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Abstract

Alpha matting refers to the problem of softly extracting

the foreground from an image. Given a trimap (specify-

ing known foreground/background and unknown pixels), a

straightforward way to compute the alpha value is to sam-

ple some known foreground and background colors for each

unknown pixel. Existing sampling-based matting methods

often collect samples near the unknown pixels only. They

fail if good samples cannot be found nearby.

In this paper, we propose a global sampling method that

uses all samples available in the image. Our global sam-

ple set avoids missing good samples. A simple but ef-

fective cost function is defined to tackle the ambiguity in

the sample selection process. To handle the computational

complexity introduced by the large number of samples, we

pose the sampling task as a correspondence problem. The

correspondence search is efficiently achieved by generaliz-

ing a randomized algorithm previously designed for patch

matching[3]. A variety of experiments show that our global

sampling method produces both visually and quantitatively

high-quality matting results.

1. Introduction

Alpha matting refers to the problem of softly and accu-

rately extracting the foreground from an image. Specifical-

ly, the input image I is modeled as a linear composite of a

foreground image F and a background image B:

I = F�+B(1− �), (1)

where �, called alpha matte, is the opacity of the fore-

ground. Alpha matting plays an important role in many im-

age/video editing tasks, like layer separation, background

replacement, and foreground toning. But the matting prob-

lem is highly ill-posed, because the number of unknowns

(F, B, and �) is much larger than the number of equation-

s. Therefore, a user-specified trimap which indicates the

known foreground/background and the unknown pixels is

often required.

Existing matting methods can be categorized as

propagation-based or sampling-based. Propagation-based

methods treat the problem as interpolating the unknown al-

pha values from the known regions. The interpolation can

be done by solving an affinity matrix [17, 8, 11, 16, 9], by

optimizing Markov Random Fields [18], or by computing

geodesic distance [2]. These methods mainly rely on the

image’s continuity to estimate the alpha matte, and do not

explicitly account for the foreground and background col-

ors. They have shown success in many cases, but may fail

when the foreground has long and thin structures or holes.

Their performance can be improved when combined with

sampling-based methods (e.g., [19, 12, 7]).

Sampling-based methods first estimate the foreground

and background colors and then compute the alpha matte.

Earlier methods like Ruzon and Tomasi’s work [15] and

Bayesian Matting [6], fit a parametric model to the col-

or distributions. But they are less valid when the image

does not satisfy the model. Recent sampling-based meth-

ods [19, 12, 7] are mostly non-parametric: they pick out

some color samples from the known regions to estimate the

unknown alpha values. These methods perform well in con-

dition that the true foreground and background colors are in

the sample set. However, the true foreground/background

colors are not always covered, because these methods only

collect samples near each unknown pixel, and the number

of samples is rather limited.

In order to avoid missing true samples, we propose a

global sampling approach that considers all available sam-

ples. Conventional wisdom may hold that a large number

of samples will increase both ambiguity and computational

complexity for selecting good samples. To handle the am-

biguity, we define a simple but effective cost function for

sample selection. This function simultaneously considers

the sample locations and how well the sample colors fit the

matting equation (1). Regarding the complexity, we formu-

late the sample selection task as a correspondence search

between the unknown pixels and an “FB search space” (de-

fined in Sec. 3.2). Then we generalize a fast randomized

algorithm [3] that was originally developed for patch match-

ing, to our task. Experiments show that our global sampling
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Figure 1. Sample sets and sampling results of non-parametric methods. (a) Input image and trimap. (b) Robust Matting [19]. (c) Improved

Color Matting [12]. (d) Shared Matting [7]. (e) Our method. Upper row: we label an unknown pixel in the hair and indicate its sample sets

(red: F; green: B). The foreground sample sets of our competitors (b-d) do not cover any hair-color, so do not include a true foreground

sample for the labeled unknown pixel. Lower row: resulting alpha mattes from sampling only (computed without any post-processing like

solving the matting Laplacian [11]).

method provides both visually and quantitatively good re-

sults and has a time complexity comparable to the previous

(local) sampling methods. Our generalized correspondence

algorithm also has the potential in other computer vision

areas.

2. Related Work

In the following, we review only non-parametric sam-

pling methods, because they are most related to our work.

Their basic assumption is that for any unknown pixel, the

(approximately) true foreground and background colors can

be sampled from the known regions. These methods differ

in the way they build the sample set and how they select

good samples from this set.

In an early system called Knockout [5], an unknown pix-

el’s foreground color is a weighted average of its nearby

foreground samples. The weight is determined by the s-

patial distance between the foreground sample and the un-

known pixel. The background is estimated similarly and

then refined. The sampling of Knockout depends only on

the spatial distance.

Robust Matting [19] is the first non-parametric sam-

pling method that takes into account the color fitness of

samples. For any unknown pixel, this method first col-

lects a set of spatially close (in Euclidean distance) fore-

ground/background samples, from which good samples are

selected in the next step. Good samples are defined as those

whose color fits the matting equation (1) well. This color-

based sample selection is more robust than the weighted av-

eraging in Knockout. But since this method collects only a

few nearby samples, it can fail when the true samples are

not in the sample set, as shown in Fig. 1(b).

Rhemann et al. [12] collected samples nearby in

geodesic distance, as opposed to the Euclidean distance

used in [19]. This can be helpful for more complex ob-

ject topologies. But similar to [19], the sample set is small

and often locally distributed, so the true samples can still be

missed (see Fig. 1(c)).

Shared Matting [7] collects samples by shooting rays in

different directions: the samples are the nearest foreground

and background pixels on every ray (see the dashed line in

Fig. 1(d)). Each unknown pixel collects very few samples,

but the samples are further shared among neighboring pix-

els. Thus, the actual sample set of an unknown pixel can be

roughly considered as the union set of its own and its neigh-

bors’ samples. Fig. 1(d) gives an example of such a union

set. Due to the ray-based sampling strategy, we find that

the samples can be far away (often background samples),

but mostly are nearby (often foreground samples). Thus the

true samples can still be missed (Fig. 1(d)).

3. A Randomized Global Sampling Method

All existing non-parametric sampling methods collect n-

earby (in a certain metric, e.g., Euclidean/geodesic distance,

or nearest on a ray) samples. Thus they only use a subset

of samples, and preclude a substantial portion of samples

from further consideration. We point out that the step of

building the sample set plays a role as a preliminary sample

selection. Even worse, only spatial distance but no color fit-

ness is taken into account in this preliminary stage. To avoid
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missing the true samples, we propose to use a global sample

set that contains all available samples. The spatial distance

and the color fitness are then considered simultaneously for

selecting the good samples from this set.

Global sample set. Our foreground (background) sample

set consists of all known foreground (background) pixels on

the unknown region’s boundary (Fig. 1(e)). We also tested

even larger sample sets comprising of all known pixels no

more than �-pixel (� > 1) away from this boundary, and to

the extreme of all known pixels in the image. We found that

using the pixels on the unknown region’s boundary (� = 1)

is sufficient to produce good results.

Denote the size of the foreground/background sample

set as �F and �B. For an 800×600 image, the typical

value of �F and �B is 103 ∼ 104. So there exist about

�F × �B = 106 ∼ 108 candidate foreground/background

pairs. Our goal is to select a good pair of samples for any

unknown pixel from all candidate pairs. We will address t-

wo challenging issues caused by this huge sample set: how

to define a “good” sample pair (Sec. 3.1) and how to handle

the computational complexity (Sec. 3.2).

3.1. Sample Selection Criteria

Our criteria for sample selection are based on both color

fitness and spatial distance. Like previous methods, we fa-

vor sample pairs that can well explain the unknown pixel’s

color as the sample colors’ linear combination (1). Formal-

ly, given a pair of samples (F�, B�) with the sample indexes

� and �, we first estimate the alpha value �̂ of an unknown

pixel I by:

�̂ =
(I−B

�)(F� −B
�)

∥F� −B�∥2
. (2)

Then we define a color cost function ℰ� to describe how

good a sample pair fits the matting equation (1):

ℰc(F
�,B�) = ∥I− (�̂F� + (1− �̂)B�)∥. (3)

Intuitively, (3) is the color distance (in RGB space) between

I and the color line spanned by F
� and B

� . A similar cost

function was first introduced in [19] and also used in [7, 12].

Due to the large size of the sample set, it is possible that

a false pair of samples occasionally well explains the un-

known pixel’s color. Therefore, we further define a spatial

cost function ℰ� that favors spatially close samples:

ℰ�(F
�) =

∥xF� − xI∥


�

, (4)

where xF� and xI are the spatial coordinates of the fore-

ground sample and the unknown pixel. The term 
� =
min� ∥xF� − xI∥ is the nearest distance of the unknown

pixel to the foreground boundary. The normalization fac-

tor 
� in eq. (4) ensures that ℰ� is independent from the

absolute distance. The spatial cost ℰ�(B
�) of a background

sample is defined similarly.

Our final sample selection cost function ℰ is a combina-

tion of the color cost and the spatial cost:

ℰ(F�,B�) = �ℰ�(F
�,B�) + ℰ�(F

�) + ℰ�(B
�), (5)

where � is a weight which trades off the color fitness and

spatial distance. We set � = 1 when ℰ� is computed using

colors scaled in [0, 255]. Intuitively, a small ℰ indicates that

the sample pair can well explain the unknown pixel’s color

and is spatially as close as possible. Unlike previous meth-

ods that preclude spatially distant samples from the sample

set, our method may pick them out if they have sufficiently

better color fitness than the nearer samples.

3.2. A Randomized Search Algorithm for Global
Sampling

Given the cost function, our next goal is to find a sample

pair for each unknown pixel, which has the smallest cost.

This is a challenging task because of the huge number of

sample pairs. A brute-force algorithm would check all sam-

ple pairs for each unknown pixel, so is O(��F�B) time in

the number of the unknown pixels � . In this subsection,

we reformulate this search as a correspondence problem,

and generalize the “PatchMatch” algorithm [3] to handle it.

In a patch-matching problem [3], the task is to find the

best matching patch in an image 
2 for each patch in the

other image 
1. It is an O(�1�2) time task, where �1 and

�2 are the sizes of 
1 and 
2. The PatchMatch algorithm

[3] gives a fast approximate solution in O(�1 log�2) time.

Inspired by this scenario, we introduce a 2-D �F × �B

“FB search space” which plays the role like 
2. All the un-

known pixels play as 
1. A “good match” is measured by a

small cost according to eq. (5). By analogy, we can expect

to obtain an O(� log(�F�B)) time approximation algorith-

m. We name this algorithm SampleMatch. In the next sub-

sections, we describe the algorithm and analyze its validity

in our global sampling problem.

3.2.1 The SampleMatch Algorithm

We sort all the foreground samples F by a certain criteri-

on, and denote them as an ordered set {F�∣� = 1, 2, ..., �F}.

The background set {B� ∣� = 1, 2, ..., �B} is sorted simi-

larly. Notice that every sample has both color and spatial

coordinates. We tested several kinds of sorting criteria, e.g.

color/intensity and/or spatial coordinates, and found that the

choice does not make a big difference. We have chosen to

sort by intensity in this paper. The two ordered sets span a 2-

D FB search space, in which each point represents a sample

pair (F�, B�), as illustrated in Fig. 2. For each unknown pix-

el, our target is to find a point in the FB search space which

has the (approximately) smallest cost. Having defined the
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Figure 2. FB search space. For each unknown pixel, our target

is to find a sample pair (F�, B�) with the (approximate) smallest

cost. We formulate it as a search problem in the 2-D FB space.

FB search space, our SampleMatch algorithm works analo-

gously to PatchMatch. The algorithm is described below.

The SampleMatch algorithm maintains a current optimal

(smallest cost) sample pair (F�, B�) for each unknown pix-

el I(�, �). We denote this current optimal sample pair by

Φ(�, �) = (F�,B�). We initialize Φ(�, �) by a random

point in the FB search space. Φ(�, �) is updated while the

algorithm runs, which we explain in the following.

After the initialization, the algorithm alternates between

two steps: propagation and random search. Denote these

two steps as � � and �� for each pixel I�. Then the algo-

rithm scans the image and runs in the order (� 1, �1, � 2,

�2,...,��, ��). This process is iterated.

Propagation. For the unknown pixel I(�, �) being scanned,

we update its Φ(�, �) by considering the current optimal

sample pairs Φ(�′, �′) of its neighboring pixels (�′, �′):

Φ(�, �) ← arg min
Φ(	′,�′)

ℰ(Φ(�′, �′)) (6)

where ℰ is defined in (5), (�′, �′) is in the first order neigh-

borhood of (�, �) (including (�, �)), and ’←’ is an assign-

ment operator.

Intuitively, eq. (6) updates Φ(�, �) by a new sample pair

Φ(�′, �′), if this pair gives a smaller cost. The propagation

exploits that neighboring pixels tend to have similar fore-

ground/background colors: if a pixel has found a good sam-

ple pair, this pair is also likely to be good for its neighboring

pixels.

Random Search. For the unknown pixel I(�, �) being s-

canned, we update its Φ(�, �) by a sequence of random tri-

als: {(F�� ,B��)∣� = 0, 1, 2...}. We generate this sequence

by:

(��, ��) = (�, �) + ���
R�, (7)

where R� is a uniform random number in [−1, 1]× [−1, 1],
�� is the ��ℎ exponential of a ratio � = 0.5, and � is the

size of the search space. The sequence goes in the order of

k=0, 1, 2... until the search window radius ��� is below 1.

In this step, Φ(�, �) is updated if the new pair (F�� ,B��)
has a smaller cost.

Intuitively, the random search step tests a sequence of

random points (��, ��) in a neighborhood (in the FB space)
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Figure 3. Left: a cost map in the search space (�F, �B ≈ 4000). It

is computed using an unknown pixel on the image in Fig. 2. Right:

we marked the points (black) in this cost map that have values in

[�min, �min + �). The tolerance � is set as 2 here. The rectangle is

a �-point neighborhood near �min, in which a portion �(=0.1) are

within the tolerance. See the text for details.
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Figure 4. The random search process. Left: cost maps for two

unknown pixels and their random search paths. Each line segmen-

t indicates one update of the current optimal Φ. On the right we

display the same path on the min-filtered cost maps for better visu-

alization. The rectangles denote the neighborhoods corresponding

to some � and � (for illustration only).

of the current optimal point (�, �). The neighborhood ra-

dius ��� decreases exponentially (in each iteration). Next,

we explain why the random search can find an approximate

global minimum.

3.2.2 Analysis of Random Search

Given any unknown pixel, a brute-force algorithm com-

putes the cost values in eq. (5) for all sample pairs. These

values generate an �F × �B cost map in the FB space (see

Fig.3 left). Notice that each unknown pixel has its own cost

map. As we will see, the random search step exploits the

“local coherence” of this map, so avoids checking all points

in this map.

By local coherence we mean that a point has many

neighboring points (in a certain range) that have similar val-
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ues with it. Formally, for a point with a value � in the cost

map, given a tolerance � and a fixed ratio �, we find a local

region centered at � on the cost map, within which at least

a portion � of the points have values in (� − �, � + �). We

denote � as the size of the local region that satisfies this

condition. A larger � means a better local coherence. See

Fig.3 for an example where � is the global minimum �min.

Note that locally coherent does not mean continuous (i.e.

1st-order neighbors have similar values). In fact, we found

that the cost map from the real image is often not contin-

uous (Fig.3 left) but still exhibits local coherence. This is

because the foreground (background) samples that are sim-

ilar in color are located nearby in the search space (due to

the sample sorting), and so the color costs are locally coher-

ent. Samples that have similar colors tend to have similar

spatial coordinates (though not necessarily), so the spatial

costs are also locally coherent. Hence, the entire cost map

is locally coherent. We observed similar coherence if we

would sort according to spatial proximity.

There is a good chance of finding a point inside the �-

point region near the global minimum. Denote the size of

the search space by � = �F × �B. Suppose the random

search uses the entire search space as search window. The

probability of generating at least one point inside the �-

point neighborhood is �/� for one random trial, and 1 −
(1−�/�)� for n trials. This probability is quite good: e.g.,

when �/� = 10−2, the odds is 0.95 after � = 300 trials.

Suppose the random search has fallen into the neighborhood

�. Then it can use a small search window to examine the

points inside �. It has a high probability of finding a point

having a value within the tolerance (i.e., in [�min, �min + �))
in some random trials. The probability depends on the ratio

�.

In practice, the local region � is unknown to the algo-

rithm, because the entire cost map is not explicitly com-

puted. So the random search adopts a gradually decreasing

search window and this process is iterated. When the search

window is large, it plays the role as determining the range of

the local region; when the search window is small, it plays

as searching inside the local region.

To see the effect of the random search, we omit the prop-

agation step and only run the random search iteratively for

a single unknown pixel (100 iterations in this experimen-

t). In Fig.4, we show the updating process of the random

search (visualized by a path in the cost map). For a better

visualization, we also display the same path on the cost map

processed by a min filter1 (but the algorithm is run in the o-

riginal cost map). We found that the search path is gradually

getting close to the global minimum.

The above experiment provides an intuitive view of how

the random search approaches the global minimum. Nex-

t, we discuss the halting criteria and study the quantitative

1Points in the cost map are replaced by the minimum in a local window.
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Figure 5. Performance of the SampleMatch algorithm approaching

the global minimum. Left: distribution (histogram) of the cost

ranks. The bin width is 0.001%. Right: cumulative distribution of

the cost ranks. Please see the text for details.

performance of how well it approximates the global mini-

mum.

3.2.3 Halting Criteria and Convergence

When running random search for a single pixel, the num-

ber of iterations required to approach the global minimum

is not very small. Fortunately, the propagation step gives

a better starting point for the random search step by first

checking the neighboring pixels. This is helpful to reduce

the iterations required.

Since we do not know the global minimum and the whole

cost map, we halt the algorithm after a fixed number of iter-

ations. We use 10 iterations, which we found to be sufficient

in our experiments. Thus, the complexity per unknown pix-

el is O(10 log(�F�B)), in terms of visited sample pairs. This

complexity number is about 200 for �F = �B = 103. For

comparison, this number is 400 for Robust Matting [19],

225 for Improved Color Matting [12], and 216 for Shared

Matting [7], as reported in these papers.

We now test how good the SampleMatch algorithm ap-

proximates the global minimum. We run our algorithm on

the benchmark images in [13] using the above halting crite-

ria. The algorithm selects a sample pair for each unknown

pixel. Then we compute the cost value � of this sample pair

via eq. (5). This value is the approximate optimum given

by the algorithm. Next we compute the entire cost map for

each unknown pixel (in a brute-force manner). We sort all

the cost values of this cost map in an ascending order, and

find the rank (given in percentile) of the cost value � in these

values. We randomly pick out 4,000 unknown pixels and

investigate their ranks. Fig.5 shows the distribution of the

ranks. We find that about 90% (3673/4000) of the pixels

have a cost value that is among the smallest 0.01% cost val-

ues in all candidate pairs (i.e. that ranks higher than 0.01%).

This shows that we can find a quite good approximation of

the global minimum.
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3.2.4 A Probabilistic View

Many papers [14, 18] argue that for a large sample set it is

important to represent the frequency or probability of the

samples. A less frequent sample in the set is less likely

to explain the unknown pixels. But existing methods us-

ing parametric probabilistic models like GMMs [6, 18] do

not produce satisfactory quality (see [1]), whereas the re-

cent non-parametric methods[19, 12, 7] do not consider the

probability or frequency of samples.

Unlike the previous non-parametric sampling approach-

es, our method implicitly takes probability into account. As

discussed in Sec. 3.2.2, our algorithm tends to find an ap-

proximate global minimum point when this point has suffi-

cient similar points in its neighborhood in the search space.

Since these points also have very small costs, the unknown

pixel can also be well explained by any of them. On the

other hand, a false sample pair that occasionally has the s-

mallest cost (e.g. due to noise) is less possible to be picked

out by our algorithm, if it is an isolated outlier.

3.2.5 Generalization of the PatchMatch Algorithm

We generalize the PatchMatch algorithm [3] by introducing

the “search space” concept. In this viewpoint, the dimen-

sions of the search space in [3] are simply the image coor-

dinates of the patches. A recent extension of PatchMatch

[4] takes into account patch rotation and scaling. Though a

“search space” is not explicitly defined in their paper, this

extension is searching in a higher-dimensional search space

consisting of the sample patches’ location, rotation, and s-

cales,

A similar randomized search algorithm is possible for

other features besides patches and samples. We believe that

this concept can be leveraged to other computer vision ap-

plications.

3.3. Post-processing

Given a good pair of foreground and background sam-

ples, we can estimate the alpha value of each pixel inde-

pendently using equation (2). In practice, applying a kind

of post-processing (smoothing) by considering neighboring

pixels can further improve the matting results. In this paper,

we adopt two kinds of post-processing methods:

The first method is to solve a global optimization prob-

lem, as in [19, 12]. The �̂ in (2) is used as a data term, and

the smoothness term is the matting Laplacian matrix L [11].

Specifically, the final alpha is computed by:

� = argmin�TL�+ �(�− �̂)TD(�− �̂), (8)

where � is a weighting parameter and D is diagonal matrix.

Its diagonal element is a large constant for the known pixel,

and a confidence � for the unknown pixel. We set the con-

fidence � = exp(−ℰ�/2�
2), where ℰ� is defined in (3) and

� = 1.0. The solution to (8) can be obtained by solving a

linear system [11].

The above method is relatively slow, taking several sec-

onds or even minutes to compute. Alternatively, we can

adopt the fast guided filter proposed in [10], which has been

proven to be a good approximation of solving the matting

Laplacian. The runtime of the filter is about 0.3 seconds per

mega-pixel. In experiments, we found that our sampling re-

sults are often visually acceptable, so applying a local filter

is sufficient in many cases.

4. Experimental Results

In the following, we compare our “Global Sampling

Matting” approach with three other methods: Robust Mat-

ting [19], Improved Color Matting [12] and Shared Matting

[7]. The results of [12] were provided by the authors, and

the algorithms in [19, 7] were re-implemented by ourselves.

For a fair comparison, we turn off any pre-processing steps

(e.g. trimap expansion step in [7]) used by competing meth-

ods. Hence, the methods differ only in their sampling strat-

egy. The only exception is Fig. 12, where we compare the

original full implementations of all methods.

Comparisons of the Sampling Quality. To evaluate the

sampling performance of various non-parametric methods,

we compare the results of the sampling step alone (without

any post-processing). This means that we calculate alpha

by eq. (2), using the best sample pairs picked out by the

different methods. To the best of our knowledge, this is the

first comparison conducted purely on sampling results in

the literature. We hope that this comparison gives a better

understanding of non-parametric sampling methods.

Fig.1, Fig.6 (2nd row), Fig.7, and Fig.8 visually com-

pare the sampling results. We also conducted a quantitative

comparison on a benchmark data set [13] of 27 images with

ground truth. The average SAD (sum of absolute differ-

ence) error of each method is plotted in Fig.9 (left). We

also compare the accuracy of the foreground sample colors

picked out by the different methods, using the ground truth

foreground images provided by [13]. Since the ground truth

foreground color is noisy in regions where alpha is close to

zero, we compare the product F� in Fig.9 (right).

Our experiments show that our method is performing

the best. Shared Matting gives a comparable performance,

while Robust Matting and Improved Color Matting perfor-

m less well. This is because Robust Matting and Improved

Color Matting use only very locally distributed color sam-

ples. In contrast, our method and Shared Matting use con-

siderably larger sample sets (Fig.6), thus can provide better

results. However, the sample set of Shared Matting heavi-

ly depends on the trimap topology. This is due to its ray-

based sampling strategy. So Shared Matting may still miss

the true foreground samples (Fig.1 and Fig.7) or the true

background samples (Fig.8). Though Shared Matting uses
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Improved Color Matting Our methodRobust Matting Shared Matting

Figure 6. Visual comparisons of non-parametric sampling method-

s. 1st row: input image and the sample sets of an unknown pixel.

2nd row: the sampling results without post-processing. 3rd row:

the results after solving the matting Laplacian.

(a) (c)(b) (d)

Figure 7. (a) The sample set of an example unknown pixel (marked

as white) for Shared Matting. It does not cover any true foreground

color. (b) The sampling result of Shared Matting. (c) The sample

set of our method (the trimap boundary). (d) Our sampling result.

(c)(a) (d)(b)

Figure 8. (a) The sample set of an example unknown pixel (marked

as white) for Shared Matting. It does not cover any true back-

ground color. (b) The sampling result of Shared Matting. (c) The

sample set of our method. (d) Our sampling result.

a complex cost function for sample selection, it is invalid

if the sample set does not comprise the true samples. On

the other hand, our method is less dependent on the trimap

topology and can successfully find good samples by a sim-

ple cost function. Note that our cost function (5) has only

one weighting parameter, while the cost function of Shared

Matting has at least six parameters.

In summary, our main insight is that a large sample set is

vital to achieve good results, while a simple cost function is

sufficient to pick out the best sample pairs.

Comparisons of the Results after Post-processing. Next
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Figure 9. Quantitative comparisons on the sample results without

post-processing. Left: average SAD error of �. Right: average

SAD error of F�.
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Figure 10. Quantitative comparisons on average SAD error of �,

with post-processing. Left: post-processing via the matting Lapla-

cian. Right: post-processing via guided filter.

Figure 11. Our results using the guided filter as post-processing.

From left to right: input, zoom-in, our sampling result, and our

result processed by the guided filter.

we post-process (smooth) the sampling results and compare

the quality.

When smoothing the results by solving the matting

Laplacian, we set the weight � in (8) to 0.1 for all methods.

The confidence value � (defined in Sec. 3.3) is set as in the

individual papers. Visual examples are in Fig.6 (3rd row)

and a quantitative comparison on the 27 benchmark images

in [13] is given in Fig.10 (left). Our method performs well.

We further compare the results using an alternative post-

processing way: the guided filter [10] 2. We compare the

filtering-based results in Fig.10 (right). (Here, we only

compare to the Shared Matting, because the other method-

s performed already worse when applying the full matting

Laplacian). Because our sampling results are already quite

accurate, our results processed by the filter have good visual

quality (see also Fig.11).

Fig.12 shows a comparison on the independent matting

benchmark of [1]. It reports the performance of the origi-

2Note that the Shared Matting proposed another filter-like “local s-

moothing” step. But we found it performs less well than the guided filter.
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Shared 3.4

Global (Laplacian) 4.3

Segmentation-based 4.6

Improved Color 5.1

Global (filter) 5.3

Shared  (Real Time) 6.1

Learning Based 6.2

Closed-Form 6.3

Large Kernel 8.0

Robust 8.9

Avg. Rank (SAD)

Global (Laplacian) 3.6

Shared 3.9

Segmentation-based 4.7

Improved Color 4.8

Learning Based 6.3

Global (filter) 6.5

Closed-Form 6.6

Shared  (Real Time) 6.9

Large Kernel 7.3

Robust 8.3

Avg. Rank (MSE)

Figure 12. Average ranks w.r.t. SAD and MSE on the AlphaMat-

ting evaluation website [1]. Our method, using the matting

Laplacian as post-processing, is marked as red. The other non-

parametric sampling methods are marked as green. Only the top

10 methods are displayed due to the limited space.

nal full implementation of all methods. The results of our

method are denoted as “Global (Laplacian)” and “Global

(filter)”, based on the post-processing methods. The re-

sult of “Global (Laplacian)” ranks 2nd in SAD and 1st in

MSE (mean squared error) out of 15 matting methods at

the time of submission. Thus our performance is compara-

ble to the original implementation of Shared Matting. No-

tice that the Shared Matting approach additionally uses pre-

processing heuristics (e.g. trimap expansion) and requires a

fair amount of parameters to be tuned. This can easily over-

fit the small test dataset. In contrast, our method has much

fewer parameters and uses no pre-processing steps.

Moreover, the result of “Global (filter)” ranks 5th and

6th w.r.t. SAD and MSE. All methods ranked higher than

our filter-based method solve a matting Laplacian, making

them very slow. Hence our filter-based method is the high-

est ranked fast method. In comparison, the fast filtering-

based Shared Matting (Shared Matting (Real Time)) ranks

6th in SAD and 8th in MSE.

Running Time. We now compare the runtimes of our

method with those of Shared Matting (the other two meth-

ods are quite slow, so we do not take them into account). We

run our C++ implementation on an Intel Pentium D 3.2GHz

CPU with 2GB of memory. The total runtime on the 27

benchmark images in [13] is 170 seconds for our method

(sampling only). It is slightly faster than our CPU imple-

mentation of Shared Matting (sampling only), which takes

220 seconds. This is mainly because our cost function (5) is

much simpler than the one of Shared Matting. A GPU im-

plementation of the Shared Matting can achieve real-time

performance as reported in [7]. We believe that our method

has potential to achieve similar performance, since the orig-

inal PatchMatch algorithm [3] has been efficiently imple-

mented on the GPU.

Limitation. Our method may fail when the sampling se-

lection criteria (see eq.(5)) are not sufficient to resolve the

color ambiguity. This may happen when an unknown pixel

can be well explained as a linear combination of two false

foreground/background color clusters.

5. Discussion and Conclusion

In this paper, we proposed a global sampling method

for image matting. Using a simple cost function and a

SampleMatch algorithm to handle the large sample set, our

method is able to efficiently produce high quality results.

To the best of our knowledge this is the first attempt to

generalize the (previously image-based) search space of the

PatchMatch algorithm. We hope this generalization can be

utilized in more computer vision applications matching oth-

er kinds of features.
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