
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009 723

A Global Repair Operator for Capacitated
Arc Routing Problem

Yi Mei, Ke Tang, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Capacitated arc routing problem (CARP) has at-
tracted much attention during the last few years due to its
wide applications in real life. Since CARP is NP-hard and exact
methods are only applicable for small instances, heuristics and
metaheuristic methods are widely adopted when solving CARP.
This paper demonstrates one major disadvantage encountered
by traditional search algorithms and proposes a novel operator
named global repair operator (GRO) to address it. We further
embed GRO in a recently proposed tabu search algorithm (TSA)
and apply the resultant repair-based tabu search (RTS) algorithm
to five well-known benchmark test sets. Empirical results suggest
that RTS not only outperforms TSA in terms of quality of solu-
tions but also converges to the solutions faster. Moreover, RTS is
also competitive with a number of state-of-the-art approaches for
CARP. The efficacy of GRO is thereby justified. More importantly,
since GRO is not specifically designed for the referred TSA, it
might be a potential tool for improving any existing method that
adopts the same solution representation.

Index Terms—Capacitated arc routing problem (CARP), global
repair operator (GRO), heuristic search, tabu search.

I. INTRODUCTION

THE CAPACITATED arc routing problem (CARP) is a
classic problem with wide applications in real world,

such as urban waste collection, post delivery, salting route
optimization, winter gritting, etc. [1]. It involves determining
a minimum cost routing plan for a set of vehicles, each of
which is associated with a capacity constraint. Concretely, the
CARP can be represented by a graph G = (V,E,A), where
the vertex set V , the edge set E, and the arc set A represent
the set of intersections, two-way streets, and one-way streets,
respectively. A vertex dep ∈ V represents a central depot where
a set of vehicles are based. Two subsets ER ⊆ E and AR ⊆ A
are called task sets, consisting of tasks required to be served
by the vehicles (e.g., the streets required to be cleaned in
winter gritting problem). Each element (t, h) ∈ E ∪ A is as-

Manuscript received April 21, 2008; revised August 5, 2008. This work was
supported in part by the Fund for Foreign Scholars in University Research
and Teaching Programs under Grant B07033 and in part by an Engineering
and Physical Science Research Council (EPSRC) grant in U.K. under Grant
EP/E058884/1. This paper was recommended by Associate Editor H. Takagi.

Y. Mei and K. Tang are with the Nature Inspired Computation and Appli-
cations Laboratory, Department of Computer Science and Technology, Uni-
versity of Science and Technology of China, Hefei 230027, China (e-mail:
meiyi@mail.ustc.edu.cn; ketang@ustc.edu.cn).

X. Yao is with the Nature Inspired Computation and Applications Labora-
tory, Department of Computer Science and Technology, University of Science
and Technology of China, Hefei 230027, China, and also with the Centre of Ex-
cellence for Research in Computational Intelligence and Applications, School
of Computer Science, University of Birmingham, B15 2TT Birmingham, U.K.
(e-mail: x.yao@cs.bham.ac.uk).

Digital Object Identifier 10.1109/TSMCB.2008.2008906

sociated with three costs, i.e., d(t, h), sc(t, h), and dc(t, h),
which indicates the demand, the cost of serving, and passing
without serving from the tail vertex t to the head vertex h (i.e.,
deadheading), respectively. Note that, for nonrequired edges
and arcs, d(t, h) = 0. The aim is to schedule the routes for
each vehicle, so that the total cost of the routes is minimized.
Each route starts and ends at the depot, and the total demand
processed must not exceed vehicle capacity.

Since CARP is NP-hard [2], exact algorithms are only ap-
plicable for small instances. For this reason, various heuristics
and metaheuristics have been proposed for CARP. To name a
few, Golden and Wong proposed a constructive heuristic called
augment–merge [2] in 1981. After that, Golden et al. proposed
another constructive heuristic called path scanning [3]. Ulusoy
improved path scanning to form a new heuristic called Ulusoy’s
heuristic [4]. Pearn proposed an approximate algorithm [5] and
an augment–insert heuristic [6] for CARP. Mourao and Amado
proposed a heuristic method for mixed CARP and demonstrated
that it outperforms all the previous heuristics [7]. Amponsah
and Salhi proposed an efficient constructive heuristic embedded
with a look-ahead strategy and enhancement procedures [8].
Hertz et al. proposed a tabu search for CARP called CARPET
[9] and a variable neighborhood descent (VND) algorithm [10].
Greistorfer proposed a tabu scatter search for arc routing prob-
lem [11]. Lacomme et al. proposed a competitive memetic algo-
rithm (MA) for CARP [12] and a genetic algorithm for CARP
and its extension [13]. Beullens et al. proposed a guided local
search (GLS) method [14]. Handa et al. proposed an evolution-
ary algorithm for the salting route optimization, which is an
application of CARP [15], [16]. Recently, Brandão and Eglese
proposed a deterministic tabu search algorithm (TSA) [17].

The solution representation of a heuristic method is critical
for conducting an effective search and thus has much influence
on obtaining good solutions. In the literature of CARP, a
solution is commonly encoded as a set of routes, each of which
is an ordered list of vertices. Every vertex is associated with
a zero–one variable, indicating whether the edge between this
vertex and the successive vertex is served. TSA and CARPET
directly use such vertex encoding. MA represents solutions as
ordered lists of tasks. Since each task corresponds to a unique
pair of vertices, MA can be viewed as using the vertex encoding
as well.

In the literature, the vertex encoding has provided generally
satisfactory results. However, as will be explained in detail
in Section II-B, the existing algorithms adopting the vertex
encoding are likely to overlook those promising infeasible so-
lutions. Under this circumstance, the search will be ineffective.
This paper presents a novel repair operator, namely, the global

1083-4419/$25.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 7, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

724 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

Fig. 1. Vertex encoding for a CARP solution.

repair operator (GRO), to handle such problems. The GRO can
be easily embedded in many existing algorithms and improve
them significantly in terms of the total cost of the achieved
solution. Moreover, GRO requires little computational cost
while can accelerate convergence of the original algorithm and,
thereby, even shortens the time required to obtain high quality
solutions. The advantages of GRO are justified by embedding it
in the TSA and comparing with six existing algorithms, i.e., the
CARPET, VND, GLS, MA, and two versions of TSA, on five
benchmark test sets.

The rest of this paper is organized as follows. First, the
mathematical formulation of CARP is presented in Section II,
followed by the introduction of GRO. Section III presents the
repair-based tabu search (RTS) algorithm, which is obtained
by embedding GRO in TSA. Section IV is dedicated to the
empirical studies. Finally, the conclusion and discussion are
presented in Section V.

II. REPAIR OPERATOR FOR CARP

This section describes the proposed GRO. We start from
describing the mathematical formulation of CARP. After that,
motivation and detailed steps of GRO are presented.

A. Mathematical Formulation of CARP

Suppose a CARP represented by a graph G = (V,E,A) is
given. Let V = {v1, . . . , vn} and v1 denotes the depot; each
(vi, vj) ∈ E ∪ A is associated with the demand d(vi, vj), serv-
ing cost sc(vi, vj), and deadheading cost dc(vi, vj). Further-
more, a set of vehicles with identical capacity Q is based at the
depot.

As mentioned before, the vertex encoding, which is widely
used in heuristic approaches to CARP, consists of an ordered
list and a vector of zero–one variables. The ordered list is
a permutation of vertices. More specifically, an ordered list
consists of several routes, each of which starts and ends with v1.
Every element of the ordered list is associated with a zero–one
variable y. y takes one if the edge between the vertex and its
successor is served at this stage of the route. Fig. 1 shows
the vertex encoding for a solution of a CARP. a, b, c, and o
are vertices, where o denotes the depot. The first permutation
is the ordered list, which can be divided into three single
routes named route1, route2, and route3, respectively. Each
route starts and ends at the depot o, and traverses the vertices
in the order given by the ordered list, e.g., route1 leaves o,

visits a and b consequently, and then returns o. The second
vector is the associated zero–one variable vector. The solution
corresponding to such a vertex encoding is as follows: Route1
traverses (o, a) deadheadingly and then serves (a, b) and (b, o);
route2 traverses (o, b) deadheadingly and then serves (b, c) and
(c, o); route3 traverses (o, c) deadheadingly and then serves
(c, a) and (a, o).

An ordered list can be formally presented as OL =
〈l1, l2, . . . , lK〉, where lk ∈ V , with k = 1, 2, . . . ,K. Suppose
there are m routes in the ordered list, then the depot v1 appears
(m + 1) times in the ordered list. Without loss of generality,
assume these v1’s lie at the position r0, r1, . . . , rm, where
r0 = 1, rm = K, and ri < rj , ∀1 � i < j � m. Accordingly,
the zero–one variable vector is denoted as 〈y1, y2, . . . , yK−1〉.
yk takes one if (lk, lk+1) is served at position k of the ordered
list and takes zero if otherwise.

With the aforementioned definitions, the CARP can be for-
mulated as follows:

min
K−1∑
k=1

(sc(lk, lk+1) × yk + dc(lk, lk+1) × (1 − yk)) (1)

s.t. :
K−1∑
k=1

yk = N (2)

(lk, lk+1) ∈ ER ∪ AR ∀yk = 1 (3)

(lk, lk+1) �= (lj , lj+1) ∀yk = 1; yj = 1

k �= j (4)
ri+1−1∑
k=ri

d(lk, lk+1)×yk �Q, i = 0, 1, 2, . . . ,m − 1 (5)

lk ∈ V, k = 1, 2, . . . , K (6)

(lk, lk+1) ∈ E ∪ A, k = 1, 2,. . .,K−1 (7)

yk = 0 or 1, k = 1, 2,. . .,K−1 (8)

where N is the number of tasks. Constraints (2)–(4) indicate
that each task is served once and only once. Constraint (5)
bounds the total demand of each single route with the ve-
hicle capacity. Constraints (6)–(8) define the domains of the
variables.

B. Motivation

Substituting constraints (2)–(4) into the objective function
(1) in the former section, we can easily modify function (1) to
the following form:

min
K−1∑
k=1

(dc(lk, lk+1))+
∑

(i,j)∈ER∪AR

(sc(i, j) − dc(i, j)) . (9)

From the modified objective function, it can be observed that
the two components of vertex encoding play different roles in
the solution. The ordered list determines the total cost of a
solution, while the zero–one variables determine whether and
how much the solution violates the capacity constraint. Since
an edge can be traversed multiple times in CARP, one ordered

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 7, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

MEI et al.: GLOBAL REPAIR OPERATOR FOR CAPACITATED ARC ROUTING PROBLEM 725

Fig. 2. Example of CARP.

list may correspond to many solutions with different values of
the zero–one variables.

The optimal solution of CARP corresponds to both an opti-
mal ordered list and a feasible assignment of zero–one variables
on the ordered list. In the existing methods, various search
operators have been employed, such as single insertion (SI),
double insertion (DI), swap (employed in MA [12] and TSA
[17]), and 2-opt (employed in MA [12]). Given the current so-
lution, all these operators generate a new solution by modifying
both the ordered list and the corresponding zero–one variables.
However, the simultaneous optimization of the two components
is not an easy task, and modifying them simultaneously may
even lead to an ineffective search in the solution space. An
example is given in Fig. 2 to demonstrate this problem. In
Fig. 2, there are four vertices in the graph, denoted as a, b, c,
and o, of which vertex o represents the depot. All the six edges,
i.e., {(o, a), (o, b), (o, c), (a, b), (a, c), (b, c)}, are required to be
served. Suppose that there are three vehicles available, with
the same capacity of four. The number on each edge denotes
its demand, e.g., d(a, b) = 3. The right part in Fig. 2 shows
the vertex representations of two different solutions S1 and
S2. S1 and S2 share the same ordered list but are different on
the second component. As a result, S1 is infeasible with one
unit capacity violation, i.e., d(a, b) + d(b, o) = 3 + 2 = 5 > 4,
whereas S2 is the global optimum. Hence, given S1, the optimal
solution can be easily achieved by modifying the associated
zero–one variables only, while modifying both components of
the solution will discard the optimal ordered list and lead to an
ineffective search.

The aforementioned example demonstrates that permuting
only the zero–one variable of an infeasible solution might
be more effective than modifying both components of it. In
particular, those low cost infeasible solutions should be focused
more during the search process, because a solution with low
cost is more likely to contain the optimal ordered list (so that
only the zero–one variables need to be readjusted). However,
few search operators have been designed for this purpose.
Instead, most existing approaches handle infeasible solutions
using relatively standard methods that are available in the
constrained optimization literature and tend to overlook the
promising infeasible solutions. For example, the CARPET [9],
VND [10], and TSA [17] simply define the objective function
as a weighted sum of cost and constraint violation. By tuning
the weights, the search process biases more toward the feasible
solutions, and no effort is spent to examine the infeasible
solutions. In [12] and [13], a genotype representation scheme
is adopted. To obtain the final solution, a split operator, which

does not generate infeasible solutions at all, needs to be applied.
Thus, only feasible solutions are considered in this case, and all
the infeasible solutions are discarded even without calculating
the cost. In [16], Handa et al. also adopt the weighted sum
of cost and constraint violation as the objective function. In
addition, a repair operator is proposed to handle infeasible
solutions. Given an infeasible solution, the repair operator first
figures out the route that violates the capacity constraint the
most in the solution. Then, a task is randomly chosen from those
tasks served in this route, and it will be moved to another route
that traverses the selected task by deadheading path. Otherwise,
no change will be made. The repair process terminates when the
aforementioned procedure has been repeated for a predefined
number of times or the constraint violation has been reduced
to zero. To the best of our knowledge, this is the only existing
repair operator that is specifically designed in the context of
CARP. Nevertheless, this repair operator always works on a part
(a single route) of the solution rather than the whole solution
itself. Hence, it searches in a rather local region around the
infeasible solution, and it might not be able to fully exploit
the useful information in the infeasible solution. Based on the
consideration that the low cost infeasible solutions deserve to
be examined more carefully, we propose our GRO.

C. GRO

As mentioned earlier, GRO is specifically designed to deal
with the low cost infeasible solutions. Given such a solution,
GRO preserves its ordered list and reassigns the zero–one
variables to minimize the constraint violation. In other words,
GRO seeks the optimal assignment of zero–one variables for
a given ordered list. Such a repair process takes into account
all routes involved in the solution, and thus, GRO can be
viewed as a global operator. Suppose that we have an infeasible
solution with m routes, reassigning the zero–one variables can
be formulated as the following problem:

min
m∑

i=1

⎛
⎝max

⎡
⎣ N∑

j=1

sj × xij − Q, 0

⎤
⎦

⎞
⎠ (10)

s.t. :
∑

i∈Ω(j)

xij = 1, j = 1, 2, . . . , N (11)

xij =0 or 1, i = 1, 2,. . .,m; j =1, 2,. . ., N

(12)

where N is the total number of tasks, and sj denotes the serving
cost for task j. xij is set to one if task j is served in the route i
and is set to zero if otherwise. Ω(j) is defined as

Ω(j) = {i|task j is traversed in route i in S}. (13)

Given the ordered list, constraints (11) and (12) guarantee
that each task is served only once among the routes it is
traversed.

Let {a1, a2, . . . , aN} and {b1, b2, . . . , bm} be sets of items
and bins, respectively. The aforementioned problem can be
viewed as a bin-packing problem, where the size of the item

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 7, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

726 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

Fig. 3. Tabu search process.

j is sj , and all the bins share an identical capacity Q. GRO
employs an insertion heuristic followed by a short-term tabu
search to solve the bin-packing problem. The general idea of
the insertion heuristic is straightforward. We sequentially pick
an item out of the whole set and insert it into a bin, until all the
items have been inserted. Such procedure can be described as
follows.

Step 1) Initialize xij = 0,∀i, j. Let A = {1, 2, . . . , N} and
cl(bi) = 0,∀i. Here, cl(bi) is the current load of bi.
Then, repeat steps 2) to 4) until A = ∅.

Step 2) For each j ∈ A, identify the set Ω̄(j) satisfy-
ing Ω̄(j) = {i ∈ Ω(j)|cl(bi) + sj � Q}. Select the
item corresponding to the smallest |Ω̄(j)| as the one
to be inserted. If multiple items share the smallest
|Ω̄(j)|, the one with the largest sj will be selected.
Then, ties are broken by selecting the item with the
smallest index (j). Selecting the items in this way
guarantees that the item with the least choice of
insertion without violating the constraints is chosen
first.

Step 3) Identify the bi with the smallest cl(bi). If more than
one bin has the smallest cl(bi), the one with the
smallest

∑
j∈A

IΩ(j)(i) × sj

is selected, where IΩ(j)(i) is an indicator function.
IΩ(j)(i) = 1 if i ∈ Ω(j) and zero if otherwise. The
aforementioned equation indicates that the bin avail-
able for the least untreated items is considered first.
After that, ties are broken by selecting the bin with
the smallest index (i).

Step 4) Insert the selected item aj′ in the chosen bin bi′ .
Set xi′j′ = 1, remove j′ from A, and update cl(bi′)
with sj′ .

After obtaining the initial solution with the insertion heuris-
tic, a standard tabu search is employed to further improve it, as
shown in Fig. 3.

In Fig. 3, S0 is the solution obtained by the insertion heuris-
tic, and f(S) denotes the objective function (10). The neighbor-

hood N(S) is a set of neighbors generated by moving one item
to another admissible bin. The tabu list and aspiration criterion
employed here are conventional. That is, an item that just leaves
a bin is not allowed to return to that bin within a certain number
of iterations (i.e., the tabu tenure), unless the resultant solution
is better than the best solution found so far. The tabu tenure
is set to F/2, where F is the number of items having more
than one admissible bins. The tabu search terminates after N
iterations or consecutive N/3 iterations without improvement.

Based on a solution of the bin-packing problem, a new
solution of CARP can be directly obtained by updating the
zero–one variables according to xij’s. Since the ordered list
remains unchanged when solving the bin-packing problem, the
issue of cost is actually not considered at this stage. However,
the tabu search process might generate different assignments
of zero–one variables that all correspond to feasible solutions
of the CARP, and it will be difficult to select them if the cost
is not considered. Hence, we further define an archive in the
tabu search process. As can be seen from line 10 in Fig. 3,
at each iteration of the tabu search process, if the obtained
best assignment of zero–one variables corresponds to a feasible
solution to CARP, it will be included into the archive. After
the termination of the tabu search process, all candidates in
the archive will be fed into the following further refinement
procedure to complete the repair process.

In the vertex encoding, two adjacent services of tasks are
connected by the shortest path between them. When a new
solution is obtained by changing the zero–one variables only,
the path between two adjacent services might no longer be the
shortest path. The new solution can be easily improved by a
further refinement procedure, which modifies the ordered list
of the solution without changing the zero–one variables so that
any two adjacent services are connected with the shortest path
between them. Hence, as the final step of our repair process, all
the archived assignments of zero–one variables are transformed
to the corresponding solutions of CARP; then, the ordered lists
of these solutions are refined by updating the vertices between
each pair of adjacent services with the shortest path. Finally,
the solution with the lowest cost is chosen as the output of the
repair process.

To summarize, the major steps of GRO are listed as follows.
1) Formulate the problem given by (10) as a bin-packing

problem, and get a solution via the insertion heuristic.
2) Utilize a tabu search process to further improve the solu-

tion obtained in step 1), and get an archive of candidate
assignments of zero–one variables.

3) Obtain new solutions of CARP based on the archived
assignments of zero–one variables, and update these solu-
tions with the further refinement procedure. The solution
with the lowest cost is chosen as the output of GRO.

III. EMBEDDING GRO IN TSA

It can be observed that GRO is solely based on the vertex
encoding. Hence, it can be embedded in any search algorithm
that adopts the same encoding scheme. In this section, we
demonstrate how to combine GRO with a recently proposed
tabu search method. Belonging to the family of local search

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 7, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

MEI et al.: GLOBAL REPAIR OPERATOR FOR CAPACITATED ARC ROUTING PROBLEM 727

techniques, tabu search has been widely used to solve various
real-world problems [18], [19]. The TSA employed here was
specifically proposed for CARP [17].

In TSA, the function to be optimized is defined as a weighted
sum of the cost and capacity violation, i.e., f(S) = c(S) +
p × cv(S), where c(S) is the cost of S and cv(S) is the
capacity violation of S. The self-adaptive parameter p controls
the tradeoff between the cost and feasibility. p is set to one
first and is halved (doubled) if all the solutions are feasible
(infeasible) for ten consecutive iterations. TSA employs three
move operators, namely, SI, DI, and swap1. During the search
process, TSA realizes different search biases by adjusting the
frequencies of applying the three operators (FSI, FDI, and
Fswap). Moreover, the Frederickson’s heuristic [20] is also used
to obtain further improvements. Since TSA is only used to
demonstrate the efficacy of GRO and no modification is made
to it throughout this work, we do not present full details of
TSA in this paper. Interested readers are referred to the original
publication [17].

In [17], the aforementioned TSA is named TSA version 1
(TSA1). Furthermore, a TSA version 2 (TSA2) has also been
proposed. Generally speaking, TSA2 applies TSA1 to five
different initial solutions simultaneously. After that, TSA1 is
further applied to the best solution that has been achieved but
with different parameter values. Experimental studies showed
that TSA1 is much faster than three compared methods, namely,
CARPET, MA, and TSA2, while still obtained acceptable solu-
tions (better than CARPET and slightly worse than MA). The
runtime of TSA2 is about five times more than TSA1, while it
performs much better in terms of the quality of solutions.

The GRO is embedded in TSA with little effort. That is,
every time an infeasible solution with the lowest cost so far
is obtained, GRO is applied to it. We name such a simple
combination of GRO and TSA1 as the RTS algorithm. Since
both GRO and TSA1 are deterministic, RTS is a deterministic
algorithm.

IV. EXPERIMENTAL STUDIES

To evaluate the efficacy of GRO, we experimentally compare
RTS to a number of state-of-the-art approaches in this section.

A. Experimental Setup

The experiments were carried out on five benchmark test
sets of CARP problems, referred to as the gdb, val, and egl
sets, the set of Beullens et al., and Brandão and Eglese’s set.
All these test sets have been studied in the literature. The gdb
set was generated by DeArmon in [21] and consisted of 23
instances. The val set was generated by Benavent et al. in [22].
It contains 34 instances based on ten different graphs. Different
instances based on each graph were generated by changing the
capacity of the vehicles. The egl set was generated by Eglese
based on data from a winter gritting application in Lancashire
[23]–[25]. It consists of 24 instances based on two graphs, each
with a distinct set of required edges and capacity constraints.
The test set generated by Beullens et al. in [14] is based on
the intercity road network in Flanders. It further contains four

subsets, namely, the sets C, D, E, and F , each of which
contains 25 instances. The instances of sets D and F share the
same networks with the instances of sets C and E, respectively,
but with larger capacity of vehicles. Generated by Brandão and
Eglese in [17], the final test set consists of ten large instances
defined on a road network with 255 vertices and 375 edges
in Lancashire. Different instances in this set were created by
changing the set of edges required for service and the capacity
of the vehicles.

We considered six existing approaches in the comparative
study. That is, the CARPET [9], VND [10], GLS [14], MA [12],
TSA1, and TSA2 [17]. To facilitate the comparison between
RTS and TSA1, RTS was implemented using the same para-
meters suggested for TSA1 in [17]. Since TSA2 applies TSA1
for six times, it might be inappropriate to directly compare RTS
to TSA2. Instead, we further consider an extended version of
RTS, represented by RTS∗ hereinafter. The RTS∗ was obtained
by adjusting the stopping criterion of RTS, so that its runtime is
increased by about four times. Except for the stopping criterion,
RTS∗ adopts exactly the same parameters as RTS. In this way,
we are able to conduct a more comprehensive comparison
between RTS and the other approaches.

B. Experimental Results

Tables I–VIII present the experimental results of the com-
pared approaches on all the five test sets. It should be noted that
few existing algorithms have been tested on all the five bench-
mark test sets. On the gdb and val sets, the results of CARPET,
VND, MA, TSA1, TSA2, RTS, and RTS∗ are available (Tables I
and II). As shown in Table III, MA, TSA1, TSA2, RTS, and
RTS∗ had been applied to the egl set. Comparison between
GLS, TSA1, TSA2, RTS, and RTS∗ can be made based on the
set of Beullens et al.; results for the four subsets are presented
in Tables IV–VII. Finally, RTS and RTS∗ are only compared
with TSA1 on the Brandão and Eglese’s set (Table VIII),
since no other algorithm has been applied to this set before.
A brief description of the contents in each table is listed as
follows.

1) The columns headed “|V|,” “|R|,” and “|E|” indicate
the number of vertices, required edges, and total edges,
respectively. Since all edges are required to be served in
the gdb set, the column |R| is omitted from Table I.

2) The column headed “LB” gives the lower bounds found
so far for the problems, which are available in [14],
[17], and [26]–[29]. Note that this column is absent in
Table VIII because the lower bounds of the problems
in the Brandão and Eglese’s set are not available in the
literature.

3) The columns headed “Cost” present the cost of the final
solutions obtained by the corresponding algorithm. The
columns headed “CPU(s)” provide the runtime (in CPU
seconds) needed to obtain the solution.

4) For Tables I–VII, three additional rows are included
at the bottom of the tables. The first row presents the
average costs of solutions and runtimes calculated for
each approach over all the instances in each set. The
average values of lower bounds have also been calculated

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 7, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

728 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

TABLE I
RESULTS FOR gdb BENCHMARK TEST SET. “mean”, “No.opt”, AND “APD” STAND FOR AVERAGE COST AND RUNTIMES,

NUMBER OF OPTIMAL SOLUTIONS, AND APD TO THE LOWER BOUNDS, RESPECTIVELY

for reference. The second row summarizes the number of
instances on which the approach has achieved the optimal
solutions (i.e., reaches the lower bounds). The third row
calculates for each approach the average percentage devi-
ation (APD) to the lower bounds. Because lower bounds
are not available for the instances of the Brandão and
Eglese’s test set, only the average costs and runtimes are
provided for Table VIII.

5) In all the tables, results are highlighted in bold for the
instances on which RTS or RTS∗ achieved the optimal
solutions.

In our experiments, RTS and RTS∗ were coded with C
language and run using an Intel(R) Xeon(R) E5335 2.00 GHz.
The results of the six existing approaches were directly obtained
from the original publications. Since the compared approaches
were implemented on different computers, normalization has
been carried out to make fair comparisons on the runtimes.
That is, all the runtimes presented in this paper were obtained
via dividing the runtimes in the original publications by some
factors. To be specific, CARPET and VND were implemented
on the Graphics Indigo2 (195 MHz); thereby, the runtimes
presented in [9] and [10] have been divided by ten. The results
of GLS in [14] were obtained using a Pentium II 500 MHz;
thus, we divided the runtimes there by four. The MA was
implemented on a Pentium III 1 GHz and the TSA on a Pentium
Mobile 1.4 GHz. Hence, the runtimes of MA, TSA1, and TSA2
given in the corresponding papers have been divided by 2, 10/7,
and 10/7, respectively.

The efficacy of GRO can be evaluated from two perspectives,
i.e., the quality of solution and the computational time. The
average cost, the number of optimal solutions achieved, and the
APD are all examined to get a more comprehensive comparison

on the quality of solution. From Tables I and II, it can be seen
that MA, TSA2, RTS, and RTS∗ performed comparably on the
gdb and val sets, while the results of CARPET, VND, and TSA1
are inferior. Among the former four methods, RTS requires the
least runtime, and RTS∗ is more efficient than MA and TSA2.

On the egl set, RTS∗ significantly outperformed the other
methods in terms of solution qualities. MA, TSA2, and RTS
achieved comparable results, and TSA1 performed the worst.
Furthermore, RTS∗ is less time consuming than MA and TSA2,
not to mention RTS.

In [14] and [17], results on the four test subsets of
Beullens et al. were reported in terms of the cost of deadheading
only. Hence, we present the results of RTS and RTS∗ in the
same form in Tables IV–VII. In general, GLS exhibited the
best overall performance, followed by RTS∗, TSA2, and RTS.
However, we can further find that GLS outperformed the RTS∗

marginally, while the runtime of RTS∗ is always shorter than
GLS. This is particularly obvious on sets C and E. RTS∗

appears to be superior to TSA2 on set F , and the two achieved
similar performance on sets C, D, and E. On the other hand,
RTS∗ requires about half of the runtime of TSA2 on all the
four sets. Unsurprisingly, TSA1 did not perform as good as the
others.

Finally, as shown in Table VIII, RTS not only achieved
solutions of higher qualities than TSA1 but also was compu-
tationally more efficient. Since only the results of TSA1 are
available in the literature, the results of RTS∗ are presented for
reference only.

To summarize, RTS and RTS∗ are competitive with a number
of state-of-the-art approaches for CARP. In particular, RTS is
the most efficient one among all the compared approaches,
and it also managed to achieve high quality solutions on many

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 7, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

MEI et al.: GLOBAL REPAIR OPERATOR FOR CAPACITATED ARC ROUTING PROBLEM 729

TABLE II
RESULTS FOR val BENCHMARK TEST SET. “mean”, “No.opt”, AND “APD” STAND FOR AVERAGE COST AND RUNTIMES,

NUMBER OF OPTIMAL SOLUTIONS, AND APD TO THE LOWER BOUNDS, RESPECTIVELY

problems. Although RTS∗ is computationally more expensive
than RTS, it provided significantly better solutions. Further-
more, RTS∗ is still much less time consuming than those
compared methods that perform similarly to RTS∗ in terms of
quality of solutions. Hence, RTS∗ can be said to give a good
tradeoff between quality and time.

Since we are proposing a repair operator (i.e., the GRO)
rather than an algorithm (i.e., the RTS) in this paper, it is
worthwhile to study the role that the GRO plays in RTS. This
can be done by comparing RTS and RTS∗ to TSA1 and TSA2,
respectively. From the perspective of solution qualities, RTS
outperformed TSA on 120 problem instances among a total of
191 problem instances investigated in this paper. RTS∗ outper-
formed TSA2 on 42 problem instances, while was inferior on
eight only. The statistics presented in the previous tables also
evidence the superiority of RTS and RTS∗. Hence, the incorpo-
ration of GRO undoubtedly improves TSA1’s performance.

Given the improvement brought by GRO, we further in-
vestigate the computational time required by GRO during the
optimization process. For this purpose, we recorded the total
runtime of RTS∗ and the time occupied by GRO in it. The
average runtime on each test set and all the sets are presented in
Table IX. We can see that GRO accounted for no more than
4% runtime of RTS∗. Hence, it is reasonable to expect that

the runtimes of RTS are slightly longer than that of TSA1.
Nevertheless, as shown in Tables I–VIII, RTS is actually much
less time consuming than TSA1. The reason is that the RTS
converged faster than the TSA1 and thereby stopped earlier.
Moreover, we also noticed that the difference between RTS
and RTS∗ is marginal on quite a lot of problem instances. For
example, the APDs of the two algorithms are very close to
each other for the gdb set, val set, and set E of the set of
Beullens et als. Such an observation further demonstrates the
fast convergence of RTS.

C. Further Analysis

Since RTS∗ was outperformed by the compared methods
on some instances, we attempt to further analyze when RTS∗

is preferable. The general idea is to find the correlation
(if any) between the performance of RTS∗ and some measurable
characteristics of the problem instances. Since there is no work
regarding this issue so far, we define the following metric,
namely, proportion of free tasks (PFT), for our analysis. It is
defined as follows:

PFT =

∑
(i,j)∈ER∪AR

I(0,AR]d(i, j)

N
(14)

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 7, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

730 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

TABLE III
RESULTS FOR egl BENCHMARK TEST SET. “mean”, “No.opt”, AND “APD” STAND FOR AVERAGE COST AND RUNTIMES,

NUMBER OF OPTIMAL SOLUTIONS, AND APD TO THE LOWER BOUNDS, RESPECTIVELY

TABLE IV
RESULTS FOR BEULLENS et al. SET C. “mean”, “No.opt”, AND “APD” STAND FOR AVERAGE COST AND RUNTIMES,

NUMBER OF OPTIMAL SOLUTIONS, AND APD TO THE LOWER BOUNDS, RESPECTIVELY

where

AR = Q −
∑

(i,j)∈ER∪AR
d(i, j)⌈∑

(i,j)∈ER∪AR
d(i, j)/Q

⌉ (15)
I(0,AR]d(i, j) =

{
1, if d(i, j) � AR
0, otherwise.

(16)

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 7, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

MEI et al.: GLOBAL REPAIR OPERATOR FOR CAPACITATED ARC ROUTING PROBLEM 731

TABLE V
RESULTS FOR BEULLENS et al. SET D. “mean”, “No.opt”, AND “APD” STAND FOR AVERAGE COST AND RUNTIMES,

NUMBER OF OPTIMAL SOLUTIONS, AND APD TO THE LOWER BOUNDS, RESPECTIVELY

TABLE VI
RESULTS FOR BEULLENS et al. SET E. “mean”, “No.opt”, AND “APD” STAND FOR AVERAGE COST AND RUNTIMES,

NUMBER OF OPTIMAL SOLUTIONS, AND APD TO THE LOWER BOUNDS, RESPECTIVELY

In (15),
∑

(i,j)∈ER∪AR
d(i, j) is the overall demand of an

instance. Correspondingly, �
∑

(i,j)∈ER∪AR
d(i, j)/Q
 is the

minimal number of routes required for the instance, because

the load of a single route must not exceed Q. Hence, the second
term of (15) is the average load of each route, and thereby, AR
is the average residual. A task is defined as a free task if its

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 7, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

732 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

TABLE VII
RESULTS FOR BEULLENS et al. SET F . “mean”, “No.opt”, AND “APD” STAND FOR AVERAGE COST AND RUNTIMES,

NUMBER OF OPTIMAL SOLUTIONS, AND APD TO THE LOWER BOUNDS, RESPECTIVELY

TABLE VIII
RESULTS FOR BRANDÃO AND EGLESE’S BENCHMARK TEST SET. “mean” STANDS FOR AVERAGE COST AND RUNTIMES

TABLE IX
AVERAGE RUNTIMES OF RTS∗ AND GRO (IN CPU SECONDS)

demand is no more than the AR. Based on such definition, the
numerator of PFT stands for the number of free tasks in an
instance. A smaller PFT implies a tighter capacity constraint.

Intuitively speaking, the tighter the capacity constraints, the
harder the GRO can successfully repair an infeasible solution.

If the constraints are so tight that the solutions obtained by
GRO are not even close to the feasible region (i.e., the viola-
tions are still large after the repair process), GRO is unlikely
to benefit the search process much. Hence, we expect GRO
to be more preferable for problem instances whose capacity

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 7, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

MEI et al.: GLOBAL REPAIR OPERATOR FOR CAPACITATED ARC ROUTING PROBLEM 733

constraints are not too tight, i.e., with large PFT s. In order
to verify this hypothesis, we calculated the correlation coef-
ficient between the solution quality and PFT based on the
total 191 problem instances involved in this paper. First, the
costs of the solutions are divided by the lower bounds for
normalization. The correlation coefficient between the normal-
ized results and PFT is −0.2463 for RTS and −0.2306 for
RTS∗. This clearly implies negative correlation between PFT
and the performance of RTS, and thereby, our hypothesis is
validated.

V. CONCLUSION AND DISCUSSION

In this paper, we proposed a search operator called GRO for
CARP based on the vertex encoding. GRO is motivated by the
observation that, in the vertex encoding, an ordered list may
correspond to many solutions with different zero–one variables,
and the traditional move operators may not be able to focus on
the low cost ordered lists and lead to an ineffective search. GRO
tries to minimize the capacity violation of a low cost infeasible
solution while retaining its ordered list, which is formulated
as a bin-packing problem and is NP-hard [30]. GRO employs
an insertion heuristic and a tabu search to find near-optimal
solutions for the bin-packing problem. To verify the efficacy
of GRO, we embedded it in TSA1 and tested the resultant
RTS algorithm on five previously studied benchmark test sets,
which contain 191 CARP instances in total. Experimental re-
sults showed that GRO enhanced TSA1 significantly both in
terms of solution quality and computational time, and the RTS∗

algorithm provided very competitive results in comparison to a
number of state-of-the-art approaches for CARP. Furthermore,
GRO is independent of the method generating the infeasible
solutions and can be easily embedded in any method utilizing
the vertex encoding (e.g., the most straightforward way is to call
the GRO whenever an infeasible solution is reached.). There-
fore, we believe that GRO would be an effective supplementary
operator to the existing algorithms.

Two parameters need to be predefined for GRO: the tabu
tenure and the number of iterations. In this paper, they are
arbitrarily set to F/2 and N . Although these values are not
meant to be optimal, experimental study showed that GRO is
not very sensitive to the parameters. Hence, F/2 and N can be
used as a rule of thumb.

As mentioned in Section II-B, few repair operators have
been specifically designed for CARP. However, in the broader
context of heuristic search, lots of repair operators have been
proposed for various optimization problems [31]–[38]. More-
over, it is usually the case that a repair operator for one com-
binatorial optimization problem may not be directly applied to
another problem, and some modifications are required. Hence,
at the first sight, GRO merely looks like a new repair operator
whose usage is restricted within a specific domain. However,
the underlying mechanism of GRO is essentially different from
many existing repair operators. When applied to an infeasible
solution, GRO does not search in the original solution space
(i.e., the space represented by the vertex encoding) for the
alternative feasible solution. Instead, the search is carried out
in the space represented by the zero–one variables. That means

that GRO first switches the search space, then conducts the
search, and finally transforms the obtained solution back to the
original solution space. In consequence, after the repair process,
we are likely to obtain a solution that is “distant” from the
original solution in the solution space. Therefore, unlike many
existing repair operators for combinatorial optimization (e.g.,
[34], [35], and [37]), which mainly conduct local searches in the
original solution space, GRO actually implements a relatively
global search. Such a characteristic, as well as the promising
performance exhibited by GRO, may hopefully shed some
light on the design of repair operators for other combinatorial
optimization problems.

Last but not least, the promising results obtained via GRO
imply that the assignment of tasks in different routes (i.e.,
zero–one variables) might have been overlooked in previous
studies. Hence, the following question arises: Can an encoding
scheme which focuses more on the assignment of tasks be more
effective than the vertex encoding? This issue deserves in-depth
research in the future.

ACKNOWLEDGMENT

The authors would like to thank Dr. J. Brandão and
Prof. R. Eglese for the kind sharing of the test sets used in their
work and the anonymous reviewers for the helpful comments
and criticisms.

REFERENCES

[1] M. Dror, Ed., Arc Routing: Theory, Solutions and Applications. Boston,
MA: Kluwer, 2000.

[2] B. L. Golden and R. T. Wong, “Capacitated arc routing problems,”
Networks, vol. 11, no. 3, pp. 305–315, 1981.

[3] B. L. Golden, J. S. DeArmon, and E. K. Baker, “Computational exper-
iments with algorithms for a class of routing problems,” Comput. Oper.
Res., vol. 10, no. 1, pp. 47–59, 1983.

[4] G. Ulusoy, “The fleet size and mix problem for capacitated arc routing,”
Eur. J. Oper. Res., vol. 22, no. 3, pp. 329–337, Dec. 1985.

[5] W. L. Pearn, “Approximate solutions for the capacitated arc routing prob-
lem,” Comput. Oper. Res., vol. 16, no. 6, pp. 589–600, 1989.

[6] W. L. Pearn, “Augment–insert algorithms for the capacitated arc routing
problem,” Comput. Oper. Res., vol. 18, no. 2, pp. 189–198, Feb. 1991.

[7] M. C. Mourao and L. Amado, “Heuristic method for a mixed capacitated
arc routing problem: A refuse collection application,” Eur. J. Oper. Res.,
vol. 160, no. 1, pp. 139–153, Jan. 2005.

[8] S. K. Amponsah and S. Salhi, “The investigation of a class of capacitated
arc routing problems: The collection of garbage in developing countries,”
Waste Manage., vol. 24, no. 7, pp. 711–721, 2004.

[9] A. Hertz, G. Laporte, and M. Mittaz, “A tabu search heuristic for the
capacitated arc routing problem,” Oper. Res., vol. 48, no. 1, pp. 129–135,
Jan./Feb. 2000.

[10] A. Hertz and M. Mittaz, “A variable neighborhood descent algorithm for
the undirected capacitated arc routing problem,” Transp. Sci., vol. 35,
no. 4, pp. 425–434, Nov. 2001.

[11] P. Greistorfer, “A tabu scatter search metaheuristic for the arc routing
problem,” Comput. Ind. Eng., vol. 44, no. 2, pp. 249–266, Feb. 2003.

[12] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Competitive memetic
algorithms for arc routing problem,” Ann. Oper. Res., vol. 131, no. 1–4,
pp. 159–185, Oct. 2004.

[13] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “A genetic algorithm for
the capacitated arc routing problem and its extensions,” in Proc. EvoWork-
shops Appl. Evol. Comput., Como, Italy, 2001, pp. 473–483.

[14] P. Beullens, L. Muyldermans, D. Cattrysse, and D. V. Oudheusden, “A
guided local search heuristic for the capacitated arc routing problem,” Eur.
J. Oper. Res., vol. 147, no. 3, pp. 629–643, Jun. 2003.

[15] H. Handa, D. Lin, L. Chapman, and X. Yao, “Robust solution of salting
route optimization using evolutionary algorithms,” in Proc. IEEE Congr.
Evol. Comput., Vancouver, BC, Canada, 2006, pp. 3098–3105.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 7, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

734 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009

[16] H. Handa, L. Chapman, and X. Yao, “Robust route optimization for
gritting/salting trucks: A CERCIA experience,” IEEE Comput. Intell.
Mag., vol. 1, no. 1, pp. 6–9, Feb. 2006.

[17] J. Brandão and R. Eglese, “A deterministic tabu search algorithm for the
capacitated arc routing problem,” Comput. Oper. Res., vol. 35, no. 4,
pp. 1112–1126, Apr. 2008.

[18] T. Z. Jiang and F. G. Yang, “An evolutionary tabu search for cell image
segmentation,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 32, no. 5,
pp. 675–678, Oct. 2002.

[19] S. Pierre and F. Houeto, “Assigning cells to switches in cellular mobile
networks using taboo search,” IEEE Trans. Syst., Man, Cybern. B, Cy-
bern., vol. 32, no. 3, pp. 351–356, Jun. 2002.

[20] G. N. Frederickson, “Approximation algorithms for some postman prob-
lems,” J. ACM, vol. 26, no. 3, pp. 538–554, Jul. 1979.

[21] J. S. DeArmon, “A comparison of heuristics for the capacitated Chinese
postman problems,” M.S. thesis, Univ. Maryland, College Park, MD,
1981.

[22] E. Benavent, V. Campos, E. Corberán, and E. Mota, “The capacitated arc
routing problem: Lower bounds,” Networks, vol. 22, no. 7, pp. 669–690,
Dec. 1992.

[23] R. W. Eglese, “Routing winter gritting vehicles,” Discrete Appl. Math.,
vol. 48, no. 3, pp. 231–244, Feb. 1994.

[24] R. W. Eglese and L. Y. O. Li, “A tabu search based heuristic for arc
routing with a capacity constraint and time deadline,” in Metaheuristics:
Theory and Applications, I. H. Osman and J. P. Kelly, Eds. Boston, MA:
Kluwer, 1996, pp. 633–650.

[25] L. Y. O. Li and R. W. Eglese, “An interactive algorithm for vehicle routing
for winter-gritting,” J. Oper. Res. Soc., vol. 47, no. 2, pp. 217–228, 1996.

[26] J. M. Belenguer and E. Benavent, “A cutting plane algorithm for the
capacitated arc routing problem,” Comput. Oper. Res., vol. 30, no. 5,
pp. 705–728, Apr. 2003.

[27] D. Ahr, “Contributions to multiple postmen problems,” Ph.D. dissertation,
Rupercht-Karls-Universitat, Heidelberg, Germany, 2004.

[28] R. Baldacci and V. Maniezzo, “Exact methods based on node-routing
formulations for undirected arc-routing problems,” Networks, vol. 47,
no. 1, pp. 52–60, 2006.

[29] H. Longo, D. A. M. Poggi, and E. Uchoa, “Solving capacitated arc rout-
ing problems using a transformation to the CVRP,” Comput. Oper. Res.,
vol. 33, no. 6, pp. 1823–1837, Jun. 2006.

[30] E. G. Coffman, M. R. Garey, and D. S. Johnson, “Approximation algo-
rithms for bin-packing—An updated survey,” in Algorithm Design for
Computer System Design, G. Ausiello, M. Lucertini, and P. Serafini, Eds.
Berlin, Germany: Springer-Verlag, 1984, pp. 49–106.

[31] Z. Michalewicz and G. Nazhiyath, “Genocop III: A co-evolutionary
algorithm for numerical optimization problems with nonlinear con-
straints,” in Proc. IEEE Int. Conf. Evol. Comput., Perth, Australia, 1995,
vol. 2, pp. 647–651.

[32] K. Harada, J. Sakuma, I. Ono, and S. Kobayashi, “Constraint-handling
method for multi-objective function optimization: Pareto descent repair
operator,” in Proc. 4th Int. Conf. Evol. Multi-Criterion Optimization,
Sendai, Japan, 2007, pp. 156–170.

[33] H. Handa, K. Watanabe, O. Katai, T. Konishi, and M. Baba, “Coevolu-
tionary genetic algorithm for constraint satisfaction with a genetic repair
operator for effective schemata formation,” in Proc. IEEE Int. Conf. Syst.,
Man, Cybern., Tokyo, Japan, 1999, vol. 3, pp. 616–621.

[34] P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidimensional
knapsack problem,” J. Heuristics, vol. 4, no. 1, pp. 63–86, Jun. 1998.

[35] M. Gröbner and P. Wilke, “Optimizing employee schedules by a hybrid
genetic algorithm,” in Proc. EvoWorkshops Appl. Evol. Comput., 2001,
vol. 2037, pp. 463–472.

[36] Q. Zhang, J. Sun, and E. Tsang, “An evolutionary algorithm with guided
mutation for the maximum clique problem,” IEEE Trans. Evol. Comput.,
vol. 9, no. 2, pp. 192–200, Apr. 2005.

[37] H. Ueda, D. Ouchi, K. Takahashi, and T. Miyahara, “A co-evolving
timeslot/room assignment genetic algorithm technique for university
timetabling,” in Proc. Practice Theory Automated Timetabling III, 2001,
vol. 2079, pp. 48–63.

[38] C. A. Coello Coello, “Theoretical and numerical constraint-handling tech-
niques used with evolutionary algorithms: A survey of the state of the art,”
Comput. Methods Appl. Mech. Eng., vol. 191, no. 11/12, pp. 1245–1287,
Jan. 2002.

Yi Mei received the B.S. degree in mathematics from
the University of Science and Technology of China,
Hefei, China, in 2005, where he is currently working
toward the Ph.D. degree in the Nature Inspired Com-
putation and Applications Laboratory, Department of
Computer Science and Technology.

His current research interests include memetic
algorithm, tabu search, and other metaheuristics for
solving arc routing problem.

Ke Tang (M’07) received the B.Eng. degree from
the Department of Control Science and Engineering,
Huazhong University of Science and Technology,
Wuhan, China, in 2002 and the Ph.D. degree from
the School of Electrical and Electronic Engineer-
ing, Nanyang Technological University, Singapore,
in 2007.

He is currently an Associate Professor with the
Department of Computer Science and Technology,
University of Science and Technology of China,
Hefei, China. His major research interests include

machine learning, pattern analysis, evolutionary computation, data mining,
metaheuristic algorithms, and real-world applications.

Dr. Tang is a member of the Computational Intelligence Society of IEEE and
the Chair of IEEE Task Force on Large Scale Global Optimization.

Xin Yao (M’91–SM’96–F’03) received the B.Sc. de-
gree from the University of Science and Technology
of China (USTC), Hefei, China, in 1982, the M.Sc.
degree from the North China Institute of Computing
Technology, Beijing, China, in 1985, and the Ph.D.
degree from USTC in 1990.

From 1985 to 1990, he was an Associate Lec-
turer and Lecturer with USTC, while working to-
ward the Ph.D. degree on simulated annealing and
evolutionary algorithms. He took up a Postdoctoral
Fellowship in the Computer Sciences Laboratory,

Australian National University, Canberra, A.C.T., Australia, in 1990, and
continued his work on simulated annealing and evolutionary algorithms. He
was with the Knowledge-Based Systems Group, Commonwealth Scientific
and Industrial Research Organization Division of Building, Construction and
Engineering, Melbourne, Vic., Australia, in 1991, working primarily on an
industrial project on automatic inspection of sewage pipes. He returned to
Canberra in 1992 to take up a lectureship in the School of Computer Science,
University College [University of New South Wales at Australian Defense
Force Academy (ADFA)], ADFA, Canberra, where he was later promoted to
a Senior Lecturer and Associate Professor. Attracted by the English weather, he
moved to the University of Birmingham, Birmingham, U.K., as a Professor
of computer science in 1999. He is currently the Director of the Centre
of Excellence for Research in Computational Intelligence and Applications,
School of Computer Science, University of Birmingham, and a Changjiang
(Visiting) Chair Professor (Cheung Kong Scholar) at USTC. He is an Associate
Editor or Editorial Board Member of ten journals and the Editor of the World
Scientific Book Series on Advances in Natural Computation. He has given more
than 50 invited keynote and plenary speeches at conferences and workshops
worldwide. His major research interests include evolutionary artificial neural
networks, automatic modularization of machine learning systems, evolutionary
optimization, constraint handling techniques, computational time complexity of
evolutionary algorithms, coevolution, iterated prisoner’s dilemma, data mining,
and real-world applications. He has more than 250 refereed publications.

Dr. Yao was awarded the President’s Award for Outstanding Thesis by the
Chinese Academy of Sciences for his Ph.D. work on simulated annealing and
evolutionary algorithms in 1989. He won the 2001 IEEE Donald G. Fink
Prize Paper Award for his work on evolutionary artificial neural networks.
He is the Editor-in-Chief of the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 7, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

