described below.

In either case the half-step is accepted or rejected according to the function increment

$$
\begin{equation*}
\Delta^{\prime} f_{k}=f\left(\xi_{k}^{\prime}\right)-f\left(\xi_{k}\right) \tag{3.2.3.1}
\end{equation*}
$$

Since $\Delta^{\prime} f_{k}$ should be non-positive for a sufficiently small value of h_{k} the half-step is rejected if $\Delta^{\prime} f_{k}$ is "numerically positive", i.e. larger than a given positive small tolerance.

The second half-step is rejected if the corresponding function increment

$$
\begin{equation*}
\Delta^{\prime \prime} f_{k}=f\left(\underline{\xi}_{k+1}\right)-f\left(\underline{\xi}_{k}^{\prime}\right) \tag{3.2.3.2}
\end{equation*}
$$

is positive and too large (greater than $100 \varepsilon_{p}^{2}$ in the present implementation).

The sequence of attempts affects the updating of h_{k} and Δx_{k} as vescribed below; the amount of the updating is described in sect. 3.2.4.

The basic step (3.2.1.1) is actian', performed in tho half-steps

$$
\begin{equation*}
\underline{\xi}_{k}^{\prime}=\underline{\xi}_{k}-h_{k} \underline{\tilde{Y}}\left(\underline{\xi}_{k}\right) \tag{3.2.1.2}
\end{equation*}
$$

(first half-step)
and

$$
\begin{equation*}
\underline{\xi}_{k+1}=\underline{\xi}_{k}^{\prime}+\varepsilon_{p} \sqrt{h_{k}} \underline{u}_{k} \quad . \quad \text { (second half-step) } \tag{3.2.1.3}
\end{equation*}
$$

Both half-steps depend on h_{k} while the first depends also on the current value Δx_{k} of the spatial discretization increment used in computing $\overline{\underline{Y}}\left(\underline{\xi}_{k}\right)$.

Either half-step can be rejected if deemed not satisfactory, as described in sect. 3.2.3.
3.2.2 The finite-differences random gradient.

Given the current value Δx_{k} of the spatial discretization increment for the trajectory under consideration, we consider the random increment vector

$$
s_{k}=\Delta x_{k} \cdot r_{k}
$$

where \underline{I}_{k} is a random sample of a vector uniformly distributed on the unit sphere in R^{N}, the forward and central differences

$$
\left\{\begin{array}{l}
\Delta^{F} f_{k}=f\left(\underline{\xi}_{k}+\underline{s}_{k}\right)-f\left(\underline{\xi_{k}}\right) \tag{3.2.2.1}\\
\Delta^{C} f_{k}=\frac{1}{2}\left[f\left(\underline{\xi}_{k}+\underline{s}_{k}\right)-f\left(\underline{\xi}_{k}-\underline{s}_{k}\right)\right]
\end{array}\right.
$$

the forward- and central-differences directional derivatives

$$
\begin{equation*}
\tilde{\eta}_{k}^{F}=\Delta^{F} f_{k} / \Delta x_{k} \quad \tilde{\eta}_{k}^{C}=\Delta^{C} f_{k} / \Delta x_{k} \tag{3.2.2.2}
\end{equation*}
$$

The set of simultaneous trajectories is considered as a single trial, which is stopped as described in sect. 3.2.8, and is repeated a number of times with different operating conditions (sect. 3.2.9).

The stopping criteria for the complete algorithm are described in sect. 3.2.10.

The use of an admissible region for the x-values is described in sect. 3.2.11, scaling is described in sect. 3.2.12, and criteria for nunerical equality in sect. 3.2.13.
3.2. Implementation details.
3.2.1 The time-integration step.

The basic time-integration step (eq. (2.16)) is used, for the trajectory under consideration, in the form

$$
\begin{equation*}
\underline{\xi}_{k+1}=\underline{\xi}_{k}-h_{k} \underline{\tilde{\gamma}}\left(\underline{\xi}_{k}\right)+\varepsilon_{p} \sqrt{h_{k}} \underline{u}_{k}(k=0,1,2, \ldots) \tag{3.2.1.1}
\end{equation*}
$$

where h_{k} and ε_{p} are the current values of the steplength and of the noise coefficient (the noise coefficient has a constant value ε_{p} throughout the current observation period (sect 3.1)) ; \underline{u}_{k} is a random vector sample from an N-dimensional standard Gaussian distribution, and

$$
\sqrt{h_{k}} \underline{u}_{k}=\underline{w}_{k+1}-\underline{w}_{k}
$$

due to the properties of the liener process.
The computation of the finite-differences random gradient $\tilde{\underline{Y}}\left(\xi_{k}\right)$ is described in the next section.
a) Relative difference criterion

$$
|x-y| \leqslant \tau_{R E L} \quad(|x|+|y|) / 2
$$

b) Absolute difference criterion

$$
|x-y| \leqslant \tau_{A B S}
$$

where $\tau_{\text {REL }}$ and $\tau_{A B S}$ are given non-negative tolerances.
4. Numerical Testing.

SIGMA has been numerically tested on a number of test rpoblems run on two computers. The test problems are described in sect. 4.1, the computers in sect. 4.2 and some numerical results arereported in sect. 4.3.

4.1. Test problems.

The set of test problems is fully described in [10] together with the initial points; the test problems are:

1. A fourth order polynomial ($N=1$)
2. Goldstein sixth order polynomial ($\mathrm{N}=1$)
3. One dimensional penalized Shubert function $N=1$)
4. A fourth order polynomial in two variables ($N=2$)
5. A function with a single row of local minima $(N=2)$
6. Six hump camel function $(N=2)$
7. Two dimensional penalized Shubert function $S=0 \quad(N=2)$
8. Two dimensional penalized Shubert function $B=0.5 \quad(N=2)$
9. Two dimensional penalized Shubert function $B=1 \quad(N=2)$
10. A function with three ill-conditioned minima $a=10 \quad(N=2)$
11. A function with three ill-conditioned minima $a=100 \quad(N=2)$
12. A function with three ill-conditioned minima $a=1000 \quad(N=2)$
13. A function with three ill-conditioned minima $a=10000 \quad(N=2)$
14. A function with three ill-conditioned minima $a=10^{5} \quad(N=2)$
15. A function with three ill-conditioned minima $a=10^{6} \quad(N=2)$
16. Goldstein-Price function $\quad N=2$)
17. Penalized Branin function $(N=2)$
18. Penalized Shekel function $M=5 \quad(N=4)$
19. Penalized Shekel function $M=7 \quad(N=4)$
20. Penalized Shekel function $M=10 \quad(N=4)$
21. Penalized three dimensional Hartman function $(N=3)$
22. Penalized six dimensional Hartman function ($N=6$)
23. Penalized Levy Montalvo function, type $1(\mathrm{~N}=2)$
24. Penalized Levy Montalvo function, type 1 ($\mathrm{N}=3$)
25. Penalized Levy Montalvo function, type $1(\mathrm{~N}=4)$
26. Penalized Levy Montalvo fumction, type $2(N=5)$

2\%. Penalized Levy Montalvo function, type $2(N=8)$
28. Penalized Levy Montalvo function, type 2, $(N=10)$
29. Penalized Levy Montalvo function, type 3, range $10(\mathrm{~N}=2)$
30. Penalized Levy Montalvo function, type 3, range $10(\mathbb{N}=3)$
31. Penalized Levy Montalvo function, type 3, range $10(N=4)$
32. Penalized Levy Montalvo function, type 3, range $5(X=5)$
33. Penalized Levy Montalvo function, type 3, range $5(x=6)$
34. Penalized Levy Montalvo function, type 3, range $5(\mathrm{~N}=7)$
35. A function with a cusp shaped minima $(N=5)$
36. A fanction with a global minimm having a small region

$$
\text { of attraction } a=100 \quad(N=2)
$$

37. A function with a global minimum having a small region of attraction $a=10 \quad(N=5)$

We used the above functions, and the standard initial points as \therefore :are coded in the subroutines GLOMTF and GLOMIP, which are available in [10].

4.2: Test computers.

We considered two typical machines of "large" and "small" dynamic range, that is, with 11 and 8 bits for the exponent (biased or signed) of double precision numbers, and corresponding dynamic range of about $10^{ \pm 308}$ and $10^{ \pm 38}$. The tests were actually performed on:

- UNIVAC $1100 / 82$ with EXEC8 operating system and FORTRAN (ASCII) computer (level 10RI) ("large" dynamic range)
- D.E.C. VAX $11 / 750$ with WS operating system (vers. 3.0) and FORTRAN compiler (vers. 3) ("small" dynamic range)

4.3. Numerical results.

Numerical results of rmning SIGMA on the above problems and on the above machines are described below. All results were obtained under the following operating conditions.

The easy-to-use driver subroutine SIGMAl (described in the accompanying algorithm) was used, with $N_{\text {SUC }}=1,2,3,4,5$. All numerical values used for the parameters are set in the driver SIGMAI and in the other subroutines which are described in the accompanying Algorithm.

All numerical results are reported on Tables 1, 2, and 3. Table 1 reports some performance data (i.e. output indicator IOUT and number of functions evaluations) as obtained from SIGMA output for each of the 37 test problems and for the testing both on the "large" and "small" dynamic range machines. In order to evaluate the perfomance of SIQA we consider all the cases in which the program claimed a success (output indicator IOUT >0) or a failure (IOUT $\leqslant 0$) and - by comparing the final point
with the known solutions - we identify the cases in which such a claim is clearly incorrect (i.e. success claim when the final point is not even approximately close to the known solution, or failure claim when the final point is practically coincident with the known solution). It is also meaningful to consider all the cases in which a computational failure due to overflow actually occurrs at any point of the iteration.

Table 2 and Table 3 report for each problem and sumarized for all problems data concerning the effectiveness, dependability and robustness - in the form of total numbers of correctly claimed successes, correctly claimed failures, incorrect success or failure clains and total number of overflows - for the two machines.
TABLE 1

${ }^{\mathrm{NSUC}^{\text {SuC }}}$		1		2		$\begin{aligned} \mathrm{VAC} \\ \hline \end{aligned}$		4		5	
NPROB	N	Nf	Ie	Nf	le	Nf	Ie	Nf	Ie	Nf	Ie
1	1	3,588	0	11,467	0	23,067	0	32,520	0	58,751	0
2	1	3,254	0	9,509	0	20,893	0	32,910	0	72,015	0
3	1	8,638	0	17,741	0	23,814	0	57,187	0	67,621	0
4	2	6,594	0	15,898	0	30,589	0	69,489	0	101,633	0
5	2	12,680	0	23,221	0	38,362	0	95,423	0	104,391	0
6	2	2,697	0	8,343	0	19,660	0	57,728	0	78,090	0
7	2	32,185	0	35,256	0	49,153	0	59,983	0	139,675	0
8	2	5,600	0	347,039	0	348,301	0	359,642	0	392,466	0
9	2	6,180	0	83,625	0	470,130	0	699,767	0	701,051	0
10	2	3,596	0	6,731	0	12,958	0	61,753	0	66,855	0
11	2	3,191	0	8,384	0	23,196	0	40,808	0	56,958	0
12	2	4,799	0	7,296	0	18,902	0	29,315	0	47,216	0
13	2	7,105	0	10,287	0	20,605	0	27,838	0	43,505	0
14	2	6,671	0	10,654	0	15,102	0	31,322	0	- 47,051	0
15	2	7,747	0	11,631	0	16,227	0.	23,587	0	38,362	0
16	2	16,021	0	26,560	0	58,401	-	67,865	0	115,350	0
17	2	2,700	0	6,670	0	14,388	0	28,275	0	80,826	0
18	4	4,674	0	16,556	0	101,828	0	209,177	0	282,956	0
19	4	4,759	0	54,559	0	131,350	0	224,028	0	306,327	0
20	4	9,955	0	90,092	0	262,616	0	278,385	0	327,392	0
21	3	3,416	0	12,520	0	27,472	0	66,044	0	86,482	0
22	6	4,729	0	10,438	0	20,318	0	36,981	0	52,364	0
23	2	11,888	0	16,650	0	32,579	0	84,168	0	92,194	0

$$
\begin{aligned}
& \therefore \therefore 0000000000000
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 1 \theta=000000000000
\end{aligned}
$$

$$
\begin{aligned}
& \triangle=0=00000000000
\end{aligned}
$$

$$
\begin{aligned}
& ===0=0000000
\end{aligned}
$$

$$
\begin{aligned}
& Z_{i}=0000000000000
\end{aligned}
$$

$$
\begin{aligned}
& \text { 言: }
\end{aligned}
$$

Table l (continued)

Table 1 (cont

TABLE 2
UNIVAC

Toble 2 (continued)
vax

$\mathrm{N}_{\text {SUC }}=$		1	2	3	4	5
NPROB	N					
1	1	1	1	1	1	1
2	1	1	1	1	1	1
3	1	1	1	1	1	1
4	2	1	1	1	1	1
5	2	1	1	1	1	1
6	2	1	1	1	1	1
7	2	1	1	1	1	1
8	2	3	3	3	3	1
9	2	1	1	1	1	1
10	2	1	1	1	1	1
11	2	1	1	1	1	1
12	2	1	1	1	1	1
13	2	1	1	1	2	1
14	2	1	1	1	1	1
15	2	1	1	I	1	1
16	2	1	1	1	1	1
17	2	1	1	1	1	1
18	4	3	1	1	1	1
19	4	1	1	1	1	1
20	4	1	1	1	1	1
21	3	3	1	1	1	1
22.	6	1	1	1	1	1
23	2	1	1	1	1	1
24	3	1	1	1	1	1
25	4	1	1	1	1	1
26	5	1	1	1	1	1
27	8	1	1	1	1	1
28	10	1	1	1	1	1

Table 2 (continued)
Vax (continued)

$\mathrm{N}_{\text {SUC }}=$		1	2	3	4	5
NPROB	N			0		
29	2	1	1	1	1	1
30	3	1	1	1	1	1
31	4	1	1	1	1	1
32	5	1	1	1	1	1
33	6	1	1	1	1	1
34	7	1	1	1	1	1
35	5	1	1	1	1	1
36	2	3	3	3	3	3
37	5	3	3	3	3	3

1 = success correctly claimed
Z = failure correctly claimed
3 = incorrect claim
4 = overflow

$$
\begin{array}{llllll}
n & m & 0 & n & 0 \\
\rightarrow & \vec{m} & 0 & m & 0 \\
\times & m & \vec{m} & 0 & m & 0 \\
\cdots & \vec{m} & 0 & m & 0 \\
\cdots & m & 0 & n & 0
\end{array}
$$

TABLE 3

$$
\begin{aligned}
& \cdots M O N O \\
& \rightarrow \text { M O No } \\
& \begin{array}{llllllll}
& m & m & m & 0 \\
\sum_{j}^{u} & \sim & m & 0 & m & 0
\end{array} \\
& \text { - } \sim 0 \leadsto 0
\end{aligned}
$$

[^2]Conclusions.

The SIGA package presented here seems to perform quite well on \therefore : roposed test problems.
\therefore it is shown in [10] some of the test problems are very hard; \because ample, problem $28(N=10)$ has a single grobal minimizer and a aner iocal minimizers of order 10^{10} in the region $\left|x_{i}\right|<10$ i $=2,2, \ldots, 10$.

Wide 2 shows that from the point of view of the effectiveness as mather the nuber of correctly claimed successes the performance ativa is very satisfactory; moreover, it is remarkably machine indeanem (note that completely different pseudo-random numbers sequences we generaied by the algorithm on the two test machines). The results of rabje z also suggest that the performance of SIGM is very satisfactory frow the point of view of dependability (only 2 incorrect claims on the "large" dyamic range machine when $N_{\text {SUC }}>3$ and on the "small" dynamic Varge machine when $N_{S U C}>4$) and robustness (no overflows on both michines).

Unfortunately, given the state of the art on mathematical software lor global optimization, it has not been possible to make conclusive comdurlsons with other packages.

Finally, we note that a smaller value of $\mathrm{N}_{\text {SUC }}$ gives a much cheaper : "thod (less function evaluations) at the expense of a loss in effective\therefore reater number of failures).

ACNONLEDGEMENT: One of us (F.2.) gratefully acknowledges the hospitality and the support of the Mathematics Research Center of the University of Wisconsin and of the Department of Mathematical Sciences of Rice University where part of this work was done, and Prof. A. Rinooy Kan for bringing to our attention ref. [9].

REFERENCES

[1] Aluffi-Pentini F., Parisi V., Zirilli F.: "Global optimization and stochastic differential equations," submitted to Journal Optimization Theory and Applications.
[2] Zirilli $F .:$ 'The use of ordinary differential equations in the solution of nonlinear systems of equations," in 'Nonlinear Optimization 1981," M.J.D. Powell, Editor, Academic Press, London, 1982, 39-47.
[3] Aluffi-Pentini F., Parisi V., Zirilli F.: "A differential equations algorithm for nonlinear equations," ACM Transactions on Mathematical Software, 10, (1984), 299-316.
[4] Aluffi-Pentini F., Parisi V., Zirilli F.: 'Algorithm 617 DAFNE. A differential equations algorithm for nonlinear equations," ACM Transactions on Mathematical Software, 10, (1984), 317-324.
[5] Powell M.J.D. (Editor): 'Nonlinear Optimization 1981," Academic Press, London, 1982.
[6] Dennis J. E., Schnabel R. B.: 'Numerical methods for unconstrained optimization and nonlinear equations," Prentice Hall, Inc., London, 1983.
[7.] Schuss 2.: "Theory and applications of stochastic di 'ferential equations," J. Wiley $\&$ Sons, New York, 1980, chapter 8.
[8] Angeletti A., Castagnari C., Zirilli F.: 'Asymptotic eigenvalue degeneracy for a class of one dimensional Fokker-Planck operators," to appear in J. of Math. Phys.
[9] Kirkpatric S., Gelatt Jr. . C.D., Vecchi M.P.: "Optimization by simulated annealing," Science 220, (1983), 671-680.
[10] Aluffi-Pentini F., Parisi. V., Zirilli F.: 'Test problems for global optimization software," submitted to A.C.M. Transac.tions on Mathematical Software.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
	52 RECID ENT'S CATALOG NUMBER
4. TITLE (End Subtllle) a global optimization algorithm using STOCHASTIC DIFFERENTIAL EQUATIONS	5. TYPE OF REPORT A PERIOO COVEREO Summary Report - no specific reporting period
	6. PEAFORMING ORG. REPORT Number
7. AUTHOR(0) Filippo Aluffi-Pentini, Valerio Parisi and Francesco Zirilli	b. Contract or grant number(a) $\begin{aligned} & \text { DAAG29-80-C-00 } 41 \\ & \text { DAJA-37-81-C-0740 } \end{aligned}$
P. Performing organization name and adoress Mathematics Research Center, University of 610 Walnut Street Madison, Wisconsin 53706	10. PROGRAM ELEMENT. PROJECT, TASK ARE WORK UNIT NUMERS Work Unit Number 5 Optimization and Large Scale Systems
1i. CONTROLLHG OFFICE NAME AND ADDRESS U. S. Army Research Office	12. REPORT DATE February 1985
P. O. Box 12211 Research Triangle Park, North Carolina 27709	13. NUMEER OF PAGES 41
14. MONITORING AGENCY NAME E ADORESSMII diliorme trom Contrilline Oflico)	15. SECURITY CLASS. (of ehte roport) UNCLASSIFIED
	15e. OECLASSIFICATION/OOWNGRADING
16. DISTRIBUTION STATEMENT (of ehio Repori)	
Approved for public release; distribution unlimited.	An-nosion For
17. Oistribution statement (oit the ebetract mitored in Block 20, 11 dilforme trom Report)	By_/ Roport) Distibution//Codes Aveliabilis) Codes
18. SUPPLEMENTARY NOTES	
19. KEY WOROS (Continue on reverae eide If neceacery and fdently by biock number) Algorithms, Theory, Verification, Global Optimiza Equations	Stochastic Differential
SIGMA is a set of FORTRAN subprograms for so problem, which implement a method founded on the Cauchy problem for stochastic differential equati physics.	ving the global optimization umerical solution of a ns inspired by quantum (continued)

This paper gives a detailed description of the method as implemented in SIGMA, and reports on the numerical tests whici. have been performed while the SIGMA package is described in the accompanying Algorithm.

The main conclusions are that SIGMA performs very well on several hard test problems; unfortunately given the state of the mathematical software for clubal optimization it has not been possible to make conclusive comparisons with other packages.

- \quad

8

T

FILMED

6-85

DTIC

his

[^0]: Thr resonsibility for the wording and views expresser in this descriptive sumri.: lies with MRC, and not with the anthors of this report.

[^1]: The present authors have considered this idea both from the mathematical point of view (for a review see [2]) and from the point of riew of producing good software (see [3], [4]). The method implemented in [3], [4] is inspired by classical mechanics, uses ordinary differential equations, and can be regarded as a method for global optimization.

[^2]: 1 = success correctly claimed
 2 = failure correctly claimed

 $$
 3=\text { incorrect claim }
 $$

 $$
 4=\text { overflow }
 $$

