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A global reanalysis of storm surges and extreme
sea levels
Sanne Muis1, Martin Verlaan2,3, Hessel C. Winsemius2, Jeroen C.J.H. Aerts1 & Philip J. Ward1

Extreme sea levels, caused by storm surges and high tides, can have devastating societal

impacts. To effectively protect our coasts, global information on coastal flooding is needed.

Here we present the first global reanalysis of storm surges and extreme sea levels (GTSR data

set) based on hydrodynamic modelling. GTSR covers the entire world’s coastline and consists

of time series of tides and surges, and estimates of extreme sea levels. Validation shows that

there is good agreement between modelled and observed sea levels, and that the perfor-

mance of GTSR is similar to that of many regional hydrodynamic models. Due to the limited

resolution of the meteorological forcing, extremes are slightly underestimated. This

particularly affects tropical cyclones, which requires further research. We foresee applications

in assessing flood risk and impacts of climate change. As a first application of GTSR, we

estimate that 1.3% of the global population is exposed to a 1 in 100-year flood.
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S
torm surge, a rise in sea level due to low atmospheric
pressure and strong winds, is the main driver of coastal
flood events1. The most extreme of these events are caused

by tropical cyclones2, but extra-tropical storms can also produce
high sea levels, especially when they coincide with high tide3.
With over 600 million people living in low-lying coastal areas4,
coastal floods can have devastating societal impacts. It is
estimated that on average 0.8–1.1 million people per year are
flooded globally5. This is reflected by disasters such as the
flooding of The Netherlands and the United Kingdom in 1953,
which resulted in over 2,000 fatalities6, and led to the
construction of a series of flood protection works along the
Dutch coast and the Thames Barrier in London. Another more
recent catastrophe was the flooding of New Orleans in 2005 due
to tropical cyclone Katrina, which resulted in around 1,100
fatalities7.

In recent years, coastal flood risk has increased due to
population, economic growth8 and land subsidence9,10. To date,
socioeconomic development has been the main driver of
increasing risk11, but in the future sea level rise will be an
important driver of increasing risk of coastal floods5,12–14. To
analyse spatial patterns and temporal trends in coastal flood risk,
several continental to global scale studies have been carried
out5,8,12,15–17 based on the extreme sea levels in the Dynamic
Interactive Vulnerability Assessment (DIVA) input database18,19.
The extreme sea levels in the DIVA database have been
instrumental in many risk assessments, and have provided
important insights into which areas face the highest risk, as
well as the potential effects of sea level rise and adaptation.
However, some applications require time series of sea levels
(instead of extreme values), such as: assessing interannual
variability; assessing the impact of changes in storm regimes;
and the modelling of past events. Such time series can be obtained
from tide gauge observations, but many regions at risk have
insufficient numbers of tide gauges and/or record lengths
available to reliably estimate extreme sea levels. Extreme sea
levels vary significantly along the coast due to variability in
storminess, coastline shape, and bathymetry1. Hence,
interpolation between different stations will not accurately
capture the spatial variability. Recently, more advanced
techniques based on altimetry data have been developed20, but
the limited length of altimetry records prevent their application to
low-probability extreme events21,22. Due to these data limitations,
there is still limited understanding of the global coastal flood
hazard, even under current (stationary) climate conditions.

At the regional scale, hydrodynamic modelling is the state-of-
art approach to develop consistent and complete sea level
reanalyses that can be applied to flood risk assessments18,19. As
the modelling of surges in shallow coastal areas requires a high
resolution, generally such a modelling approach has been
computationally too costly to apply on the global-scale. The
application of unstructured grids (or ‘flexible mesh’) in
hydrodynamic models make it possible to have a sufficient
resolution in shallow coastal areas23, while maintaining
computational efficiency24. These developments in hydro-
dynamic modelling combined with the increasing availability of
global data sets on climate and elevation, make it possible to
upscale the hydrodynamic modelling to the global scale.

Here we apply such a hydrodynamic approach for the first time
at the global scale and present the Global Tide and Surge
Reanalysis (GTSR) data set. To obtain the first near-coast global
reanalysis of storm surges (1979–2014), we force the newly
developed Global Tide and Surge Model (GTSM)24 with wind
speed and atmospheric pressure from the ERA-Interim global
atmospheric reanalysis25. Tides are modelled separately using a
recent update of the Finite Element Solution (FES2012)

hydrodynamic model (Supplementary Fig. 1 and Supplementary
Note 1)26. To validate the GTSR data set, we compare the results
with observed sea levels from a global data set from University of
Hawaii Sea Level Center (UHSLC). Results show that the GTSR
time series agree very well with observed sea levels. Extreme sea
levels are slightly underestimated, especially those induced by
tropical cyclones; this is mainly due to the resolution of the
meteorological forcing. To illustrate one of the potential
applications of the GTSR data set, we assess global exposure to
coastal flooding using a simple inundation model, and find that
1.3% of the global population, equal to 76 million people, is living
in the 1 in 100-year floodplain. We foresee various other
applications of the GTSR data set, such as: assessing flood risk at
the global scale; assessing interannual variability of storminess;
providing warning thresholds for operational forecasting models;
and assessing the impacts of climate change.

Results
Validation of time series. For the total sea level, there is generally
a good agreement between modelled and observed sea levels. The
root mean square errors (RMSE), based on the time series with a
10 minute temporal resolution, are lower than 0.20 m for 80% of
the stations (Fig. 1a). The average RMSE across all validation sites
is 0.17m (s.d. is 0.15m). The performance of the surge levels is
even better, with 95% of the stations having a RMSE lower than
0.2m. The average RMSE is 0.11m (s.d. is 0.05m). For illustra-
tion, Fig. 2a– shows the modelled and observed surge levels for
selected sites around the world. For tidal levels, about 85% of the
stations have a RMSE lower than 0.2m, but the maximum RMSE
value is greater than 1m. The average RMSE is 0.15m (s.d. is
0.42m). The large errors (RMSE 41m) for the tide gauge sta-
tions Windham, Victoria and Puerto Montt (red dots in Fig. 1a)
are caused by an over- or underestimation of the tidal amplitude.
Supplementary Fig. 2a–b shows the RMSEs for the surge levels
and tide levels for all observation stations.

To assess whether sea level extremes are also adequately
represented in the GTSR time series, we calculate the perfor-
mance based on daily maxima. Figure 3a–k shows scatter density
plots for modelled and observed daily maxima for 12 selected
locations. The majority of the daily maxima (orange to red areas
in Fig. 3a–k) are close to the perfect-fit line, indicating a good
performance. The performance for the majority of these 12
stations decreases for more extreme sea levels (the least-squares
line diverges from the best-fit line). The underestimation
of extreme sea levels is primarily an issue of resolution
(see Discussion section). The average Pearson correlation
coefficient is 0.83 (s.d. is 0.14), indicating a good representation
of the maxima by the model. Over 75% of the stations have a
correlation coefficient higher than 0.75. In regions prone to
tropical cyclones (Supplementary Fig. 3a–b and Supplementary
Note 2), such as the Caribbean Sea, we obtain correlation
coefficients lower than 0.5. The average correlation coefficient in
these tropical regions is 0.77, which is significantly lower than the
average correlation coefficient of 0.87 in extra-tropical regions
(two-tailed Student’s t-test, Po0.05).

Validation of extremes. To obtain extreme sea levels for various
return periods, we fit a Gumbel distribution to the annual
maxima using the maximum-likelihood method. The Gumbel
plot is shown in Fig. 4a–e for five selected stations. For all stations
shown, the annual maxima follow a relatively straight line,
indicating a good fit of the Gumbel distribution. Average relative
errors for return periods from 5 to 100 years are in the range of
11–14%, increasing with higher return periods. As there is a
limited number of stations with observation records longer than
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the 30 years, we focus on 1 in 10-year extreme sea levels and use
all stations that have an observation record longer than 10 years.
For 75% of these 144 stations, the absolute error for the 1
in 10-year sea level is lower than 0.3m (Fig. 1c). On average, the

extremes are underestimated by � 0.14m (s.d. is 0.39).
Supplementary Fig. 4 shows the results for the 1 in 100-year
sea levels. The performance of GTSR is best in areas where
extremes are dominated by large, extra-tropical storms, such as
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Figure 1 | Maps showing the performance of GTSR against observed sea levels. The performance of GTSR shown as (a) the RMSE (m) between

modelled and observed sea level time series; (b) the Pearson correlation coefficient (r) between modelled and observed daily maximum sea levels; and

(c) the bias (m) calculated by subtracting the modelled extreme sea levels from the observed extreme sea levels with a return period of 10 years.
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Europe, southeast Australia, eastern South-America and north-
west North-America. In regions where storm surges are largely
induced by tropical cyclones, the mean absolute difference
between the extreme sea levels with a return period of 10 years is
0.23m, which is significantly higher than in extra-tropical
regions, where the mean absolute difference is 0.08m (two-tailed
Student’s t-test, Po0.05).

Application to assess flood exposure. To illustrate a first appli-
cation of the GTSR extremes, we calculate the flood hazard (that
is, inundation extent) and flood exposure (that is, exposed peo-
ple) based on 1 in 100-year extreme sea levels. This assessment is
based on SRTM elevation27 and GRUMP population density for
the year 2000 (refs 28,29). For this first demonstration, we assume
no protection from coastal flooding and planar flood levels.

J F M A M J J A S O N D J
−1

0

1
Boston, United States (RMSE = 0.14 m)

S
u
rg

e
 l
e
v
e
l 
(m

)

J F M A M J J A S O N D J
−2

0

2

Goteborg-Torshamnen, Sweden (RMSE = 0.10 m)

S
u

rg
e

 l
e

v
e

l 
(m

)

J F M A M J J A S O N D J
−2

0

2
Mar del Plata, Argentina (RMSE = 0.17 m)

S
u

rg
e

 l
e

v
e

l 
(m

)

J F M A M J J A S O N D J
−1

0

1
Bluff Harbour, New Zealand (RMSE = 0.09 m)

S
u

rg
e

 l
e

v
e

l 
(m

)

J F M A M J J A S O N D J
−1

0

1
Kushiro, Japan (RMSE = 0.06)

S
u

rg
e

 l
e

v
e

l 
(m

)

J F M A M J J A S O N D J
−0.5

0

0.5
Zanzibar, Tanzania (RMSE = 0.09)

S
u
rg

e
 l
e
v
e
l 
(m

)

Modelled surge levels

Observed surge levels

a

b

d

c

e

f

Figure 2 | Comparison of the modelled and observed surge levels at selected stations. Comparison of the modelled and observed surge levels for 2007

at six selected stations around the world, (a) Boston, United States; (b) Goteborg-Torshamn, Sweden; (c) Mar de la Plata, Argentina; (d) Bluff Harbour,

New Zealand; (e) Kushiro, Japan; and (f) Zanzibar, Tanzania. The coloured dots in the world map indicate the location of the observation stations.
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Figure 3 | Scatter plots of modelled and observed daily maxima at selected stations. Scatter plots for (a) Abaratsu, Japan; (b) Boston, United States;

(c) Brisbane, Australia; (d) Goteborg-Torshamn, Sweden; (e) Lerwick, United Kingdom; (f) Los Angeles, United States; (g) Pohnpei, Micronesia; (h) Rı́o de

Janeiro, Brazil; (i) Tofino, Canda; (j) Valpareiso, Chile; and (k) Zanzibar, Tanzania. Colours indicate the data density for bins with a 5 cm � 5 cm size.

The red dots in the world map indicate the location of the observations stations.
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Results show that there are large regional variations in the 1 in
100-year extreme sea levels (Fig. 5a)30. Relatively high extreme
sea levels are found in areas with high tidal amplitude, such as
northwest Europe, south Argentina, China and Bangladesh. This
spatial pattern agrees with other global data sets19,20,31, and does
not change for higher return periods (Supplementary Fig. 5a–b).
Combining extreme sea levels with elevation, and assuming no
flood protection, shows that major inundation occurs particularly
in delta areas in Europe and Asia (Supplementary Fig. 6). The
global population exposed to a 1 in 100-year flood is 76 million,
which is equal to 1.3% of the total world population (Table 1).
The flood exposure map in Fig. 5b shows that China has a
particularly large exposure, with 37 million people, which is 3% of
the country’s population and 53% of the global exposure
(Supplementary Fig. 7a shows the absolute exposure). Other
countries that have a relatively high exposure include The
Netherlands (8.4 million people, 53% of total population),
Vietnam (4.7 million people, 6% of global exposure) and Egypt
(4.3 million people, 6% of global exposure). Relative to the total
national population, The Netherlands and Greenland stand out
with 53% and 31% of the population exposed to a 1 in 100-year
flood (Supplementary Fig. 7b), respectively; in both these
countries the highest concentration of people is found near
the coast28.

We assess the uncertainty in the extreme value statistics by
calculating the 5 and 95% confidence bounds of the Gumbel fit,
and express the uncertainty as the percentage difference
compared to extreme sea level based on the best-fit. For extreme
sea levels with a return period of 100 years, the uncertainty of the
Gumbel fit is below 10% for half of the world’s coastline (Fig. 6a).
The uncertainty is greater than 25% for only 4% of the world’s
coastline. The largest uncertainty is seen in regions where the
extreme values are relatively low, such as the Mediterranean Sea
and Caribbean Sea, where a small change in extreme sea level
leads to a large increase in relative terms. To assess how sensitive
the exposure estimates are to the uncertainty in extreme values
statistics, we use the 5 and 95% confidence bounds as input to the

inundation and impact model. Globally, the sensitivity to the
uncertainty in extreme values is relatively small, with a range of
� 8 to þ 21% around the best-fit for exposed population (that is,
exposure ranges between 70 and 92 million people). The results
per country are shown in Fig. 6, which shows that the results for
the USA, Thailand, Mauritania and several countries along the
Baltic Sea are particularly sensitive, with uncertainty values
greater than 50% of the best-fit. Of the top 10 countries listed in
Table 1, the results for China and Vietnam have the largest
uncertainty, with exposure estimates ranging from � 34% to
þ 39% and � 28% to þ 4% respectively. While the largest
uncertainty in extreme sea levels is found along the north coast of
Russia, this does not lead to large uncertainty in exposure because
the area has a very low population density. On the other hand, an
uncertainty in extreme sea levels of 10–50% along the east coast
of the USA and o10% along the west coast of the USA leads to
uncertainty in the country’s exposure estimates between � 40%
and þ 49%.

Discussion
The performance of the GTSR time series is similar to the
performance of other hydrodynamic models that cover a large
geographic domain. For example, Cid et al.32 reported a mean
RMSE of 0.08–0.10m for surge levels in the Mediterranean Sea.
For a hydrodynamic model covering the entire Australian
coastline, Haigh et al.33 reported mean RMSEs of 0.14m and
0.05m for total sea level and surge, respectively. The validation of
GTSR shows that extreme sea levels are generally underestimated
but that the differences with observed extreme sea levels are
rather small (that is, o0.45m for 90% of the observation stations
for the 1 in 10-year sea level). For applications to risk assessment,
which make use of data from global digital elevation models
(DEMs), this underestimation is reasonable, since the vertical
resolution of such DEMs is much greater. For example, the global
SRTM DEM has a vertical resolution of 1m, but its uncertainty is
up to several metres27. Hence, while acknowledging that the
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errors can potentially be large in specific locations, we are
confident that the GTSR time series (that is, surge, tide and total
sea levels) and extremes are a very valuable addition to the global
data sets that are currently available. Further benchmarking may
be performed by comparing the GTSR extremes with other
modelled data sets, such as extreme sea levels in the DIVA
database19, and regional hydrodynamic models23,34.

There are several limitations to the GTSR time series and
extremes. We aim to update the data set in the future, addressing
some of the issues described here. First, the validation shows that
extreme values are slightly underestimated. This is an inevitable
result of the relatively coarse resolution of the model grid,
bathymetry and meteorological forcing (compared with point
observations). Extremes in wind speed and atmospheric pressure
are smoothed in the ERA-Interim data set due to the temporal
(6 h) and spatial (0.75�) resolution. This is particularly proble-
matic for tropical cyclones, which are characterized by strong
gradients in atmospheric pressures and wind fields both in time
and in space. Our validation results show that the under-
estimation of extreme sea levels is more severe in tropical areas.
However, because of the sparseness and shortness of the available
records, the largest tropical cyclone-induced surges are not all
included in the available observations2. Hence, if we compare the
GTSR extremes against reported sea levels induced by tropical
cyclones we see larger deviations. For example, the maximum sea
levels during tropical cyclone Katrina in New Orleans (2005), and
during Typhoon Haiyan (2013), in the Philippines exceeded 8m
(ref. 35) and 4–5m (refs 36,37), respectively, while our extreme
sea level estimates do not exceed 2–3m for a return period of
1,000 year. This illustrates that accurately modelling these intense
storms requires a much higher resolution than atmospheric
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Table 1 | Absolute and relative exposed population to a 1 in

100-year flood for the 10 most exposed countries.

Country Absolute exposure

(in millions)

Relative exposure

(% of population)

China 36 2.9

The Netherlands 8.4 53

Vietnam 4.7 6.0

Egypt 4.3 6.4

Germany 2.9 3.5

India 2.5 0.3

United Kingdom 2.4 4.1

Japan 2.0 1.6

Bangladesh 1.4 1.1

Belgium 1.1 11

World 76 1.3
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reanalysis data can deliver at present day. For updated versions of
the GTSR data set, this issue could be resolved by generating
localized wind fields based on storm track data and the
parametric model of Holland38. This is expected to more
accurately simulate surge levels resulting from tropical cyclones.
However, even when the extreme sea levels are adequately
modelled, time series of 36 years contain insufficient number of
tropical cyclones to obtain reliable statistics of extreme values.
Hence, synthetic resampling techniques are needed to extend the
tropical cyclone record to a longer record33,39,40. Including
tropical cyclones will lead to higher coastal flood risk, as the
most damaging storm surges are often induced by tropical
cyclones41.

Second, we apply the annual maxima method to obtain the
GTSR extremes. Although the method is widely applied, it
neglects the fact that sea levels are composed of two independent
processes, namely a tide-driven (deterministic) process and a
surge-driven (stochastic) process. In addition, data are used
inefficiently, as extreme values are estimated based on annual
maxima only. To address these limitations, more sophisticated
statistical methods, such as the r largest or joint probability, could
be applied42. However, these methods are more sensitive to
timing errors and/or temporal or spatial variation. Assuming that
tides and storm surges behave independently, the estimates of
extreme values could also be made more robust by resampling the
surge and tide levels in time to obtain longer time series.

Third, the sea level variations in the GTSR time series are due
to gravitational tides and barotropic changes (changes in wind
and pressure). Baroclinic effects (density differences) are not
considered. While in most parts of the world the generation of
extreme sea levels is dominated by tide and surge, in some regions
the variations in mean sea level are relatively large43 and thus
affect the total sea level. For example, this is the case in parts of
the Australian coastline23. Also, non-linear interactions between
storm surges and tides, the effects of waves, and precipitation and
river flow are not considered. In this version of GTSR, tides and
surges are modelled separately and surge-tide interactions are
thus not included, although they are known to be important in
shallow water areas with a large tidal range44,45. Including the
surge-tide interaction has improved the model performance for
regional hydrodynamic models46. For example, in the case of the
North Sea, the RMSE was lowered by ca. 40% (ref. 47). However,
at this stage this does not apply to GTSM (Supplementary
Note 1), as the current version of GTSM is not capable of
adequately reproducing tidal characteristics in all coastal regions.
Wave setup may increase total sea levels considerably near the
coast with the largest contribution in regions with steep slopes48.
In deltas and estuaries, precipitation and river flow may also
contribute to coastal flooding49. Including all these processes on a
global scale is not feasible at present, but it is important to note
that these processes may lead to significantly different extreme sea
levels locally.
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Gumbel sensitivity range
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10 – 25

25 – 50

> 50
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Figure 6 | Gumbel sensitivity range for extreme sea levels and flood exposure.Maps showing the uncertainty of the extreme values statistics for the 1 in

100-year return period. The values shown is the range for the 5–95% confidence bounds expressed as a percentage of the value for the best-fit for (a) the

height of extreme sea around the entire world’s coastline; and (b) the estimated exposed population estimates per country.
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Also, the impact modelling has some limitations. Aside from
limitations of the simple inundation model (see Methods section),
the most important limitation is that flood protection is not
included in this analysis, and many exposed countries are
protected by dikes and storm surge barriers up to a certain design
standard. For example, despite its high exposure rates, The
Netherlands has very-low flood probabilities as all low-lying areas
are protected by coastal defences, some with very high protection
standards (1 in 10,000-year return period)50. However, Hallegatte
et al.12 estimated protection standards for major cities and found
that a city such as Jakarta has a protection standard that equals a
10-year return period. Hence, for many countries listed in
Table 1, the protection standard will be lower than a return
period of 100 years. Using a similar methodology (planar
inundation and no flood protection), but an alternative
population database, Jongman et al.8 estimated that 271 million
people are exposed to 1 in 100-year coastal flooding in 2010. On
the basis of the similar elevation and population data, but using a
somewhat different methodology that includes flood protection,
Hinkel et al.5 estimated that between 160 million people are
exposed to a 1 in 100-year flood. The differences in methodology
and data make a direct comparison difficult, but our exposure
estimate of 70–92 million people seems low compared with
previous studies5,8. In countries prone to tropical cyclones, such
as Bangladesh, exposure is underestimated as the tropical storms
are responsible for the largest events2. Nevertheless, previous
studies of global flood risk, including the studies of Jongman
et al.4 and Hinkel et al.7, are based on the extreme sea levels in the
DIVA database19. This data set has not been validated at the
global scale, but compared to observed sea levels, Muis et al.51

found that the DIVA 1 in 10-year extreme sea levels in Indonesia
are overestimated with on average 0.8m. Further research could
assess differences in flood hazard between DIVA and GTSR and
its influence on the estimated flood exposure.

In future research, the GTSR data set could be applied to assess
global flood risk, both under current and future climate
conditions. Coastal floods may become more severe due to sea
level rise and changes in storminess14,52. While sea level rise may
be directly added to the return levels5, this is not valid for all
regions53, and the advantage of the physical based modelling
approach is that the sensitivity of this assumption can be tested.
Another advantage is that changes in storminess can be assessed
using a dynamical approach by forcing the model with future
global climate model simulations54,55. Furthermore, changes in
storm duration can be propagated into the full dynamics of storm
surge-induced flooding. Such climate change assessments can be
used to identify areas that face rapidly increasing risks, which is
important for planning disaster risk reduction efforts and to
prioritize adaptation efforts56. Aside from flood risk applications,
the GTSR data set can be used for a variety of other applications.
For example, the GTSR time series may be used to: assess changes
in storminess57; correct for meteorological effects in mean sea
level58; disentangle the drivers of extreme events in different areas
(tidal versus surge dominated)20; or assess the influence of
interannual variability on risk59. As our new time series also
includes the duration of flood events, another potential research
direction may be the improvement of inundation modelling on a
global scale by including flood duration in the inundation
modelling. Recent research demonstrated the importance of
assessing compound flooding in major US coastal cities60. In
other delta regions, including compound flood events may also be
critical for correctly assessing flood risk61–64. In combination with
time series of precipitation or discharge, the GTSR time series
could be used to assess compound floods on a global scale.
Another application of the GTSM model that is currently being
developed is the global operational forecasting system called

GLOSSIS65, which produces 10-day forecasts of coastal storm
surges worldwide. The GTSR extremes could be used to raise
warning flags and to identify potential flood hazards. In the future
this should not only be based on exceeding a physical threshold,
but also include potential impacts of a flood.

Methods
General approach. The method to develop the GTSR time series is based on two
global hydrodynamic models: GTSM for storm surges, and FES2012 for tides
(see Supplementary Fig. 8 for a flowchart). To simulate water levels in all coastal
areas, while not generating huge amounts of data, model output is produced for
16,395 locations along the coastline based on the centroids of the DIVA segments
database19 and the locations of observation stations used for validation. Reduced
data sets, useful for extreme value analyses, were generated by post-processing the
results into daily maxima as well as annual maxima, for each of the output
locations.

Modelling tides with FES2012. FES2012 is a global tidal model, which assimilates
satellite altimetry data. The model is available for download at: http://www.avi-
so.altimetry.fr. Tidal elevations are distributed on a regular grid of 1/16�. Tides are
simulated here with a 10-min time interval. A review on the performance of global
tide models by Stammer66 shows that FES2012 performs relatively well compared
to other global tidal models in coastal areas.

Modelling storm surge with GTSM. GTSM is based on the Delft3D Flexible
Mesh software developed by Deltares24. To accurately resolve hydrodynamic
equations in topographically complex areas, such as coastal regions, while not
decreasing the computational efficiency, it is desirable to locally refine the
computational grid24. Delft3D FM enables this by allowing the use of unstructured
grids. The cell size of the computational grid is dependent on the bathymetry and
increases from 1/2� (B50 km) in deeper parts of the ocean towards 1/20� (B5 km)
in shallow coastal areas (Supplementary Fig. 9). The bathymetric data with a
resolution of 1/60� are collected from the General Bathymetric Chart of Oceans67

and are interpolated onto the computational grid.
To simulate the sea levels resulting from storm surges, the model was forced

with 10m wind speed and atmospheric pressure obtained from the ERA-Interim
data set developed by The European Centre For Medium-Range Weather Forecasts
(ECMWF)25. The ERA-Interim data set is a global atmospheric reanalysis from
1979 to present day. The meteorological fields are available every 6 h and have a
spatial resolution of 0.75� 0.75�. The meteorological fields are temporally
downscaled to 10min using linear interpolation. The 10-m wind speed is translated
into wind stress using a drag coefficient based on Charnock68. For consistency with
the ECMWF climate model, we applied a Charnock parameter of 0.041. The
sensitivity of applying different values for the Charnock parameter is discussed in
the Supplementary Note 1.

The model simulations were carried out for each year separately, using a spin-
up time of 11 days. Using a parallel setup with 16 cores, each simulation of one year
takes approximately 30 h. The different runs were started in parallel, so in theory
without other users on the computer cluster, the whole computation can be
completed in 30 h.

Data used for validation. A global data set with observed sea levels is used to
validate GTSR. Hourly levels from 472 stations (Supplementary Fig. 10) over the
period 1980–2011 are obtained from the archives of the UHSLC (data set is
available at http://uhslc.soest.hawaii.edu). All stations are quality-checked by tidal
analysis using TideMAT 1.05 (ref. 69). The records of each station are only used
when o20% of the data are missing. Each year is analysed separately and mean
annual sea level is used as reference date; as such the sea levels are detrended. We
subtract the tidal component from the total sea level to obtain the residual level.
This component primarily contains the meteorological contribution to sea level
(that is, surge level), but may also contain harmonic prediction errors or timing
errors. However, we consider these errors as negligible as each station has been
inspected visually. Decomposing the total sea level into a tide and surge component
enables the separate validation of the two components. For each station with a
record longer than 25 years, we also estimate the extreme sea levels for different
return periods and compare those with modelled sea levels (see next paragraph).

Extreme value statistics. To estimate the probabilities of extreme sea levels, we
apply extreme value statistics using the annual maxima method70,71. For each
output location, we extract the annual maximum for the calendar years 1979–2014
and fit a Gumbel distribution using the maximum-likelihood method. From the
parameterised distribution, we can obtain estimates of sea levels corresponding to
selected return periods. We also obtain uncertainty estimates of the parameterised
extreme value distribution (that is, 5 and 95% confidence bounds). The Gumbel
distribution is often a good approximation of observed extreme sea levels and is
frequently applied to estimate return periods42. While more advanced statistical
methods are available, such as peak-over-threshold or joint probability, the annual
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maxima method is more robust to temporal and spatial variations, and is thus
relatively easy to apply on a global scale.

Modelling inundation and flood exposure. On the basis of the extreme sea levels,
coastal inundation is calculated using a GIS-based planar approach, which uses the
extreme sea level and a DEM as input. Inundated areas are defined as areas that
have an elevation lower than the water level, and have a direct connection to the
sea5,8. The DEM is obtained during NASA’s Shuttle Radar Topography Mission
and its original resolution is 10 0 � 10 0 (B30� 30m at the equator)27. We use a
30"� 30" (B1� 1 km at the equator) average to estimate inundation. Impacts of
coastal floods are measured in terms of exposed population using the GRUMPv1
population counts maps for 2000 (refs 28,29). Flood protection is not included in
the analysis and will lead to an overestimation of the flood hazard. Furthermore,
the planar approach assumes that a maximum sea level during any event will travel
infinitely far land inwards and will therefore overestimate the extent of the
floodplain, in particular on coastlines with wide flat areas far land inwards. On the
other hand, the spatial averaging of the DEM may result in smoothing of local
depressions, causing underestimation of the flood extent in areas with relatively
large upward gradients land inwards. Also, coastal cities are often in delta areas
where the river may propagate the surge into the hinterland. In this sense, the
approach may underestimate the flood extent.

Data availability. The 1 in 100-year extreme sea levels developed during this study
are available in the 3TU.Datacentrum with the identifier ‘10.4121/uuid:aa4a6ad5-
e92c-468e-841b-de07f7133786’ (ref. 30). Other return periods of the GTSR data set
are available on request for scientific purposes.
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Corrigendum: A global reanalysis of storm surges

and extreme sea levels

Sanne Muis, Martin Verlaan, Hessel C. Winsemius, Jeroen C.J.H. Aerts & Philip J. Ward

Nature Communications 7:11969 doi: 10.1038/ncomms11969 (2016); Published 27 Jun 2016; Updated 8 Sep 2016

In Fig. 4 of this Article, the y axes in panels ‘b–e’ are incorrect. The correct version of Fig. 4 appears below as Fig. 1.
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article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need

to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
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