
A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y O C TO B E R  2 0 2 0 E1628

A Global Probabilistic Dataset for 
Monitoring Meteorological Droughts
Marco Turco, Sonia Jerez, Markus G. Donat, Andrea Toreti,  
Sergio M. Vicente-Serrano, and Francisco J. Doblas-Reyes

ABSTRACT: Accurate and timely drought information is essential to move from postcrisis to pre-
impact drought-risk management. A number of drought datasets are already available. They cover 
the last three decades and provide data in near–real time (using different sources), but they are all 
“deterministic” (i.e., single realization), and input and output data partly differ between them. Here 
we first evaluate the quality of long-term and continuous climate data for timely meteorological 
drought monitoring considering the standardized precipitation index. Then, by applying an en-
semble approach, mimicking weather/climate prediction studies, we develop Drought Probabilistic 
(DROP), a new global land gridded dataset, in which an ensemble of observation-based datasets 
is used to obtain the best near-real-time estimate together with its associated uncertainty. This 
approach makes the most of the available information and brings it to the end users. The high-
quality and probabilistic information provided by DROP is useful for monitoring applications, and 
may help to develop global policy decisions on adaptation priorities in alleviating drought impacts, 
especially in countries where meteorological monitoring is still challenging.
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E
cosystems and human societies are strongly impacted by drought (Wilhite 2000; 

Vicente-Serrano et al. 2013; Turco et al. 2017a; Toreti et al. 2019). While most natural 

hazards are rapid-onset events (e.g., �oods), drought is considered a “creeping disaster”: 

It is usually a slow-onset phenomenon (Gillette 1950; Schwalm et al. 2017), which also means 

that there may be more time to prepare and implement an adequate response (Wilhite 2012). 

Accurate and timely information of evolving drought conditions is crucial to take early 

action to alleviate their impacts (Pozzi et al. 2013; Hao et al. 2017). For instance, using the 

best and updated drought information available in drought-monitoring systems, authorities 

and water managers may establish better practices to optimize water use, improve control 

of environmental systems (e.g., forest-�re incidence) and plan measures for agriculture. To 

enable a proactive response, near-real-time observed data are of paramount importance 

(Wilhite et al. 2014; Wilhite and Pulwarty 2017). In addition, the best available, up-to-date 

information on drought can be used as inputs to generate better forecasts (e.g., Hao et al. 2014; 

Dutra et al. 2014b; Mo and Lyon 2015; Turco et al. 2017b), and to develop impact-risk 

prediction models (Turco et al. 2018).

There are several operational drought-monitoring systems that operate at regional scale, such 

as the U.S. Drought Monitor (Lawrimore et al. 2002; Svoboda et al. 2002), the European Drought 

Observatory (Sepulcre-Canto et al. 2012), the Drought Observatory for the Tuscany Region and 

the Mediterranean (Magno et al. 2018), an experimental tool for Africa (Sheffield et al. 2008), 

and a recently developed dataset for South Asia (Aadhar and Mishra 2017). On a global scale, a 

few drought-monitoring tools are also available, including the global drought-monitoring sys-

tem based on the standardized precipitation–evapotranspiration index (Beguería et al. 2014), 

the Global Integrated Drought Monitoring and Prediction System (GIDMaPS; Hao et al. 2014), 

and the Global Precipitation Climatology Centre (GPCC) drought index (Ziese et al. 2014).

Drought is a complex phenomenon that involves different natural and eventually also 

human drivers. Based on both physical and socioeconomic contributing factors, drought is 

usually classified into four types: meteorological, agricultural, hydrologic, and socioeconomic 

(Wilhite and Glantz 1985). Meteorological droughts are apparent after a period of time with 

a deficiency of precipitation (Wilhite et al. 2014). Agricultural drought is generally identified 

by soil-moisture deficit, while hydrologic drought is related to surface or subsurface water 

deficit. Finally, the socioeconomic type considers drought in terms of supply and demand, 

evaluating the impacts of a water deficit on socioeconomic systems (Van Loon et al. 2016). 

In this study we focus on precipitation deficits through the standardized precipitation index 

(SPI; McKee et al. 1993), suggested by the World Meteorological Organization as a starting 

point for meteorological drought monitoring (WMO 2012).

The quality of data available in real-time data are still a constraint in global drought moni-

toring (Pulwarty and Sivakumar 2014), and a common shortcoming of all the available data-

sets is that they usually do not quantify the inherent uncertainty (with few exceptions, see, 

for example, Hersbach et al. 2020; Cornes et al. 2018; Frei and Isotta 2019). All the real-time 

climate products have inherent uncertainties, originating mainly from data-quality issues, pe-

riods of data unavailability, and/or poor spatial coverage of observations (Tapiador et al. 2017; 
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Sun et al. 2018). These challenges are especially pronounced when observations are needed 

for drought monitoring in near–real time as less time is available to retrieve and control the 

observations. Moreover, gridded datasets, which are the main source for drought monitor-

ing, have a number of potential inaccuracies and errors (Dunn et al. 2014; Beck et al. 2017; 

Sun et al. 2018; Beck et al. 2019b). Generally, interpolation errors and uncertainties increase 

as the network density decreases, especially for variables with shorter spatial decorrelation 

scales (e.g., precipitation), and the quality degrades in areas of complex terrain. For instance, 

although the GPCC uses the largest number of stations worldwide (more than 85,000 from 

different sources) to produce different gridded precipitation products (including the GPCC 

drought index), it has spatial representativeness problems since the stations are heteroge-

neously distributed and their number is not constant over time (Ziese et al. 2014). Satellite 

observations provide new opportunities for climate monitoring with a more homogeneous 

and consistent spatial coverage. However, as precipitation cannot be directly measured by 

satellites, the estimates are also affected by uncertainties related to conversion/transfer func-

tions (AghaKouchak et al. 2015). In addition, satellite data are affected by retrieval error and 

biases (exacerbated when considering extremes) and their relatively short lengths of records 

can limit their applications (Mu et al. 2013; Maidment et al. 2017; Ceglar et al. 2017). To try 

to alleviate these problems, a number of datasets combine rain gauge analyses with satellite 

estimates in order to reduce the biases. Note, however, that gridded precipitation estimates 

themselves are subject to substantial uncertainty (Herold et al. 2016). Finally, reanalyses 

(here referring to atmospheric models that assimilate a set of observations) provide physically 

consistent estimates of climate variables with temporal continuity and spatial homogeneity 

(Kalnay et al. 1996). However, uncertainties in the assimilated observations and the model 

limitations influence the quality of the estimates generated by the reanalyses (Parker 2016; 

Buizza et al. 2018).

Despite the growing number of climate datasets and studies analyzing these data [for 

instance the review of Sun et al. (2018) compares 30 currently available global precipitation 

datasets], a global assessment of meteorological datasets covering the last three decades 

and providing data in near–real time is still missing. A careful assessment of these datasets 

could help to characterize the uncertainties relevant to meteorological drought, a crucial 

step in translating data into actionable information for making decisions. A strategy to deal 

with these uncertainties comes from weather/climate prediction studies: using an ensemble 

of observations/reanalysis to quantify the observational agreement among its members 

(Dutra et al. 2014a; Mo and Lettenmaier 2014; Massonnet et al. 2016).

The objectives of this paper are as follows: (i) to assess the quality of the datasets available 

in near–real time for meteorological drought monitoring at the global scale (gridded observa-

tions, state-of-the-art reanalyses, and mixed products obtained by merging gauge observations 

with satellite estimates); and (ii) to describe the development of Drought Probabilistic (DROP), 

a new probabilistic monitoring tool, in which an ensemble of observation-based datasets is 

used to obtain real-time estimates and their associated uncertainties.

Data and methods

DROP underlying data and methodology. Figure 1 schematically illustrates the three main 

steps in producing the DROP dataset. First, we search for all the available precipitation 

data that are currently publicly available, covering at least the last three decades (drought 

monitoring requires an extended record of observations in order to calculate anomalies that 

can be used to identify drought events), and that are updated every month, that is, that are 

available in near–real time. Ten datasets satisfy the abovementioned requirements (Table 1). 

Three of these datasets are based exclusively on interpolated station observations [CPC, 

GPCC, and  Precipitation Reconstruction over Land (PREC/L)], four are based exclusively on 
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reanalysis data (ERA5, JRA-55, 

NCEP, and MERRA-2), and three 

datasets combine gauge and 

satellite data [Climate Anomaly 

Monitoring System–OLR Pre-

cipitation Index (CAMS_OPI), 

Climate Hazards Group Infrared 

Precipitation with Station data 

(CHIRPS), and GPCP].

Next, we calculate the SPI 

(McKee et al. 1993) for each 

dataset. SPI is a transformation 

of the accumulated precipita-

tion values over a specific time 

scale (here over 1, 3, 6, and  

12 months) into a standard 

Gaussian distribution with 

mean 0 and standard devia-

tion 1. Positive values indicate 

surplus of rainfall, whereas 

negative values identify dry con-

ditions relative to the long-term 

climatology. The SPI has been 

widely used for meteorological 

drought studies and is recom-

mended for this purpose by the 

World Meteorological Organiza-

tion (WMO 2012). This index has 

several advantages compared 

to other indicators: it is easy to 

compute, since it requires only 

precipitation as an input vari-

able; it is flexible, since it can 

be computed for different time 

scales; it is spatially consistent because the product is standardized and so may be compared 

equally well anywhere in space. Besides, since the standardization in the SPI uses its own 

climatology, it adjusts for bias in mean and variability of precipitation. However, it has also 

a weakness the user needs to take into account: SPI cannot directly identify the role of other 

variables (e.g., temperature, humidity, solar radiation, or wind speed) in drought conditions. 

The SPI transformation is applied to each dataset, resulting in an ensemble of 10 SPI estimates.

Finally, each dataset constitutes a member of the ensemble. DROP uses the calculated SPI 

for all ensemble members to provide drought information in a variety of ways. DROP is a new 

global land gridded dataset that provides different layers: the ensemble mean, the ensemble 

spread, the drought warning, and the confidence level of drought. The most basic informa-

tion is the ensemble mean for users interested in the magnitude of the SPI. Importantly, in 

order to guarantee the same statistical characteristics of the SPI, the ensemble mean of the 

different SPI estimates has been rescaled (obtained by defining an anomaly by subtracting 

the long-term mean from the original series and dividing the anomaly by its long-term stan-

dard deviation) to retain the unit standard deviation (as recommended by Dutra et al. 2014b).  

An estimation of the uncertainty around the ensemble mean is provided by the ensemble 

Fig. 1. Schematic view illustrating the steps implemented to generate 

the DROP monitoring dataset.
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spread (i.e., the standard deviation). DROP also provides a simple color-coded drought warning 

based on a combination of uncertainty and severity as indicated in Table 2. This approach, 

based on the guidelines for disaster management of the European Commission (EC; EC 2010), 

allows users to focus on areas where there is high confidence of severe drought (highlighted 

in red colors), or where there is high confidence of moderate drought/moderate confidence of 

severe drought (orange) or where there is either high confidence of abnormally dry conditions 

or low confidence of severe drought (yellow). In addition to this simple colored warning system, 

DROP provides also the full confidence level of having (at least) moderate drought, thus giving 

a more detailed illustration of the drought uncertainty. Specifically, the confidence level to 

observe moderate drought is determined from the fraction of members having SPI < −0.8 [i.e., the 

SPI threshold to have moderate drought according to Svoboda et al. (2002); see also Table ES1  

in the online supplement (https://doi.org/10.1175/BAMS-D-19-0192.2)]. It is worth noting that 

several thresholds can be implemented and tested. High percentages of drought occurrence 

indicate a high degree of confidence of observing drought among all the available datasets.

DROP evaluation. Different drought types (e.g., agricultural, hydrological) are often linked 

with below-normal levels of groundwater, soil moisture, and streamflow and, although 

different processes are involved, it is expected some degree of correlation between SPI 

Table 1. Description of the datasets used in this study.

DROP members

Dataset Availability Resolution Reference Source

CAMS_OPI 1979–near present; 
global

Monthly; 2.5° Janowiak and Xie (1999) www.cpc.ncep.noaa.gov/products/global_precip/
html/wpage.cams_opi.html

CHIRPS 1981–near present; 
50°S–50°N

Monthly; 0.05° Funk et al. (2015) https://chc.ucsb.edu/data/chirps

CPC 1979–near present; 
global

Monthly; 0.5° Chen et al. (2008) www.esrl.noaa.gov/psd/data/gridded/data.cpc.
globalprecip.html

ERA5 (ensemble  
mean)

1979–near present; 
global

Monthly data; 0.25° Hersbach et al. (2020) www.ecmwf.int/en/forecasts/datasets/archive-datasets/
reanalysis-datasets/era5

GPCC 1891–near present; 
global

Monthly data; 2.5° Becker et al. (2013) www.dwd.de/EN/ourservices/gpcc/gpcc.html

GPCP (V2.3) 1979–near present; 
global

Monthly; 2.5° Adler et al. (2018) http://eagle1.umd.edu/GPCP_ICDR/

JRA-55 1958–near present; 
global

3-hourly data; 
T319L60

Kobayashi et al. (2015) http://jra.kishou.go.jp/JRA-55/index_en.html

MERRA-2 1980–2016; global Hourly; 0.5° × 
0.625°

Gelaro et al. (2017) https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

NCEP 1979–near present; 
global

Monthly data; 2.5° Kanamitsu et al. (2002) www.esrl.noaa.gov/psd/data/gridded/data.ncep.
reanalysis2.html

PREC/L 1948–near present; 
global

Monthly; 2.5° Chen et al. (2002) www.esrl.noaa.gov/psd/data/gridded/data.precl.html

References datasets

MSWEP v2.1 1979–2016; global 3-hourly; 0.1° Beck et al. (2019a) www.gloh2o.org/

ESA CCI Soil Moisture 
v04.5

1978–2018; global Daily; 0.25° Gruber et al. (2019); 
Dorigo et al. (2017);  
Gruber et al. (2017)

www.esa-soilmoisture-cci.org/

GRACE drought  
severity index (GRACE)

April 2002–June 
2017; global

Monthly; 0.5° Zhao et al. (2017) https://www.ess.uci.edu/~velicogna/drought 
_documentation.php

Global Streamflow  
and Metadata  
Archive (GSIM)

1981–2016; global Yearly; stations Do et al. (2018); 
Gudmundsson et al.  
(2018)

https://doi.pangaea.de/10.1594/PANGAEA.887477
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(as a measure of meteoro-

logical drought) and these 

variables (Dai 2011a). Thus, 

following Dai et al. (2004) and 

Dai (2011b), we evaluate the 

quality of the DROP dataset 

against the independent data 

of the European Space Agency 

soil moisture dataset (Gruber 

et al. 2019; Dorigo et al. 2017; 

Gruber et al. 2017), of the ter-

restrial water storage changes from the Gravity Recovery and Climate Experiment (GRACE; 

Zhao et al. 2017) and of the Global Streamflow and Metadata Archive (GSIM; Do et al. 2018; 

Gudmundsson et al. 2018), a global collection of streamflow time series.

We also consider the Multi-Source Weighted-Ensemble Precipitation (MSWEP) (v2.1; 

Beck et al. 2019a) precipitation dataset for the evaluation, but not as a DROP ensemble mem-

ber as it is not available in near–real time. Recent studies comparing several precipitation 

datasets have shown that it provides the best overall performance (Beck et al. 2017, 2019b; 

Xu et al. 2019), which is also confirmed by our assessment that compares all the datasets 

against the independent data (see “Results and discussion” section). Currently, MSWEP is 

the only global precipitation dataset at high spatial resolution (0.1° resolution) obtained by 

merging a rain gauges, satellite, and reanalysis estimates (Beck et al. 2019a).

To compare the various gridded datasets, their precipitation values are remapped (first-

order conservative remapping; Jones 1999) from their original resolution to the coarsest grid 

of the available datasets, defined by GPCP (2.5° × 2.5°).

We evaluate different attributes (Murphy 1993) of the DROP quality: degree of association 

between the ensemble mean and the reference datasets through the Pearson’s r correlation 

coefficient; accuracy by the mean absolute error; reliability through the reliability diagram 

(Weisheimer and Palmer 2014); and resolution by the relative operating characteristic (ROC) plot 

(Mason and Graham 2002). The details of the verification strategy are provided in the appendix.

Results and discussion

Deterministic assessment. Figure 2 shows the strong agreement between the DROP dataset 

and the MSWEP precipitation dataset, with most of the grid cells showing high and statistically 

significant correlations (but note that there are extended regions in Africa and South America 

where the correlation values are lower, although still statistically significant). Furthermore, 

DROP shows extensive regions with statistically significant correlations against soil moisture, 

being the highest values mainly clustered in the United States, southern and eastern Europe, 

central and southern Asia, northern and southern Africa, eastern and southern South America, 

and Australia. Over most land areas, DROP is positively and statistically significant correlated 

with the variations in GRACE total water storage. Furthermore, around 90% (336 of 378) of 

the streamflow data show positive and statistically significant correlations with DROP.

Of course, the links between precipitation-related indices and other hydrological variables 

are limited due to the complex processes involved (nature and human-based). However, the 

comparison between all the SPI12 gridded datasets and these variables offers insight on the 

quality of the former data. Figure 3 summarizes the results for all datasets and variables 

considered. Generally, all datasets show relatively high correlation values in most grid cells 

against the MSWEP dataset (Fig. 3a and Fig. ES1), with more than half of the grid cells having 

correlation values above 0.7. Of the individual members, CHIRPS, GPCC, and GPCP demon-

strate the best performance, with more than half of the grid cells having correlation values 

Table 2. This drought-risk matrix indicates the colors used to plot the 
drought warning levels. For example, yellow could reflect either a high 
confidence of abnormally dry conditions or a low confidence of a severe 
drought.
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above 0.8. DROP systemati-

cally outperforms the individual 

products, especially reducing 

the spread in the verification 

metrics, improving, in particu-

lar, the agreement in regions 

with the lowest skill (Fig. ES1). 

The high quality of DROP is also 

confirmed by the mean absolute 

error (MAE) metric (Fig. ES2). 

Generally, all the datasets show 

relatively low MAE values in 

most grid cells, with more than 

half of them having MAE less 

than 0.6. DROP reduces the 

MAE of the individual mem-

bers, with more than half of the 

grid cells having MAE less than 

0.35. This verification has been 

performed using the SPI12, 

but similar results have been 

obtained with SPI1, SPI3, and 

SPI6 (see Fig. ES2).

Fig. 3. Validation of SPI12 from all gridded datasets. Boxplots of the 

spatial distribution sample over all grid cells of the correlation values 

against (a) MSWEP, (b) ESA CCI Soil Moisture, (c) GRACE, and (d) GSIM. The 

median is shown as a solid line, the boxes indicate the 25th–75th-percen-

tile range, and the whiskers show the 2.5th–97.5th-percentile range.

a) DROP correlation with MSWEP b) DROP correlation with ESI CCI

 soil moisture

c) DROP correlation with GRACE d) DROP correlation with GSIM

Fig. 2. Validation of DROP data. Correlation of annual SPI12 values based on DROP ensemble 

mean against (a) MSWEP data, (b) ESA CCI Soil Moisture data, (c) Gravity Recovery and Climate 

Experiment (GRACE) data, and (d) Global Streamflow and Metadata Archive (GSIM) data. Points in 

(a)–(c) indicate significant correlations (p values < 0.05). Colored circles in (d) indicate significant 

correlations (p values < 0.05).

b) DROP correlation with ESI CCI

 soil moisture

a) DROP correlation with MSWEP

c) DROP correlation with GRACE d) DROP correlation with GSIM

Unauthenticated | Downloaded 08/10/22 06:30 AM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y O C TO B E R  2 0 2 0 E1635

Considering the independent data (Figs. 3b–d and Figs. ES3–ES5), CHIRPS, ERA5, GPCC, 

and GPCP and DROP show the highest correlations, with more than half of the grid cells hav-

ing correlation values above 0.4 considering soil moisture and GRACE data, and above 0.6 

considering streamflow series. In conclusion, the magnitudes of the correlations between 

various hydrological variables clearly show that DROP is capable to monitor drought condi-

tions in different systems. The performance of DROP is very similar to MSWEP but regular 

updates allow DROP to be used as well-performing monitoring product.

Probabilistic evaluation. Due to inherent, large uncertainties in monitoring drought, a key 

added value of DROP is its provision of an estimate of these uncertainties. Figure 4a shows the 

reliability diagram for Australia for moderate drought events (SPI < −0.8; Svoboda et al. 2002) 

as an illustrative example. It compares the observed (MSWEP) relative frequency against the 

monitored (DROP) confidence of occurrence of this kind of events, providing a quick visual 

assessment of the reliability. A perfectly reliable system should draw a line as close as possible 

to the diagonal (slope equal to 1) indicating that the observed relative frequency and the DROP 

confidence of occurrence are similar. In this example the uncertainty range of the reliability line 

does not include the perfect reliability line. Actually, the slope is larger than 1, indicating that 

DROP overestimates low confidence levels (e.g., there are not events when DROP indicates 10% 

of drought confidence) and underestimates high confidence levels [e.g., the observed frequency 

in top 10% (above 0.9) do not occur in DROP]. However, it is inside the skillful Brier skill score 

(BSS) area (BSS > 0 and slope > 0), indicating that DROP is still very useful for decision-making 

(Weisheimer and Palmer 2014) in this region. In fact, the ROC diagram for the same region 

and type of event (Fig. 4b) shows that DROP has skill in terms of identifying drought occur-

rence probabilistically, since its 

curve is well above the identity 

line (where the hit rate equals 

the false alarm rate).

Figures 4c and 4d show the 

same analysis for the Amazon 

basin. In this case the spread in 

the reliability diagram is closer 

to the perfect reliability line, 

but the ROC diagram indicates a 

lower skill compared to the pre-

vious case. This was somehow 

expected, since the Amazon 

basin is a more challenging 

area for drought monitoring 

than Australia, partly due to 

a lack of station observations 

(Sun et al. 2018).

To summarize the results for 

all the regions, we calculate 

the slopes of the reliability dia-

grams and the ROC area skill 

scores (and associated uncer-

tainties) and show them as 

boxplot distributions in Fig. 5. 

Figure 5a shows that the slopes 

are always positive, and in few 

Fig. 4. Probabilistic validation of DROP. (a) Reliability and (b) ROC dia-

grams for moderate drought predictions (i.e., annual SPI12 < −0.8) for the 
DROP dataset in Australia, and (c) reliability and (d) ROC diagrams for the 

Amazon basin. The shaded areas indicate the 2.5% and 97.5% confidence 

intervals calculated through 1,000 bootstrap replications. The circles in (a) 

and (c) represent the observed relative frequency of moderate drought 

events against the predicted confidence level. The inset plots in (a) and 

(c) show the number of samples for each bin of the confidence levels with 

the observed frequency of occurrence of that event; those in (b) and (d) 

show the regions analyzed (Giorgi and Francisco 2000).
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regions the spread includes the perfect reliability 

line. In most of the areas the slope is higher than 

1, indicating that DROP, although reliable, tends to 

be overconfident in those regions. Figure 5b shows 

that the ROC area skill score (ROCSS) is always larger 

than 0.5, indicating skill, and, not surprisingly, that 

the higher values are obtained in areas with good 

observational coverage (Sun et al. 2018): Australia, 

North America, Europe, and East and North Asia 

(also confirmed in Fig. ES6 that shows the correlation 

of DROP against MSWEP aggregated for the same 

regions). Similar results have been obtained consid-

ering SPI1, SPI3, and SPI6 and considering severe 

instead of moderate droughts (Figs. ES7 and ES8).

Case studies. The skill estimates based on the perfor-

mance of the system in the past may guide end users 

on the expected performance of the system in moni-

toring drought events. As illustrative applications, 

we compare the ability of DROP in monitoring two 

extreme events: Africa in 1984 and the United States 

in 2012. They represent two illustrative tests of the 

system, the former in a data-poor region and the lat-

ter in an area with very good observational coverage.

Wide areas in Africa experienced extreme drought 

conditions in 1984, including many regions in east-

ern, western, and southern Africa, resulting in one 

of the worst humanitarian disasters of the twentieth 

century (Naumann et al. 2014; Masih et al. 2014). 

The SPI estimated by the MSWEP dataset (Figs. 6a,b) 

indicates extended drought areas with SPI reaching 

values below −2, that is, exceptional drought condi-

tions [according to Svoboda et al. (2002) and Table 

ES1]. The spatial pattern of the drought severity de-

picted by the DROP ensemble mean (Fig. 6c) resembles the pattern of MSWEP (Fig. 6a). The 

DROP ensemble spread (Fig. 6d) clearly points to large uncertainty in most of the regions, 

thus indicating that normal and drought conditions could be equally likely and highlighting 

the challenge of monitoring and alert systems. Figure 6e shows the DROP warning-level map. 

Most of the continent shows yellow to red color (i.e., low, medium, and high drought warning 

levels, respectively), indicating the large spatial extent of this drought event. This map allows 

users to focus on the areas where there is higher confidence in the severity of the drought 

conditions. For instance, red colors indicate high agreement among the ensemble members 

of having SPI < −1.3, that is, a severe drought. The warning-level “medium” instead reflects 

either high confidence of moderate drought or low-to-medium confidence of a severe drought. 

Finally, the DROP confidence level to have SPI lower than −0.8 is plotted in Fig. 6f. The area 

where the values are larger than 60% (brown colors) are generally consistent with the area 

where the MSWEP indicates the most extreme drought conditions. Thus, a generally consistent 

pattern emerges from the analysis of the available data, further supporting the robustness of 

DROP. Clearly, results for individual grid points should be considered with caution. Figure 7 

shows the drought evolution associated with a pixel in central Africa (identified by an arrow 

Fig. 5. Probabilistic validation of DROP over all 

the  regions (Giorgi and Francisco 2000). Boxplots 

of (a) the reliability measured as the slope of the 

regression line of the reliability diagrams for all 

the regions of the study for moderate (i.e., annual 

SPI12 < −0.8) drought events and (b) the ROCSS val-
ues. The median is shown as a solid line, the boxes 

indicate the 25th–75th-percentile range, while the 

whiskers show the 2.5th–97.5th-percentile range.
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in Fig. 6c), elucidating how the uncertainties can be very large (see also Fig. ES9 that shows 

large uncertainties also aggregating the data over a larger region instead of a single pixel). 

While MSWEP estimates moderate drought conditions for the entire period here considered, 

DROP does only for some months. Among the individual members, the spread is very large, 

with some datasets indicating extreme droughts and others indicating wet conditions. Finally, 

a large uncertainty affects the estimated end of this drought event. The consistent increase 

in SPI values between March and September 1985 among the majority of the datasets (the 

exception being MSWEP, which shows moderate drought conditions during this period) in-

dicates that the attenuation of the drought likely started in mid-1985. A recently developed 

global database of meteorological drought events (Spinoni et al. 2019) also shows that in 

the middle of 1985 SPI12 tended toward normal conditions. This case study illustrates that 

MSWEP, despite being a dataset with an overall good quality, is also affected by uncertain-

ties, especially in areas with limited observations. This further emphasizes the importance 

of ensembles of monitoring datasets for drought-alert systems.

A second case study is shown in Fig. 8. The central United States experienced in 2012 

one of the most severe droughts since the start of the observational records, with estimated 

Fig. 6. Drought case study map. Observed 12-month SPI for 1984 (representing the rainfall during the 
period January–December 1984) in Africa considering (a) the MSWEP value, (b) the observed drought 
conditions based on MSWEP data [as defined in Svoboda et al. (2002) and Table ES1], (c) DROP ensemble 

mean, (d) SPI ensemble spread, (e) warning-level map defined according to Table 2, and (f) the confidence 

level for moderate drought occurrence (i.e., SPI < −0.8). The time series derived for the pixel indicated by 
an arrow in (c) is shown in Fig. 7.
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losses of $12 billion and severe impacts on agricultural production (Hoerling et al. 2014; 

Spinoni et al. 2019). The agreement between MSWEP and DROP is very high as both show a vast 

area of central United States under severe to exceptional drought conditions. The low spread 

reflects the fact that individual members show similar values in the identified region with 

“high” warning level (highlighted in red colors) and with the confidence of more than 80% to 

have drought conditions. Also the temporal evolution of this drought event in a particular grid 

point shows a relatively low uncertainty (Fig. 9), at least compared with the previous African 

case study (see also Fig. ES9). However, uncertainties also affect the estimated onset of the 

event, with some spread between April and June 2012. According to Hoerling et al. (2014), the 

drought event started in May 2012, but based on Spinoni et al. (2019), it started in June 2012. 

Similarly, there is large spread on the drought end. Most of the datasets, including MSWEP and 

the ensemble mean of DROP, indicate values larger than −0.8 since May 2014, in agreement with 

Spinoni et al. (2019) (that estimate that the drought ended between February and May 2014).

Conclusions

We present DROP, a new global probabilistic precipitation-based dataset for monitoring and 

early warning of meteorological drought events. DROP is operationally updated every monthly 

and provides probabilistic information in near–real time, that is, up to the previous month. 

An ensemble approach, similarly to weather/climate prediction studies, is used by DROP, 

where the members represent the available observations-based products. We have shown the 

importance of having an ensemble-based probabilistic approach in near-real-time monitoring 

systems, aimed at providing the best possible information for planning and acting to reduce 

the potential impacts (e.g., crop losses, increased fire risk). Indeed, DROP could become an 

important tool to inform end users across a range of socioeconomic sectors (e.g., energy and 

water management, insurance, agriculture, fire risk).

DROP is publicly available online (www.um.es/gmar/projects/predfire.html). Users can retrieve 

the estimated SPI indices of the ensemble mean of DROP and drought confidence levels. All 

codes used in the production of DROP are also freely available, via the DROP archive, which 

ensures adherence to the Enabling Findable, Accessible, Interoperable and Reusable (FAIR) 

Data Project for Earth-science research (www.copdess.org/enabling-fair-data-project/).

MSWEP

Fig. 7. Drought case study time series: Africa. Times series evolution of the observed 12-month SPI consid-

ering the individual ensemble members (in gray), the DROP ensemble mean (in green), and the MSWEP 

data (in orange). Location: latitude = 13.75°, longitude = 26.25°.
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In the future, we may see development of more refined specific monitoring systems at 

regional scales where high-resolution data are available, and of more sophisticated methods 

(including other climatic variables, such as evaporative demand or soil moisture) to monitor 

other types of drought (e.g., agricultural drought). For this, it is worth noting that the recently 

developed ERA5 (Hersbach 2020) offers an ensemble that could be beneficial in estimating 

uncertainty of different climate variables relevant for drought monitoring (while for DROP 

we use the ensemble mean of only one variable, the precipitation).

In addition, DROP may serve as a basis for model evaluation (it is worth noting that 

verification of climate predictions generally neglect uncertainties in observations; 

Massonnet et al. 2016; Bellprat et al. 2017) and to provide initial conditions for improving 

seasonal forecasts.

The powerful impacts of droughts necessitate a move from postcrisis to preimpact drought-

risk management (Wilhite et al. 2014) and points to the need for innovative solutions providing 

the full range of information. We believe DROP contributes to address this need.

Fig. 8. Drought case study map. Observed 12-month SPI for 2012 (representing the rainfall during the 
period January–December 2012) in North America considering (a) the MSWEP value, (b) the observed 

drought conditions based on MSWEP data [as defined in Svoboda et al. (2002) and Table ES1], (c) DROP 

ensemble mean, (d) SPI ensemble spread, (e) warning-level map defined according to Table 2, and (f) the 

confidence level for moderate drought occurrence (i.e., SPI < −0.8). The time series derived for the pixel 
indicated by an arrow in (c) is shown in Fig. 9.
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Appendix: Details of the drop development and verification

Here we describe in more detail the approach followed to develop and evaluate the DROP 

dataset.

We computed SPI using the implementation of the R package SPEI (Beguería and  

Vicente-Serrano 2013), that is, by fitting the precipitation series to a gamma distribution 

in accord with by the procedure recommended by the World Meteorological Organization 

(WMO 2012).

We computed the Pearson correlation coefficients between all the gridded datasets avail-

able in near–real time (including the ensemble mean of the 10 individual datasets) and the 

references datasets for each grid point. Specifically, we compare (i) the annual mean annual 

soil moisture (Gruber et al. 2019; Dorigo et al. 2017; Gruber et al. 2017) and the SPI12; (ii) the 

monthly GRACE drought severity index (Zhao et al. 2017) and the SPI12 over the common 

period April 2002–December 2016 (following Cammalleri et al. 2019); and (iii) the annual 

observed GSIM streamflow (Do et al. 2018; Gudmundsson et al. 2018) and the basin-averaged 

SPI12 (rescaled in order to preserve the unit standard deviation). The GSIM collects 30,959 

time series. We consider only the stations with over 90% of valid data during the study period 

and whose basins contain at least one pixel of the 2.5° grid, resulting in a set of 378 gauges.  

MSWEP

Fig. 9. Drought case study time series: North America. Times series evolution of the observed 12-month 

SPI considering the individual ensemble members (in gray), the DROP ensemble mean (in green), and the 

MSWEP data (in orange). Location: latitude = 41.25°, longitude −101.25°.
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We estimated the significance level of correlation using the Student distribution with  

N degrees of freedom, N being the effective number of independent data calculated following 

the method described in Von Storch and Zwiers (2001). We also compute the MAE between 

all the gridded datasets available in near–real time (including the ensemble mean of the  

10 individual datasets) and the MSWEP data for each grid point.

We computed the reliability diagrams, a common diagnostic of probabilistic forecasts that 

shows for a specific event (e.g., moderate drought) the correspondence of the DROP confidence 

levels with the reference frequency (here based on MSWEP data) of occurrence of that event 

(Weisheimer and Palmer 2014). We also included the weighted linear regression through the 

points in our diagrams using the number of DROP values in each confidence bin as weights 

(following Weisheimer and Palmer 2014).

We consider the ROCSS based on the ROC diagram. ROC shows the hit rate (i.e., the relative 

number of times a DROP event actually occurred, based on MSWEP) against the false alarm 

rate (i.e., the relative number of times an event was indicated by DROP but did not eventuate) 

for different potential decision thresholds (Mason and Graham 2002).

To increase the sample size, the reliability diagrams and the ROC are computed by pooling 

all the grid points together over large regions (see Dutra et al. 2014a), following the proce-

dure recommended by the WMO (WMO 2010). Specifically, for moderate drought events (i.e., 

SPI < −0.8), we calculate the confidence levels using the ensemble members’ distribution. 

Then, we group these levels into bins (here five of width 0.2) and count the observed occur-

rences and non-occurrences. Finally, we sum these counts for all area-weighted grid points 

in each region. We estimate the uncertainties in the reliability slopes and the ROCSS using 

bootstrap resampling, where the DROP and MSWEP pairs are drawn randomly with replace-

ment 1,000 times and new confidence levels and observed occurrences are calculated. The 

confidence interval is defined by the 2.5th and the 97.5th percentiles of the ensemble of the 

1,000 bootstrap replications. To account for the spatial dependence structure of the data, 

we use the same resampling sequence for all grid points within each bootstrap iteration [see 

also Turco et al. (2017b) for an application of the verification approach applied to seasonal 

drought forecasts].
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