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A GLOBAL OPTIMIZATION APPROACH TO
RATIONALLY CONSTRAINED RATIONAL
PROGRAMMING+#

VASILIOS MANOUSIOUTHAKIS*, and DENNIS SOURLAS

Chemical Engineering Department
University of California
Los Angeles, CA 90024-1592

(Received January 2, 1991; in final form November 5, 1991)

The raticnally constrained rational programming (RCRP) problem is shown, for the first time, to be
equivalent to the quadratically constrained quadratic programming problem with convex objective
function and constraints that are all convex except for one that is concave and separable. This
cquivalence is then used in developing a novel implementation of the Generalized Benders
Decomposition (GBDA) which, unlike all earlier implementations, is guaranteed to identify the
global optimum of the RCRP problem. It is also shown, that the critical step in the proposed GBDA
implementation is the solution of the master problem which is a quadratically constrained, separable,
feverse convex programming problem that must be solved globally. Algorithmic approaches to the
solution of such problems are discussed and illustrative examples are presented.

KEYWORDS Global Optimization Decomposition Reverse convex.

I. INTRODUCTION

The class of rationally constrained rational programming (RCRP) problems and
its subclass of polynomially constrained polynomial programming (PCPP) prob-
lems are often encountered in chemical engineering applications. The heat
exchanger network synthesis problem can be formulated as a mixed integer
nonlinear programming problem (Grossmann, 1990) that can be further trans-
formed into a PCPP through the introduction of additional nonlinear constraints
and the use of polynomial approximations of the objective function. Indeed, the
requirement that a variable & be binary is equivalent to the quadratic equality
(6 —1) =0, where § is assumed to be continuous. The robust controller design
problem can be formulated as a minimax optimization problem. The latter has
been shown to be equivalent to a linear programming problem with several
additional quadratic equality constraints (Manousiouthakis and Sourlas, 1990).
Global solution of such optimization problems is being pursued by several
chemical engineering researchers (Manousiouthakis ef al., 1990, Swaney, 1990,
Visweswaran and Floudas, 1990}.

1 Part of this work was first presented at the 1990 Annual AIChE Meeting at Chicago, Paper No.
22d.

t Part of this work will be presented at the 1992 ORSA Meeting in Orlando, Florida.

* To whom correspondence should be addressed.
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An optimization problem that belongs to one of these classes has several local
minima (or maxima). There are special cases (i.e. minimization problems with
convex objective and convex constraints such as: linear programming, positive
semidefinite quadratic programming, etc.) where the objective value at all local
minima is the same, hence any local minimum is also global. As a result, for this
subclass of problems efficient large scale optimization algorithms have been
developed.

However, most RCRP problems do not enjoy this property, namely not all
local minima are global, and are thus more difficult to solve. In the case of the
negative definite quadratic programming problem (NDQP) it has been estab-
lished that the global optima are among the extreme points of the feasible region
(which in this case is a convex polyhedron) (Charnes & Cooper, 1961). For the
indefinite quadratic programming problem (IDQP) it has been established that
the global optima lie on the feasible region’s boundary (Mueller, 1970).

Another class of problems that has the same extreme point property is the class
of concave minimization (or convex maximization) problems over a polyhedral
feasible region. One can identify the global solution to this problem by total
enumeration of the extreme points of the feasible region. These methods become
computationally intensive for large scale problems. In this spirit, Cabot and
Francis (1970) combined extreme point ranking techniques (Murty, 1969) with
underestimating techniques to solve the quadratic concave minimization problem.
Cutting plane methods have also been employed for the solution of the concave
minimization problem. In that regard, Tuy (1964) introduced a cone splitting
procedure (Tuy cuts) which was later demonstrated by Zwart (1973) to exhibit
convergence problems. Zwart (1974) later presented a modified algorithm that is
computationally finite. Several researchers have generalized the idea of Tuy cuts.
Jacobsen (1981) proposed a similar algorithm and provided proof for its
convergence. Glover (1973) extended the notion of the Tuy cuts and introduced
so called convexity cuts.

In addition to the extreme point enumeration and the cutting plane methods,
branch and bound techniques have also been used. Falk and Soland (1969) and
Soland (1971) proposed algorithms applicable to separable problems. Horst
(1976) presented an algorithm that can be used to solve nonseparable problems as
well. Hoffman (1981) also presented a global optimization algorithm based on
underestimating techniques. Pardalos and Rosen (1986) give an excellent review
on the subject of concave minimization.

The extreme point property is also satisfied by the class of reverse convex
programming (RCP) problems. A constraint g(x) =0 is called reverse convex
when g(x) is quasiconvex (i.e. g(Ax,+ (1 — A)x,) =max{g(x,), g(x;)} for all
A €0, 1]). An optimization problem that involves reverse convex constraints and
pseudo concave objective is a RCP problem. Ueing (1972) proposed a com-
binatorial procedure that yields the global optimum of RCP problems, when the
objective function is strictly concave and the constraints are convex. For the
solution of the general RCP problem, Hillestad and Jacobsen (1980a) proposed a
cutting plane algorithm which however could exhibit convergence to infeasible
points, as they demonstrated. Finally, for the special RCP problem of linear
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programming with one reverse convex constraint, Hillestad and Jacobsen (1980b)
proposed a finite algorithm.

Linear Programming with one reverse convex constraint can also be viewed as
a special case of convex minimization problems with an additional reverse convex
constraint. For this general class of problems Tuy (1987) proposed a method that
reduces the problem to a sequence of convex maximization problems that can be
solved globally with the techniques mentioned in the previous paragraph. Tuy
(1986) also established connections between this type of problems and the so
called d.c. programming (DCP) problem. In fact, he demonstrated that any
nonlinear programming (NLP) problem can, in principle, be approximated by a
DCP problem which in turn can be further transformed, in principle, into a
convex programming problem with an additional reverse convex constraint.

In this paper, it is demonstrated that the RCRP problem is equivalent to a
convex quadratically constrained quadratic programming problem with an addi-
tional reverse convex, quadratic and separable constraint. It is shown, that one
can exactly transform the former into the latter by the use of variable
transformations and the introduction of new variables. Furthermore, a novel
implementation of the Generalized Benders’ Decomposition Algorithm (GBDA)
is proposed for the solution of the latter problem. It is shown that this
implementation of GBDA is always guaranteed to identify the global optimum of
the general RCRP problem. The critical step in this procedure is the solution of
the master problem, which is shown to be a quadratic, separable, RCP problem.

II. OPTIMIZATION PROBLEM EQUIVALENCE

In this work we deal with several optimization problems which we consider
expedient to present next.

The rationally constrained rational programming problem (P1) can be stated as
follows:

@)
i 2%(z) (P1)

subject to, .

@ _, .

— =), =1,...,k

g'(2) g
where,
Fz) 2 dh+ X alz + Z 2 oy 2i, 2y F
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and
z=[2,2,...,2,]€R"

Similarly, the polynomially constrained polynomial programming problem (P2)
can be stated as follows:

n n n ”n n n
min[a8+ Yaln+ 2 D el nz oty > > af—’l,-zv_l,-mz,-,z,-z...z;m}

zeR" i=1 iy=1ig=iy iy=1iy=ig i Zimat
. (P2)
subject to,
n n n n n n
1 1 1 1
ay + E @; 2z + Z z aflfzzilziz+ ot E 2 e Z iy, iy Ziy- - Ziy =0
=1 iy=1igziy fi=1i=i b Z gy 1

n ” n n n n
b+ D afz D D akmz, et D D D 0K ZuZi, <0
=1 h=1 =i fo=1 iy=i, imZin 1
This problem formulation encompasses all polynomial programming problems
since equality constraints can also be expressed as pairs of inequality constraints.
In turn, the quadratically constrained quadratic programming problem (P3) can
also be stated as follows:

n n n
. o 4] (1]
min ag+ E a; x;, + Z E [LEF £19 F (P3)
Xlaraes Xy =1 i1=1 =iy

subject to,

n n n
1 1 1
oy + E a;x; + Z 2 o x x;, <0

=1 ir=1 iy=i,

ab+ D, akx, + D D afxix,=0

=1 f=1 izz=i;
By defining x A [x,x;- - - x,]|7, ¢; & &, b; Aladad-- - ],
a'lil 0.5 a"iz et 0.5 a";,,
05a, daby --- 050,
i= : : : :
05ai, 05ab, --- o,

we can also represent (P3) as follows:

minxTAgx + bix + cg (P3)

subject to,
xTAx+blx+¢=<0 j=1,...,k

Let us finally state the quadratically constrained quadratic programming problem
with the following special features:

(i} the objective function is convex (A, is positive semi-definite)
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(ii) all the constraints, except the last one, are convex (A;, j=1,...,k—1 are

p.s.d.)
(iii) the last constraint is concave and separable (A, diagonal and negative s.d.)

We refer to this problem as (P4), and state it next.
minxTAgx +bjx +¢;  (App.s.d.) (P4)
xeR”
subject to,
xTAx+b/x+¢;=<0 j=1,..., k-1 (A; ps.d.)

xTAx+blx +¢,=0 (A, diagonal and n.s.d.)

The four aforementioned programming problems (P1), (P2), (P3), (P4) will be
shown to be equivalent to each other, in the sense that a problem of one type can
be exactly transformed to a problem of the other type through the use of variable
transformations and the introduction of new variables. In that respect, the
following theorem is proved.

Theorem 1:
PIoP2P3ISP4

Proof:

Pl=>P2

Define y £ f%(z)/g%z). Then the optimization problem (P1) can be rewritten in
the following form:

min y
zeR"

subject to,
f(2) - vg°(z)=0

—fU2) +v8°(z)=0
fi(z)-g'(2)=0, j=1,...k
This is a (P2) type problem.

P2=>>P3
Define:
Yiin & 2:,Zi,, iL=1,...,n L=i,...,n,
Yipizis 2 Yiy.aZiss H=1...,n, bL=i,...,n 1=l ...,nN,
Yivin.im B Yiris . imiZims
LH=1,...,n, b=i,...,0 . b=y, ..., N

Under these transformations the objective function and the constraints of (P2)
become linear. The only nonlinearity in the resulting optimization problems stems
from the equality constraints defining the y variables. Since these constraints are
quadratic in nature and since equality constraints can be replaced by inequality
constraints (f =0& —f =0, f =0) the resulting optimization problem is of the
form (P3).
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P3=> P4
Let A; = W,A;W denote the eigendecomposition of A; (A; is a symmetric matrix
and thus A; is real, W, is orthogonal and W' =W/). Let also

Ay = diag({A 0, (A7 Y +1)
A =diag({A; }iL,, {0} -n01)
A =diag({O}L,, {4 Yann

Az0  i=1,...,n, j=0,...,k
AT<0 i=m+l,...,n  j=0,...,k

Then A;=WAW =W(A} + AW =WA W+ WATWTA A+ A7 where
A is p.s.d. and A] is n.s.d.. As a result, (P3) becomes

where

min x"Agx + xTAZx + bix + ¢,
X

subject to,
XTATx +xTATx + bix +6=0 j=1,...,k

Let J be the set of indices j (j =0, . .., k) for which A has at least one nonzero
eigenvalue and let n, be the cardinality of this set. We now introduce n,
nonnegative variables t;, j € J defined as follows:

tlé —xTAj_x, }EJ

These equalities are equivalent to the following set of inequalities
xT(-A7 ) —4=0, jel,
> (G+x"ATx)=0.
jeJ
By construction, Y;.; A is symmetric. Let ¥;.,A; = WeA;W] be an eigen-
decomposition of X;.; A7, where Az is a diagonal n.s.d. matrix and Wz is
orthogonal (Wz'=WJ). Let n, be the number of strictly negative eigenvalues of

Lies A7 (the other n —n, eigenvalues are zero). Without loss of generality the

following structure can be assumed for Ax:
AE] 0]
A=
Lo o

where Ay, is a n, X n,, diagonal, n.d. matrix (contains only the strictly negative
diagonal elements of Ag). Based on this partition the matrix Wy of eigenvectors
of ;e A can be written as:

We=[Wr, Wy
where, '

Wz, n Xn, real matrix containing as columns the eigenvectors associated with
the strictly negative eigenvalues of ¥;., A}

Wgs  n X (n—n,) real matrix.
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Then X,c; A; can be written as:
E Aj_ = WZAEW£= Wm/\le;
jet
and the inequalities defining the variables ¢;, (j € J) take the form:
xT(-A)x—14,=0, jel,
(Z fj) +x"WeApy Wik <0,
jet
Define the vector y € R™ as:
yAWIx
As a result the problem (P3) is tranformed to

min xTAlx —elt + bix + ¢, (1)

X
t | e RP¥ 40y
y

xTAfx +b]x +¢;=0, jelJ

subject to,

xTAfx -+ bfx+¢=0, jel
xT(=A)x —4,=0, jel
y-WIix=0
-y +WIx=0

Y Azy + 2, =0
jed
where, e, € R™ is identically zero if j =0 ¢J and is such that el ¢t =t, otherwise.
Also Ay, =diag{As ;}iz1, Az;<0, i=1,...,n, As a result, Ay, is a negative
definite diagonal matrix and the last constraint is a quadratic, separable, reverse
convex constraint. Since the remaining constraints are quadratic and convex it
follows that the last optimization problem belongs to the class (P4).

(P4) = (P1) obvious. O.E.A.

Having established that (P1), (P2), (P3) and (P4) are equivalent, we now proceed
to the discussion of solution methodologies for (P4) type problems.

II. SOLUTION METHODOLOGIES FOR (P4)

The globally optimal solution for optimization problems of the type (P4) can be
obtained by several algorithms. Three such algorithms will be presented. They
are iterative in nature and their e-convergence to the globally optimal solution is
guaranteed.
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Algorithm 1

This solution methodology is based on the Generalized Benders Decomposition
Algorithm (GBDA) (Geoffrion, 1972). Floudas et al. (1989) proposed a GBDA
implementation as a so called “global optimum search technique’ for the solution
of P2 type problems, namely NLP’s and MINLP’s. However, Bagajewicz and
Manousiouthakis (1991) demonstrated that the proposed GBDA implementation
is not guaranteed to identify the global solution for such problems. Nevertheless
the following theorem holds:

Theorem 2:

The GBDA, if properly implemented, is guaranteed to identify the global
optimum of the general RCRP problem (P1). Furthermore, global solution of
(P1) is ascertained upon global solution of a series of separable, quadratically
constrained, reverse convex programming (RCP) problems.

Proof:
It has been established in Theorem 1 that (P1) is equivalent to (P4) which can
take the form:

min F(x, t)=x"Ajx —egt +bix + ¢, ¢}
reRm
yeR™
subject to,
G(x,1)=0
L{x,y)=0

yTArly +2 tI-SU
jed
where:
. xTAfx +b/x +¢;=<0, jeJ
Gx,t)=| x"Ajx—4;+b]x+¢;=0, jeJ|

xT(=A)x~14=<0, jeJ

y- W;x SO]
o~ ,
) —y+W§,st
Az =diag{iz }iL,, Ay <0, i=1,...,n,.
X

Let the variable vector | ¢t | be decomposed in two parts: the noncomplicating
Yy

. X . . .
variable vector [t] and the complicating variable vector y. Based on this

decomposition, (1) takes the form (Geoffrion, 1972):
min ¢(y) (1a)

yeRYNV
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subject to,

[ min F(x, 1) )
xeR"
reR™
1b
#(y)= s, G, N=0 | (1b)
Lix, y)=0
Yy Any +2,4=0
\ jeJ y,
V= {y (L(x, y) =0, yTAzyy + 2, t; =<0 for some x, 1 satisfying G(x, ¢) 50}
jed

For each value of y, the internal optimization problem (1b) is a convex
optimization problem. Therefore, based on the strong duality theorem (Luenber-
ger, 1969, p. 224), the value of (1b) is equal to the value of its dual. Thus (1b) is
equivalent to:

¢(y) = max min[F(x, O+ ulGx, ) +ull(x, y) + u3(yTAzly +> t,-)] (1c)
uz=o x, ¢ jeJ

Based on the proposed variable transformations and the presented problem
decomposition the following two subproblems are created.

Primal:
v(F)=min F(x, 1) =xTAdx —elt + bix + ¢, )
XeR"
subject to, teRy
Gx, =0
L(x,¥)=0
FTA7 + 2, 6=0
jeJ
where ¥ is fixed.
Master:
min y, (3)
YoeER
YER™Y

subject to,

L*(y, u) = min[F(x, ) +uTG(x, ) + ulL(x, y) + u3(yTAz, y+3 t,.)] <0,

jet
for all u=0.
L.y, v)= min[u,TG(x, H+vil{x,y)+ Ua(yT/\my + E t,—)] =0,
x, r jel
forallveN

where u = (ul uj u;)", v=_(vlvivy)", N={v=0,|v|,;=1). In this formula-
tion, L,(y, v) =0 is equivalent to the requirement that y e V.
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For each value of y the primal subproblem, (2) is an upper bound to the global
minimum of (1). The global solution of the master (3) is equal to the global
solution of (1). By creating a relaxed version of (3} one can develop an iterative
procedure for the global solution of (1) as follows:

Step 1:

Step 2:

Step 3:

Identify a feasible point y € R»*N V. Solve (2) and obtain a multiplier

vector i and the optimal variable vector [£777]". Setp=1, r=0, u' =g,

(x'Te'T)" =[xT7"]" and UBD = ¢(7). The separability of the function
L*(y, uf) in y, allows its evaluation as follows:

) - Wix
Lot ) =min £ 0+t 0+ I

+ u’;(yTAZIy + ’j)]
it
. -1
= mm[F(x, N+ udTG(x, t) + u’z’T[ ]Wg:",x +ug> t,-]
x, ¢

1 jet

I
+ u‘z’T[ _ I]y +uyT Az y > L*(y, u)
=F(x?, ) +uf"G(x", I°) + u‘z’T[ _Illw;.xp

I
+ugy 1+ uQT[ ~ I]y + Uy Any. (4)

jel
The last equality is a result of the saddle point property that holds for the
Langrangian of the primal (Luenberger, 1969, p. 219).

Solve globally the relaxed master problem:

min y, (5)
yoeR
YER™

L*(y, ME)SYO. l=1» Y
L.(y,v)=0, j=1,...,r

subject to,

The value of L,(y, v’) is calculated according to the procedure presented
in step (3b). Let (§, #,) denote the global solution of the relaxed master.
Then ¥, is a lower bound to the global minimum of (1). If UBD =y, + ¢,
where ¢ is a convergence tolerance, then terminate. Otherwise continue
to the next step.

Solve (2) for y = §. Then there are two possibilities: the primal is either
feasible or infeasible.

(a) The primal is feasible: if ¢(§)=3F,+ € then terminate. Otherwise
determine a new optimal multiplier vector & and set p=p <+ 1 and
w=a. If ¢(§)<UBD then set UBD = ¢(y¥). Then evaluate the
function L*(y, u”) and return to step 2.
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(b) The primal is infeasible: Then solve the following infeasibility
minimization problem:

min a (6)
x,t
aeR

subject to,
G(x, t)
L(x, y)

FTAz5 + 2t

jed

—al=0.

where 1{11---1]7.
Since the primal is infeasible the solution of (6) is positive. Based
on the Kuhn-Tucker necessary conditions for this problem the
optimal multiplier vector ¥ can be shown to satisfy the relations:
=0, 1—-||9||;=0. Hence veN. Once © is determined, set
r=r+1, v"=1 and evalute the function L,(y, v"). Similarly to
L*(y, w”), the minimum in the definition of L,(y, v") can be

calculated independently of v, directly from the solution of (6):
Ly, v)=v7G{x", )+ ugT[ I’]wg,x' +viD

jeJ
rT| I r. T
+v; _ g rusy Az y.
where [x 7 ¢ 7|7
return to step 2.

is the solution of (6) that corresponds to v". Then

This procedure is guaranteed to create a nondecreasing sequence of lower
bounds for the global optimum of (1) iff each relaxed master is solved globally.
Furthermore, since the primal is convex, and thus there is no gap between (1b)
and (1c), this sequence will converge to the global optimum of (1) (Geoffrion,
1972, Bagajewicz and Manousiouthakis, 1991).

Therefore, the global solution of (1) (equivalently P1) is obtained through the
global solution of a series of relaxed master problems (5). Based on (4), (7) each
relaxed master problem is a separable, quadratically constrained, reverse convex
programming (RCP) problem since Ay, is diagonal, n.d. and u}, v} are positive.
O.E.A.

Remark 1: It has been shown, that the GBDA implementation we have proposed,
can be used to identify the global optimum of the general RCRP problem. The
unique features of this implementation are:

* The primal is convex, therefore there is no dual gap between the primal and its
dual.

* The functions L*(y, u), L,(y, v) are such that the minimization problems in
their definition can be solved independently of y. Furthermore, the sclution to
these optimization problems is readily obtained from the solution of the related
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primal. The resulting relaxed master problem is a separable quadratically
constrained RCP problem.

Because of its characteristics the proposed GBDA implementation coverges to
the global optimum.

Remark 2: As mentioned above, each relaxed master problem may have several
local minima. Thus, its global solution can be obtained only through the use of
special algorithms. Several algorithms for the solution of such problems have
been developed. Ueing (1972) proposed a combinatorial procedure for the
solution of RCP problems and Hillestad and Jacobsen (1980) proposed a cutting
plane method that utilizes Tuy type cuts but may converge to infeasible points.
The separability of the relaxed master’s constraints allows also application of
Soland’s (1971) algorithm which guarantees e-convergence in a finite number of
iterations and is described later as algorithm 2.
The relaxed master problem can be stated as follows:
min y, (M)
¥:Yo
subject to,

fi(Y)_yosOy i=1’2""’Kf
gy)=0, j=1,2,...,K

where y € R™ and y, € R, and fi(y), g;(y) are concave real valued functions of the
complicating variables.

To apply Ueing’s algorithm it is essential that the objective function be strictly
concave. This requirement can be satisfied by a slightly perturbed objective that
results in the following modified master:

min y, — a[ > v+ yﬁ] (M1)
Y-Yo m=1
subject to,
f()—y=0, i=12.. . K
g(¥)=0, j=1,2,...,K;

where a is an arbitrarily small constant. Then at every local minimum (y, y,) of
this modified problem at least n, + 1 constraints are active. Furthermore each
local minimum can be identified as the solution of a concave maximization
problem that has the same objective as the modified master and involves only
(n, +1) of the (p +r) constraints of the modified master with reversed sign
(Ueing, 1972):
max yo — cr[ 3 ¥ +y3] (M2)
Y.y m=1
subject, to

=fi(y) +y=0, i=1,2,...,p
-g{y)=0, j=1,2,...,n
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where: p, +r,=n, + 1. This concave maximization over a convex set (note that
all the constraints are convex) has naturally a unique global maximum. If, for that
maximum, all the constraints of (M2) are active and all the constraints of (M1)
are satisfied then this maximum is also a local minimum of the modified master
(M1). Using this procedure one can determine all the local minima of the
modified master, and in the limit (o — 0) of the master itself. Since there is only a
finite number of local minima the global minimum can be recovered in a finite
number of steps.

Algorithm 2
As stated earlier (P4) is a nonconvex optimization problem with a single reverse
convex constraint, ¢(y, t), that is separable:

d(y, )= i:;l oy + 2 &,

where y € R™, te R™ and ¢(.) is a concave function in one variable. Further-
more, the master problem in the GBDA implementation is of the same type, that
is it has linear objective and concave, separable constraints. For this type of
problems Soland (1971) proposed an algorithm that can identify the globally
g-optimal solution in a finite number of steps.

The algorithm assumes the existence of a “‘rectangular” region C where the y
variables lie: C={yeR™: I=<y =L}, with | and L being vectors of upper and
lower bounds. Through solution of a series of convex programming problems, the
algorithm generates a sequence of lower bounds to the global optimum of (P4).
Each of the intermediate convex problems, (P4,), is obtained from (P4) through
substitution of ¢;(.) by its convex envelope for all i=1,...,n, over a
rectangular subset of C (Soland, 1971). To obtain (P4, ,,) from (P4;) a branch
and bound technique is used: first C is refined into smaller rectangles, and then
the objective is minimized over the intersection of each rectangle with the feasible
set and a lower bound on the objective is determined. The sequence of lower
bounds produced by this procedure is guaranteed to £-converge to the global
optimum of (P4) in a finite number of iterations.

Algorithm 3
Tuy (1987) proposed an algorithm for the solution of convex problems with an
additional reverse convex constraint, that can be applied to solve (P4).
Let C be the convex set defined by the k — 1 convex constraints of (P4). Then
(P4) can be restated as:
min x"Agx + bix + ¢y (P4)
xeC
subject to,
P(x)=xTAx +blx + ¢, =0

Let v be the global minimum to this problem. It has been established that the
value of the following optimization problem is zero:

max x” (—A)x — bix —c,
xeC
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subject to,

XTAx +bIx+co—v=0

The global solution to this convex maximization problem can be obtained by
available algorithms (Hoffman, 1981, Horst, 1976). The complete algorithm for
the solution of (P4) is comprised of the following steps:

Solve (P4) without the reverse convex constraint and let w be the resulting
global optimum. It is assumed that this optimum is finite, but this is rather a
technicality than a restrictive assumption. If w satisfies the reverse convex
constraint then it is the global optimum for (P4).

If w is such that: ¢(w)>0 and w'Aw + biw + ¢, <v identify a point x; that
belongs on the boundary of the set G = {xeR": ¢(x)>0}. Then solve the
following convex maximization subproblem:

max x (—A)x —bIx — ¢,
xeC

subject to,
xTAgx + bIx +co—xTApx; — blx, —cp =<0

Let z; be the global solution to this problem. If ¢(z,) =0 then the algorithm
terminates. Otherwise a one dimensional search that identifies a new point
x; + 1 belonging to the boundary of G is performed, and the same procedure is
repeated.

The described algorithm provides a sequence of points z;_, . This sequence

converges to the solution of (P4), thus resulting in a globally £-optimal solution in

a

finite number of steps. Within the same conceptual framework, there are

several improvements that can help increase the speed of convergence of this
algorithm (Tuy, 1987).

IV. EXAMPLES

1

Polynomially Constrained Polynomial Programming Problem

Consider the following nonconvex optimization problem:

min x} — 14x% + 24x, — x3

X1,x2
subject to,
— X1 +x2— 8§=0
-XZSO

X,—x3-2x,+2=0

This optimization problem has several lecal minima. The following table contains
the values of the variables and the corresponding value of the objective at each
local minimum.
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Xy X Objective
0.84025 0.3865 10.631
0.7320 0.0000 10.354
2.7016 10.7016 —98.600

-3.1736 1.7245 -118.705

The problem was solved by both the first and the second algorithm.

Algorithm 1 (Benders Decomposition)

Employing the transformation x; =x% and x,=x3 and introducing the variables
vy, =x; and y, = x, the original optimization problem is being transformed to the
following:

min x5 — 14x; + 24y, — x,

subject to, T"'ﬁ:ﬁ
—-yn+y—-8=<0
yn—10=<0
-y, =0
Xy—x3—=2+2=<0
Xi—x,=0
X2—-x,=<0
y»—x,=0
Ya—x,=0

it X3+ yi+x,=<0

The complicating variables for this problem are y;, and y,. Then the primal
subproblem becomes:

min x3 — 14x, + 24y, + x, (Primal)
x5
subject to, o
Xp—X3— 25, +2=0
xiI—x3=<0
x3—x,=0
F—x=0
Ya—x2=0

— P4 x;—Pi+x,=<0

The primal subproblem is an evaluation step and a check for the feasbility of the
vector [y, ¥,]- The master subproblem has the following form:

min y, (Master)

Yo X1: 22
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subject to,
_yl +,V2— 850
-»=0

(%= 1dx,y, + 24y, —x )+ Ay (xp — X3, — 2y + 2) + Ag (X3, — x3,0)
+ s (63, — Xa2) F Aai(yn — X05) + As, (2= %2,
+ Ao i = ¥T+ x5, — yi+ X40) <o, i=1...,K;
By = X3 = 20+ 2) + o i — 25,5) + pa (03— x4 ) + pa (3 — x4,)
+usy=x2) Fpe(—yitxs,; —yi+x,)=<0, j=1,...,K

As expected, the master subproblem is a separable quadratically constrained RCP
problem. The solution of an RCP problem can be obtained by several methods.
In the following, a branch and bound method (Algorithm 2) is being used.

The point (§,, ¥,) = (—8, 0) was chosen as the initial point for the Benders
iterations. For €=0.001 the global optimum was identified at (x,,x;)=
(—3.1749, 1.7301) with objective value —118.706 in 43 Benders iterations.
MINOS was used to solve the primal subproblem and the subproblems that were
generated by the branch and bound procedure. On the average, the solution of
each master required about 30 branch and bound iterations.

Algorithm 2 (Branch and Bound)
Employing the transformation x;=x? and x,=x2 the original optimization
problem is transformed to the following:

mln xg - 14x:; + 24xl — X4

Ay, X2

subject to, axa
- xl + x2 - 8 = 0
xl - 10 SO
—x250

Xo—=x3—2x,+2=0
xi—x;=0
x3—x,=0

x4+ x;—xi+x,=0

In this form, the problem has become a convex quadratically constrained
quadratic programming problem with a reverse convex quadratic and separable
constraint and therefore algorithm 2 can be employed. The optimization package
MINQOS was used for the solution of the intermediate convex subproblems. For
€ = 0.001 the global optimum was identified as (x,, x;) = (—3.173, 1.721) and the
corresponding objective value was —118.705. The execution time for this
particular problem was approximately 5.2 cpu seconds on a IBM-4381 computer.
The solution required 35 branch and bound iterations.
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2. Indefinite Quadratic Programming Problem
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Consider the following indefinite quadratic optimization problem (V. Viswes-

waran and C.A. Floudas, 1990):

min ®,(x) + ®,(y)
Xy
subject to,
Ax+Ay=bh
szo, i=1;2,'..,10,
=0, i=11,12,...,20.

where

®W=3' 3 x5y

()

The data for this problem are:
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In this optimization problem the function & (x) is concave while the function
®,(y) is convex. Employing the transformation z,=x?, i=1,2,...,10 the
following reverse convex programming problem is obtained:

_ 1 10 1 20
mln{_ 2 C,-(Z,- - ?.x,i,- + f,z) +- E C,'(y‘- - )-/,')2}
. 2yl 25 20
subject to,

Ax+Ay=h

2 —-z=0, i=12...,10

§ (zi~x)=s0

i=1
x,-EO, i=1,2,...,10,
y=0, i=11,12,...,20.

As in the previous example, the original nonconvex optimization problem has
been transformed into an optimization problem with objective function that is
quadratic and convex, and constraints that are also quadratic and convex except
one that is quadratic, reverse convex and separable. For € =0.001 the &-global
optimum was identified at:

Xop = (0,0, 0, 62.609,0, 0, 0,0,0,0)
Yo = (0,0,0,0,0,4.348,0,0,0,0),

the objective value was 49318.078 and its determination required 4 branch and
bound iterations. The execution time for this problem was 9.7 cpu seconds on an
IBM-4381 computer.

3. Reactor Sequence Design with Capital Cost Constraints

Consider the reaction sequence A— B— C. Assuming first order kinetics for
both reactions, design a sequence of two reactors such that the concentration of B
in the exit stream of the second reactor (c,,;) is maximized and the investment
cost does not exceed a given upper bound.

The values of the reaction constants for the first and the second reaction are
given in the following table:

Reactor 1 Reactor 2
k, 9.6540 10725~! 9.7515107 257!
k, 3.5272107%5~! 3.9191 107 257!

The inlet concentration for B and C is zero. The inlet concentration for A is
Cﬂ() = 10 m()l/l

Problem Formulation:
Let Vi, V, be the residence times for the first and the second reactor respectively.
Let k,,, k.2, k,, and k,, be the rate constants for the first and second reaction in
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the first and the second reactor respectively. Then the reactor design problem is
formulated as a Nonlinear Programming Problem:

max ¢y
subject to,
(Cal - Ca()) + kalcalvl =0

(€Caz — Ca1) + kapc 2 Vo =0
(o1 —€a1 — Cap) + kp € V1 =0
(Co2 — Cp1 — Caz + Ca) + Kp2€p V2 =0

Assuming that the capital cost of a reactor is proportional to the square root of its
residence time, the capital cost constraint can be written as:

ViS4 VES=4

Employing the transformation 23 =V, and z3=V,, the capital cost constraint is
replaced by the following set of constraints:

ZI+ZZS4
Z%_V1=O
z23-V,=0

The resulting optimization problem belongs to the class (P2).

The problem has 2 local minima with objective values c,, = 0.38810 mol/It and
€p2 = 0.3746 mol/1t respectively.

Using algorithm 2, the global optimum is identified as ¢,, = 0.38810 mol/It. The
total number of branch and bound iterations for this problem was 7950, and the
execution time on an Apollo DN10000 was 7950 cpu seconds.

V. CONCLUSIONS

In this paper, it has been demonstrated that any rationally constrained rational
programming problem can be exactly transformed into a convex, quadratically
constrained, quadratic programming problem with an additional separable,
quadratic, reverse convex constraint. One can generate the latter through
variable transformations and introduction of new variables. The single reverse
convex constraint has the additional feature of being separable, something that
broadens the class of optimization algorithms that can be used for the solution of
this problem.

A novel implementation of the GBDA which benefits from this problem
equivalence has been shown to guarantee solution to global optimality for RCRP
problems. Based on this result, the global solution of an RCRP problem has been
translated to the global solution of a series of quadratically constrained and
separable RCP problems. This in turn suggests that new, more efficient
algorithmic approaches for the global solution of RCP problems will have an
immediate positive impact on the global solution of RCRP problems.
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