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S
ince the first genome-wide association study on macular 
degeneration in 2005 (ref. 1), over 3,000 GWASs have been 
published, for over 1,000 traits, reporting on tens of thousands 

of genetic risk variants2. These results have increased our under-
standing of the genetic architecture of traits. Occasionally, GWAS 
results have led to further insight into disease mechanisms3,4, such 
as autophagy for Crohn’s disease5, immunodeficiency for rheuma-
toid arthritis6 and transcriptome regulation through FOXA2 in 
the pancreatic islet and liver for type 2 diabetes7. After a decade 
of GWASs, we have learned that the majority of studied traits are 
highly polygenic and influenced by many genetic variants, each of 
small effect4,8, with disparate genetic architectures across traits9. 
Fundamental questions (such as whether all genetic variants or 
genes in the human genome are associated with at least one, many 
or even all traits, and whether the polygenic effects for specific traits 
are functionally clustered or randomly spread across the genome) 
are, however, still unanswered4,10,11. Such knowledge would greatly 
enhance our understanding of how genetic variation leads to trait 
variation and trait correlations. Whereas GWAS primarily aims to 
discover genetic variants associated with specific traits, the current 
availability of vast amounts of GWAS results allow investigation of 
these general questions.

To this end, we compiled a catalog of 4,155 GWAS results across 
2,965 unique traits from 295 studies (https://atlas.ctglab.nl), includ-
ing publicly available GWASs and new results for 600 traits from the 
UK Biobank12. These GWAS results were used in the current study 
to (1) chart the extent of pleiotropy at trait-associated locus, gene, 
SNP and gene-set levels, (2) characterize the nature of trait-asso-
ciated variants (that is, the distribution of effect size, minor allele 
frequency (MAF) and biological functionality of trait-associated 

or credible SNPs) and (3) investigate genetic architecture across a 
variety of traits and domains in terms of SNP heritability and trait 
polygenicity (see Supplementary Fig. 1).

Results
Catalog of 4,155 GWAS summary statistics. We collected publicly 
available, full GWAS summary statistics (last update 23 October 
2018; see Methods) resulting in 3,555 sets of GWAS summary 
statistics from 294 studies. We additionally performed GWAS on 
600 traits available from the UK Biobank release 2 cohort (UKB2; 
release May 2017)12, by selecting nonbinary traits with >50,000 
European individuals with nonmissing phenotypes, and binary 
traits for which the number of available cases and controls were 
both >10,000 and total sample size was >50,000 (see Methods, 
Supplementary Note and Supplementary Tables 1 and 2). In total, 
we collected 4,155 GWASs from 295 unique studies covering 2,965 
unique traits (Supplementary Table 3). Traits were classified into 27 
domains13,14. The average sample size across curated GWASs was 
56,250 subjects, with a maximum of 898,130 for type 2 diabetes15. 
The 4,155 GWAS results are made available in an online database 
(https://atlas.ctglab.nl), which provides a variety of information per 
trait, including SNP-based and gene-based Manhattan plots, gene-
set analyses16, SNP heritability estimates17, genetic correlations, 
cross-GWAS comparisons and phenome-wide plots.

We restricted subsequent analyses to reasonably powered 
GWASs (N > 50,000), to avoid including effect estimates with rela-
tively large standard errors (see Methods). For each unique trait, 
we selected the GWAS with the largest sample size, resulting in 558 
GWASs for 558 unique traits across 24 trait domains (479 GWASs 
based on UKB2, Supplementary Table 3). All results presented  
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hereafter concern these selected 558 GWASs unless otherwise spec-
ified. The online database, however, allows researchers to reproduce 
similar analyses with custom selections of GWASs.

Extent of pleiotropy. Results of previous GWASs showed signifi-
cant associations of thousands of genomic loci with a large num-
ber of traits2,4. Given a finite number of segregating variants on the 
human genome, this suggests the presence of widespread pleiotropy. 
Pleiotropy may inform reasons for comorbidity between traits, 
pointing to underlying shared genetic mechanisms, and may aid 
in establishing the direction of causality between traits. Currently, 
the exact extent of pleiotropy across the genome is unknown4. We 
therefore aimed to quantify the extent of pleiotropy. We defined 
pleiotropy as the presence of statistically significant associations 
with more than one trait domain, as traits within a domain tend to 
show stronger phenotypic correlations than those between domains 
(see Supplementary Note and Supplementary Fig. 2). Our definition 
thus refers to ‘statistical pleiotropy’, and includes situations of true 
pleiotropy (for example, one SNP directly influences multiple traits, 
or different causal variants are present for two traits, but these are in 
high linkage disequilibrium (LD)), and situations where statistical 
associations to multiple traits are induced via causal effects of one 
trait on another, via phenotypic correlations between traits or via 
a third common factor18. The level of pleiotropy was grouped into 
three categories: multidomain (associated with traits from multiple 
domains), domain specific (associated with multiple traits from a 
single domain) and trait specific (associated with a single trait; see 
Methods). We then assessed whether pleiotropic associations at the 
locus, gene, SNP or gene-set level are structurally or functionally 
different from nonassociated sites.

Pleiotropic genomic loci. The 558 GWASs yielded 41,533 trait-asso-
ciated loci (from 470 traits; 88 traits did not yield any genome-wide 
significant associations; see Methods). Grouping physically over-
lapping trait-associated loci resulted in 3,362 loci (see Methods, 
Supplementary Fig. 3 and Supplementary Table 4), with a summed 
length of 1,707.0 megabases (Mb) covering 61.0% of the genome. Of 
these, 93.3% were loci associated with more than one trait, and 90.0% 
were multidomain loci (see Table 1 and Supplementary Fig. 4a,b).  
The multidomain and domain-specific loci showed a significantly 
higher density of protein-coding genes compared with nonas-
sociated genomic regions (P = 4.4 × 10−16 and P = 3.7 × 10−4, two-
sided Mann–Whitney U-test; Fig. 1a and Supplementary Table 5). 
Additionally, trait-associated loci are more densely overlapping 
with loci from other traits than expected under the null hypothesis 
of no pleiotropy (Supplementary Note).

The most pleiotropic locus associated with the largest number of 
traits and domains was the MHC region (chr6: 25–37 Mb), containing  
441 trait-associated loci from 213 traits across 23 trait domains. 

The MHC region is well known for its high degree of LD, span-
ning over 300 genes. The extremely pleiotropic nature of this region 
is thus partly explained by its long-ranged LD blocks and overlap 
of multiple independent signals from multiple traits. High locus 
pleiotropy, not limited to the MHC region, can occur purely due 
to the overlap of the LD blocks of the loci in a grouped locus, and 
they may not share the same causal SNPs. By performing colocal-
ization (that is, statistically identifying loci sharing the same causal 
SNP) for all possible pairs of physically overlapping trait-associated 
loci (see Methods and Supplementary Fig. 3), 35,609 loci (88.4% of 
40,262 loci physically overlapping with at least one locus from other 
traits) were colocalized with at least one other locus, and 22,319 loci 
(55.4%) colocalized with at least one locus of a trait from a differ-
ent trait domain (see Supplementary Note). We indeed observed an 
average decrease of 38.3% in the number of associated trait domains 
per group of colocalized loci compared to grouped loci defined by 
physical overlap (see Supplementary Note, Supplementary Fig. 4  
and Supplementary Table 6). In addition, loci grouped based on 
physical overlap often contained multiple independent groups of 
colocalized loci (Supplementary Table 6). Therefore, physical over-
lap of trait-associated loci does not necessarily mean that the same 
causal SNPs are involved in the traits associated with such a grouped 
locus. Examination of pleiotropy at the gene or SNP level provides 
further insight into the nature of the pleiotropy.

Pleiotropic genes. To investigate the extent of pleiotropy at the gene 
level, we conducted gene-based analyses for each trait on 17,518 
protein-coding genes using MAGMA16 (see Methods). Of the 558 
traits, 518 yielded at least one associated gene, and 11,544 (65.9%) 
genes were associated with at least one trait (Supplementary Table 7). 
Of these, 81.2% were associated with more than one trait and 67.2% 
with traits from multiple domains (see Table 1 and Supplementary 
Fig. 5a,b). We found that genes associated with at least one trait 
are significantly longer than genes not associated with any of the 
558 tested traits (P = 2.3 × 10−192, P = 6.9 × 10−12 and P = 5.1 × 10−29 
for multidomain, domain-specific and trait-specific genes, respec-
tively, two-sided t-test; Fig. 1b and Supplementary Table 8). As 
the MAGMA algorithm accounts for gene length, these findings 
are unlikely to be due to larger genes having an increased statis-
tical probability to be significantly associated (see Supplementary 
Note, Supplementary Fig. 5c and Supplementary Table 9). The mul-
tidomain genes showed a significantly higher probability of being 
intolerant to loss of function mutations (pLI score)19 compared with 
trait-, domain-specific and nonassociated genes (P = 2.2 × 10−81, 
P = 3.2 × 10−22 and P = 1.5 × 10−18, respectively, two-sided Mann–
Whitney U-test; Fig. 1c and Supplementary Table 10). The most 
pleiotropic genes are located in the MHC region, yet, a region on 
chromosome 3 also spanned multiple genes with high levels of  
pleiotropy (Supplementary Fig. 5a).

Table 1 | Count and proportion of pleiotropic trait-associated loci, genes, SNPs and gene sets

Loci Genes SNPs Gene set

Length (Mb) % Count % Count % Count %

Total in genome 2,796.10 100.00 17,518 100.00 1,740,179 100.00 10,086 100.00

Associated 1,706.97 61.05 11,544 65.90 236,638 13.60 1,030 10.21

Pleiotropica 1,593.32 93.34 9,374 81.20 142,439 60.19 587 56.99

Multidomain 1,537.06 90.04 7,754 67.17 76,703 32.41 353 34.27

Domain specific 56.26 3.30 1,620 14.03 65,736 27.78 234 22.72

Trait specific 113.64 6.66 2,170 18.80 94,199 39.81 443 43.01

Nonassociated 1,089.13 38.95 5,974 34.10 1,503,541 86.40 9,056 89.79

aThe count of pleiotropic loci, genes, SNPs and gene sets is the sum of the multidomain and domain-specific categories. Proportion of pleiotropic, multidomain, domain-specific and trait-specific categories 

are relative to the associated loci, SNPs, genes or gene sets, respectively.
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We next tested whether the tissue specificity of genes was related 
to the level of pleiotropy by counting the number of active tissues 
per gene based on gene expression profiles for 53 tissues obtained 
from GTEx20 (see Methods). Indeed, the proportion of genes 
expressed in all 53 tissues increases along with the level of pleiotropy 
(P = 4.7 × 10−4 for regression coefficient; Fig. 1d and Supplementary 
Table 11), indicating that more pleiotropic genes tend to be active in 
multiple tissue types, and suggesting that those genes are involved 
in general biological functions across the human body.

Pleiotropic SNPs. Within the same locus or gene, multiple SNPs 
may be significantly associated with different traits. A locus or gene 
can thus show higher levels of pleiotropy than individual SNPs. To 

investigate the extent of pleiotropy at the level of SNPs, we extracted 
1,740,179 SNPs present in all 558 GWASs. We confirmed that this 
subset of SNPs was not strongly structurally biased in terms of 
genome coverage (r = 0.98, P = 0.02 with null hypothesis of r = 1) 
and functional consequences (r = 1.00, P = 0.07) compared with 
all known SNPs on the genome (see Methods and Supplementary 
Fig. 6a,b). Of the 1.7 million SNPs analyzed, 236,638 (13.6%) 
were genome-wide significant (P < 5 × 10−8) in at least one trait 
(Supplementary Fig. 6c and Supplementary Table 12). Of these, 
60.2% were associated with more than one trait and 32.4% showed 
multidomain associations (Table 1 and Supplementary Fig. 6d).

These pleiotropic SNPs were spread widely across the genome 
but were not evenly distributed, with chromosomes 1, 5, 11, 12, 
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Fig. 1 | Trait-associated locus, gene and SNP pleiotropy across the genome. a, Distribution of gene density of loci with different association types. 

b, Distribution of gene length in log scale with different association types. c, Distribution of pLI scores of genes with different association types. 

a–c, Multidomain: associated with traits from >1 domain, domain: associated with >1 trait from a single domain, trait: associated with a single trait, 

nonassociated: not associated with any of 558 traits. d, Tissue specificity of genes at different levels of pleiotropy. Each data point represents a 

proportion of genes expressed in a given number of tissues for a specific number of associated domains. e, Tissue specificity of SNPs based on active 

eQTLs at different levels of pleiotropy. Each data point represents the proportion of SNPs being eQTLs in a given number of tissues for a specific number 

of associated domains. f, Proportion of SNPs with different functional consequences at different levels of pleiotropy. Each data point represents the 

proportion of SNPs with a given functional consequence for a specific number of associated domains. d–f, Dashed lines refer to the baseline proportions 

(relative to all 17,444 genes (d) or all 1,740,179 SNPs (e,f)) and stars denote significant enrichment relative to the baseline (one-sided Fisher’s exact test).
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15, 17, 20 and 22 showing relative enrichment of pleiotropic SNPs 
(see Supplementary Note and Supplementary Table 13). Of all trait-
associated SNPs, the most pleiotropic SNP, located in the MHC 
region (rs707939; an intronic SNP of MSH5) was associated with 
48 traits from 13 domains. There were 41 SNPs associated with 
12 trait domains, of which 35 were located on chromosome 3, 
49.8–50.1 Mb overlapping with five protein-coding genes, TRAIP, 
CAMKV, MST1R, MON1A and RBM6. These SNPs include two 
exonic SNPs, on CAMKV (synonymous) and MST1R (nonsynony-
mous; Supplementary Table 12).

To investigate whether more pleiotropic SNPs are functionally 
different from less pleiotropic SNPs, we investigated how functional 
consequence and tissue specificity, in terms of expression quanti-
tative trait loci (eQTLs based on GTEx), were represented across 
different levels of SNP pleiotropy (see Methods). With increasing 
levels of pleiotropy, the proportion of exonic SNPs increased from 
less than 1% to over 5% (P = 1.6 × 10−2 for regression coefficient), 
and the proportion of intronic SNPs increased from less than 40% 
to over 50% (P = 2.2 × 10−3; Fig. 1e and Supplementary Table 14). 
The proportion of SNPs within flanking regions such as 5′ and 3′ 
untranslated regions (UTRs) also increased with the number of 
associated domains. Concurrently, we observed a steep decrease in 
the proportion of intergenic SNPs with increasing level of SNP plei-
otropy (P = 6.8 × 10−4; Fig. 1e and Supplementary Table 14). Based 
on active eQTLs, the proportion of SNPs being eQTLs in a greater 
number of tissues (>24 tissues out of 48) increased, along with the 
number of associated domains (P = 7.4 × 10−3 and P = 1.1 × 10−2 for 
eQTLs in between 25 and 36 tissues, and between 37 and 48 tis-
sues, respectively) while SNPs in genes expressed in a single, or in 
less than half of, available tissue types showed a decreasing propor-
tion (Fig. 1f and Supplementary Table 15). These results suggest 
that highly pleiotropic SNPs are more likely to be genic (exonic or 
intronic), and less likely to be tissue specific.

Pleiotropic gene sets. Pleiotropy at the level of trait-associated loci, 
genes or SNPs does not necessarily suggest the presence of shared 
biological pathways across multiple traits. To assess the level of plei-
otropy at the functional level, we performed gene-set analyses for 
the 558 traits using 10,086 gene sets (see Methods). In total, 218 
(39.1%) traits showed significant associations with one of the 1,030 
(10.2%) gene sets. The most pleiotropic gene set was ‘Regulation of 
transcription from RNA polymerase II promoter’, associated with 
74 traits from 10 domains, followed by 7 gene sets associated with 
≥7 domains, including 5 gene sets involved in regulation of tran-
scription (Supplementary Table 16). The number of genes in a gene 
set was significantly larger for highly pleiotropic gene sets (mul-
tidomain) than for other gene sets (P = 6.8 × 10−10, P = 3.3 × 10−17 
and P = 6.9 × 10−33 for domain specific, trait specific and nonas-
sociated, respectively, two-sided t-test; Supplementary Fig. 7a and 
Supplementary Table 17).

In contrast to the gene pleiotropy where 80.9% of genes were 
associated with more than one trait, only 57.0% of the associated 
gene sets were pleiotropic (Table 1). Additionally, the proportion of 
pleiotropic genes per gene set is not uniformly distributed, and pleio-
tropic genes tend to cluster into a subset of gene sets, explaining the 
decreased proportion of pleiotropic gene sets compared with pleio-
tropic genes (Supplementary Note and Supplementary Fig. 7b,c).  
At the same time, the higher proportion of trait-specific gene sets 
(43.0%) compared with trait-specific genes (18.8%) suggests that, 
given currently defined gene sets, the combination of associated 
genes is rather specific to each trait.

Genetic correlations across traits. Above we showed that of all trait-
associated loci, genes and SNPs that are associated with at least 
one trait, 90.0%, 67.2% and 32.4%, respectively, are associated with 
traits from multiple domains. Such widespread pleiotropy indicates 

nonzero genetic correlations between traits. To test whether genetic 
correlations are evenly distributed across traits or cluster into trait 
domains, we computed pairwise genetic correlations (rg) across 558 
traits using LD score regression (LDSC)17.

We calculated the proportion of trait pairs with an rg signifi-
cantly different from zero across all 558 traits, within and between 
domains. Out of 155,403 possible pairs across 558 traits (average 
|rg| of 0.16), 24,170 pairs (15.5%) showed significant genetic cor-
relations after Bonferroni correction (P < 0.05/155,403 = 3.2 × 10−7) 
with an average |rg| of 0.38.

If the trait domains contain traits that are biologically related, we 
would expect traits within the same domain to have stronger genetic 
correlations than traits across domains. Indeed, most of the domains 
showed a proportion of trait pairs with significant genetic correla-
tions of >20% and an average |rg| > 0.5 within the domains (Fig. 2a 
and Supplementary Table 18). The proportion of pairs with a signif-
icant genetic correlation within domains was especially high in cog-
nitive, ‘ear, nose, throat’, metabolic and respiratory domains. Note 
that the proportion of trait pairs with significant rg may be biased 
by sample size and SNP heritability (h2

SNP) of traits within a domain; 
across 558 traits, the worst-case scenarios with the minimum 
observed h2

SNP (0.0045 with sample size 385,289) or the minimum 
sample size (51,750 with h2

SNP = 0.0704) required rg to be above 0.39 
or 0.18, respectively, to gain a power of 0.8 (see Methods). The pro-
portion of trait pairs with significant genetic correlations was gener-
ally lower between domains than within domains, and most of the 
domain pairs showed average |rg| < 0.4 (Fig. 2b and Supplementary 
Table 19). We further clustered traits based on genetic correlations 
(using |rg|), which resulted in the majority of clusters containing 
traits from multiple domains (see Methods, Supplementary Note 
and Supplementary Fig. 8). These results suggest that, although |rg| 
is higher within domains than across domains, the current defi-
nition of trait domains does not necessarily comprise genetically  
similar traits.

Nature of trait-associated variants. We investigated characteris-
tics of trait-associated variants in terms of their effect sizes, MAF, 
functional consequences on genes and regulatory functions. We 
extracted all lead SNPs from each of the 558 GWASs. Lead SNPs 
were defined per trait at the standard threshold for genome-wide 
significance (P < 5 × 10−8) and using an r2 of 0.1 to obtain near-
independent lead SNPs, based on the population-relevant reference 
panel (see Methods). This resulted in 82,633 lead SNPs for 476 traits, 
reflecting 43,492 unique SNPs. Out of 558 traits, 82 traits did not 
yield any genome-wide significant lead SNP after quality control.

Distribution of MAF and effect sizes of lead SNPs. Of the 43,492 
(unique) lead SNPs derived from the 558 GWASs, 12.3% had a 
MAF below 0.01, which is significantly less than expected given the 
proportion of rare variants in the reference panels (P < 1 × 10−323, 
two-sided Fisher’s exact test; Supplementary Note), while the dis-
tribution of lead SNPs with a MAF above 0.01 was nearly uniform 
(Fig. 3a).

We calculated the standardized effect size (β) from Z-statistics as 
a function of MAF and sample size21, and inspected the distribution 
of the squared standardized effect sizes (β2) for lead SNPs across 
all traits (see Methods). The median β2 of the lead SNPs across all 
traits was 5.7 × 10−4 (4.9 × 10−4 and 6.0 × 10−2 for lead SNPs with 
MAF ≥ 0.01 and <0.01, respectively), and 94.6% of lead SNPs had 
β2 < 0.05 (Fig. 3b). We observed a relationship between MAF and β2, 
with rare variants (MAF < 0.01) showing larger effect sizes (Fig. 3c),  
corresponding with the notion that rare variants are more likely 
to have large effects than common variants, as they are less likely 
to be under strong selective pressure22. However, we also note that 
statistical power for detecting rare variants is unstable23. Given  
that the proportion of rare lead SNPs is larger than other MAF bins, 
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Fig. 2 | Within- and between-domain genetic correlations. a, Proportion of trait pairs with significant rg (top) and distribution absolute values of genetic 

correlation (|rg|) for significant trait pairs (bottom) within domains. Dashed lines represent the proportion of trait pairs with significant rg (top) and average 

|rg| for significant trait pairs (bottom) across all 558 traits, respectively. In the box plots (bottom panel), dark gray and light gray horizontal lines represent 

mean and median, respectively. Connective tissue, muscular and infection domains are excluded, as these each contains less than three traits. b, Heat 

map of proportion of trait pairs with significant rg (upper right triangle) and average |rg| for significant trait pairs (lower left triangle) between domains. 

Connective tissue, muscular and infection domains are excluded, as each contains less than three traits. The diagonal represents the proportion of trait 

pairs with significant rg within domains. Stars denote the pairs of domains in which the majority (>50%) of significant rg are negative.
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the distribution of the effect sizes may have longer tails for SNPs with 
MAF < 0.01. For most traits, a similar relationship between MAF 
and standardized effect size was observed (Supplementary Fig. 9), 
but large variation across traits was seen in terms of the number of 
rare lead SNPs, with, for example, a large proportion of rare variants 
influencing nutritional and social interaction domains (possibly 
due to the larger sample sizes; Supplementary Note, Supplementary 
Fig. 10 and Supplementary Tables 20 and 21).

Characterization of trait-associated loci and lead SNPs. We sought 
to characterize differences in the distribution of functional annota-
tions comparing SNPs within trait-associated loci to all SNPs in the 
genome, and comparing lead SNPs to SNPs in the trait-association 
loci (see Methods). Comparing SNPs in the trait-associated loci 
against the entire genome, the strongest enrichment of SNPs in trait-
associated loci was seen in flanking regions (upstream, downstream, 
5′ and 3′ UTR) with average fold enrichment (E) of 1.31 (Fig. 3d and 
Table 2). Of SNPs in trait-associated loci, 93.1% were noncoding, 
where intergenic SNPs were significantly depleted (E = 0.84), while 
intronic SNPs were significantly enriched compared with all SNPs 
in the genome (E = 1.17; Table 2). SNPs in trait-associated loci were 

also more often exonic compared to the entire genome (E = 1.07). 
Active chromatin states and eQTLs were also significantly enriched, 
with notably high enrichment of eQTLs (E = 1.61 and 5.95, respec-
tively; Table 2).

We next compared lead SNPs with SNPs in the trait-associated 
loci. The strongest enrichment was seen in exonic SNPs (E = 2.84) 
followed by flanking regions (E = 1.38), while intronic and inter-
genic regions were depleted (average E = 0.95; Fig. 3d and Table 2). 
These results clearly indicate that SNPs located in exonic and flank-
ing regions tend to show stronger effect sizes than other SNPs within 
the trait-associated loci. On the other hand, active chromatin states 
showed significant enrichment with a slight increased proportion 
(E = 1.08) while eQTLs were significantly depleted (E = 0.80) com-
pared to SNPs in the trait-associated loci (Fig. 3e,f and Table 2). This 
suggests that SNPs within the trait-associated loci largely overlap 
with regulatory elements but that these elements do not always have 
the strongest effect sizes within the loci.

Characterization of a credible set of SNPs based on fine mapping. Lead 
SNPs (that is, defined by LD and P values) are not necessarily the 
causal SNPs in trait-associated loci24. We therefore performed fine 
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mapping using FINEMAP25 for 41,041 trait-associated loci from 
466 traits to obtain credible SNPs, and characterized these in the 
same way as was done for lead SNPs (see Methods, Supplementary 
Note and Supplementary Fig. 11). The enrichment pattern of SNPs 
in the fine-mapped regions was similar to SNPs in the trait-asso-
ciated loci; that is, significant enrichments in exonic, intronic and 
flanking regions, active chromatin state and eQTLs (Fig. 3d and 
Table 2; see Supplementary Note for details). Credible SNPs (with 
posterior inclusion probability (PIP) > 0.95) showed similar enrich-
ment patterns to lead SNPs; strong enrichment in exonic (E = 3.47) 
and flanking regions (E = 1.50), as well as intronic regions (E = 1.14) 
compared to the SNPs in fine-mapped regions (Table 2). The credible  
SNPs were also significantly enriched in both active chromatin 
states (E = 1.57) and eQTLs (E = 4.67; Fig. 3e,f and Table 2). Notably, 
enrichments of credible SNPs in exonic and flanking regions, active 
chromatin and eQTLs were much higher in credible SNPs compared 
with lead SNPs, indicating that the fine mapping successfully reas-
signed higher PIP for functional SNPs. We note that credible SNPs 
with PIP > 0.95 covered only 15.3% of fine-mapped loci, which 
might bias our observation. We, therefore, further evaluated cred-
ible SNPs at PIP > 0.8, 0.5 and 0.1, and showed similar enrichment 
patterns but with increasing proportion of functional SNPs with 
increasing PIP threshold (Supplementary Note and Supplementary 
Table 22).

Nature of the genetic architecture of complex traits. To investigate 
how the genetic architecture varies across multiple complex traits, 
we assessed h2

SNP and the polygenicity of 558 traits.

SNP heritability. The h2
SNP is an indication of the total amount of 

phenotypic variance that is captured by the additive effects of all 
variants included in a GWAS. The h2

SNP depends on several factors, 
such as the number of SNPs included in the analyses, the polygenic-
ity of the trait (that is, how many SNPs have an effect) and the distri-
bution of effect sizes. We estimated h2

SNP for each trait using LDSC17 
and SumHer from LDAK26,27 (see Methods). The estimates of h2

SNP 

using LDSC and SumHer showed a positive correlation of r = 0.77 
(P = 2.5 × 10−111; Fig. 4a). We focus on estimates based on LDSC, 
hereafter, however, complete results are available in Supplementary 
Table 23 and are discussed in the Supplementary Note.

The highest h2
SNP was observed for height (h2

SNP = 0.31) followed 
by bone mineral density (h2

SNP = 0.27). Of 558 traits, 213 traits, with 
an average sample size 252,934, showed h2

SNP less than 0.05. Most of 
these traits are classically regarded as ‘environmental’ (for example, 
current employment status, illness of family members or activity 
regarding lifestyle), and tend to have a low broad sense heritability14. 
For these traits, the number of detected trait-associated loci was also 
very low, with a median 3. The combination of N > 200,000 and low 
h2

SNP suggests that for these traits increasing the sample size may not 
lead to a substantial increase in detected loci.

Polygenicity and discoverability of complex traits. The general obser-
vation from GWASs is that with increasing sample size, detected 
signals become not only more reliable, but also more numer-
ous, as, with increasing statistical power, smaller SNP effects may 
be detected. The total number of associated SNPs, the amount of 
variance they collectively represent, the distribution of effect sizes 
across the associated SNPs and how many additional individuals are 
expected to be needed for the detection of a fixed number of novel 
SNPs are indicators of the polygenicity of a trait. Such polygenicity 
may vary across traits, and can be informative for designing SNP-
discovery studies.

To obtain an indication of trait polygenicity, we applied the 
causal mixture model for GWAS summary statistics (univariate 
MiXeR based on a Gaussian mixture model)28,29 to estimate π (frac-
tion of independent causal SNPs reflecting polygenicity of a trait) 
and σβ

2 (variance of effect sizes of the causal SNPs reflecting dis-
coverability of a trait; see Methods). The value of π ranges between 
0 and 1, and a high π indicates a high level of polygenicity, while a 
high σβ

2 indicates a high level of discoverability of causal SNPs for 
the trait. Since the standard error of the model estimates become 
larger for traits with very small h2

SNP due to the small effect sizes, we 

Table 2 | Characteristics of lead SNPs and credible SNPs with PiP > 0.95 across 558 traits versus all SNPs in the genome

Annotation 

categories

Genome Trait-associated loci Lead SNPs SNPs in fine-mapped regionsa Credible SNPs (PiP > 0.95)b

% % E Pc % E Pd % E Pc % E Pe

Noncoding 94.37 93.06 0.99 <1 × 10−323 89.13 0.96 1.54 × 10−201 93.95 1.00 <1 × 10−323 89.10 0.95 4.06 × 10−90

 Intergenic 44.11 36.88 0.84 <1 × 10−323 34.31 0.93 1.85 × 10−29 41.45 0.94 <1 × 10−323 30.79 0.74 1.01 × 10−127

 Intronic 38.29 44.88 1.17 <1 × 10−323 43.85 0.98 1.15 × 10−5 41.04 1.07 <1 × 10−323 46.96 1.14 3.82 × 10−39

 scRNA intronic 11.98 11.29 0.94 2.38 × 10−125 10.98 0.97 3.47 × 10−2 11.47 0.96 <1 × 10−323 11.35 0.99 6.98 × 10−1

Coding 2.15 2.40 1.12 2.56 × 10−79 4.60 1.92 3.07 × 10−161 2.31 1.07 <1 × 10−323 5.29 2.29 1.79 × 10−77

Exonic 1.06 1.13 1.07 1.64 × 10−15 3.22 2.84 9.60 × 10−257 1.22 1.15 <1 × 10−323 4.24 3.47 5.35 × 10−122

Splicing 1.16 × 10−2 1.13 × 10−2 0.98 0.828532 2.11 × 10−2 1.86 6.20 × 10−2 0.01 1.13 3.30 × 10−28 0.02 1.28 6.72 × 10−1

ncRNA exonic 1.07 1.25 1.16 2.72 × 10−77 1.36 1.09 4.55 × 10−2 1.07 1.00 7.09 × 10−1 1.04 0.97 7.90 × 10−1

ncRNA splicing 5.40 × 10−3 5.09 × 10−3 0.94 0.702988 2.35 × 10−3 0.46 7.27 × 10−1 0.01 0.98 3.14 × 10−1 0.00 0.00 1

Flanking regions 3.48 4.54 1.31 <1 × 10−323 6.27 1.38 1.02 × 10−61 3.74 1.07 <1 × 10−323 5.60 1.50 9.17 × 10−24

Upstream 1.09 1.33 1.22 3.83 × 10−135 1.64 1.23 3.19 × 10−8 1.12 1.02 1.64 × 10−67 1.52 1.36 5.96 × 10−5

5′ UTR 0.30 0.44 1.48 3.44 × 10−166 0.78 1.76 8.18 × 10−23 0.35 1.17 <1 × 10−323 0.70 2.01 6.28 × 10−9

 3′ UTR 0.98 1.32 1.34 2.08 × 10−285 2.06 1.56 2.63 × 10−36 1.14 1.16 <1 × 10−323 2.04 1.79 6.07 × 10−17

Downstream 1.10 1.45 1.32 1.18 × 10−280 1.79 1.23 7.82 × 10−9 1.13 1.03 4.20 × 10−22 1.34 1.18 3.78 × 10−2

Active chromatin 17.24 27.74 1.61 <1 × 10−323 30.10 1.08 8.45 × 10−30 20.86 1.21 <1 × 10−323 32.75 1.57 9.05 × 10−202

eQTLs 9.66 57.41 5.95 <1 × 10−323 46.15 0.80 <1 × 10−323 11.47 1.19 <1 × 10−323 53.56 4.67 <1 × 10−323

E, fold enrichment (proportion of SNPs with a certain annotation divided by the proportion of SNPs with the same annotation in background). aFine-mapped regions are 50 kb 
windows from the top SNPs or the trait-associated loci, whichever is larger. bFrom 95% credible set SNPs, only SNPs with PIP > 0.95 were selected. cP value of Fisher’s exact 
test (two-sided) against the entire genome. dP value of Fisher’s exact test (two-sided) against trait-associated loci. eP value of Fisher’s exact test (two-sided) against 50 kb 
around the top SNPs.
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only discuss the results of 198 out of 558 traits with h2
SNP > 0.05 and 

standard error of π less than 50% of the estimated value (full results 
in Supplementary Table 24). We observed, as expected, a negative 
relationship between polygenicity and discoverability (r = −0.89 
and P = 2.4 × 10−70), confirming that highly polygenic traits tend to 
have less causal SNPs with larger effect sizes (Fig. 4b). The majority 
of traits (that is, 116 of 198 traits) showed high polygenicity with 
π > 1 × 10−3 (more than 0.1% of analyzed SNPs are causal). The high-
est polygenicity was observed in Major Depressive Disorder, with 
0.6% of SNPs being causal, while some traits, such as fasting glucose 
and serum urate level, showed relatively low polygenicity (Fig. 4b 
and Supplementary Table 24). The traits with polygenicity >0.1% 
showed, on average, eight times less discoverability compared with 
other traits with <0.1% of causal SNPs. The GWAS discoveries for 
traits with lower polygenicity and high discoverability will satu-
rate with a lower sample size, compared with the traits with higher 
polygenicity. Indeed, the estimated sample size required to explain  
90% of h2

SNP by genome-wide significant SNPs, is positively corre-
lated with polygenicity (r = 0.83 and P = 1.0 × 10−52), and extremely 

polygenic traits require tens of millions of subjects to identify 90% 
of causal SNPs at a genome-wide significant level (Fig. 4c).

We do note, however, that the model used in the univariate 
MiXeR assumes both causal and noncausal variants follow Gaussian 
distributions, N(0, σβ

2) and N(0, 0), respectively, which may not  
hold true for all traits. Therefore, the results should be interpreted as 
conditional based on these assumptions.

Discussion
Here, we compiled a catalog of 4,155 GWASs to gain insight into the 
genetic architecture of human complex traits. Based on 558 well-
powered GWASs, we addressed fundamental questions concerning 
the extent of pleiotropy of loci, genes, SNPs and gene sets, character-
istics of trait-associated variants and the polygenicity of traits.

We found that the total summed length of trait-associated loci 
for the 558 analyzed traits covered more than half (60.1%) of the 
genome. Ninety percent of the grouped loci contained associations 
with multiple traits across multiple trait domains. High locus pleiot-
ropy can occur in two scenarios: (1) when the same gene in a locus 
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colored by domain.
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is associated with multiple traits or (2) when different genes or SNPs 
in the same locus are associated with multiple traits but, due to LD, 
the same locus is indicated. Our results showed that locus pleiotropy 
is widespread (90%), whereas pleiotropy at the level of genes (63%) 
and SNPs (31%) is much less abundant. This suggests that a gene 
can be involved in multiple traits but how that gene is affected by the 
causal SNPs may differ across traits. For instance, the function of 
the gene can be disrupted through a coding SNP for one trait, while 
expression of that gene can be affected through a regulatory SNP for 
another trait. At the same time, overlap of trait-associated loci can 
be observed due to the overlap of the LD blocks while each trait may 
be affected by the distinct genes.

Genes and SNPs showing higher levels of pleiotropy were less tis-
sue specific in terms of gene expression and active eQTLs. This sug-
gests that SNPs and genes associated with multiple trait domains are 
more likely to be involved in general biological functions. Indeed, 
the most pleiotropic gene sets were mostly involved in regulation 
of transcription, which is an essential biological function for any 
kind of cell. Highly pleiotropic genes, therefore, can explain general  
vulnerability to a wide variety of traits, yet they may be less  
informative when the aim is to understand the causes of a specific 
trait. Although a large proportion of trait-associated genes are  
pleiotropic, the majority of trait-associated gene sets were trait  
specific. Thus, the trait-specific combination of genes is highly 
informative, and future studies aimed at improved annotation of 
gene functions will be needed to understand trait-specific gene-
association patterns.

It has been widely acknowledged that almost 90% of GWAS 
findings fall into noncoding regions2. Indeed, our results show that 
89.1% of the lead SNPs are noncoding, including intergenic (34.3%) 
and intronic (43.6%) SNPs. Similarly, of the credible SNPs 89.1% 
were noncoding (intergenic 30.8% and intronic 47.0%). However, we 
observed different patterns between intergenic and intronic SNPs; 
intergenic SNPs were depleted and the intronic SNPs were enriched 
in both the lead and credible SNPs. We also observed strong enrich-
ment of the lead and credible SNPs in coding and flanking regions. 
These results indicate that both SNPs with the largest effect size (the 
lead SNPs) and the most likely causal SNPs (credible SNPs) within a 
locus tend to be located within or close to the genes.

Our analyses showed that the majority of analyzed traits are 
highly polygenic, with more than 0.1% of SNPs being causal. For 
those highly polygenic traits, over tens of millions of individu-
als are required to identify all SNPs at genome-wide significance 
(P < 5 × 10−8) that can explain at least 90% of the additive genetic 
variance (assuming that the distribution of remaining effects fol-
lows a Gaussian distribution). In the case of polygenic traits, indi-
viduals have almost unique combinations of risk/effect alleles for 
a specific disease or trait. With higher levels of polygenicity, and 
thus larger quantities of causal SNPs, the possible combinations of 
these increase exponentially. This substantially increases the degree 
of genetic heterogeneity of traits, and complicates the detection of 
genetic effects, as the effect sizes of individual SNPs that are yet to be 
detected are even smaller than those observed in current GWASs.

In conclusion, we provide the most comprehensive overview 
so far, of the extent of pleiotropy, the nature of associated genetic 
regions and variation in genetic architecture across traits. This 
knowledge can guide the design of future genetic studies.
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Methods
GWAS summary statistics and preprocessing. Publicly available GWAS summary 
statistics were curated from multiple resources and were included only when the 
full set of SNPs were available (last update 23 October 2018). Details are provided 
in Supplementary Note and Supplementary Table 25.

Additional to the summary statistics available from external studies, we 
performed GWASs of traits from UK Biobank release 2 cohort (UKB2)12 with 
PLINK v.1.9 (ref. 30) under application ID 16404 (last update 31 October 2017; see 
Supplementary Note for details). The complete list of GWAS summary statistics is 
available in Supplementary Table 3.

Definition of lead SNPs and trait-associated loci. For each GWAS, we defined 
lead SNPs and genomic trait-associated loci as described previously31. First, we 
defined independent significant SNPs with P < 5 × 10−8 and independent at r2 < 0.6, 
and their LD blocks based on SNPs with P < 0.05. Of these SNPs, we further 
defined lead SNPs that are independent at r2 < 0.1. We finally defined genomic 
trait-associated loci by merging LD blocks closer than 250 kilobases (kb). Each 
trait-associated locus was then represented by the top SNP (with the minimum 
P value) and its genomic region was defined by the minimum and maximum 
position of SNPs that are in LD (r2 ≥ 0.6) with one of the independent significant 
SNPs within the (merged) locus. We used 1000 Genome Project phase 3 (1000G)32 
as a reference panel to compute LD for most of the GWASs in the database. For 
each GWAS, the matched population (from African (AFR), American (AMR), East 
Asian (EAS), European (EUR), and South Asian (SAS)) was used as the reference 
based on the information obtained from the original study. For trans-ethnic 
GWASs, the population with the largest total sample size was used. For GWAS 
based on the UK Biobank release 1 cohort (UKB1), we used 10,000 randomly 
sampled unrelated white British subjects from UKB1 as a reference. For GWASs 
based on the UKB2, 10,000 randomly selected unrelated EUR subjects were used 
as a reference. Multi-allelic SNPs were excluded from any analyses. The reference 
panel for each GWAS is specified in Supplementary Table 3.

In the current study, lead SNPs with minor allele count (MAC) ≤ 100 (based on 
MAF and sample size of the SNP) were excluded from any of the analyses, because 
of lower statistical power and a high false-positive rate among SNPs with extremely 
small MAF.

MAGMA gene and gene-set analysis. We performed MAGMA v.1.06 (ref. 16) 
(https://ctg.cncr.nl/software/magma) gene and gene-set analyses for every GWAS 
in the database. For gene analysis, 20,260 protein-coding genes were obtained 
using the R package BioMart (Ensembl build v.92 GCRh37). SNPs were assigned 
to genes with a 1-kb window both sides. The reference panel was based on either 
1000G, UKB1 or UKB2 as described in the previous section. Gene analysis was 
performed with default parameters (snp-wise mean model). Gene-set analysis was 
performed for 4,737 curated gene sets (C2) and 5,917 gene ontology terms (C5; 
4,436 biological processes, 580 cellular components and 901 molecular functions) 
from MSigDB v.6.1 (http://software.broadinstitute.org/gsea/msigdb)33.

SNP heritability and genetic correlation with LDSC. We performed LDSC  
(https://github.com/bulik/ldsc)17 for GWASs in the database to estimate SNP 
heritability and pairwise genetic correlations. Precalculated LD scores for 1000G 
EUR and EAS populations were obtained from https://data.broadinstitute.org/
alkesgroup/LDSCORE/, and LDSC was only performed for GWASs based on either 
an EUR or EAS population, and when the number of SNPs in the summary statistics 
file was >450,000. SNPs were limited to HapMap3 SNPs and the MHC region  
(25–34 Mb) was excluded. When the signed effect size or odds ratio was not 
available in the summary statistics file, ‘--a1-inc’ flag was used. As recommended 
previously34, we excluded SNPs with χ2 > 80. For binary traits, the population 
prevalence was curated from the literature (only for diseases whose prevalence 
was available, Supplementary Table 26) to compute SNP heritability at the liability 
scale. For most of the (binary) personality/activity traits from the UKB2 cohort, we 
assumed that the sample prevalence is equal to the population prevalence, since the 
UK Biobank is a population cohort and not designed to study a certain disease or 
trait. Likewise, when population prevalence was not available, sample prevalence was 
used as population prevalence for all other binary traits. Genetic correlations were 
computed for pairwise GWASs with the following criteria as suggested previously34:

•	 GWASs of EUR population or more than 80% of samples are EUR.
•	 Number of SNPs is >450,000.
•	 Signed statistics are available.
•	 Effect and noneffect alleles are explicitly mentioned in the header or elsewhere.
•	 Z-score for h2

SNP is >2.

In total, pairwise genetic correlations were computed for 1,193 GWASs in the 
database.

Selection of GWASs for cross-phenotype analyses. From the 4,155 curated 
GWASs, we selected 558 GWASs with unique traits for cross-phenotype analyses 
based on the following criteria.

•	 N > 50,000 and both cases and controls are >10,000 for binary phenotypes.
•	 Number of SNPs is >450,000.

•	 GWAS is based on EUR population or >80% of the samples are EUR. If sum-
mary statistics of both trans-ethnic and EUR-only are available, use EUR-only 
GWAS.

•	 Exclude sex-specific GWAS, unless the trait under study is only available for a 
specific sex (for example, age at menopause). If sex-specific and sex-combined 
GWASs are available, use sex-combined GWAS.

•	 Z-score of h2
SNP is >2.

•	 Signed statistics (beta or odds ratio) is available.
•	 Effect and noneffect alleles are explicitly mentioned in the header or else-

where.

From GWASs that met the above criteria, for each trait, GWAS with the 
maximum sample size was selected. UKB2 GWASs performed in this study were 
further filtered based on the following:

•	 Exclude cancer screening or test phenotypes.
•	 Exclude item-level phenotypes (that is, neuroticism and fluid intelligence 

tests).
•	 Exclude phenotypes of parents age and parents still alive.
•	 Exclude medication, treatment, supplements and vitamin traits.
•	 If exactly the same traits were diagnosed by an expert (for example, doctor) 

and self-reported, use the expert qualification.
•	 If exactly the same traits were present as main and secondary diagnoses, 

include both.
•	 Phenotypes with large extremes were excluded from the analyses when the 

difference between the maximum value and 99 percentiles of the standardized 
phenotype value is >50.

There was one exception, for height GWAS, where a meta-analysis by  
Yengo et al.35 (ID 4044) has the largest sample size, however, the meta-analysis was 
limited to ~2.4 million HapMap2 SNPs. Since over 10 million SNPs are included 
in most of the selected GWASs, this smaller number of SNPs can bias our analyses. 
Therefore, the second-largest GWAS (ID 3187) was used instead. This resulted 
in a total of 558 GWASs across 24 domains. Out of the 558 GWASs, 479 (85.8%) 
were based on the UKB2, including 11 meta-analyses with UKB2, 46 (8.2%) on 
the UK Biobank release 1 cohort (UKB1), including 8 meta-analyses with UKB1, 
and the remaining were non-UKB cohorts. These 558 GWASs are specified in 
Supplementary Table 3.

Pleiotropic trait-associated loci. To define pleiotropic loci for the 558 GWASs, we 
first extracted trait-associated loci on autosomal chromosomes. We excluded any 
locus with a single SNP (no other SNPs have r2 > 0.6) as these loci are more likely 
to be false positives. Physically overlapping loci were then grouped across 558 
traits. In a group of loci, it is not required that all individual trait-associated loci are 
physically overlapping, but merging them should result in a continuous genomic 
region. For example, when loci A and B physically overlap and loci B and C also 
physically overlap, but A and C do not, these three loci were grouped into a single 
group of loci (Supplementary Fig. 3). Therefore, a grouped locus could contain 
more than one independent locus from a single trait when gaps between them were 
filled by loci from other traits. The grouped loci were further assigned to three 
categories, (1) multidomain locus when a loci group contained traits from more 
than one domain, (2) domain-specific locus when a loci group contained more 
than one trait from the same domain and (3) trait-specific locus when a locus did 
not overlap with any other loci.

We compared the distribution of gene density across three association 
categories of the loci and nonassociated genomic regions. To define nonassociated 
genomic regions, we extracted the minimum and maximum positions that were 
covered by 1000G, and the gap regions of grouped trait-associated loci were 
defined as nonassociated regions. The gene density was computed as a proportion 
of a region that was overlapping with one of 20,260 protein-coding genes obtained 
from Ensembl v.92 GRCh37. We then performed a pairwise Mann–Whitney  
U-test (two-sided).

Colocalization of trait-associated loci. To evaluate if physically overlapping trait-
associated loci also share the same causal SNPs, we performed colocalization using 
the coloc.abf (approximate Bayes factor colocalization analysis) function from 
the coloc package in R36. Colocalization analysis was performed for all possible 
pairs of physically overlapping trait-associated loci across 558 traits. When two 
loci from different traits were physically overlapping but there were no SNPs 
that were present in both GWAS summary statistics in that overlapping region, 
colocalization was not performed. The inputs of the coloc.abf function were  
P value, MAF and sample size for each SNP. When MAF was not available in the 
original summary statistics, it was extracted from the matched reference panel.  
For binary traits, sample prevalence was additionally provided based on total  
cases and controls of the study.

We defined a pair of loci as colocalized when the posterior probability of 
sharing the same (single) causal SNPs between two traits is >0.9 (Supplementary 
Note). We note that it is possible that genomic regions outside the predefined 
trait-associated loci can also colocalize with other traits. However, we limited the 
analyses to the predefined trait-associated loci in this study, to be consistent with 
the level of pleiotropy measured by physical overlap of the loci.
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Within a grouped locus defined based on physical overlap (see previous 
section), we further grouped loci based on a colocalization pattern. To do so, we 
considered the colocalization pattern across a group of physically overlapping 
loci as a graph in which nodes represent trait-associated loci and edges represent 
colocalization between loci. First, loci that did not colocalize with any other 
loci were considered as independent loci. For the remaining loci, we identified 
connected components of the graph (Supplementary Fig. 3). This does not 
require all loci within a component to be colocalized with each other. For 
example, when locus A is colocalized with locus B, and locus B is colocalized 
with locus C, but locus A is not colocalized with locus C, all loci A, B and C are 
grouped into a single connected component. Detailed results are discussed in the 
Supplementary Note.

Pleiotropic genes. For gene-level pleiotropy, we extracted MAGMA gene analysis 
results for the 558 traits, where 17,444 genes on autosomal chromosomes were 
tested in all GWASs. For each trait, genes with P < 2.87 × 10−6 (0.05/17,444) were 
considered as significantly associated. We did not correct the P value for testing 
558 traits, since our purpose is not to identify genes associated with one of the 558 
traits, but to evaluate the overlap of trait associations (when GWAS was performed 
for a single trait) across the 558 traits, and this applies to SNPs and gene-set level 
pleiotropy as well. The trait-associated genes were further categorized into three 
groups in a similar way as for trait-associated loci, that is, (1) multidomain  
genes that were significantly associated with traits from more than one domain,  
(2) domain-specific genes that were significantly associated with more than one 
trait from the same domain and (3) trait-specific genes that were significantly 
associated with a single trait. We note that some of the observed gene pleiotropy 
can still be induced by LD, for example, genes located close to the actual causal gene 
also tend to show significant association based on the MAGMA gene-based test.

We compared gene length and pLI score across genes in three different 
association categories and nonassociated genes. Gene length was based on the start 
and end position of genes extracted from the R package biomaRt, and pLI score 
was obtained from ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/
functional_gene_constraint. We performed t-tests for gene length in log scale and 
Mann–Whitney U-tests for pLI scores (both two-sided).

For each protein-coding gene, we assessed whether a gene is expressed or not 
in each of 53 tissue types based on expression profile obtained from GTEx v.7  
(ref. 20) (https://www.gtexportal.org/home/). We defined genes as expressed in 
a given tissue type if the average transcripts per kilobase million is >1. We then 
counted the number of tissue types where the gene is expressed and grouped them 
into six categories, that is, genes expressed in (1) a single tissue type (tissue-specific 
genes), (2) between 2 and 13, (3) between 14 and 26, (4) between 27 and 39,  
(5) between 40 and 52 and (6) 53 (all) tissue types. At each number of associated 
domains (from 1, to 10 or more domains), we recalculated the proportion of genes 
in each of the six categories, and performed the Fisher’s exact tests (one-sided) 
against all other genes to evaluate if the proportion is higher than expected.

Pleiotropic SNPs. We extracted 1,740,179 SNPs that were present in all 558 
GWASs. To evaluate if the selection of ~1.7 million SNPs biased the results, we 
compared distribution of these analyzed SNPs with all the known SNPs in the 
genome (SNPs present in 1000G EUR, UKB1 and UKB2 reference panels) by 
computing the proportion of SNPs per chromosome. In addition, distribution 
of functional consequences of SNPs annotated by ANNOVAR37 (http://annovar.
openbioinformatics.org/) was compared with all SNPs in the genome.

For each SNP, we counted the number of traits to which an SNP was 
significantly associated at P < 5 × 10−8, and then grouped the associated SNPs into 
multidomain, domain-specific and trait-specific SNPs using the same definitions 
as at the gene level. We note that some of the observed SNP pleiotropy may still 
be induced by LD, for example, an SNP could reach genome-wide significance 
because of its strong LD with a causal SNP. However, the purpose of this analysis 
is to identify individual SNPs (not loci) that are associated with multiple trait 
domains and their functions.

Functional consequences of SNPs were annotated using ANNOVAR37. To 
test if an SNP from a certain functional category is enriched at a given number 
of associated domains compared to all analyzed SNPs, a baseline proportion was 
calculated from the 1,740,179 SNPs for each functional category. At each number 
of associated domains (from 1, to 10 or more domains), we recalculated the 
proportion of SNPs with each functional category and performed the Fisher’s exact 
test (one-sided) against the baseline (the proportion relative to all 1,740,179 SNPs), 
to test if the proportion is higher than expected.

eQTLs for 48 tissue types were obtained from GTEx v.7 (ref. 20) (https://www.
gtexportal.org/home/) and we considered SNPs with gene q < 0.05 with any gene 
in any tissue as eQTLs. For each eQTL, we counted the number of tissue types 
being eQTL (regardless of associated genes) and categorized them into five groups, 
that is, being eQTLs in (1) a single tissue type (tissue-specific eQTLs), (2) between 
2 and 12, (3) between 13 and 24, (4) between 25 and 36 and (5) being in more 
than 37 tissue types. At each number of associated domains, we recalculated the 
proportion of SNPs in each of the five categories, and performed the Fisher’s exact 
test (one-sided) against baseline (the proportion relative to all 1,740,179 SNPs), to 
test if the proportion is higher than expected.

Pleiotropic gene sets. For gene set-level pleiotropy, we extracted 10,650 gene sets 
(with at least ten genes) tested in all 588 traits. We then considered gene sets with 
P < 4.69 × 10−6 (0.05/10,650) as significantly associated. The trait-associated gene 
sets were grouped into multidomain, domain-specific and trait-specific gene sets 
with the same definitions as at the gene level.

We compared the number of genes in different association categories and 
nonassociated gene sets, by performing two-sided t-tests in the log scale of the 
number of genes.

Power calculation of genetic correlation. Power calculations were performed 
using the bivariate analysis of GCTA-GRML power calculator (http://cnsgenomics.
com/shiny/gctaPower/)38, to estimate the minimum rg that obtained a power of 0.8 
in the worst-case scenario. From 558 traits, two traits with worst-case scenarios 
were selected, one with the minimum h2

SNP estimated by LDSC and another with 
the minimum sample size. For each case, we obtained the minimum rg to obtain 
a power of 0.8 by assuming both traits are quantitative with same sample size and 
h2

SNP and have phenotypic correlation of 0.1.

Hierarchical clustering of trait based on genetic correlation. Hierarchical 
clustering was performed on the matrix of pairwise rg values as calculated between 
the 558 traits. After Bonferroni correction for all possible trait pairs, nonsignificant 
genetic correlations were replaced with 0. The number of clusters, k, was  
optimized between 50 and 250 by maximizing the silhouette score with 30 
iterations for each k.

Estimated standardized effect size of lead SNPs. To enable comparison of effect 
sizes across studies, we first converted P values into Z-statistics (two-sided) and 
expressed the estimated standardized effect size (β) as a function of MAF and 
sample size as described previously21 using the following equation:

β ¼
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p 1� pð Þ nþ z2ð Þ
p ; s:e:m: ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p 1� pð Þ nþ z2ð Þ
p

where p is MAF and n is the total sample size. We used the MAF of a corresponding 
European reference panel (either 1000G, UKB1 or UKB2) as described in the 
section ‘Definition of lead SNPs and genomic trait-associated loci’. Since we were 
not interested in the direction of effect, we used squared standardized effect sizes 
for analyses in this study.

Fine mapping of trait-associated loci. We defined the region to fine map by 
taking 50 kb around the top SNPs of the trait-associated loci. When trait-associated 
loci were larger than the 50-kb window, the largest boundary was taken. Due to the 
complex LD structure, loci overlapping with the MHC region (chr6: 25–36 Mb) 
were excluded. The fine mapping was performed using FINEMAP with the 
shotgun stochastic search algorithm25 (http://www.christianbenner.com/#). We 
used randomly selected 100,000 unrelated European individuals from the UKB2 
cohort as a reference panel to estimated pairwise LD correlation of SNPs using 
LDstore39 (http://www.christianbenner.com/#) for all 558 GWASs. We limited 
the number of maximum causal SNPs (k) per locus to 10. When the number of 
SNPs within a locus is relatively small (around 30 or less), the algorithm can fail to 
converge. In that case, k was decreased by 1 until FINEMAP was run successfully. 
Loci with less than 10 SNPs were excluded from the fine mapping. To select most 
likely causal SNPs, we defined credible SNPs as SNPs with PIP > 0.95. Detailed 
results are discussed in the Supplementary Note.

Annotation and characterization of lead SNPs and credible SNPs. Functional 
consequences of SNPs were annotated using ANNOVAR37 (http://annovar.
openbioinformatics.org/) based on Ensembl gene annotations on hg19. Before 
ANNOVAR, we aligned the ancestral allele with dbSNP build 146. Core  
15-state chromatin states of 127 cell or tissue types were obtained from Roadmap40 
(http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/coreMarks/jointModel/final/all.mnemonics.bedFiles.tgz) and we 
annotated one of the 15-core states to each of the lead SNPs based on chromosome 
coordinates. Subsequently, the consequence state was assigned by taking the most 
common state across 127 cell or tissue types. SNPs with consequence state ≤7 were 
considered as active. eQTLs in 48 tissue types were obtained from GTEx v.7  
(ref. 20) (https://www.gtexportal.org/home/) and we only used the significant 
eQTLs at gene q < 0.05. eQTLs were assigned to SNPs by matching chromosome 
coordinate and alleles.

As we showed that trait-associated loci have higher gene density compared to 
nonassociated regions, and GWAS signals are known to be enriched in regulatory 
elements41, we first identified background enrichment by comparing SNPs within 
trait-associated loci or fine-mapped regions with the entire genome. For this, 
all known SNPs were extracted by combining all SNPs in 1000G EUR, UKB1 
and UKB2 reference panels (~28 million SNPs in total). SNPs within the trait-
associated loci were defined as the ones with P < 0.05 and r2 > 0.6 with one of the 
independent significant SNPs as described above (see section ‘Definition of lead 
SNPs and trait-associated loci’). Therefore, it was not necessary to include all SNPs 
physically located within the trait-associated loci. On the other hand, SNPs within 
the fine-mapped region include all SNPs physically located within a 50-kb window 
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from the most significant SNP of a locus. To characterize lead SNPs and credible 
SNPs given background enrichments, we compared these SNPs against all SNPs 
within trait-associated loci or fine-mapped regions, respectively. We performed 
two-sided Fisher’s exact test for each category of annotations.

SNP heritability estimation with SumHer using the LDAK model. We estimated 
SNP heritability of 558 traits using the SumHer function from LDAK v.5.0 (ref. 27)  
(http://dougspeed.com/ldak/). Since our purpose was to compare estimates 
from LDSC and SumHer, we used the 1000G EUR reference panel and extracted 
HapMap3 SNPs as consistent with LDSC. We used unique IDs of SNPs (consisting 
of chromosome, position and alleles) instead of rs ID to maximize the match 
between GWAS summary statistics and the reference panel. The MHC region 
(chr6: 25–34 Mb) was excluded. To be consistent with LDSC, SNPs with χ2 > 80 
were excluded. As recommended by the author, SNPs with in LD (r2 > 0.1) with one 
of those SNPs with χ2 > 80 were additionally excluded.

To obtain SNP heritability on a liability scale, we provided population 
prevalence and sample prevalence for binary traits. The same population 
prevalences were used as described in the section ‘SNP heritability and genetic 
correlation with LDSC’ (Supplementary Table 26). Details of the results are 
discussed in Supplementary Note.

Estimation of polygenicity and discoverability with MiXeR. In the causal mixture 
model for GWAS summary statistics (univariate MiXeR, https://github.com/
precimed/mixer) proposed by Holland et al., the distribution of SNP effect sizes is 
treated as a mixture of two distributions for causal and noncausal SNPs, as follows28:

β ¼ πN 0; σ2β

� �

þ 1� πð ÞN 0; 0ð Þ

where π is the proportion of (independent) causal SNPs and σβ
2 is the variance 

of the effect sizes of causal SNPs. Therefore, π and σβ
2 respectively represent 

polygenicity and discoverability of the trait. We estimated both parameters for 
the 558 traits using MiXeR software28,29. As recommended in the original study, 
we used 1000G EUR as a reference panel and restricted to HapMap3 SNPs. SNPs 
with χ2 > 80 and the MHC region (chr6: 26–34 Mb) were excluded. To estimate the 
sample size required to explain 90% of the additive genetic variance of a phenotype, 
we used an output of GWAS power estimates calculated in the MiXeR software, 
which contains 51 data points of sample size and the proportion of chip heritability 
explained28. We then estimated the sample size required to reaches 90% by using 
the interp1 function from the pracma package in R.

Statistical analysis. When a Mann–Whitney U-test was performed, the null 
hypothesis was that the distributions of two sets of observations were equal. 
When a t-test was performed, the null hypothesis was that the averages of two sets 
of observations were equal. When a Fisher’s exact test was performed, the null 
hypothesis was that the having a specific annotation was equally likely across  
two categories. We report two-sided P values of each statistical test unless 
otherwise specified.

Reporting Summary. Further information on research design is available in the 
Life Sciences Reporting Summary linked to this article.

Data availability
All publicly available GWAS summary statistics (original) files curated in this study 
are accessible from the original links provided at https://atlas.ctglab.nl. GWAS 
summary statistics for 600 traits from UK Biobank performed in this study are also 
provided at https://atlas.ctglab.nl and an archived file will be made available upon 
publication from https://ctg.cncr.nl/software/summary_statistics.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection We used published summary statistics or performend GWAS based on data collected by UKBiobank

Data analysis GWASs of UKB cohort was performed with PLINK v1.9, gene and gene-set analyses were performed with MAGMA v1.06, lead SNPs and 

trait-associated loci for each GWAS were defined using FUMA v1.3.3, colocalization was performed with coloc package in R, fine-mapping 

was performed with FINEMAP v1.3, functional consequence of SNPs were annotated with ANNOVAR, SNP heritability and genetic 

correlation were estimated using LD score regression and SumHer implemented in LDAK v5, polygenicity and discoverability was 

estimated using MiXeR, all other statistical analyses were performed with R v3.4.3.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 

We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

All publicly available GWAS summary statistics (original) files curated in this study are accessible from the original links provided at http://atlas.ctglab.nl. GWAS 

summary statistics for 600 traits from UK Biobank performed in this study are also provided at http://atlas.ctglab.nl and an archived file will be made available upon 

publication from https://ctg.cncr.nl/software/summary_statistics. 
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We used maximum number of samples for UKB GWASs with limiting the subjects to unrelated European ancestry and no-missing phenotype 

and covariates for each trait.

Data exclusions For main analyses in the manuscript we selected 558 GWASs from 4155 GWASs curated in the ATLAS database, based on sample size. When 

there were multiple GWASs with the same trait, GWAS with the largest sample size was selected.

Replication Replication is not applicable: we analyzed all available GWAS results to obtain a global overview of pleiotropy, genetic architectures and 

genetic correlations.  

Randomization N.A.

Blinding N.A. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics We utilized data collected previously by UK biobank. All individuals included in the study provided informed consent, and the 

study was approved by the concerned ethical committee.

Recruitment See above (and in Methods section of the manuscript)

Ethics oversight NHS Health Research Authority provided ethics approval for the UKB study

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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