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Abstract

In recent years the Markov Random Field (MRF) has

become the de facto probabilistic model for low-level vi-

sion applications. However, in a maximum a posteriori

(MAP) framework, MRFs inherently encourage delta func-

tion marginal statistics. By contrast, many low-level vision

problems have heavy tailed marginal statistics, making the

MRF model unsuitable. In this paper we introduce a more

general Marginal Probability Field (MPF), of which the

MRF is a special, linear case, and show that convex en-

ergy MPFs can be used to encourage arbitrary marginal

statistics. We introduce a flexible, extensible framework

for effectively optimizing the resulting NP-hard MAP prob-

lem, based around dual-decomposition and a modified min-

cost flow algorithm, and which achieves global optimality

in some instances. We use a range of applications, includ-

ing image denoising and texture synthesis, to demonstrate

the benefits of this class of MPF over MRFs.

1. Introduction

A standard approach to solving vision problems today is

to specify a probability distribution over the space of out-

put solutions, then (try to) find that solution with the high-

est probability—the maximum a posteriori (MAP) solution

when a prior model of the likelihood of output solutions is

incorporated using Bayes’ rule. Priors generally model de-

pendencies between the output variables; often these depen-

dencies are local, between each output variable and a small

number of its closest neighbours, generating a Markov Ran-

dom Field (MRF). Indeed, the vast majority of low-level vi-

sion problems, examples of which include image segmenta-

tion, stereo, optical flow and image denoising, employ this

framework. As a result, much effort has been invested over

the past decade or so into improving optimization of this

class of problem, to the extent that other forms of model are

currently at a disadvantage in this respect.

However, MRF1 prior models suffer from a major draw-

back: the marginal statistics2 of the most likely solution un-

der the model generally do not match the marginal statis-

∗The authors contributed equally to this work, therefore assert joint first

authorship.
1We assume that MRFs are translationally invariant. We refer to a

translationally variant MRF as a Conditional Random Field (CRF).
2We refer specifically to the marginal statistics of the cliques used in

the model, which generally equates to those statistics deemed important.

tics used to create the model. For example, given a corpus

of binary training images which each contain 55% white

and 45% black pixels (with no other significant statistic),

a learned MRF prior will give each output pixel an inde-

pendent probability of 0.55 of being white. Since the most

likely value for each pixel is white, the most likely image

under the model has 100% white pixels, which compares

unfavourably with the input statistic of only 55%. When

combined with data likelihoods, this model will therefore

incorrectly bias the MAP solution towards being all white,

the more so the greater the noise and hence data uncer-

tainty. This observation can be extended to any MRF whose

marginal statistics are not delta functions.3

This bias away from the true marginal statistics towards

a delta distribution will not be a problem if either the data

likelihoods are sufficiently strong so as to make the bias

negligible, or the marginal statistics are of secondary im-

portance. The former is a function of the data, while the

latter is a function of the application. However, a large

number of low-level vision applications rely heavily on the

importance of marginal statistics. Image denoising is a clas-

sic example—marginal distributions of zero-mean filter re-

sponses are typically highly kurtotic (heavy tailed), a statis-

tic often cited as significant for the purpose of denoising,

but the MRFs typically used encourage the output statistics

to be less kurtotic. Clearly, finding the MAP solution with

an MRF prior model is not suitable in this situation.

One way round this problem is to change the method

of inference from that of finding the MAP solution to

a sampling-based approach [5]. Their prior models are

learned by maximizing the likelihood of the training data.

Hence, it can be expected that on average a random sam-

ple will match the marginal statistics quite well, see e.g.

[20]. However, we are not aware of any sampling technique

which attempts to have a single output labelling matching

the given statistics, which is the goal of this work. There

are many other interesting differences, like the choice of

loss function, which are, however, not directly relevant for

this paper.

If one is to stick with an MAP framework but avoid the

bias problem then it is the prior model that must be changed.

In particular, a necessary further constraint on the model is

that the marginal statistics of the most likely output(s) under

3In this case the most likely output under the model will also have delta

function marginal statistics.
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the model match the marginal statistics of the training data.

The way to achieve the latter is to have a prior over the

marginal statistics of the output solution. Since comput-

ing marginal statistics involves every output variable, this

model generates a single clique over all variables—what we

call a Marginal Probability Field (MPF)—which means that

the powerful optimization techniques developed for solving

MRFs, with their small cliques, are not suitable. In fact,

there is a paucity of efficient optimization techniques for

MPFs, which we believe has slowed their adoption in com-

parison to the inferior MRF model. The goal of this paper

is redress the balance by developing a powerful inference

framework for optimizing the MAP problem that results

from an MPF.

Related work The task of having the output labelling

match a given distribution has been addressed in different

ways in the literature. There are many vision systems which

have a global prior built into their models, e.g. [27, 20, 21].

However, these works use sampling to produce an output,

which has a different goal in mind than our approach, as dis-

cussed above. For instance, Sudderth et al. [20] recently in-

troduced the Pitman-Yor process to match the heavy-tailed

distribution of object labels, in an object recognition and

segmentation framework.

In the context of MAP inference there are only a few

papers which address the bias of the prior. Most of them

tackle the problem by building new approximate inference

methods in order to match the target statistics, without any

global optimality guarantees. For texture synthesis, both

[7] and [26] compute second-order marginal statistics of an

input texture over a range of different pairwise neighbour-

hood structures. While [7] used ICM, [26] enforced the tar-

get statistics by adapting a Metropolis sampling procedure.

For the same problem, Kopf et al. [14] enforce a global

first-order statistic (i.e. unary cliques) on colour. They used

an approximate EM-style algorithm for MRF optimization,

which we compare to in section 4.4. Other related works

address the problem of binary segmentation where the ap-

pearance of the foreground segment has to match a given

distribution [17, 11, 6]. While [6] used active contours, [17]

developed a trust region graph cut approach, which we will

compare in our experiments.

In this paper we use the dual decomposition approach

[23, 18, 19, 13, 24]. In contrast to approximate methods, it

provides a lower bound which can be used to achieve global

optimality, as we will see for some cases. We introduce two

new methods for use within this framework. The first one

enforces the area constraint of binary segmentations defined

on a tree; this often gives a tighter lower bound compared to

the one in [24]. Our second method is based on a modified

min-cost flow algorithm; it is able to handle convex terms of

global statistics with an arbitrary number of labels. A more

detailed discussion and further related work is presented in

Figure 1. MPF versus MRF. (a) Set of training images for binary

texture denoising. Superimposed is a pairwise feature (transla-

tionally invariant pairwise terms with shift (15, 0); 3 exemplars in

red). Each pairwise feature has one histogram value hk per train-

ing image (with k ∈ K, and |K| = 4). (b) The trained MPF cost

kernel fk (hk), i.e. the negative log of probability of hk over train-

ing images (here k = (1, 1)). The occurrence of label (1, 1)T is

nearly the same for all training images (of same size). It is appar-

ent that the linear cost function of an MRF is a bad fit.

sec. 3.

2. Marginal probability fields (MPFs)

When creating a prior probability model, one typically

chooses4 a subset of features which depend on the output

x. For example, in stereo this might be the derivative of dis-

parity (uni-dimensional), while in texture synthesis it might

be a 5× 5 image patch (multi-dimensional). These features

are computed over neighbourhoods of the output solution.

In an MRF, these features define an independent cost

for every such neighbourhood in x. Its energy5 is written as

EMRF(x) =
∑

i

fMRF (φi(x)) , (1)

where φi : R
|x| → R

n computes the n-d feature vector

centred on element i of x and fMRF : R
n → R

+ is the clique

cost functional. For example, in binary texture denoising

(see details in sec. 4.2), xi ∈ {0, 1}, and a pairwise feature

is of the form φi(x) ∈ {(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T }
(see e.g. fig. 1(a)).

By contrast, in an MPF the likelihoods of these features

are not independent. Rather, probability is computed as

a function of the marginal statistics of the features. The

energy of an MPF is therefore written as

EMPF(x) =

∫

fk

(

∑

i

[φi(x) = k]

)

dk, (2)

where k is an n-d feature vector, fk is the MPF cost kernel

R → R
+ for a given feature vector and [·] is the Iverson

bracket.6 Normally the feature vector space is discretized

into a set of labels, K, allowing a histogram, {hk}k∈K, to be

computed as hk =
∑

i [φi = k] (where φi replaces φi(x)

4Even with learned features, there is a decision about what class of

features they should be learned from.
5Energy is the negative log of (usually unnormalized) probability.
6[statement] = 1 if statement is true, 0 otherwise.



for brevity), such that EMPF(x) =
∑

k∈K fk (hk). Fig. 1

illustrates a learned function fk for the denoising example.

2.1. Characterizing cost functions

The cost function fk has a large bearing on the useful-

ness of an MPF, and also the optimizability of the resulting

energy minimization problem. We categorize such func-

tions according to their second derivative w.r.t. frequency,

f ′′
k (hk) =

∂2fk(hk)

∂h2
k

, (3)

and discuss the merits of three main classes.

Linear MPFs have f ′′
k = 0, ∀ k, hk, with the result that

fk(hk) = ck + fk · hk. Such an MPF is equivalent7 to an
MRF:

EMPF(x) =
∑

k

fk ·
∑

i

[φi = k] =

∑

i

∑

k

fk · [φi = k] =
∑

i

fMRF (φi) = EMRF(x)

therefore can be optimized using standard MRF optimizers.

Concave MPFs have f ′′
k ≤ 0, ∀ k, hk. The global min-

imum of any MPF in this (and therefore also the linear)

class will generally, ignoring integrability,8 produce delta

function marginal statistics. This can be seen from the fact

that a concave function
∑

k fk(hk) defined over a simplex

{{hk} : hk ≥ 0,
∑

k hk = const} attains a minimum at an

extreme point of this simplex.

Convex MPFs have f ′′
k ≥ 0, ∀ k, hk, and can generate ar-

bitrary marginal statistics, as we will show. This paper in-

troduces a powerful optimization framework for this class

of problem which produces good results and in some cases

even finds a global optimum. Cost functions may of course

have both regions of convexity and concavity, but the prop-

erties of such functions are not discussed here. In fig. 1(b)

we see that a convex function would be a good fit to the

learned function fk.

2.2. Specifying cost functions

When defining the parameters of an MPF one either has a

single marginal statistic, i.e. histogram {h̄k}k, for each fea-

ture, or a training set of such marginal statistics, {{h̄d
k}k}d.

The first case occurs when there is a single training image,

such as in image synthesis from a single exemplar image,

or a user-defined defined statistic, for example the area or

colour histogram of an object to be segmented or tracked.

In this case it is clear that each cost function, fk, should

be unimodal and that its minimum should occur at h̄k, to

encourage the output to have the same marginal statistics.

7The constants, ck , are removed for brevity, without loss of generality.
8Independently selecting the most likely labelling for every clique is

not possible where intersections between clique labellings differ.

However, the shape of the unimodal cost function is an open

variable. Experimentation or learning with ground truth

output is a future possibility, but in this work we generally

use the “V-shaped” kernel.

In the second case the training data provides a set of his-

tograms. Example applications are image and binary tex-

ture denoising, where a set of training images are available.

In this case the training data can be used to specify the

shape of the cost functions, e.g. by histogramming the set

{h̄d
k}d for each k (see fig. 1(b)). In this work we are limited

to convex, piecewise-linear kernels. It is not yet clear for

which applications these statistics tend to be convex, but

we show that simple “V-shaped” kernels can achieve good

results for image denoising and binary texture denoising.

The simplicity of our cost functions stems from the fact

that the main purpose of this paper is not parameter learn-

ing, but rather to show that the convex energy MPF is a bet-

ter prior model than an MRF for most low-level vision ap-

plications using MAP inference. This will hopefully inspire

further research on the subject of learning MPF parameters.

2.3. Incorporating MRFs into MPFs

Posterior probability models generally contain a number

of different terms, making the total energy a sum of, for

example, data likelihoods, MRFs and/or CRFs over various

different features; let fMRF encompass such costs. We can

incorporate these costs into the MPF, and also extend the

MPF over various different features, redefining EMPF thus9

EMPF(x) = fMRF(x) +
∑

t

∑

k

f t
k(ht

k) . (4)

Here we assume that there are several types of features in-

dexed by symbol t. ht
k denotes the histogram of label k over

features of type t: ht
k =

∑

i[φ
t
i = k] where φt

i = φt
i(x) is

the feature of type t at location i taking values in some fi-

nite set Kt. In binary texture denoising K0 = {0, 1} and

K1 = {(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T } for the unary and

pairwise terms respectively. In our experiments we will

demonstrate various types of MPFs based on unary and

pairwise terms, and leave higher-order clique MPFs as fu-

ture work.

3. Optimization

We now concentrate on the problem of optimizing MPF

energies given by (4). In general, this is a very challenging

task. We are aware of only a few special cases that can be

solved exactly in polynomial time. A notable example is

given in [9]: if x is a binary labelling, fMRF(x) is a sub-

modular function with unary and pairwise terms, features

φt
i correspond to individual pixels (φt

i(x) = xi), and func-

tions f t
k(·) are concave then the problem can be solved via

9Note, eq. (4) can be viewed as a special case of (2), if the domain of

features k in (2) is defined appropriately as a Cartesian product. The form

of eq. (4), however, will be more convenient in sec. 3.



a reduction to a min s-t cut problem. In this paper, how-

ever, we are more interested in the case of convex functions

f t
k(·) which is well-known to be NP-hard (since e.g. it in-

cludes the minimum graph bisection problem as a special

case).

As discussed in section 1, many heuristic techniques

have been proposed. This section, however, considers only

global methods that provide a lower bound on the energy.

In particular, we will use the subproblem decomposition (or

dual decomposition - DD) approach [3], which proved to

be very successful for MRF optimization [23, 18, 19, 13].

Note that such an approach was used in [24] for enforcing a

statistic on the area of a binary segmentation.

Let us introduce vector θ = {θt}t = {θt
ik}t,i,k; we will

denote θt
i(k) = θt

ik. We can rewrite the energy (4) as

EMPF(x) = EMRF(x;θ) +
∑

t

Et(x; θt) where (5)

EMRF(x;θ) = fMRF(x) −
∑

t

∑

i

θt
i(φ

t
i) (6)

Et(x; θt) =
∑

k

f t
k(ht

k) +
∑

i

θt
i(φ

t
i) . (7)

In the decomposition approach we define lower bounds

for individual terms:

ΦMRF(θ) ≤ min
x

EMRF(x;θ) (8)

Φt(θt) ≤ min
x

Et(x; θt) . (9)

The sum of these bounds then gives a lower bound on the

original function:

Φ(θ) = ΦMRF(θ) +
∑

t

Φt(θt) ≤ min
x

EMPF(x) . (10)

In order to get the tightest possible bound on EMPF(x), we

need to maximize function Φ(θ) over θ. Bounds (8) and (9)

are chosen in such a way that function Φ(·) is concave,

therefore one can use a number of standard concave maxi-

mization techniques. Following [18, 19, 13], we maximize

Φ(·) via a subgradient technique.

Let us now discuss how to define bounds (8) and (9).

Possible bounds ΦMRF(θ) on MRF functions have been ex-

tensively studied before. A popular choice is to use a con-

vex combination of trees [23]; more generally, one can use

subproblems with low tree-width. We therefore focus on

lower bounds Φt(θt) on global statistics terms, which have

received less attention in the literature.

Lower bounds on global statistics terms From now on,

we consider a fixed index t. For brevity, we will denote

fk = f t
k, θ = θt, K = Kt. As we just discussed, our goal is

to define a lower bound on function (7):

Et(x; θ) =
∑

k

fk

(

∑

i

[φt
i = k]

)

+
∑

i

θi(φ
t
i) . (11)

Ideally, we would like to take minx Et(x; θ) as the lower

bound. Unfortunately, computing this minimum is an NP-

hard problem even in rather restricted cases.10 To get

a tractable lower bound, we replace features φt
i in (11)

with labels ki ∈ K. We then minimize the energy over

labellings k without enforcing the constraint that k =
φt(x) for some labelling x. (An example, assume φt ∈
{(0, 0), (0, 1), (1, 0), (1, 1)}, and consider three nodes x1−3

where φt(x1, x2) = (0, 1) and φt(x2, x3) = (0, 1). This

provides a valid labelling but an invalid assignment for x2.)

Thus,

Φt(θ) = min
k

Ẽt(k; θ) where (12)

Ẽt(k; θ) =
∑

k

fk(hk(k)) +
∑

i

θi(ki) (13)

hk(k) =
∑

i

[ki = k] (14)

In the remainder of this section we discuss how to solve

the minimization problem (12). We will consider separately

the case of binary variables ki (|K| = 2) and multi-valued

variables (|K| > 2).

3.1. Case I: binary variables

In this section we assume that ki ∈ K = {0, 1} and θt
i0 is

constrained to be 0 for all locations i (possible since adding

a constant to θt
i0 and θt

i1 does not change Φ(θ) for bounds

ΦMRF(θ) used in the literature). We can rewrite (13) as

f(h1(k)) +
∑

i

θiki (15)

where f(h1) = f1(h1) + f0(n− h1), n =
∑

i 1 is the total

number of elements i, and θi = θi1. (We used the fact that

h0(k) = n − h1(k).)
It is well-known that the minimum of (15) can be

computed in O(n log n) time [8]. We need to sort val-

ues θi in non-decreasing order, evaluate the cost of n +
1 labellings (0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . .,

(1, . . . , 1) (where we assume that the order of elements is

given by the sorting), and pick the labelling with the small-

est cost. A decomposition with subproblem 15 was used

as an example in [24] for enforcing the area constraint of a

binary segmentation.

Convex case Suppose that function f(·) is convex. This

case is quite special due to the following theorem proved in

[22].

10Suppose, for example, that x is a binary labelling (xp ∈ {0, 1}),

i indexes an edge (p(i), q(i)), feature φt
i = |xp(i) − xq(i)| ∈ {0, 1}

measures the discontinuity between nodes p(i) and q(i), term f0(·) is a

linear function: f0(h) = h, and other terms in (11) are identically zero:

f1(h) = 0, θi(k) = 0. Then Et(x; θ) equals the number of edges

(p(i), q(i)) with the same label (xp(i) = xq(i)). Minimizing Et(x; θ)
is thus equivalent to a maximum cut problem in an undirected unweighted

graph, which is well-known to be NP-hard.



Theorem 3.1 Suppose that function ΦMRF(·) is continuous

and satisfies the following property for all vectors θ and

locations i of feature of type t:

ΦMRF(θ + δ · χi) ≥ ΦMRF(θ) + min
x∈{0,1}

{−xδ} (16)

where χi is a vector of the same dimensions as θ with

(χi)
t
i1 = 1 and all other components equal to 0. Then func-

tion (10) has a maximizer θ such that θt
i1 = λ for some

constant λ.

Note, condition (16) is satisfied for many reasonable

choices of ΦMRF(·); in particular it holds if ΦMRF(·) is de-

fined to be equal to the minimum of (6).

The theorem allows us to restrict vector θt to have the

form θt = λ1 where 1 is a vector of size 2n with 1i0 = 0
and 1i1 = 1. This should speed up a subgradient method.

Furthermore, if function (4) has no other global terms ex-

cept for f(h1(φ
t)) then the bound Φ(·) depends just on a

single parameter λ, hence one can use e.g. a line search.

Evaluating Φt(λ1) is straightforward, so the bottleneck

computation is evaluating ΦMRF(λ1) for different λ’s.

In the experiments we consider the problem of minimiz-

ing a submodular function with unary and pairwise terms

plus a global convex term of the area of the binary seg-

mentation. In this case ΦMRF(λ1) = minx{ΦMRF(x) −
λ
∑

i xi} where ΦMRF(·) is a submodular function with

unary and pairwise terms. It is well-known that the mini-

mum can be computed efficiently for all values of λ using

a parametric maxflow algorithm, see e.g. [11]. We denote

this method as DD.

3.1.1 Adding pairwise terms

For certain problems the bound defined by (10) can be quite

loose. We now discuss one possible way to improve it. Let

us add to function (15) pairwise terms defined on a tree (or

a forest) T :

f(h1(k)) +
∑

i

θiki +
∑

(i,j)∈T

fij(ki, kj) . (17)

Clearly, the minimum of (17) can be computed in O(n2)
time using dynamic programming (see [25] for details). In

our experiments we used it for minimizing function E(x) =
f(
∑

p xp) +
∑

p fp(xp) +
∑

(p,q)∈E fpq(xp, xq) of binary

labellings x as follows. First, we divide the edges into T

disjoint groups (E = ∪tE
t) so that each group Et forms

a forest. We then use the approach described at the be-

ginning of section 3, only instead of (5) we use the de-

composition E(x) =
∑

t[
1
T

f(
∑

p xp) + 1
T

∑

p fp(xp) +
∑

(p,q)∈Et

fpq(xp, xq) +
∑

p θt
pxp] where θt are unknown

vectors that must sum to 0. Each term in this decomposi-

tion is minimized over x via dynamic programming. We

denote this method as DD-DP.

3.2. Case II: multi­valued variables

Let us now consider the case of multi-valued variables

(K = |Kt| > 2). This case was recently analyzed in [8].

The authors mention that the problem can be solved in

O(nK) time, which unfortunately would be too slow in

practice even for small K. The work [8] focuses on the

case when fk(hk(k)) = λ(hk(k))2. The authors observed

that if λ > 0 then the problem can be solved via quadratic

programming. They then proposed an approximation algo-

rithm for the case λ < 0, which they proved to be NP-hard.

Below we present further results for the case when fk(·)
are arbitrary convex functions. We show that the mini-

mization problem (12) can then be reduced to a minimum

cost flow problem (MCF) in a bipartite graph. If all in-

put costs are integers then one could apply the MCF algo-

rithm for bipartite graphs in [2]; the complexity would be

O(nK2 +K3 log(KC)) where n =
∑

i 1 is the number el-

ements i and C is the largest cost. In this paper we used an

alternative algorithm with a strongly polynomial complex-

ity O(nK3 log(n + K)), which we developed.

We denote the dual decomposition approach with this

method as DD-MCF.

Reduction to MCF We assume that the reader is famil-

iar with the MCF problem (see e.g. [1] for details). We

construct a graph with n nodes corresponding to elements

i (called i-nodes) and K nodes corresponding to labels

(called k-nodes). We also add one extra node s called the

source (fig. 2). For each label k and element i we add an

arc i → k with capacity 1 and cost θik. Each i-node will

have an excess flow of +1. This unit of flow must leave i

via some arc i → k; this will correspond to assigning label

k to element i: ki := k.

Now consider label k. The argument of fk(·) can only

take values 0, 1, . . . , n, therefore we can assume without

loss of generality that fk(·) is a piecewise-linear convex

function that attains a minimum of 0 in [0, n]. Let 0 ≤
n1 < . . . < nB ≤ n be the breakpoints of fk(·) and let

s0 < s1 < . . . < sB be the corresponding slopes of linear

segments, with s0 ≤ 0 and sB ≥ 0. Let nb̄ be a break-

point that minimizes fk(·), then sb̄−1 ≤ 0 and sb̄ ≥ 0.

We set the excess (or rather the deficit) of node k to −nb̄.

For b = 1, . . . , b̄ we add an arc from s to k with capacity

nb −nb−1 and cost −sb−1. For b = b̄, . . . , B we add an arc

from k to s with capacity nb+1 − nb and cost sb.

To complete the construction, we assign an excess/deficit

to the source node to make the network balanced. (Recall

that in the MCF formulation the sum of excesses over all

nodes should be zero.)

It is not difficult to see that the cost of a valid flow equals

the cost (13) for the corresponding labelling k. Indeed, arcs

from i-nodes to k-nodes incur cost
∑

i θi(ki). Now con-

sider node k. The amount of flow that comes to k from
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Figure 2. Reduction to min-cost flow.

Example for a function with three pix-

els and three labels (n = K = 3).

Term f1(·) has two breakpoints, terms

f2(·), f3(·) have one breakpoints.

i-nodes is hk(k). If it is equal to the deficit of nb̄ at node

k then no flow will go between i and s, so edges between

k and s will not incur any cost. If hk(k) exceeds nb̄ then

the additional flow will leave k via arcs k → s, incurring

the cost fk(hk(k)). Similarly, if hk(k) is less than nb̄ then

some flow will go from s to k to cancel the deficit at k.

Solving the MCF problem The constructed network con-

tains n+K +1 nodes and O(nK) arcs. A general-purpose

MCF solver applied to this problem would be quite slow;

for example, the successive shortest path (SSP) algorithm

would have O(nK) iterations consisting of Dijkstra com-

putations, resulting in O(n2K2 log(n + K)) time. We

developed a modification of the SSP algorithm that runs

in O(nK3 log(n + K)); details are given in [25]. After

the submission we learned about an alternative MCF algo-

rithm for bipartite graphs [2] which would have O(nK2 +
K3 log(KC)) complexity for integer costs.11 Unlike our al-

gorithm it is not strongly polynomial since it depends on the

largest cost C, but we expect it to be faster in practice.

4. Experimental results

Our experiments concern two questions. Firstly, how well

can the dual-decomposition approach optimize the MPF

model, especially w.r.t. competitive methods. Secondly,

how does the MPF model compare to a standard MRF

model. For this, we have considered four different appli-

cations: image segmentation, synthesis and denoising, and

binary texture denoising. Note, further results are in [25].

Figure 3. Image segmentation with standard MRF [16] (centre)

and MPF with area (global unary) constraint (right).

4.1. Image Segmentation

We used the GrabCut MRF model with the provided

dataset of 50 images [16].12 Fig 3(centre) shows a result,

where colours were trained from the provided user-defined

trimap [16]. In order to improve on this result we used

two types of high-level knowledge (e.g. from user or previ-

ous frame in tracking). Firstly, we used a global constraint

11We thank Andrew Goldberg for pointing out this reference.
12We downscaled images to max side length of 70 pixels, which only

mildly affects segmentation quality, in order to run many experiments.

MRF MPF - global area MPF - global distribution

DD DD-DP DD TRGC

hard 2.8 2.6 (11) 2.6 (37) 2.1 (4.3) 2.5

soft 2.8 2.4 (39) 2.5 (57) 1.9 (28) 2.0

Table 1. Image segmentation with different models and methods.

Shown is error (percentage of misclassified pixels) and in brackets

percentage of globally optimal cases (TRGC has no guarantees).

Noise MRF MPF - global unary MPF - global pair.

DD DD-DP DD-MCF

30% 6.9 6.1 (57) 6.2 (50) 6.3 (0)

60% 20.1 14 (23) 13.7 (11) 12.5 (0)

90% 40.6 36.8 (15) 33.4 (0) 31.3 (0)
Table 2. Texture denoising with different models, methods and

noise levels. Shown is error (percentage of misclassified pixels)

and in brackets percentage of global optimal cases.

on the foreground area (defined by the ground truth seg-

mentation), enforced either as soft (with V-shaped cost ker-

nel) or hard constraint, i.e. foreground area perfectly match-

ing ground truth. Table 1 shows results averaged over the

dataset. As expected, the error rate with the area constraint

(MPF - global area) is lower than without (MRF); example

in fig. 3(right).13 More importantly, we obtain global op-

timality for many examples; in particular, this is achieved

more often when using DD-DP (sec. 3.1.1) rather than DD

(sec. 3.1), and also when using a soft constraint. In a sec-

ond experiment, we converted the independent, unary la-

bel costs of the MRF (based on foreground and background

colour models) into an MPF with fixed-size target colour

histograms for foreground and background regions and V-

shaped cost kernels over each colour bin,14 as per [17]. This

is a stronger constraint than global area, with error rates

improving considerably (see table 1, MPF - global distribu-

tion). Our DD method is globally optimal for some cases,

and gives on average (94% “hard” case, 72% “soft” case)

a lower energy than the approximate trust region graph cut

(TRGC) method.15

Figure 4. Binary texture denoising with various models (crop

60 × 60 pixels of Brodatz D101). The input image (b) has 60%
noise. The error rates are (c) 13.7%, (d) 12.8%, (e) 10.6%.

4.2. Binary texture denoising

This toy problem (see fig. 4, 1) has been addressed be-

fore using pairwise MRFs [12, 4]—using a set of (here,

13The slightly higher error for hard constraints is due to the fact that the

ground truth segmentation is not perfectly aligned with edges in an image.
14The two colour histograms are transformed so that their n colour bins

become the features, and the labels foreground and background become

the bins, creating n binary, global subproblems.
15We selected the best performing method from [11], i.e. strategy C.



80) training images, the 6 most “informative” pairwise

features (edges with different length and orientation) are

selected (see [4]), their edge costs defined by the nega-

tive log of the marginal probabilities of each of the labels

{(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T }, and the prior weight

learned discriminatively (see [12]). The globally optimal

labelling of the resulting MRF (found using QPBO [12])

is over-smoothed (fig. 4(c)), due to the bias towards delta

function marginal statistics.

We considered two alternatives for improving results.

Firstly, we added a V-shaped global unary constraint on

the number of 1s. Secondly, we replaced the MRF pair-

wise terms with V-shaped global potentials (and also kept

the global unary constraint). In both cases we defined the

lowest cost to be at the mean frequency of the training data

statistics, with the kernel gradients being hand-tuned.16 Re-

sults, shown in fig. 4(d,e), are superior to the MRF result.

Table 2 provides some quantitative results, here averaged

over 20 sample runs (for each noise level) and two different

crops (60 × 60 pixels) of Brodatz textures D101 and D20,

reinforcing that the MPF models improve over the MRF.

As expected, the difference is more noticeable for higher

levels of noise, where the prior has greater influence. The

improvement from using global pairwise terms is visually

more noticeable (e.g. fig. 4(e)) than is reflected by the er-

ror rates. In contrast to the previous experiment on image

segmentation, DD-DP achieved global optimality less of-

ten compared to DD. In particular, we observed that they

achieve global optimality for different images. Also, the

lower bound of DD-DP was seldom higher than that of DD,

though it nearly always had a lower energy. We conjecture

that the main reason might be slow convergence of DD-DP.

The average runtime (3.6GHz) for an example is DD

0.5s, DD-DP 1s per iteration, and DD-MCF 0.06s per it-

eration. The number of iterations (until process seems to

be converged) depends on the image, e.g. 400 for DD-DP

(fig. 4(d)) and 300 for DD-MCF (fig. 4(e)).

4.3. Image denoising

Responses of natural images to zero-mean filters are

known to be highly kurtotic. We use a first derivative fil-

ter (horizontal and vertical) as a feature to regularize noisy

greyscale images, comparing MPF and MRF models. The

image is discretized to 64 grey levels, while the deriva-

tive statistics (magnitude only) are discretized into 11 non-

uniformly distributed bins. A mean image histogram, and

histogram variance, is computed from 100 Berkeley Seg-

mentation Dataset images, and used with a V-shaped cost

kernel (the gradient of which is inversely proportional to

variance) in the MPF, while its negative log is used as the

pairwise energy in the MRF problem. A reasonable prior

16We found that the output labelling was not sensitive w.r.t. settings of

the weight, in contrast to a standard MRF.

weight for each model was hand-picked from a range of val-

ues tested, though the MPF results were found to be much

less sensitive to this value. Fig. 5 shows the results using

the two different models. The MRF model (optimized us-

ing [10]) biases the output (c,d) towards an unnaturally ho-

mogenous image, while the MPF output (e), generated us-

ing DD-MCF, is both more natural-looking (also matching

the mean marginal statistics very closely (f)) and a more

faithful reconstruction (visually) of the original.

4.4. Image synthesis

The goal of image17 synthesis is to generate, from a

small (here, 128 × 128, e.g. fig. 6(a)) exemplar image, a

larger output image. The popular MRF-based technique of

Kwatra et al. [15] fuses shifted copies (we use 70 random

shifts) of the input image together in a series of binary op-

timizations (we use QPBO [12]), by minimizing the pair-

wise transition costs between different copies. The result

(fig. 6(b)) is poor—some rarer elements are lacking, e.g.

dark grass, cow. This can be expected since elements which

occur frequently are more easily pasted together.

We augment the MRF energy with a global term based

on V-shaped cost kernel around the colour histogram of

the input image. This colour histogram has 32 bins whose

centres are computed using k-means on the input colours;

colours are then assigned to the nearest bin centre. Each

binary optimization is then computed using our DD-MCF

technique. This generates the output shown in fig. 6(c),

which shows that the previously missing image elements

have been introduced.

Kopf et al. [14] first introduced a heuristic to enforce

global colour histograms in texture synthesis, inspiring this

choice of application here. However, their method,18 gen-

erating fig. 6(d), fails to reproduce the full gamut of input

colours, a result of the fact that colours, once lost, are not

easily reintroduced. Fig. 6(e) shows the colour histograms

of images (a–e), indicating that our approach generates the

closest match to the ground truth.

5. Conclusions and future work

This paper has introduced a framework for the MAP op-

timization of convex MPFs, powerful in terms of its effi-

cacy, efficiency and flexibility. In doing so it has developed

a more general probabilistic model (of which the MRF is a

special case), shown that MAP inference can generate so-

lutions with correct marginal statistics, when used with a

convex MPF, and that convex MPFs generate improved re-

sults over those of MRF models in a wide range of low-

level vision applications where marginal statistics are both

important and heavy-tailed.

We believe that this work has enormous potential, both

with respect to the applications it can be applied to, and for

17As distinct from texture—images contain non-repetitive features.
18Our own implementation.
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Figure 5. Image denoising. Results for image denoising. (d) shows further MRF results with a lower (top) and higher (bottom) prior

weight than (c). (f) shows derivative histograms (discretized into the 11 bins used in the global statistic) for the mean statistic, derived from

a large dataset (black), (a) (blue), (b) (yellow), (c) (green) and (e) (red). The runtime for the MRF (c) is 1096s and for MPF (e) 2446s.
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Figure 6. Image synthesis. (a) Input image. (b–d) Larger output images synthesized using (b) the fusion approach of Kwatra et al. [15], (c)

our adaption which incorporates a global colour histogram constraint, and (d) the EM-style, global heuristic approach of Kopf et al. [14].

(e) Colour histograms (bins are those used in the global constraint of (c)) for (a) (black), (b) (red), (c) (blue) and (d) (green).

improvements to the optimization technique itself.
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