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Abstract: Peptides are fragments of proteins that carry out biological functions. They act as signaling

entities via all domains of life and interfere with protein-protein interactions, which are indispens-

able in bio-processes. Short peptides include fundamental molecular information for a prelude to

the symphony of life. They have aroused considerable interest due to their unique features and
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great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short

peptide-based therapeutical developments is the first global review written by researchers from all

continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin

therapy in the 1920s. Peptide “drugs” initially played only the role of hormone analogs to balance

disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach

intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical

substances. The article is divided into independent sections, which are related to either the progress

in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular,

the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements

in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide

ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional

materials, vaccines, and drug/gene-targeted delivery systems are discussed.

Keywords: short peptides; constrained amino acids and peptide (bio)mimetics; drug design and

drug/gene delivery; vaccines; aptamers; cell-penetrating peptides; synthesis; SARS-COV-2; cancer;

bilayer interactions; altered peptide ligands; ant/super/agonists; diketopiperazine; cosmeceuticals

1. Introduction
2. Brief History
3. Short Peptides: Definition
4. Frontiers and Prospects of Short Peptides
4.1. Advantages vs. Disadvantages: SWOT Analysis
4.2. To Overcome Shortcomings of Peptides: Mission (Im)possible?
4.2.1. Constrained Amino-Acids as a Molecular “Meccano”
4.2.2. Cyclic Peptides and Mimetics
4.2.3. Ultra-Short Peptides: Less Is More
4.2.4. Nanoengineering & a Supramolecular Approach
5. Synthesis
5.1. Advances in the Synthesis of Short Peptides and Modified Amino Acids
5.2. Short Difficult Peptide Synthesis
6. In Silico Studies
6.1. Geometry Optimization, Conformational Analysis
6.2. Modelling of Short Peptides
6.3. Peptide Interactions with Lipid Bilayers using Molecular Dynamics Simulations
7. Peptide-Based Therapies
7.1. Monocyclic, Bicyclic and Tricyclic Cell-Penetrating Peptides as Molecular Transporters
7.2. Short Peptides in Gene Delivery
7.3. Taking Peptide Aptamers to a New Level
7.4. Peptide-Based Vaccines
7.5. The Role of Short Peptides in Neurodegenerative Therapy
7.6. Immune Modulation Using Altered Peptide Ligands in Autoimmune Diseases
7.7. Relevance of Short Peptides in Stem Cell Research
7.8. Short Peptide-Based Anti-Viral Agents against SARS-CoV-2
7.9. Antimicrobial Lactoferrin-Based Peptides as Anti-COVID-19
7.10. Peptides from Digestion of Proteins
7.11. Nutraceuticals
7.12. Marine Peptides
7.13. Peptide-Based Cosmeceuticals

1. Introduction

Recently, short peptides have attracted increasing attention in biology, chemistry,
and medicine due to their specific features. They are appreciated as novel and more
efficient therapeutical agents with reduced side effects. Their structural diversity combined
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with the conformational flexibility is used to control interactions with particular receptor
sites. Peptides display high selectivity due to specific interactions with their targets.
Moreover, the number of short peptides involved in important biological processes is
steadily growing by far exceeding that resulting from the traditional mimetic approach.
Unfortunately, peptides also have profound medical limitations, namely the development
of oral peptide-based therapeuticals that modulate cellular processes via high affinity
binding is like a search for the Holy Grail [1].

This critical review is written by a broad, multidisciplinary group of leading scien-
tists, experts in the field from academia and pharmacy from all continents of the world
providing a priceless global point of view on short peptides towards biomedical innova-
tions. It is compiled as a holistic story from very simple bio-molecules to next-generation
advanced theranostics in diverse, multidirectional scenarios. More specifically, the advan-
tages vs. disadvantages of short peptides, their relevance in therapies of a wide range
of diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular
technologies, aptamers, altered peptide ligands and in silico methodologies to overcome
peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-
targeted delivery systems are considered. It gains unequaled insight into the world of
functional biologically active peptides either accessible from nature’s repertoire or syn-
thetic species. Short peptides, as fragments of proteins, have become intriguing agents of
almost unlimited possibilities, which are awaiting further exploitation in the near future.
We profoundly believe that these simple bio-molecules will open up whole new vistas,
offering promising solutions in shaping the future novel bio-medicine.

2. Brief History

In 1902, two distinguished German chemists, Hermann Emil Fischer and Franz
Hofmeister, proposed that proteins are constituted by amino acids linked by bonds between
the amino group of the proceeding amino acid and the carboxyl group of the following
residue [2]. However, proteins were initially characterized by the Dutch chemist Gerar-
dus Johannes Mulder, but their name was coined out by the Swedish chemist Jöns Jacob
Berzelius, in 1838 [3,4]. The term “protein” is derived from the “proteios” (“primary”)
i.e., representing the first position in living organisms [4–6]. Nevertheless, proteins do
not exist without peptides. A name “peptide” comes from “peptós” (in Greek “digested,
digestible”) and reflects the fact that peptides are generated by the proteolytic cleavage
reaction. The first peptides and amino acids were discovered at the beginning of 19th cen-
tury [7,8]. The first amino acid, asparagine, was isolated from asparagus by French chemists
Louis-Nicolas Vauquelin and Pierre Jean Robiquet in 1806 [9,10]. Their chemical category
was recognized by the French Charles Adolphe Wurtz, in 1865, but the expression “amino
acid” was used for the first time in 1894, in German as Aminosäure [11,12]. Interestingly,
the first peptide, benzoylglycylglycine, was synthesized by the German chemist Theodor
Curtius, in 1881 [13]. However, a more efficient synthesis was described by Fischer and the
French chemist Ernest Fourneau in 1901 [14,15]. In consequence, Fisher is known as the
“father” of peptide chemistry [16].

Peptides exist in all terrestrial living organisms and are indivisibly related to the origin
of life [17]. Cooperative interactions among peptides and other molecules (amino acids,
proteins, nucleic acids, lipids) were the driving forces at all stages of chemical evolution [18].
Nowadays, a chemical peptide synthetic biology approach facilitates theories on the cre-
ation of life, in particular in the eyes of scientists who believe that historically chemistry
proceeds biology [19–21].

3. Short Peptides: Definition

In general, a peptide consists of at least two amino acids. An oligopeptide is a short
chain of amino acids (“a few”). A polypeptide is a long chain of amino acids (“many”).
Protein contains at least one polypeptide chain folded into correct shapes. There is no strict
boundary between a peptide and a protein or an oligopeptide and a polypeptide other than
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the “size”. As stated in the International Union of Pure and Applied Chemistry (IUPAC),
oligopeptides consist of fewer than about 10–20 amino acids, while polypeptides have
more than 20 residues [22]. According to the biological dictionary, oligopeptides comprise
about 2–40 amino acids, while the medical definition indicates a fragment of protein
consisting of fewer than 25 amino acids. On the other hand, proteins, according to IUPAC
can be polypeptides consisting of more than about 50 mers, but there are great differences
regarding the term protein. In the Britannica encyclopedia, we can read: “peptide chains
longer than a few dozen amino acids are called proteins” [23]. Typical proteins contain
over 100 amino acids [5,24]. The smallest natural mini-protein is crambin, consisting of
46 amino acids [25], while the largest protein is titin with 38,138 amino acid residues [26].
Hence, the determination of “short peptide” is problematic. It depends on the reference
point. The strict definition has not been given so far. Short peptides have features of
oligomers rather than polymers [5], but there is no clear consensus among scientists. In the
literature, we can find contradictory information, with fewer than 30 [27–29] or 50 [30–33],
up to 100 residues [34]. On the other hand, ultra-short peptides were precisely defined as
peptides consisting of up to seven amino acids [35–38].

In view of the above, we can conclude that oligopeptides are always only peptides,
while polypeptides can be proteins as well. Consequently, short peptides should not
include more than 45 amino acids.

4. Frontiers and Prospects of Short Peptides

4.1. Advantages vs. Disadvantages: SWOT Analysis

Peptides as a unique class of bio-molecules have filled the therapeutic niche due to
their specific biochemical and therapeutic features. They explore the “middle space” be-
tween small chemical molecules and biologics because of their molecular weight. They have
the intermediate nature extending “beyond size”, combining the advantages of both small
molecular drugs (e.g., better permeability) and therapeutic proteins (selectivity, target
potency) and exluding their disadvantages, such as adverse side effects, drug-drug interac-
tions, and membrane impermeability, respectively.

Short peptides have evolved as a very promising scaffold for diverse applications either
in diagnosis or therapies. The current status of their strengths, weaknesses, opportunities and
threats (SWOT analysis) [39] is briefly discussed (Table 1).

Table 1. SWOT analysis of short peptides.

Strengths Weaknesses

essential bio-molecules with a broad range of activities &
functionalities in vivo

instability in vivo (easy degradation in plasma,
protease sensitivity)

bio-chemical diversity, easy availability short half-life

structural simplicity low (oral) bioavailability

easy design & cost-effective synthesis with high purity difficult membrane permeability in the case of greater peptides *

easy modification, scaling up low binding affinity *

mechanical stability high conformational freedom *

high: modularity, flexibility *, selectivity, target specificity,
affinity *, absorbability, potency, tolerability, efficacy, safety,
biocompatibility, biodegradibility

low toxicity, antigenicity, immunogenicity

easy recognition by bio-systems

ability to penetrate the cell membranes (but only very short
peptides) *, high brain penetration in systematical
administration
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Table 1. Cont.

Strengths Weaknesses

versatility as both targeting moieties and therapeutic agents

specific interactions with various bio-systems

predictable metabolism: degradation products are amino acids
(non-toxic, natural entities used as nutrients or cellular
building blocks)

lack or fewer secondary off-targets (side) effects (peptides do
not accumulate in kidney or liver)

low unspecific binding to the structures other than the desired
target, minimisation of drug-drug interactions, less
accumulation in tissues (low risk of complications due to
intermediate metabolites)

Opportunities Threats

development of peptide-based delivery systems:
- cell-penetrating peptides
- nano-cyclic peptide-based micceles, vesicles as gene or
drug carriers
- conjugations with non-peptidic motifs

oncogenicity of endogenous & synthetic peptides

supramolecular peptide-based biofunctional materials immunogenicity (related to greater peptides)

formulations development (e.g., subcutaneous
injections)various forms of using (drugs, vaccines,
hormones, radioisotopes)

development of the peptide-based safe & effective vaccines

diveristy of well-ordered, robust, long-lived
self-assembled nanostructures

vital tool for neurodegenerative diseases studies & various
applications in anticancer therapy

peptoids or peptidomimetics

* Bivalent property which may be either strength or weakness depending on particular species.

First of all, short peptides have numerous advantages in comparison with their
larger analogues. In particular, cost-effective synthesis both on a small- and large-scale,
wide chemical diversity, easy modification, high bio-activity, absorbability, accessibility,
tunable functionalization, high selectivity and specificity, biodegradability and biocompati-
bility, high safety, low toxicity (due to their safe metabolites-amino acids, the limited possi-
bility for accumulation in the body), or low immunogenicity should be emphasised [40].
Peptides have diverse bio-functionalities of their components (amino acids) and good
biomolecular recognition [34,41]. As a consequence, they have high binding affinity for a
wide range of specific targets.

On the other hand, short peptides have limitations, such as high conformational
flexibility (can result inter alia in the lack of receptor selectivity) or problems in permeability
of greater peptides via physicological barriers (due to the strong interactions of peptide
backbone with water molecules) [42]. Moreover, there are other important factors, e.g.,
short half-life in vivo (due to the susceptibility to rapid digestion by protolytic enzymes
in the gastrointestinal tract and serum, proteases/peptidases) and fast clearance from the
circulation (first-pass metabolism) by the liver and kidneys (lasting from minutes to hours
after administration). In spite of approvement of over 60 peptide drugs, nearly none can be
orally administrated [43]. Market placement of effective peptides as oral medications is
still the “Holy Grail”. Furthermore, the risk of immunogenic effects is the main threat of
peptide therapies [42].
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4.2. To Overcome Shortcomings of Peptides: Mission (Im)possible?

There are different approaches and strategies to overcome peptide limitations and
enhance their bio-clinical applications [44]. First and foremost, structural modifications
can lead to the improvement of physicochemical properties. Simple modifications result
in greater general stability. It can be additionally improved by “double-bridged peptides”
when peptides are cyclized via two chemical bridges. It reduces peptide backbone flexibility
and in consequence, leads to limited availability for enzymes. Furthermore, variations in
the sequence lenght and side chains, peptide backbone modification, C-terminal amida-
tion, N-terminal acetylation, addition of stabilizing (sugars, salts, heparine) and chelating
agents, e.g., ethylenediaminetetraacetic acid (EDTA), conjugations with large biocompat-
ible polymers, such as polyethylene glycol (PEG), or fatty acids can be applied. In this
way, we can stabilize peptides in their bioactive conformation, increase efficiency, hydro-
dynamic volume, and reduce renal clearanced and show greater membrane permeability
and target selectivity [33,41–45]. Furthermore, the conjugation to cell-penetrating peptides
(or organelle-targeting sequences) increases cellular membrane crossing and allows ac-
cessing intracellular targets by peptide-drugs or acts as gene delivery vectors revealing
great potential for clinical use as theranostics leading to better drug bioavailability and
therapeutic efficiency [46,47]. The conjugations of short peptides with non-peptidic motifs
enhance bioactivities: A promising strategy for the discovery of new drugs (improve pep-
tide delivery and cellular uptake) [48]. Synthetic short peptides as accurate copies of
protein parts are ideal tools for imitation of protein sites [47]. Peptoids, which are based on
native peptides, can lead to the improved pharmacokinetic profile [49,50]. Novel methods
such as phage display can be used to develop short peptides, which can survive proteolytic
degradation in the gastrointestinal tract and can be used as therapeutical agents with high
affinity in inhibition of the coagulation Factor XIa or as antagonists for the interleukin-23
receptor in the chronic inflammatory Crohn‘s disease, ulcerative colitis [51]. They may be a
milestone towards engineering oral peptide drugs in the treatment of diseases affecting
billions of people worldwide [52,53].

4.2.1. Constrained Amino-Acids as a Molecular “Meccano”

Intensive efforts have been made to develop short peptides or peptidomimetics that
display more favourable pharmacological properties than their prototypes [54]. Most of
the research carried out in the field concern the preparation of analogues with different
chemical structure and possibly modified conformational preferences, responsible for in-
ducing changes in the biological activity. Structural changes can be obtained in a peptide
by selectively substituting along the sequence specific residues with other residues or
by substituting certain residues of the sequence with non-coded α-amino acid residues.
Appropriate constrained non-coded α-amino acid residues are of particular interest as
“building blocks” for the preparation of analogs, since their inclusion in a peptide se-
quence could maintain the pharmacological properties of the native peptide and possibly
enhance resistance to biodegradation with improved bioavailability and pharmacokinetics.
Several solid-state studies have been carried out to define the conformational preferences
in solution and in the solid-state of specific classes of non-coded α,α -amino acids, for
example, the symmetrical and unsymmetrical α,α-disubstituted glycines (α,α-dialkylated
amino acid residues) (Figure 1) [55–66]. The structural preferences of peptides containing
non coded amino acid residue are unique with significant constraints of their conforma-
tional freedom. This point is particularly important for the use of these residues and their
analogues as scaffolding units in the de novo design of protein and enzyme mimetics and,
also, as templates for molecular and chiral recognition studies. More in general with this
knowledge we are able to rationally design new peptides relevant to pharmacology and
medicinal chemistry, which might mimic biological processes by enhancing or in general
modulating their effects. The peptide pharmaceutical targets of these studies have been
among others hormones, enzymes, transport systems, antibiotics, sweeteners, etc. [67–72].
Another important application of constrained amino acid is in the peptide self-assembly.
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This process governs the organization of proteins, controlling their folding kinetics and
preserving their structural stability and bioactivity. In this connection, model oligopep-
tides containing α,α-disubstituted glycines can give important insights into the molecular
mechanisms and elementary forces driving the formation of supramolecular structures
with potential application in tissue engineering [73,74].

α α

α α αFigure 1. Schematic representation of some symmetrical Cα,α-dialkylated glycine and chiral

α-methylated residues.

4.2.2. Cyclic Peptides and Mimetics

Cyclic peptides constitute a class of compounds that were used in the treatment of
certain diseases. Examples of such well known cyclic peptides are insulin, penicillin,
cyclosporin, and gramicidin S. Cyclic peptides, compared to linear peptides, have been
proved to show greater potential as therapeutic agents due to their increased chemical
and enzymatic stability, receptor selectively and improved pharmacodynamic properties.
In our peptide research, cyclization of peptides is a key step towards non peptide mimetics
which is the final target [75]. Our research group was the first, worldwide, to synthesize
cyclic analogues of important peptides such as angiotensin II (implicated in hypertension),
myelin epitope peptides (implicated in multiple sclerosis), gonadotropin releasing hor-
mone (implicated in infertility and cancer), and thrombin receptor activating peptides
(implicated in angiogenesis and cancer) [76–84]. Another way of transforming peptides
to peptide mimetics is by conjugating peptides to sugars like mannan, used as antigen
carriers in cancer and in multiple sclerosis research [85]. The octapeptide hormone an-
giotensin II is one of the best studied peptides with the aim to design and synthesize non
peptide mimetics for oral administration [75,86,87]. To achieve this target, cyclizations at
different positions within the peptide molecule was a useful strategy to define the active
conformation [78–81]. These studies on angiotensin II led to the discovery of sarmesin,
a type II angiotensin II antagonist and the breakthrough non-peptide mimetic losartan,
the first in a series of sartans marketed as a new generation of anti-hypertensive drugs in
1990s [78,79,88,89]. These studies led also to the ring cluster conformation of angiotensin II
and the charge relay system hypothesis confirmed by fluorescence studies [90]. Synthesis of
cyclic peptides, in our studies, was pursued as an intermediate step towards constructing
non peptide mimetics which as drugs have the merit to be administered orally. The limited
stability of peptides, due to hydrolysis of amide bonds, severely restricts their medical and
industrial application. Therefore, the engineering of stable peptide moieties, which are
the cyclic counterparts and non-peptide mimetics is of outmost importance. Furthermore,
cyclizations were a way to define and lock the active conformation of the peptide. Structure–
activity studies have shown the importance of the three aromatic amino acids Tyr, His,
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Phe, and the C-terminal carboxylate for activity. In order for cyclic analogues to retain the
activity of the linear peptide, cyclization should occur at residue positions that are the least
important for activity with retention of the bioactive conformation [78–81]. The conforma-
tion of peptides is deduced from modern Nuclear Magnetic Resonance techniques, such as
two-dimensional (2D) NMR ROESY, NOESY, COSY, and TOCSY in lipophilic environments.
Based on losartan, sarmesin, and our ring cluster and charge relay system conformation,
we designed and synethsized angiotensin II receptor blockers by rotation of the alkyl chain
on the imidazole ring. This rotation resulted in losartan V8 and BV6 derivatives of similar
activity with losartan [91,92]. The perspectives in the use of angiotensin receptor blockers
(ARB) are huge. ARB and angiotensin-converting enzyme (ACE)1 inhibitors were recently
found to protect hypertensive patients infected from Severe Acute Respiratory Syndrome
Coronavirus (SARS-Cov-2) [93]. The renin-angiotensin system (RAS) inhibitors reduce
the toxic angiotensin II and increase antagonist heptapeptides alamandine and aspaman-
dine, which counterbalance angiotensin II and maintain homeostasis and vasodilation [94]
(Figure 2).

Figure 2. Angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe), Losartan, V8 Losartan analogues

(R = CH2OH, COOH). The angiotensin II scheme depicts the pharmacophoric groups of the eight

amino acids of angiotensin II.

4.2.3. Ultra-Short Peptides: Less Is More

Very short peptides have outstanding attributes, such as much easier and economic
synthesis, higher mechanical stability, good tissue penetration, and less immunogenic-
ity [42]. Overall, the costs of production increase with the lenghth of the amino-acids
chain. In addition, a complex control and characterization are simpler. Furthermore,
very short peptides have better tunability, bio- and cytocompatibility (non-hemoliticity and
non-cytotoxicity) [95], biodegradability, and non-immunogenicity, in comparison with their
longer analogs. They can support the growth of diverse cells and their differentiation [96].
As a result, structural optimization is easier. Ultra short peptides are more amenable to
oral delivery. They contain necassary molecular information on spontaneous self-assemble
into the ordered nanostructures [97]. Fluorenylmethoxycarbonyl(Fmoc)-diphenylalanine is
a good example of highly ordered peptide (hydrogel) with antimicrobial activity [98,99]
leading to the acceleration of wound healing [100]. Ultra-short nanoparticles can overcome
the drug problem related to low half-life. As an example, encapsulation of curcumin in
the form of nanocarrier can be used in a “controllable release” way to repair brain tissues
as a promising drug in neurodegenerative diseases [101]. Moreover, ultra-short peptides
are suitable for many bioapplications, innovative nano-theranostics (either therapeutic or
diagnostic), especially in cancer cell growth inhibition, and advanced smart system for-
mulations [102–106]. The latter include oral administration which increases drug efficacy
and safety.

The simplest cyclo-peptides, also known as 2,5- (and 2,3- or 2,6-) diketopiperazines
(DKP), piperazine-2,5-diones, 2,5-dioxopiperazines, and dipeptide anhydrides, are another
important issue. They have amazing advantages in drug discovery due to their extra
features, inter alia superior rigidity, three-dimensionality, higher cell permeability [107],
and diverse bio-activities: Anticancer, antiviral, antioxidant, in neurodegeneration preven-
tion, quorum sensing, cell-cell signaling, as drug delivery systems (e.g., in connection with
cell-penetrating peptides) and so on [108–110]. DKPs are widespread in nature. They oc-
cur either in the marine and terrestrial environment, in microorganisms or high species,
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or in food and drugs [111,112]. In the latter case, DKPs are inner cyclization products
of bio-active substances, e.g., ACE inhibitors [113–122]. Noteworthily, they have simi-
lar pharmacological profile as corresponding drug molecules. They were found in the
central nervous system, gastrointestinal tract, and blood [123]. Interestingly, they played
a key role in the origin of life [112,124]. The growing interest in these simplest natural
cyclo-peptides is noticeable due to their huge potential in future therapies. 2,5-DKPs are
observed in almost 50 bio-complexes deposited in the Research Collaboratory for Structural
Bioinformatics Protein Data Bank (RCSB PDB) [125] (Figure 3).

 

π π

Figure 3. Bio-complex containg 2,5-DKP moiety [1O6I.pdb].

Generally speaking, short peptides are gaining more and more popularity. Exploration of
their new modifications seems promising for new advanced research and will be the key to
innovative smart bio-medical applications [126].

4.2.4. Nanoengineering and a Supramolecular Approach

Supramolecular chemistry (“chemistry beyond the molecule”) is a bottom-up ap-
proach to the formation of well-ordered structures in the nano- (and the micro-) scale.
Their adaptable, controllable, self-healing, and bio-physico-chemical stimuli-responsive
properties induced via non-covalent interactions (electrostatic, hydrogen bonding, π–π stacking,
van der Waals or hydrophobic) are highly appreciated [123,127–132]. They have the dy-
namic nature and provide a firm basis for the structure and functioning of living systems.
Notably, bio-systems are controlled by a plethora of supramolecular interactions. The for-
mation of deoxyribonucleic acid (DNA) double helix via H-bonding interactions between
the nucleo-bases or the folding of proteins into tertiary and quaternary structures is a good
example of supramolecular assemblies. The self-assembly is a spontaneous, reversible,
and ubiquitous process [98,127]. Self-assembling peptides are favorable platforms for the
development of next-generation smart therapies. Minor structural changes can facilitate
the generation of new assemblies. Modified peptides with aromatic amino acids or func-
tionalized side chains (e.g., Fmoc) promote additional stacking interactions (Figure 4),
which are helpful in the self-assembly process. Peptide-based bio-functional supramolec-
ular materials (nanomedicines, hydrogels, drug delivery vehicles, gene or drug carriers,
biomimetic-cell culture scaffolds, tissue-engineering systems, biosensors, emulsifiers, pep-
tidomimetic antibiotics, bioimaging nanoprobes, three-dimensional (3D) bioprinting inks,
vaccine adjuvants) have low toxicity and high biocompatibility and are useful in various
applications, like drug delivery, tissue engineering, immunology, cancer therapy, and stem
cell culture [38,95,101,131–136]. Supramolecular nanotherapeutics have better stability and
efficacy, which helps to overcome problems related to peptide poor biostability and short
plasma half-life. Nanoparticles’ conjungtion with inter alia tumor-homing peptides is an
attractive avenue for tumor-targeted therapy [136,137]. The advances in the synthesis of
supra-molecular assemblies prompt the development of theranostics (which possess spe-
cific smart features, such as programmability, multifunctionality, sensitivity, precise selec-
tivity, biosafety) and are promising agents for personalized, smart medicine [126,138,139].
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Figure 4. Bio-complex showing the C-H· · ·π Fmoc interaction (PDB code 3gs4) [131].

5. Synthesis

5.1. Advances in the Synthesis of Short Peptides and Modified Amino Acids

The synthesis of modified amino acids and short peptides is based on reactions
of functional groups. An example of modified amino acids at α-carbon atom could be
α-hydroxymethylvaline [128], while 4-aminopyroglutamic acid can serve as cyclized dipep-
tide unit [140].

The typical chemical peptide synthesis requires the condensation reaction of the car-
boxyl group of one amino acid with the amino group of another. The only two approaches
to a peptide synthesis are the synthesis in solution and the solid-phase synthesis (SPPS).
In each of them, other steps besides peptide bond formation and/or deprotection, like intro-
duction of main- and side-chain modifications, are available. The liquid-phase approach is
now used mostly for the synthesis of short peptides up to tetrapeptide. During solid-phase
peptide synthesis, each peptide is anchored at the C-terminus or side chain functional
group to an insoluble/soluble polymer. In both cases, a single N-protected amino acid unit
is coupled to the free N-terminal amino group of growing peptides. After deprotection,
which reveals a new amino group, another amino acid may be attached. Once synthesis is
complete, the desired peptide is cleaved from the resin. Usually, this cleavage step is per-
formed with acids of varying strength. Any functionalized polymer could be used as a solid
support, like for instance styrene cross-linked with 1–2% divinylbenzene [141], which is a
popular carrier resin in SPPS. Other common gel-type supports include polyacrylamide
and polyethylene glycol (PEG).

In solution peptide synthesis, each step requires precise product purification using
gel chromatography or crystallization. In contrast, in SPPS purification is performed as
a simple washing of the peptide attached to the polymer. This allows to design peptide
synthesizers and automate the synthetic procedure.

The most commonly used peptide coupling reagents can be divided into two classes:
Older reagents—carbodiimides and newer—salts of 1-hydroxy-benzotriazole (HOBt) and
its derivatives. A danger of racemization during carbodiimide activation can be circum-
vented through the addition of ‘racemization suppressing’ additives such as triazoles
(HOBt) and its derivatives (for example 6-Cl-HOBt) or 1-hydroxy-7-aza-benzotriazole
(HOAt). A more recently developed additive for carbodiimide coupling with comparable
coupling efficiency to HOAt is ethyl cyanohydroxyiminoacetate (Oxyma) [142]. As newer
and commonly used reagents, there are compounds contained in the structure HOBt
(HBTU/TBTU/PyBOP), HOAt (HATU), 6-ClHOBt (HCTU). Their iminium, uronium,
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or phosphonium salt of a non-nucleophilic anion (tetrafluoroborate or hexafluorophos-
phate) act as coupling reagent with the ability of lowering racemization process [143].

The amino acids have to be orthogonally protected during any chemical reaction,
because of the presence of two or more reactive centers. In typical peptide synthesis,
orthogonal but permanent protection is necessary for the amino acids’side-chain func-
tionalities. Another class of protecting group is required for temporary protection of the
α-amino group. The temporary protecting group is being cleaved repeatedly while the
permanent protecting groups have to withstand N-deprotection conditions. When the
synthesis is complete, they can be removed from the final peptide separately or simultane-
ously. Two principle orthogonal protecting group schemes are utilized in solution and/or
solid phase synthesis: So-called Boc/Bzl (tert-butyloxycarbonyl/benzyl) and Fmoc/t-Bu
(fluorenylmethylenoxycarbonyl/tert-butyl) approaches [144]. The Boc/Bzl-strategy re-
quires side chain protecting groups, which should be stable during repetitive trifluoroacetic
acid treatment. SPPS can be automated far more conveniently for Fmoc/tert-butyl (tBu)
than for Boc/Bzl strategy. The advantage of Fmoc is that it is cleaved under very mildly
basic conditions, but it remains stable under acidic conditions. This allows the use of mild
acid-labile protecting groups, such as Boc and tBu groups, to be used on the side-chains of
amino acid residues of the target peptide. Among other protecting groups recommended
for special cases are for example allyloxycarbonyl (Alloc) for amino group and allyl ester for
carboxyl group. There is always the possibility for their selective removal in the presence
of Fmoc/tBu protections.

Solution phase synthesis as well as polymer supported synthesis can be utilized for
the modification of amino acids and/or amide bonds. Nowadays, among popular modi-
fications are all kinds of cyclization. Peptides can be cyclized on a solid support and/or
in a solution with any coupling reagent. The disadvantage of the solution phase cycliza-
tion is a substrate high dilution necessity to limit the possible reactions to intramolecular
one. The solid-phase synthesis of head-to-tail cyclic peptides is not limited to attachment
through Asp, Glu, or Lys side chains. For example, cysteine has very reactive sulfhydryl
group, which can be utilized as an anchoring point.

5.2. Short Difficult Peptide Synthesis

Although many peptides are routinely synthesized by SPPS, a certain kind of peptides
is still difficult to be prepared. Such peptides are called “difficult sequence-containing
peptides” [145]; even pentapeptides such as Ac-Val-Val-Ser-Val-Val-NH2 are known as
an example. During the chain elongation, intra-/inter-molecular hydrophobic interac-
tions and/or hydrogen bondings cause aggregation of protected peptides on the resin
to induce incomplete coupling and deprotection. Furthermore, after final deprotection,
hydrophobic peptides hamper HPLC purifications using H2O-MeCN system. Modifying the
main chain amide bond by e.g., pseudoproline (ΨPro) method [146] or O-acyl isopeptide
method [147–149] often solves such problems. In these methods, main chain amide causing
the undesired secondary structures is protected or modified to improve SPPS efficiency.
For example, diabetes mellitus-related amylin is difficult to be prepared by the traditional
Fmoc SPPS but was synthesized successfully with the aid of ΨPro structure [150,151].
In the ΨPro method (Figure 5), side chain of Ser/Thr/Cys in the difficult peptide is pro-
tected as Pro-mimicking “ΨPro” during SPPS and final trifluoroacetic acid (TFA) treatment
liberates native Ser/Thr/Cys. Because N-alkylated amide cannot become a hydrogen
bond donor and N-alkylation of the amide bond affects the cis/trans ratio of the amide
bond, this modification drastically changes secondary structure of the growing protected
peptide on the resin [152,153]. The ΨPro method successfully applied to the synthesis of
short cyclic peptides as well [154,155]. As described above, during TFA-mediated final
deprotection reaction, the native peptide is released. This tracelessness is a strong point but
sometimes becomes a weak point; if the native peptide is hydrophobic, the following high-
performance liquid chromatography (HPLC) purification would be difficult. To overcome
it, the O-acyl isopeptide method was developed (Figure 6). In this method, the target pep-
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tide is synthesized in a form of an O-acyl isopeptide, which contains an O-acyl isopeptide
bond instead of the native N-acyl peptide bond at a hydroxy group-containing amino acid
residue, e.g., Ser or Thr. Namely, in this method, the main chain α-amide is changed to a
β-ester bond, which is not a hydrogen bond donor and has no cis/trans-causing rotation
barrier. Thus, incorporation of the isopeptide structure drastically changes the secondary
structure to increase the efficacy of peptide preparation during chain elongation in a similar
manner to the ΨPro method. Meanwhile, in contrast to the ΨPro method, such an O-acyl
isopeptide is stable under acidic conditions or as a powder (e.g., a lyophilized TFA salt)
and the target peptide can be quantitatively obtained by a quick and one-way O-to-N
intramolecular acyl migration reaction under neutral conditions from the corresponding
O-acyl isopeptide. Thus, hydrophobic peptides can be efficiently purified by HPLC (high
performance liquid chromatography) at the O-acyl isopeptide stage [156]. The O-acyl
isopeptide can be readily synthesized with O-acyl isodipeptide units [157–159]. Isodipep-
tide units have enabled routine application of the O-acyl isopeptide method by omitting the
often-difficult esterification reaction on a resin. So far, many difficult sequence-containing
peptides were synthesized by this method. Firstly, this method successfully applied to the
synthesis of difficult pentapeptides (Ac-Val-Val-Ser-Val-Val-NH2 [147] and Ac-Val-Val-Thr-
Val-Val-NH2 [157]). Later, Cys was used instead of Ser/Thr as the S-acyl isopeptide method
to prepare Ac-Val-Val-Cys-Val-Val-NH2 [160]. Since then, e.g., Alzheimer’s disease-related
amyloid β peptide 1-42 (Aβ42) [40,161], amylin [162], vaccine peptide [163], insulin deriva-
tives [164–167], and collagen peptide [168] are efficiently prepared by the O-acyl isopeptide
method. Especially, in case of highly aggregative Aβ42, isoAβ42 was confirmed being
monomeric without any pretreatment [169]. The O-acyl isopeptide method is also applied
to the peptide cyclization and segment condensation [170–174]. As described in this sec-
tion, the ΨPro method and the O-acyl isopeptide method will assist Fmoc SPPS of difficult
peptides in future.

Ψ
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β β
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Figure 5. (A) Structures of Fmoc-protected ΨPro dipeptide units for Fmoc solid-phase synthesis (SPPS), (B) general scheme

of ΨPro-aided SPPS.
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Figure 6. (A) Structure of the O-acyl isodipeptide units for Fmoc SPPS, (B) general scheme of the

O-acyl isopeptide method.

6. In Silico Studies

6.1. Geometry Optimization, Conformational Analysis

In peptides and proteins, individual amino acids are linked together through peptide
bonds. The peptide bond is planar with a significant double bond character, which prevents
rotation. Thus, bond rotation in the short peptide backbone is only possible for the bonds
on either side of the peptide bond. Molecular modeling tools allows constructing a 3D
structure of a short peptide on a computer [175]. Once the structure is built, the process
of geometry optimization should be carried out. The main objective of this process is to
find the lowest energy conformation. Conformations with the lowest energy correspond to
the most stable molecules. However, methods for finding minima normally can find local
minima only. Therefore, to find the global minimum you must check various possibilities of
geometrical arrangement to see which one is the global minimum on the multidimensional
potential energy surface. One of the possibilities for scientists to do this is to create a
potential energy surface (PES). A short peptide consisting of to 50 amino acids has many
degrees of freedom and consequently a complicate PES. The geometry optimization of
short peptide can be carried out using both quantum chemical and/or molecular mechanic
methods. Over the past decades, novel quantum chemical methods have been devel-
oped that are capable of treating peptides at a high level of electron correlation [176–179].
Benchmark quantum chemical computations were also used to determine the accuracy of
force fields in ranking compact, low-energy peptide structures [176,178,180]. However,
achieving a reasonable description of a potential energy surface for thermal body tempera-
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ture (i.e., RT(310K) = 0.616 kcal/mole) exceeds the limits of modern force fields [181,182].
The structure obtained by energy minimization, however, is not necessarily the most stable
conformation. Energy minimization will stop when it reaches the first stable conformation,
and it usually encounters a local energy minimum. The minimization program has no
manner to identify that there is a more stable conformation and converge the optimiza-
tion process to a global minimum. To identify the most stable conformation of peptide
it is necessary to generate different conformations and compare their energies. There are
two methods of doing this, using molecular dynamics and/or stepwise rotation of bonds
(conformational searching). Conformational searching is feasible for small oligopeptides
only. When the number of rotatable bonds exceeds 5, the entire conformational space
of a molecule can become extremely large. In recent years, the methods of molecular
dynamics were increasingly used to gain insight into the structure/function relationships
in short peptides and proteins [183–187]. One of the key questions to be answered when
checking the applicability of molecular dynamic simulations for peptides and/or proteins
is the extent to which the simulations appropriately sample the conformational space of
these molecules. If a given property is poorly sampled over the molecular dynamics (MD)
simulations, the results obtained have limited usefulness [184]. To improve the sampling
efficiency, new techniques were developed [184,185,187]. All-atom molecular dynamic
simulations can predict structures of peptides and other peptide foldamers with accuracy
of experiments [187,188]. Thus, MD simulations are a useful tool for prediction and/or
reproduction of experimental 3D structures of small proteins.

6.2. Modelling of Short Peptides

The growing interest in peptide research results from recent successes in designing
peptide sequences of therapeutic value. At present, more than 60 peptide drugs have
been approved for use, with hundreds being in clinical trials. A number of new method-
ologies, both experimental and in silico, have been developed to design active peptide
sequences and analyze peptide-protein interactions. The above-mentioned issues are dis-
cussed in a recent comprehensive review [44]. Here, we concentrate on the problems
encountered both on modelling as well as practical sides. From the theoretical point of
view, they result mainly from the intermediate size of peptides—neither relatively exact
calculations for small molecules, nor very approximate but often successful methodologies
used for protein-protein recognition, work properly for them. This is because the size and
flexibility of peptides are prohibitive for exact calculations on the one hand, excluding
the error-compensation mechanism, which we benefit from in addressing protein-protein
recognition problems on the other. The practical biological problem results from many
roles short peptides play in the living cells, many of which are not understood properly
until now. It may happen that the designed peptide is either: The (folding) inhibitor of the
essential protein or protein-protein (interaction) or protein function inhibitor also interact-
ing with a different protein that it was designed to bind to; executes a biological function
for reason which is not meant or understood. There are numerous examples of these
effects, e.g., the peptide corresponding to the (83–93) segment of human immunodeficiency
virus (HIV) protease interferes with the formation of the (post-critical) folding nucleus
and inhibits folding of the protein [189], and native interface peptide fragments can be
used as proton-pump inhibitors inhibitors (PPI). It is reasonable to assume that protein
degradation products can affect PPIs in a similar manner [190], whereby short peptides can
affect cellular processes in a way beyond explanation at the current state at knowledge e.g.
there are more than 1700 peptides (sometimes fragments of angiotensinogen) known to
lower arterial hypertension [191]—the mechanism of their action is unknown. In addition,
our limited experience in targeting PPIs with peptides in bacterial cells for therapeutic
purposes [189] shows that a significant fraction (~20%) of designed peptides is deadly for
unknown reason.

In conclusion, interactions of peptides (both native and designed) are of great im-
portance for the metabolic processes of the living cells. Their full understanding requires
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further progress on both modelling and thermodynamic aspects of their interactions as
well as understanding the peptide content of cells coming from both synthetic and protein
degradation corners.

6.3. Peptide Interactions with Lipid Bilayers Using Molecular Dynamics Simulations

Many biological processes are associated with the peptide interaction with lipid
membranes. Peptides exert their action after the adsorbtion or insertion in the bilayer by
different mechanisms [192]. They could promote lysing or permeabilizing the membrane,
attaching to larger membrane proteins, or self-aggregate (forming pores for instance).
The access to the molecular scale through simulations of peptide-membrane interactions
could help to understand and design short peptides to be used as bioactive agents.

Nowadays, there are reliable models to investigate these problems through computer
simulations, such as Molecular Dynamics technique [193]. Molecular dynamics simulation
could help to study problems of many bodies based on classical mechanics. Within this
approach, Newton’s equations are solved numerically [194]. The main advantage is the
realistic simulation of materials through the simplification by potentials with analytical
form. Due to the development of fast and efficient methods for treating long-range electro-
static interactions, significant improvement in computer hardware, algorithms, and reliable
force fields.

Here we focus on two molecular description scales: Atomistic and coarse grain (CG).
The main difference between them is that in an atomistic scale all the atoms are represented,
whereas in a CG scale, atoms are grouped in beads [195]. In this way, CG models allow
the reduction of the degree of freedom and the integration of Newton equations in a
higher time step, due to the elimination of high-frequency vibration modes [196]. Figure 7
shows illustrative snapshots of all atom representation of a lipid bilayer and a coarse grain
representation of a liposome, both in the presence of short cationic peptides.

Figure 7. Representative snapshot of cationic peptides (red) adsorved into POPG (green)/POPE (blue) surfaces.

Simulations were carried out using: (A) All atom model of Lipid bilayers and (B) Coarse grain model of vesicles. Water and

ion sites were removed for visualization purposes.

What we can get from simulations of peptide interaction with lipid bilayers?
Using MD simulation at the atomistic and CG levels could bring very valuable in-

formation on the short peptide-membrane interaction. We mention here the issues and
consider that this type of methodology has its contributions and challenges.

6.3.1. Peptide Affinity Dependency on Membrane Composition

The partition and insertion of single peptides in membrane of different composi-
tion have been broadly investigated using unbiased MD simulations at both description
levels, with very successful results [197]. Within this technique, it is possible to access
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to the molecular details and identify specific interactions (hydrogen bond, salt bridge,
cation π), peptide conformation, as well as bilayers properties associated with the interac-
tion (induced defects with a variety of morphologies, stiffness, fluidity, etc.).

6.3.2. Free Energy Calculations through a Peptide Reaction Path

Important information could be obtained by calculating, for instance, the free energy
through a given path for the peptide translocation along the bilayer. For bilayers, the natural
path is the z direction (normal to the bilayer). The use of enhancement of the sampling
of configurational space is well established where we can highlight that several methods
such as umbrella sampling [198], adaptive biasing force (ABF) method [199], the Wang-
Landau algorithm [200], steer molecular dynamics [201], and metadynamics have been
proposed [202].

6.3.3. Cooperative Effects

Among the proposed mechanisms of lithic action of peptides in membranes is the
formation of pores. The study of cooperative effects, such as a pore formation, is not an
easy task. It is hard to access with enhanced MD techniques or applying an electric field.
Combining CG [203] and atomistic [204] level MD simulations could be used to broadly
sample the phase space. Thus, different initial conditions could help to explore this space.
For instance, pre-assembled pores embbebed in lipid bilayers could bring information on
their stability dependence with the bilayer lipid composition [204].

7. Peptide-Based Therapies

7.1. Monocyclic, Bicyclic and Tricyclic Cell-Penetrating Peptides as Molecular Transporters

CPPs have become a subject of major interest [205,206] for the intracellular delivery of
therapeutic agents because of the limitations associated with linear CPPs, such as endoso-
mal entrapment, toxicity, poor cell specificity [207], poor stability and degradation [208],
and suboptimal cell penetration. Several cyclic CPPs possess enhanced cell-penetrating
ability and improved physicochemical properties and proteolytic stability. Some cyclic
CPPs exhibit endosomal-independent uptake [209]. A few cyclic CPPs have been reported
to have a nuclear-targeting property [209]. We have summarized below some of the mono-
cyclic, bicyclic, and tricyclic CPPs containing arginine and other amino acids (Figure 8).
We have reported the application of cyclic CPPs containing alternatively positively charged
arginine and hydrophobic tryptophan residues, [WR]4 and [WR]5, as drug delivery tools
and nuclear targeting tools in 2011 [209]. Several other monocyclic CPPs were engineered
based on this template and were shown to be efficient molecular transporters for enhancing
the efficacy of existing chemotherapeutic, antiviral, and antibacterial agents [210–219].
The monocyclic CPPs containing tryptophan and arginine residues were also used to conju-
gate with potential therapeutic agents. For instance, monocyclic peptides were conjugated
with doxorubicin, paclitaxel, and camptothecin [216,220] demonstrating localization of the
drug moiety in the nucleus in case of doxorubicin. Adding to the previous work, we also
demonstrated that several monocyclic peptides containing cysteine and arginine residues,
such as cyclic [CR]4, significantly enhanced the cellular uptake of a cell-impermeable phos-
phopeptide (F’)-Gly-(pTyr)-Glu-Glu-Ile (F’-GpYEEI) in the presence of endocytic inhibitors
and sodium azide in the lymphoblastic leukemia cell line (CCRF-CEM) [218]. Furthermore,
tryptophan and histidine-containing cyclic decapeptides [WH]5 demonstrated an increase
of the intracellular delivery of a cell-impermeable phosphopeptide and an anti-HIV drug,
emtricitabine [217]. In another effort, monocyclic [HR]4 peptides were used as a molecular
transporter and were able to double the permeability of F’-GpYEEI in human ovarian
adenocarcinoma cells (SK-OV-3) cells [214]. Two bicyclic peptides containing trypto-
phan and arginine residues, namely [W5G]-(triazole)-[KR5] and FAM-[W5E]-(β-Ala)-[KR5],
significantly enhanced the cellular delivery of cell-impermeable F´-GpYEEI in SK-OV-3.
The confocal microscopy exhibited that the peptides were localized in the nucleus and
cytosol [219]. Recently, we designed a tricyclic peptide [WR]4-[WR]4-WR]4 containing
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alternate tryptophan and arginine in each ring that improved the cellular uptake of F’-
GpYEEI and fluorescently labeled anti-HIV drugs, lamivudine (3TC), emtricitabine (FTC),
and siRNA in the breast cancer cell line MDA-MB-231 [221]. A combination of tryptophan
and arginine residues in the design provided a diverse class of cyclic CPPs with differential
cellular delivery properties. These data revealed the potential of monocyclic, bicyclic,
and tricyclic CPPs as molecular transporters and provided insights into the design of the
next generation of peptides as drug delivery tools.

β

 

Figure 8. Monocyclic, bicyclilc, and tricyclic cell-penetrating peptides containing arginine and tryptophan residues as

molecular transporters.

7.2. Short Peptides in Gene Delivery

A variety of oligopeptides have been proposed to overcome the extracellular and
intracellular barriers in gene delivery. Peptide sequences can be incorporated in a complex
gene delivery system (GDS) or used alone as a single carrier. Short peptides can be
combined as constructs such as peptide dendrimers and potentially provide more than one
feature in a single system. Peptides used in gene delivery can be categorized as (1) targeting
peptides, (2) cell penetrating peptides, (3) endosome disruptive peptides, and (4) nuclear
localization peptides.

7.2.1. Targeting Peptides in GDSs

Small peptide sequences have extensive applications as targeting moieties on the
surface of GDSs. Conventional IgG antibodies (~150 kDa) are difficult and expensive
to produce and introduce a high chance of immunogenicity. In contrast, small targeting
moieties such as short peptides provide lower chance of immunogenicity due to lack
of Fc region, increased ligand multivalency, and easy production by peptide synthesis
methods [222–224]. Techniques such as phage display provides a means for identifying
specific peptide sequences able to target selective tissues or cells [225,226]. A variety
of peptides can be used either to target cell surface markers or subcellular elements
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in vivo. One of the most investigated target receptors on the cells, especially for can-
cer gene therapy are integrins, which are a class of cell adhesion molecules consisting
of an α and a β subunit. Targeting moieties against αvβ3 integrin, highly expressed on
activated endothelial cells, contain a conserved arginine-glycine-aspartic acid (RGD) mo-
tif [227–231]. To achieve enhanced biological and pharmacokinetic properties, researchers
have designed different RGD-containing peptide analogs and clustered RGDs [232,233].
Targeting ligands against other cell surface markers such as growth factor receptors (GFRs),
transferrin receptors (TFRs), low density lipoprotein receptors (LRPs), acetylcholine re-
ceptors (AchRs), leptin receptors (LRs), and insulin receptors have been also investigated
in targeted GDSs [234]. An important design factor in decorating GDSs with targeting
peptides is accessibility of targeting moiety to interact with the target molecules effectively.
Hindrance of the short peptide inside the GDS with loose interactions such as electro-
static interactions could lead to reduced targeting efficiency [235]. Other than cell surface,
oligopeptides can be used to target the subcellular compartments such as endoplasmic
reticulum, mitochondria, or Golgi apparatus. General nanoparticle targeting approaches
to intercellular pathway/compartments can be found elsewhere [236–239].

7.2.2. Cell Penetrating Peptides in GDSs

Cell penetrating peptides (CPPs) are capable of translocating cargo therapeutics across
the plasma membrane [240]. Physicochemical nature of CPPs can be cationic, amphi-
pathic, or hydrophobic. Cationic CPPs are generally composed of short sequences of
arginine or lysine. Some well-known examples are truncated Tat peptide (GRKKRRQR-
RRPPQ) [241], penetratin (RQIKIWFQNRRMK-WKK) [242], transportan 10 (AGYLLGKIN-
LKALAALAKKIL) [243], and KALA (WEAK-LAKALAKALAKHLAKALAKALKACEA) [244].
Tat is a peptide fragment from residues 48 to 60 of the original transcription activating
factor of human immunodeficiency virus (HIV-1) [241] and penetratin is obtained from a
Drosophila homeodomain protein [242]. Tat-modified GDSs have shown enhanced cargo
transport across several biological membranes such as cellular, endosomal, and nuclear
membranes [245–248]. For peptides such as penetratin, the non-electrostatic interaction to
the non-polar parts of plasma membrane is also of great importance [249–251]. The number
of cationic residues, spacing between them, and inclusion of non-peptide elements such
as hydrophobic lipid moieties were discussed as important factors in designing optimal
synthetic CPPs [252–256].

7.2.3. Endosome-Disruptive Peptides in GDSs

Endosome-disruptive peptides destabilize the endosomal membrane leading to cargo
release into the cytosol. Some provide membrane fusogenic features either pH-dependent
or pH-independent. Sequences derived from the N-terminus of the influenza virus hemag-
glutinin HA-2 are hemolytic at pH 4, but not at pH 7 [257,258]. Protonation of the pep-
tide acidic residues under acidic condition of endosomes would induce conformational
changes leading to membrane binding and destabilization [258,259]. On the other hand,
the hemolytic activity of melittin sequence is not pH-dependent [260,261]. MT20, a short
peptide consisting of the first 20 residues of melittin, was designed to increase hemolytic
activity at acidic pH and lower it at neutral pH [262]. Histidine-rich peptides are con-
sidered as another effective endosomolytic elements in GDSs. The imidazole ring in
Histidine structure acts as a weak base that can be protonated at pH 6 of endosomal com-
partment [263,264]. The pH-dependent protonation of histidine and histidine-containing
peptides result in pH-buffering as well as fusogenic capabilities linked with membrane dis-
ruptive effects [265–268]. Branched histidine-rich sequences have provided high gene and
siRNA transfection efficiencies [269,270]. Additional improvements were also observed
in cases in which polymeric gene carriers were modified with imidazole- or histidine-rich
sequences [265,271–273]. Amphipathic sequences such as the peptide, which consists of a
tandem repeat of glutamic acid–alanine–leucine–alanine (GALA), was also employed in
GDSs to provide pH-sensitive fusogenic feature in acidic pH [274,275].
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7.2.4. Nuclear Localization Peptides in GDSs

Nuclear localization signals (NLSs) are reported to transfer cargos such as nucleic
acids through the nuclear pore complex (NPC) of non-dividing or slowly dividing cells.
They are believed to act as adaptors between the cargo and the importin-dependent
nuclear transfer machinery. Short NLSs such as monopartite SV40 large T antigen with the
sequence of PKKKRKV [274], or bipartite nucleoplasmin with the sequence KRPAATKK-
AGQAKKKK [276], have been reported to provide enhanced DNA transfection efficiency [277].
Peptides derived from H1 histones, protamines, ribonucleoprotein A1, and high motility
group (HMG) proteins could also direct DNA to the nucleus [278,279]. NLSs have been
extensively used to modify GDSs for improved transfection capability [280,281]. Due to
the cationic nature of most of these peptides, some believe that the enhanced gene delivery
efficiency observed with them, may be related to factors other than effective nuclear
recognition [282], including better polyplex morphology and DNA binding strength.

7.3. Taking Peptide Aptamers to a New Level

Aptamers are molecules whose structures have been conformed to adapt to a target
ligand in such a way as to optimise binding interactions between the aptamer and that
ligand. Aptus in Latin means attached, adjusted. They can be constructed from a range of
diverse chemical species and while nucleic acids are some of the first templates to have
been employed for this approach, peptide aptamers are attracting increasing attention be-
cause of their biocompatibility, wide variety of physical characteristics, ability to introduce
modifications using standard chemical techniques, and ease of large-scale manufacture.
In this review, the different methods employed for designing peptide aptamers are dis-
cussed, together with new methodologies that can extend yet further their huge potential.
Peptide aptamers can be broadly defined as peptides that have been adapted to interact
with a specific target, usually employing a methodology that is able to select out high
binders from a combinatorial library. Like nucleotide aptamers, the methods used to date to
generate peptide aptamers have relied on genetic amplification mechanisms. The archetype
of this approach is phage display [283]. Starting with a library of randomly generated
amino acid sequences spliced into large scaffold proteins, in this case coat proteins of a
bacteriophage, those phages that bind to a target can be separated from non-binders and
those grown up in host cells to harvest those sequences with the strongest interaction.
The power of the technique is that every individual sequence has, physically associated
with it, the nucleic acid strand that codes for it, so that separating out the binding peptide
separates out the coding nucleic acid at the same time. The same principle applies to all
other methodologies employed so far.

Instead of being expressed on the phage surface, the library can be expressed on
the surface of the bacteria growing the phage [284], or can be simplified to a cell-free
presentation system where modifications made to the coding RNA (removal of the stop
codon) result in a ribosomal complex in which mRNA, ribosome, and nascent protein
remain physically attached to each other [285]. Extensions of this approach give rise to
more stable protein-RNA conjugates in which the ribosome departs the complex after
chemical ligation transfers the RNA directly to the protein [286].

At the same time, the technique has also progressed in the other direction, so that the
aptamer target binding interaction actually takes place inside the cell that generates the
aptamer [287], allowing for a more diverse set of read-outs than simply binding interactions.

Many different scaffold proteins are employed, chosen for their stability and their
ability to accommodate stretches of foreign sequences while still folding into a single,
unequivocal tertiary configuration. Certain scaffolds are more appropriate for hosting
binding epitopes in the form of clefts (e.g., “affibodies” [287]), while others present se-
quences in loops (e.g., “knottins” [288] or “atrimers” [289], which can be modified subse-
quently by chemical means to increase their rigidity still further [290]. Aptamers have been
created to an enormous range of targets and a number are now on the market, either as
therapeutics [291] or diagnostic agents [292]. Their appearance is bound to increase rapidly,
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as they are highly biocompatible, can avoid being targets of the immune system, and can
be manufactured by standard means.

As drugs go, however, they are still quite large, in order for the scaffold to fulfil the
requirement for ease and reproducibility of folding. The composition of the structures
obtained is of necessity confined to amino acids, (although a limited range of non-natural
amino acids can be incorporated), and the initial discovery process, particularly for the
cell-free systems, requires prior knowledge of the target structure to which the aptamer
must bind.

Recently, however, a combinatorial amino acid structuring technology has been de-
scribed that overcomes these limitations and that can take development of peptide aptamers
to the next stage. In this technique (termed Mozaic), combinatorial libraries are produced
by presenting mixtures of amino acids in a close-packed 2D mosaic array on the surface of
nanoparticles [293]. The nanoparticles are actually micelles and the amino acids are the
head-groups of the amphiphiles used to form the micelles, which form spontaneously when
the amphiphiles are dispersed in aqueous media. Starting with a pool of the 20 amino acids
(supplemented if desired by sugars, steroids, heterocyclics, and other non-natural amino
acid residues) a suspension of micelles can be prepared that contains a predetermined
selection from the starting pool, all mixed together in all possible random configurations
on the surface of those micelles. A whole library of micelles can be prepared in this way,
each with a slightly different combination of amino acid monomers.

Each member of the library can then be tested in a bioassay to determine which combi-
nation of amino acids is most effective at eliciting a certain desired behaviour. The micelles
are non-toxic and biocompatible, so are amenable to use in assays involving cell culture.
Because large amounts of the building blocks are readily synthesisable, micelles can be
produced in large enough quantities that they can bring about changes in the behaviour
of cells, rather than simply binding to them. Such changes can include cell differentia-
tion, cytokine secretion, or induction of apoptosis. The process is iterative, so that after
one amphiphile combination has been identified as positive, modifications can be made
(e.g., reducing the number of components, or substituting them for others) to improve the
response still further.

Because the read-out is a change in cell behaviour, results can be obtained even in the
absence of knowledge as to what receptor needs to be targeted to achieve a desired effect
and indeed, the technique can be employed to discover new, hitherto unknown receptors
on cells whose stimulation can bring about the behaviour sought.

Under certain circumstances it is possible to test the activity of the micelles in in vivo
models for disease. Normally, however, because of the labile nature of micelles, it is not
possible to employ them directly as therapeutic agents, and their conversion to more
stable peptide aptamers, particularly planar ring structures mimicking the planar surface
of the micelle, gives rise to molecules that can change cell behaviour at very low con-
centrations [294]. Some of the most successful are cyclic peptides as small as 10 amino
acids (Figure 9), stabilised by cross-ring hydrogen bonds. Their potential in vivo has been
demonstrated in experimental models for rheumatoid arthritis [294].

7.4. Peptide-Based Vaccines

Short peptides play crucial roles in the immune system and are responsible for the
transmission of most of the immunological information [295]. The immune system does
not recognize an antigen per se, instead recognizing the B-cell, CD4+ (T-helper), and CD8+
(cytotoxic T lymphocyte, CTL) epitopes. B-cell epitopes (5–20 amino acids in length) are
conformational (e.g., helical) and, as the antibody binding site, they are critical in the
generation of humoral, antibody-based, immune responses. CD8+ epitopes (9–11 amino
acids) are non-conformational and are recognized by MHC-I cell receptors. They trigger
cellular immune responses and activate CTLs. CD4+ epitopes (typically 12–16 amino acids)
are recognized by MHC-II receptors in antigen presenting cells (APCs) and are responsible
for “help”; they further activate both humoral and cellular immune responses.
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Figure 9. Presentation systems in peptide aptamer development.

Given this understanding, the most minimalistic vaccines can bear just those epitopes
and still induce the desired immune responses. These vaccines, named peptide-based
vaccines, have several advantages over classical vaccines (which are based on whole
pathogens or their large fragments): (a) They induce precisely engineered epitope-specific
immune responses; (b) they do not cause allergic, autoimmune, or excessive inflammatory
responses; (c) they provide direct immune responses to non-immune dominant fragments
of antigens; (d) they can be produced through chemical methods with high purity and
reproducibility and can be precisely characterized in the same manner as small molecule-
based drugs; (e) biological contamination is avoided due to chemical synthesis; and (f) they
are more stable than whole pathogens or proteins and usually do not require “cold chain”
storage or transport conditions [296,297].

However, peptides alone are poor immunogens and require immune stimulants (adju-
vants) [298]. Many approaches have been investigated to stimulate and deliver peptide-
based vaccines without the need for classical adjuvants (e.g., Alum) [299]. These delivery
systems/adjuvants have been designed to: (a) Improve peptide delivery to APCs; (b) pro-
tect peptides against enzymatic degradation; (c) maintain the desired conformation (crucial
for antibody-based immune responses); (d) create a depot effect at the injection site and
control the release of antigen (mimicking natural local infection); (e) deliver vaccines to
specific tissues (e.g., lymph nodes, spleen); (f) allow cross-presentation (mimicking viral
infection); and/or (g) carry multiple epitopes covering different pathogen serotypes, stages
in the pathogen life cycle, or even epitopes derived from different pathogens [300–302].

Interestingly, short peptides can also serve as adjuvants and delivery systems. For ex-
ample, upon conjugation with a peptide antigen, Q11 peptide (QQKFQFQFEQQ) self-
assembled into β-sheet fibrils. This strategy has been used to deliver vaccine candi-
dates against malaria [303], tuberculosis [304], and group A streptococcus (GAS) [305].
Polyleucine (L15), when conjugated to B-cell epitope, self-assembled into nanoparticles.
These particles induced the production of high antibody titers and protected model ani-
mals against GAS [306] and hookworm [307] infections. Polyglutamic and aspartic acids
(E10 and D10) formed self-adjuvanting polyelectrolyte-based complexes when mixed
with peptide antigen and trimethyl chitosan (TMC), while a simple mixture of antigen
with TMC did not induce strong immune responses [308–310]. Cell-penetrating peptides
have been used for the delivery of a variety of vaccines, mostly targeting cellular im-
mune responses [311]. For example, muramyl dipeptide (N-acetylmuramic acid modified
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L-alanine-D-isoglutamine) was approved as an adjuvant for a Leishmania animal vac-
cine [312]. Peptide-based vaccine approaches are relatively new and no peptide-based
vaccines are available on the market. However, a huge number of peptide-based vaccines—
targeting practically all possible infectious diseases, including acquired immune deficiency
syndrome (AIDS), malaria, and coronavirus disease 2019 (COVID-19)—are under develop-
ment. Covaxx anti-COVID-19 peptide vaccine entered clinical trials and its UB-612 vaccine
will be tested in phase II/III clinical trials in Brazil [313]. The number of peptide-based
vaccines in clinical trials has grown significantly over the last decade; several of these,
particularly those against cancers, have reached phase III [314,315].

7.5. The Role of Short Peptides in Neurodegenerative Therapy

Short peptides are a vital and promising tool in the study of neurodegenerative
disorders (Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral scle-
rosis, prion diseases). They can be used in either diagnosis or further treatment. As an
example, short peptide-based inhibitors of amyloid β aggregation in Alzheimer’s dis-
ease with reduced cytotoxicity are good drug candidates [32,33]. Notably, very short
peptides, like diphenylalanine and related compounds such as tert-butoxycarbonyl deriva-
tive (Table 2 [126]), are the core recognition motifs of β-amyloid polypeptides [98,126].
Fibrillar dynamic self-assembly behaviour of short peptides, leading to amyloid-like supramolec-
ular structures, is a key insight into the nucleation, oligomerization, and the physical
properties of amyloid fibrils [126].

Table 2. Short peptides forming amyloid-like fibrils.

Name of Peptide No. of Amino Acids

diphenylalanine 2
α,β-dehydrophenylalanine 2

Fmoc-diphenylalanine-konjac glucomannan 2
Ac-EFFAAE-NH2(AIP-1/2) 6

FFKLVFF 7
P11 (QQEFQWQFRQQ) 11

Theses very short peptides as well as cell-penetrating peptides are of relevance to
the highly efficient drug delivery systems (to target cells and subcellular organelles) and
the prevention of amyloid β aggreagation [316]. Interesting and promising aspects of
delivery strategy are peptide-based gel matrices to drug encapsulation [126]. Peptide-based
therapeutic drugs induce the neuronal growth, modulate neurogenesis [317], and finally
improve spatial memory. Their diversity prompts personalized therapies [40,318].

7.6. Immune Modulation Using Altered Peptide Ligands in Autoimmune Diseases

Altered peptide ligands (APL) refer to immunogenic peptides where the T cell receptor
(TCR) contact sites have been manipulated, resulting in altered T cell responses. As such,
1–3 amino acid mutations have been designed for immune modulation in autoimmune
diseases (Figure 10) [319]. Primary biliary cholangitis is a disease characterized by inflam-
matory destruction of small bile ducts in the liver leading to cirrhosis. Autoantibodies and
T cells are associated with primary biliary cholangitis. The E2 region of pyruvate dehy-
drogenase complexes 159–167 (PDC-E2) binds to HLA-A2, and substitutions of alanine at
position 5 of PDC-E2 peptide 159–167 leads to antagonism, by reducing peptide specific
effector functions of the CD8+ T cells [320]. Likewise, in myasthenia gravis, an autoimmune
disease regulated by CD4+ T-cells, which recognize the peptide epitopes p195–212 and
p259–271 of the human acetylcholine receptor alpha-subunit, single amino acid mutations
are able to inhibit myasthenia gravis autoimmune responses in mice. APL of these peptides
up-regulate tumor necrosis factor-beta and down-regulate interferon (IFN)-gamma and
IL-2 by the native peptide specific CD4+ T cells [321].
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Figure 10. Major histocompatibility complex (MHC)-peptide-T cell receptor (TCR) trimolecular

complex denotes amino acids from peptide TCR contact sites, where mutations result in APLs.

In addition, type-1 diabetes is characterized as inflammatory destruction of beta-
islet cells within the pancreas by which autoantibodies, CD4+ T cells and CD8+ T cells,
have been identified amongst other immune cells. Auto antigens have been identi-
fied, which include glutamic acid decarboxylase 65, non-specific islet cell auto-antigens,
insulin, proinsulin, insulinoma antigen-2, imogen-38, protein-tyrosine phosphatase-2,
zinc transporter-8, chromogranin A, pancreatic duodenal homeobox factor 1, and islet
amyloid polypeptide [322]. The B chain of insulin epitope B9–23 is recognized by auto-
reactive CD4+ T cells, which secrete high pro-inflammatory IFN-gamma. Mutating two
TCR contact amino acids was able to induce secretion of anti-inflammatory IL-4, IL-5,
and IL-10 [323]. Based on this data, the APL of B9–23 entered into human clinical trials
in recent onset type-1 diabetic patients and although in phase 1 it was shown to increase
anti-inflammatory T helper-2 (Th2) cells over pro-inflammatory Th1 cells, in a phase 2
study, it did not improve beta-cell function [324]. Similarly, APL from imogen-38 peptide
epitope 55–70 was able to inhibit proliferation of CD4+ T cells and mannosylation was
more effective compared to non-mannosylated APL [325].

Multiple sclerosis is an inflammatory disease involving immune cell infiltration and
destruction of the myelin sheath. CD4+ T cells, CD8+ T cells, macrophages, auto-antibodies,
Th17 cells, and others are involved in the pathophysiology of multiple sclerosis [326–328].
Numerous auto-reactive CD4+ T cell epitopes have been identified against myelin basic
protein, proteolipid protein, and myelin oligodendrocyte glycoprotein, and APL of some
of the epitopes have been evaluated. In particular, myelin basic protein epitope 83–99 and
the shorter peptide 87–99 (MBP87–99) with one or two amino acid mutations are able to
stimulate Th2 CD4+ T cells and antagonize Th1 CD4+ T cells [76,329–331]. Mannosylation
of APL further enhances Th1 to Th2 diversion in mice and to human peripheral blood
mononuclear cells from multiple sclerosis patients [332,333]. An APL of the longer peptide,
MBP83–99, was tested in human clinical trials in patients with multiple sclerosis [320].
CD4+ T cells were stimulated which secreted high levels of IL-5 compared to high levels
of IFN-gamma prior to treatment. These results indicate that APL immune modulation
in patients with multiple sclerosis can stimulate Th2 responses, diverting reactivity away
from the potentially harmful Th1 type [334]. In other studies, peptides from human pa-
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pilloma virus containing part of the amino acid sequence (VHFFK) of MBP87–99 motif
(VHFFKNIVTPRTP) induced experimental autoimmune encephalitis in mice, however,
peptides from human papilloma virus type40 (VHFFR) and human papilloma virus type32
(VHFFH) prevented experimental autoimmune encephalitis [335]. Hence, microbial pep-
tides, differing from the core motif of the self-MBP antigen, MBP87–99, may function as
natural APL in the modulation of autoimmune disease.

Dysregulated immune cells, in particular CD4+ T cells, are amongst the cause and
consequence of autoimmune diseases. Altering the fate of the auto-reactive CD4+ T cells
by either switching off pathogenic cells, or altering their cytokine profile from pro- to
anti-inflammatory is one mechanism of managing disease progression. The APL concept,
which can influence T cell activation and polarization, has shown promise in animal models
and in some human clinical trials as novel treatment modalities for auto immune diseases
in the future.

7.7. Relevance of Short Peptides in Stem Cell Research

Stem cell therapies are part of regenerative medicine aimed at improving the quality of
life through the fight with so far untreatable diseases. Short peptides are perfect candidates
for the development of 2D and 3D stem cell-culture materials due to their excellent oppor-
tunities. First of all, peptides mimic the protein functions. They inter alia interact with
DNA acting as regulatory factors. Oligopeptides imitate the extracellular matrix (the most
important part of the stem cell niche), which influences the fate of the stem cell [336,337].
Short peptides play an important role in the transmission of bio-information, modulation of
transcription, or restoration of genetically conditioned alterations being developed with
age [317,338]. In other words, they have geroprotective properties. The self-assembling
peptides in conjunction with stem cells are enable to regenerate damaged tissues [339].
They have relevance to the attenuation of the pathology of neurodegenerative diseases,
heart failures, or arthritis [339]. Short peptides are involved in the regulation of prolif-
eration and differentiation of stem cells into individual cell-types [340]. Good examples
can be: Lys-Glu, Ala-Glu-Asp, Lys-Glu-Asp, Ala-Glu-Asp-Gly [317]. Modified peptides
(e.g., by mentioned earlier Fmoc moiety) enhance differentiation activity. Peptide-based
hydrogels are useful in controlling differentiation [341]. Very short peptides can penetrate
the epidermis sending signals to cells. Peptides related to stem cells show great potential
in the development of novel treatments, advance tissue regeneration, further rational
design of the extracellular matrix-materials (as stem cell culture substrates), and organ
engineering applications.

7.8. Short Peptide-Based Anti-Viral Agents against SARS-CoV-2

COVID-19 is an ongoing worldwide pandemic caused by SARS-CoV-2. So far, there are
no specific antiviral drugs available for the treatment of this disease. However, a large
number of small molecules displaying significant inhibitory activity against SARS-CoV-2
have been identified based on experimental and computational studies [342], among which
many are short peptides and peptide-like compounds.

Generally, the peptide-based SARS-CoV-2 inhibitors target two proteins, namely mem-
brane (M) and spike (S) proteins [343]. The former plays a crucial role in facilitating virus
entry by mediating its interaction with the host cell receptor ACE2 and the latter (also called
3CLpro) is mainly in charge of the cleavage of viral polyproteins. Due to the high sequence
similarity of different CoV 3CLpros, some known peptide-based HIV protease inhibitors
have been used in clinical trials as the treatment of COVID-19, representative examples
including lopinavir (1) and ritonavir (2) (Figure 11) [344]. Besides, some de nova de-
signed 3CLpro inhibitors have also been identified based on structure-based rational
design. For examples, Hilgenfeld and co-workers developed a series of α-ketoamide
derivatives (e.g., Figure 11(3,4)), which was proved to be potent inhibitor of the SARS-
CoV-2 3CLpro [345]; Liu, Jiang and co-workers discovered two peptidomimetic aldehydes
(Figure 11(5,6)), which showed excellent in vitro activity against SARS-CoV-2 3CLpro [346].
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These compounds showed good in vivo pharmacokinetic properties and safety, thus hold-
ing a great promise to evolve into anti-viral agent against SARS-CoV-2. In addition,
a variety of peptide-based leading structures have been identified through virtual screen-
ing approaches, which may also serve as the starting point for the development of new
therapeutics for COVID-19 [347,348].

α

Figure 11. Selected peptide-based anti-viral agents against SARS-CoV-2.

The protein-protein interaction of the S protein of SARS-COV-2 and the host cell recep-
tor ACE2 has also been viewed as an ideal target for the development of anti-viral agents
against SARS-CoV-2. Particularly, the cryo-EM and co-crystal structures of the receptor-
binding domain of SARS-CoV-2 with human ACE2 have been disclosed recently [349,350],
which paves the way to develop new entry inhibitors against SARS-COV-2. For example,
a 23-mer peptide sequence derived from human ACE2 was designed and synthesized
by Pentelute and co-workers, which can specifically bind to SARS-CoV-2-RBD with low
nanomolar affinity [351]. Besides, some potential ACE2-based peptide inhibitors have been
identified through computational approach and their efficacy needs to be further validated
in practice [352,353].

7.9. Antimicrobial Lactoferrin-Based Peptides as Anti-COVID-19

COVID-19 severity accrues due to its extremely high infection transmission rates [354].
Therefore, there is an urgent need for a novel, effective, and safe vaccine or drug to reduce
the viral transmission rate and thus suppress the infection.

Different types of vaccines against SARS-CoV-2 infection have been under prepara-
tion [355]. However, some challenges related to vaccine administration safety have been
of great concern. First, live or attenuated vaccines may recover their virulence leading
to a high risk of disease recurrence to the vaccinee. Furthermore, transient immunosup-
pression may be induced resulting in the vaccinees’ susceptibility towards infections [356].
Second, DNA vaccines may cause a mutation risk upon integration with the host genome.
Third, synthetic peptides are of low immunogenicity. Fourth, mRNA vaccines may need
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further quality and safety evaluation to enter the pharmaceutical market. Finally, yet most
importantly, it was reported that vaccines produced from full-length spike (S) protein
against SARS-CoV-2 might be involved in liver damage [355]. Some studies reported that
sequenced strains of SARS-CoV-2 evolved into two subtypes (L and S), which showed
great variation in geographical distribution, transmission ability, and disease severity.
It is, then, speculated that the production of an efficient, safe, fully clinically approved
SARS-CoV-2 vaccine may not take less than many years. Besides, the probability of the
vaccines endorsement by the relevant authorities is considered low [355]. Many studies re-
ported that Antimicrobial Peptides (AMPs), short sequence peptides polymer ranging from
10–100 amino acids, positively charged, amphiphilic, might be considered as a promising
solution to combat harmful microorganisms [357]. Lactoferrin (LF), as one of the AMPs,
is an iron-binding glycoprotein located at the mucosal layers of the human body. LF is
considered as the first line of defense against microbial infection, which may have the
potential to boost the innate immune response against COVID-19 [358]. Furthermore, LF is
a natural, safe, and effective antiviral drug, which is naturally produced, in human and
bovine milk, beside its anti-inflammatory and antitumoral properties. LF prevents the
viral infection by blocking the host cell receptors or binding to the virus particles [358].
Moreover, some studies showed that the usage of LF as an adjuvant to vaccines might
enhance their antiviral activity, beside being considered as a safe alternative to other used
adjuvants [358]. Therefore, it may be recommended to use the LF as an immunity booster
against SARS-CoV-2, rather than counting on the insufficiently tested vaccines, in order
to spare the required time for full testing and clinical approval of the required vaccine.
Finally, it may also be recommended to use LF in conjugation with the produced vaccine to
enhance its anti-COVID-19 activity.

7.10. Peptides from Digestion of Proteins

Food proteins are long-chain polymers of amino acids, encrypted into which are
peptides with potential health benefits, which may be used for the treatment and manage-
ment of chronic and severe degenerative diseases such as hypertension, diabetes, obesity,
cancer, and metabolic disorders [359]. Bioactive peptides (BAP) from food proteins have
the amino acid structure and sequences similar to those that convey various signaling
mechanisms or hormones in our body. They are small molecular weight peptides usually
around 5 kDa. They have high tissue affinity, specificity, and efficiency to interact with
receptors, enzymes, and other biomolecules in the body to confer health promoting ef-
fects [360,361]. Some of these BAPs may be released in the gut when proteins are degraded
by the digestive enzymes such as pepsin, trypsin, chymotrypsin, and peptidases. However,
controlled enzymatic digestion of food proteins in vitro would release some of these BAPs,
which can be isolated and purified for therapeutic use.

The enzymatic production of bioactive peptides in vitro is greatly influenced by
factors such as the pH, degree of hydrolysis (DH), enzymes used, enzyme/substrate
ratio, temperature, hydrolysis time, and solvents used. It is well known that an abundance
of hydrophobic amino acids, such as Gly, Val, Ile, and Ala, in the peptide sequences
compared to the presence of other polar and charged amino acids, will contribute to the
high bioactivity observed [361].

Bioactive peptides are naturally formed by the exogenous protease enzymes produced
by microorganisms during fermentation. Some of the BAPs also have high antioxidant ac-
tivities. Therefore, cultured milk products, fermented fruits and vegetables, and fermented
meat and fish products are considered beneficial adjuncts in human diets.

7.11. Nutraceuticals

At present people ingest foods not just to cover their nutritional necessities; they also
request healthy, natural, and convenient foods with biological activity. Interestingly,
some plant proteins encrypt diverse peptides with beneficial effects on health. The most
studied effects include anti-hypertensive, -cholesterolemic, -oxidant, -inflammatory, -cancer,
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-microbial, and immunomodulatory properties. Nowadays, different scientific areas
have focused their research on the functional properties of foods and food products.
Bioactive substances are known as components of foods that modulate metabolic pro-
cesses, provide health benefits, and positive impact on the function of the body. A healthy
diet is a key factor to prevent some diseases [362,363]. The intake of proteins is essential for
maintaining a good health and it also provides bioactive peptides. Specific amino acids se-
quences encrypted in proteins in several foods have health effects, playing roles as fragment
of the whole protein (epitopes responsible for interactions between proteins and antibodies)
or being efficient after the release by proteolytic enzymes. Peptides with two or three
amino acids pass easily through the gastrointestinal tract to the blood. Proteins are a source
of bioactive di- and tri-peptides, among others, with certain biological activity [363–365].
Bioactive peptides have been known for several years and identified in plant and animal
sources and their interest has increased in the last decades. They comprise positive health
effects, i.e., on blood pressure and lipid metabolism, as well as analgesic, anti-thrombosis,
anti-atherosclerotic and opioid agents. Some peptides have more than one activity. They are
also useful to improve absorption of minerals [366–368]. Bioactive peptides are usually a
product of the hydrolysis by gastrointestinal digestive enzymes (pepsin, trypsin, and chy-
motrypsin), or by in vitro producers with specific enzymes, temperature, or pH. They may
contain hydrophobic amino acids in their sequences, a positive charge, and the resistance
to digestion by proteases and peptidases and a proline C terminal. Small peptides with
a dipeptide of proline-proline at their C terminal are more resistant to degradation by
proteases and peptidases of the stomach, pancreas, or intestine. Large peptides may be
active outside the intestinal epithelium. Recent studies of crop proteomic data revealed
that at least 6000 proteins may harbour bioactive peptides [368,369].

7.12. Marine Peptides

Marine bioactive peptides of diverse bioactivities, encompassing anti-inflammatory,
anticancer, and antioxidant activities, have been discovered from non-edible marine organ-
isms and seafood processing by-products [370]. An interesting example is a hydrostatin-
SN1 (DEQHLETELHTHLTSVLTANGFQ), an anti-inflammatory peptide identified from
the venom gland of sea snake Hydrophis cyanocinctus [371], see Figure 12. In vivo
anti-inflammatory effects of the peptide have been demonstrated in murine models of
lipopolysaccharide (LPS)-induced acute lung injury [372] and in dextran sulfate sodium-
induced acute colitis [371]. Hydrostatin-SN1 suppressed LPS-induction of pro-inflammatory
cytokines, namely, tumor necrosis factor alpha (TNF-α), interleukin-6, and interleukin-1β,
in mice. In vivo evidence and study on LPS-treated RAW 264.7 cells indicated the pos-
sibility of hydrostatin-SN1 exerting its effect by interfering with the extracellular-signal
related kinase 1/2 and nuclear factor-κB (NF-κB) pathways [372]. In the murine coli-
tis model, hydrostatin-SN1 exhibited its anti-inflammatory effect by binding to tumor
necrosis factor receptor 1 (TNFR1), hence disrupting the interaction between TNFR1 and
TNF-α. This, in turn, inhibited TNF-α-mediated activation of the NF-κB and mitogen-
activated protein kinase proinflammatory pathways [371]. Hydrostatin-SN1 was pro-
posed to be a promising candidate for the development of treatments for acute lung
injury [164] and inflammatory bowel diseases [371]. Bioactive peptides were also reported
from the giant barrel sponge, Xestospongia testudinaria [373] and rough leather coral,
Sarcophyton glaucum [374] KENPVLSLVNGMF derived from X. testudinaria was dose-
dependently cytotoxic to the human cervical cancer cell line (HeLa), being 3.8-fold stronger
than anticancer drug 5-fluorouracil. By contrast, the peptide showed only a marginal 5%
cytotoxicity to Hek293, a non-cancerous, human embryonic kidney cell line [374]. Likewise,
AGAPGG, AERQ, and RDTQ identified from S. glaucum were more cytotoxic to HeLa cells
than 5-fluorouracil, besides low toxicity to Hek293 cells [374]. Together, the aforementioned
findings point to the potential of the four peptides as candidates for future development
of anticancer drugs. Antioxidant peptides have been isolated from the by-products of the
fish, mollusk, and crustacean processing, e.g., fish scales, fish skin, squid skin, and abalone
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viscera [375]. The ability of such peptides to dampen lipid oxidation and preserve seafood
quality during processing and storage points to their potential application as preserva-
tives [375]. Such peptides are also promising candidates in the development of therapeutics,
adjunct therapeutics, or nutraceuticals against oxidative stress-related diseases or condi-
tions [376]. Overall, marine peptides, whether derived from non-edible marine organisms
or seafood processing by-products, may have potential applications in the discovery of
peptide-based therapeutic agents and formulation of nutraceuticals.

α α κ

 

Figure 12. Anti-inflammatory (DEQHLETELHTHLTSVLTANGFQ) and cytotoxic (KENPVLSLVNGMF, AGAPGG, AERQ,

and RDTQ) peptides derived from non-edible marine organisms.

7.13. Peptide-Based Cosmeceuticals

Biologically active short peptides are important cosmeceuticals, i.e., agents linking
cosmetics and drugs. They deliver bio-activity in support of aesthetic effects [377,378].
The term “cosmeceutical” was coined in 1984 by Albert Kligman [379]. Peptide-based
cosmeceuticals acting against both intrinsic and extrinsic aging and improving the health
and appearance of skin are becoming increasingly popular. Bioactive peptides have either
pharmaceutical or cosmetic value and open a new avenue in the field of gerocosme-
tology [380,381]. They are used for collagen stimulation, wound healing, “botox-like”
wrinkle smoothing, as well as antioxidative, antimicrobial, and whitening effects [378].
Topical peptides are classified as carriers [copper tripeptide-1 (Cu-GHK), manganese
tripeptide-1 (Mn-GHK), signal peptides [palmitoyl hexapeptide-12 (biopeptideELTM,
palmitoyl pentapetide-4 (matrixyl), palmitoyl tripeptide-1 (biopeptide CLTM), palmitoyl tripeptide-
5 (syn-coll), elaidyl-Lys-Phe-Lys-OH (lipospondin), hexapeptide-11 or pentamide-6, tripeptide-
10 citrulline (decorinyl) and neurotransmiter inhibitors [acetyl hexapeptide-3 (argireline),
pentapeptide-3 (vialox), pentapeptide-18 (leuphasyl), tripeptide-3 (syn-ake), acetyl octapeptide-
1/-3 (sNAP-8) peptides [382]. Moreover, several natural peptides, such as carnosine, keratin,
soybean, silk fibroin, and black rice peptides cannot be neglected [383]. These natural
peptides as cosmeceutical ingredients fit perfectly into the rules of sustainability due to
their high biodegadibility, low toxicity, moderate manufacturing costs, and convenient
scale-up production ability [382]. More specifically, the United Nation defined 17 Sustain-
able Development Goals for the better future of the world, in relation to either people or
the environment. In general, the main idea could be defined as “one global goal: good life
for all”. One of these 17 aims is “good health and well-being” [384]. The forecast for the
global cosmeceutical market predicts an increase by ~10% in the next years. Its significant
share will be related to peptide-based products.
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8. Conclusions and Future Outlook

Short peptides exhibit a remarkable array of biological functions, which may be used
by innovative therapies in almost all branches of medicine. They are synthesized and
investigated by research groups spread all over the world. The number of publications
and patents in the subject has been growing enormously over the last years. This global
review reflects this situation. It is written by scientists from all continents of the world
who tried to unveil “fifty shades” of short peptides with the emphasis on biomedical,
diagnostic, pharmaceutical, and cosmeceutical applications. In particular, peptides can
play either a leading role as drugs or a supporting role in diagnosis, treatment, cell penetra-
tion, or targeting, and many more. Peptide-based vaccines are an expected breakthrough
in cancer, microbial, or allergen immunotherapies. Natural and synthetic short peptides,
including peptidomimetics, find numerous applications in nanotechnology and are thor-
oughly investigated by structural bio-informatics and supramolecular chemistry. Moreover,
the development of comprehensive in silico techniques combined with efficient advanced
synthetic methods facilitates the production of peptide based chemical species of almost
unlimited applicabilities.

To sum up, short peptides can be a secret of idealized smart therapies.
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Abbreviations

A Acidic

ACE(I) angiotensin-converting enzyme (inhibitors)

AchRs acetylcholine receptors

AIDS acquired immune deficiency syndrome

Alloc allyloxycarbonyl

AMPs antimicrobial peptides

APCs antigen presenting cells

APL altered peptide ligands

ARB angiotensin receptor blockers

B basic

BAP bioactive peptides

BOC butoxycarbonyl

Bzl benzyl

CG coarse grain

COVID-19 coronavirus disease 2019

CPPs cell penetrating peptides

CSD Cambridge Structure Database

CTL cytotoxic T lymphocyte

2D two-dimensional

3D three-dimensional

DH degree of hydrolysis

DKP diketopiperazines

DNA deoxyribonucleic acid

EDTA ethylenediaminetetraacetic acid

FAS fatty acid synthase

FDA Food and Drug Administration

FMOC fluorenylmethoxycarbonyl

GALA glutamic acid–alanine–leucine–alanine

GAS group A streptococcus

GDS gene delivery system

GFR growth factor receptors

HeLa human cervical cancer cell line

HIV human immunodeficiency virus

HMG high motility group

HMGR 3-hydroxy-3-methylglutaryl CoA reductase

HOAt 1-hydroxy-7-aza-benzotriazole

HOBt 1-hydroxy-benzotriazole

HPLC high performance liquid chromatography

IFN interferon

IUPAC International Union of Pure and Applied Chemistry

LDL low-density lipoprotein

LDLR LDL receptor

LF lactoferrin

LPS lipopolysaccharide

LRPs low density lipoprotein receptors

LRs leptin receptors

MBP myelin basic protein

MD molecular dynamics

MHC major histocompatibility complex

NF nuclear factor

NLSs nuclear localization signals

NPC nuclear pore complex

PDC pyruvate dehydrogenase complexes

PEG polyethylene glycol

PES potential energy surface

PPI proton-pump inhibitors
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RAS renin-angiotensin system

RCSB PDB Research Collaboratory for Structural Bioinformatics Protein Data Bank

RGD arginine–glycine–aspartic acid

RNA ribonucleic acid

SARS-COV-2 Severe Acute Respiratory Syndrome Coronavirus

SPPS solid-phase synthesis

SREBP2 sterol regulatory element-binding protein 2

SWOT strengths, weaknesses, opportunities, and threats

tBu tert-butyl

TFA trifluoroacetic acid

TFRs transferrin receptors

TMC trimethyl chitosan

TNF tumor necrosis factor alpha

TNFR tumor necrosis factor receptor 1
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