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Abstract. Spaceborne microwave remote sensing is widely used to monitor global environmental changes for

understanding hydrological, ecological, and climate processes. A new global land parameter data record (LPDR)

was generated using similar calibrated, multifrequency brightness temperature (Tb) retrievals from the Advanced

Microwave Scanning Radiometer for EOS (AMSR-E) and the Advanced Microwave Scanning Radiometer 2

(AMSR2). The resulting LPDR provides a long-term (June 2002–December 2015) global record of key environ-

mental observations at a 25 km grid cell resolution, including surface fractional open water (FW) cover, atmo-

sphere precipitable water vapor (PWV), daily maximum and minimum surface air temperatures (Tmx and Tmn),

vegetation optical depth (VOD), and surface volumetric soil moisture (VSM). Global mapping of the land pa-

rameter climatology means and seasonal variability over the full-year records from AMSR-E (2003–2010) and

AMSR2 (2013–2015) observation periods is consistent with characteristic global climate and vegetation pat-

terns. Quantitative comparisons with independent observations indicated favorable LPDR performance for FW

(R ≥ 0.75; RMSE ≤ 0.06), PWV (R ≥ 0.91; RMSE ≤ 4.94 mm), Tmx and Tmn (R ≥ 0.90; RMSE ≤ 3.48 ◦C), and

VSM (0.63 ≤ R ≤ 0.84; bias-corrected RMSE ≤ 0.06 cm3 cm−3). The LPDR-derived global VOD record is also

proportional to satellite-observed NDVI (GIMMS3g) seasonality (R ≥ 0.88) due to the synergy between canopy

biomass structure and photosynthetic greenness. Statistical analysis shows overall LPDR consistency but with

small biases between AMSR-E and AMSR2 retrievals that should be considered when evaluating long-term

environmental trends. The resulting LPDR and potential updates from continuing AMSR2 operations provide

for effective global monitoring of environmental parameters related to vegetation activity, terrestrial water stor-

age, and mobility and are suitable for climate and ecosystem studies. The LPDR dataset is publicly available at

http://files.ntsg.umt.edu/data/LPDR_v2/.

1 Introduction

Earth’s atmospheric, biophysical, and hydrological pro-

cesses are closely coupled (Walko et al., 2000; Trenberth

et al., 2007) and respond to altered climate forcing mani-

fested by changes in key environmental variables (Meehl et

al., 2007). Integrated and consistent measurements of Earth

system environmental variables at the global scale are needed

for advancing our understanding of interconnected Earth

systems (Trenberth et al., 2007) and for addressing criti-

cal global-change-related questions including global water

cycle intensification (Huntington, 2006; Wild et al., 2008;

Déry et al., 2009), arctic amplification, and feedbacks to cli-

mate change (Smith et al., 2005; Grosse et al., 2011), and

the primary drivers behind global vegetation changes (Zhu et

al., 2016).

Complementary to optical–thermal infrared (IR) and ac-

tive microwave remote sensing, spaceborne passive mi-

crowave radiometers allow for measurements of global en-
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vironmental variables at a relatively coarse spatial resolu-

tion (∼ 5 to 100 km) but with relatively high temporal fi-

delity (∼ daily for higher latitudes ≥ 45◦ N) and with reduced

constraints from variable solar illumination, clouds, and at-

mosphere aerosol contamination effects (Ulaby et al., 2014).

While lower-frequency (e.g., L-band) sensors, including the

ESA Soil Moisture and Ocean Salinity (SMOS) and NASA

Soil Moisture Active Passive (SMAP) missions, are gener-

ally considered optimal for detecting soil and surface wa-

ter signals under moderate to high vegetation biomass con-

ditions (Kerr et al., 2001; Entekhabi et al., 2010), higher-

frequency sensors, such as AMSR-E (Koike et al., 2004) and

AMSR2 (Imaoka et al., 2012), provide simultaneous multi-

channel (C- to W-band) Tb observations with variable sensi-

tivity to surface water, soil, vegetation, and atmosphere con-

ditions (Njoku et al., 2003; Jones et al., 2010). The com-

bined observations allow for the distinguishing of individ-

ual land parameter signals from background noise. How-

ever, the major AMSR-E and AMSR2 (hereafter denoted

as AMSR-E/2) algorithms have largely focused on single-

parameter retrievals, including the NASA and JAXA stan-

dard soil moisture products (Njoku et al., 2003; Koike et

al., 2004). In contrast, the University of Montana (UMT)

global Land Parameter Data Record version 1 (LPDR v1)

was developed to exploit AMSR-E multifrequency Tb obser-

vations for global daily mapping of multiple synergistic land

parameters related to the status and storage of water in the

atmosphere, vegetation, and soil (Jones et al., 2010; Jones

and Kimball, 2010). The LPDR v1 database has been ap-

plied for a variety of environmental studies, including quan-

tifying surface water inundation impacts on tundra methane

emissions (Watts et al., 2014), boreal wildfire disturbance

and recovery assessments (Jones et al., 2013), evaluating hy-

droclimatic controls on vegetation phenology (Alemu and

Henebry, 2013; Guan et al., 2014), biodiversity modeling and

prediction (Waltari et al., 2014), and vector-borne disease

risk assessments (Chuang et al., 2012). The LPDR v1 has

also served as a baseline for evaluating other AMSR-E al-

gorithm retrievals (Mladenova et al., 2014) and refinements

(Jang et al., 2014; Du et al., 2014). The LPDR v1 encom-

passes the AMSR-E record (2002–2011), while similar ob-

servations from AMSR2 enable potential LPDR continuity

(Du et al., 2014).

In this investigation, the version 2.0 UMT Land Param-

eter Data Record (henceforth denoted as LPDR) was gen-

erated by incorporating recent algorithm improvements (Du

et al., 2015, 2016a), new algorithm refinements, and an ex-

tended AMSR-E/2 satellite record. The key satellite mi-

crowave land parameter retrievals derived from this study in-

clude daily maximum and minimum surface air temperature

(Tmx and Tmn), atmosphere precipitable water vapor (PWV),

vegetation optical depth (VOD), surface fractional open wa-

ter cover (FW), and volumetric soil moisture (VSM). Surface

air temperature, defined as air temperature at approximately

2 m of height in this study and used as a global warming

indicator (Hansen and Lebedeff, 1987; Jones et al., 1999),

integrates key information on the thermal state of the land–

atmosphere interface (Jones et al., 2010). PWV represents

the total water content of the atmosphere column within

the satellite sensor field of view (Bedka et al., 2010) and

is strongly interactive with temperature and climate (Held

and Soden, 2000; Wentz et al., 2007). The VOD parame-

ter represents the slant-path opacity of the intervening veg-

etation layer to land surface microwave emissions; VOD is

microwave frequency dependent and sensitive to changes

in canopy biomass water content, including woody and fo-

liar elements (Shi et al., 2008; Jones et al., 2011; Liu et

al., 2011). The FW parameter is an important hydrological

and biogeochemical variable (Watts et al., 2012), while large-

scale mapping of FW dynamics has been used for studying

high-latitude ecosystems, wetlands, and carbon-cycle-related

feedbacks to climate change (Van Huissteden et al., 2011;

McVicar et al., 2012; Lupascu et al., 2014). Another key

parameter is surface soil moisture, which governs the ex-

changes of water, energy, and carbon between the soil and

atmosphere (Entekhabi et al., 2010); soil moisture is defined

in this study as the volume of water in a given volume of

soil. The relative depth of soil moisture sensitivity is depen-

dent on microwave frequency and land surface conditions but

is generally limited to the top (∼ 1 cm depth) soil layer using

moderate-frequency (e.g., C-, X-band) Tb retrievals from the

AMSR-E/2 sensors.

The goals of this study were to (a) provide an enhanced

data record over prior (v1) LPDR releases in terms of both

retrieval accuracy and temporal coverage, (b) generate con-

sistent retrievals from AMSR-E and AMSR2 suitable for

long-term evaluations of key land parameters important to

ecosystem processes, and (c) facilitate LPDR utility for the

Earth science community by providing detailed descriptions

of algorithm structure, retrieval accuracy and product perfor-

mance, and data format specifications. The LPDR methods,

data processing, global performance, and uncertainty assess-

ments are presented below.

2 Methods

2.1 LPDR v1 algorithm and refinements

In the LPDR v1 algorithms, the satellite-observed microwave

emission from land overlying a non-scattering atmosphere

is theoretically described by three components representing

the upward emission of the atmosphere, land surface upward

emission attenuated by the atmosphere, and the downward

atmosphere emission reflected by the land surface and at-

tenuated by atmosphere (Wang and Manning, 2003; Jones

et al., 2010). Atmosphere effects are mainly determined by

air temperature and the optical depth of oxygen, cloud liq-

uid water, and atmosphere water vapor (Wentz and Meiss-

ner, 2000; Jones et al., 2010). The land surface upward mi-

crowave emission is represented as the overall emission from
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a mix of land surface features, including open water, veg-

etation, and soil (Mo et al., 1982; Jones et al., 2010). The

AMSR-E/2 frequencies have variable sensitivity to land and

atmosphere properties, and the frequency-dependent optical

depth of vegetation or atmospheric layers determines the de-

gree to which measured microwave emissions originate from

the soil, vegetation, or atmosphere (Jones, 2016). The C-

and X-band AMSR-E/2 measurements are generally used

for inferring soil moisture under vegetation and atmosphere

layers, while higher Tb frequencies (> 18 GHz) show rela-

tively greater sensitivity to atmospheric properties (Njoku et

al., 2003). In addition, open water may significantly impact

the measured microwave emissions at all AMSR-E/2 fre-

quencies due to the high dielectric constant of water (Jones

et al., 2010; Du et al., 2016b). Based on the above theory

and considerations, the LPDR v1 algorithms utilize observa-

tions at relatively high frequencies (> 18 GHz) to estimate

PWV and FW and then apply the inferred information to

derive the X-band VOD and VSM retrievals. The two-step

retrieval process is detailed as follows: first, effective sur-

face temperature (Ts), Tmx and Tmn, FW, and PWV are ob-

tained using an iterative algorithm approach that incorpo-

rates H- and V-polarized 18.7 and 23.8 GHz Tb data and

several temperature-insensitive microwave indices (Jones et

al., 2010). In this step, a simplified land emission model that

considers constant dry soil emissivity is adopted for facilitat-

ing the inversion process. The X-band VOD is then obtained

by inverting the land–water microwave emissivity slope in-

dex, and surface (∼ 0–1 cm depth) VSM is acquired after cor-

recting for X-band atmosphere, FW, and vegetation effects

(Jones et al., 2010). More detailed descriptions of the LPDR

v1 algorithms are provided elsewhere (Jones et al., 2010).

Recent refinements based on the LPDR v1 algorithm frame-

work were carried out separately using AMSR-E or AMSR2

Tb observations, including (a) an empirical calibration of the

AMSR2 PWV retrieval based on similar observations from

the Atmospheric Infrared Sounder (AIRS; Du et al., 2015),

(b) a refined AMSR2 estimation of Tmx and Tmn that consid-

ers terrain and latitude effects (Du et al., 2015), and (c) an

improved AMSR-E VSM retrieval using a weighted averag-

ing strategy and dynamic selection of vegetation-scattering

albedos (Du et al., 2016a).

2.2 LPDR retrieval algorithms

The latest (v2) LPDR algorithms were developed based

on the available algorithm framework and improvements

(Sect. 2.1). For generating a consistent LPDR product,

the available algorithm refinements were adapted for both

AMSR-E and AMSR2 portions of the combined, calibrated

Tb record (Sect. 3.1). The final regression formulas for es-

timating PWV are described below, which follow from Du

et al. (2015) but use different regression coefficients; for the

satellite ascending (PM) overpass, the empirical calibration

resulted in

PWVPM = −4.06 + 0.22Ts

+
Avd

av23 − av18
(0.47 + 0.26exp(−H ))

− 1.63log

(

1Tb(89.0)

1Tb(36.0)

)

, (1)

and for the descending (AM) overpass it was

PWVAM = 1.06 + 0.27Ts

+
Avd

av23 − av18
(0.48 + 0.21exp(−H ))

− 1.63log

(

1Tb(89.0)

1Tb(36.0)

)

. (2)

The PWV estimate is derived by a weighted sum of Ts (◦C),

atmosphere optical depth Avd estimated from the 23.8 and

18.7 GHz Tb polarization difference ratios, a cloud correc-

tion term
1Tb(89.0)
1Tb(36.0)

, and surface elevation H (km). The terms

av18 and av23 are empirically derived water vapor absorption

coefficients (Jones et al., 2010). The regression formulas for

estimating Tmx and Tmn are given as

Tmn = 3.55 + 0.69Ts + 11.86Tc − 6.67T 2
c − 0.14(abs(Lat))

+ 2.74γ cos(t) + 1.83 · log(FW + 1.0) , (3)

Tmx = 7.49 + 0.79Ts − 5.71Tc + 11.45T 2
c − 0.14(abs(Lat))

+ 2.20γ cos(t) + 1.75 · log(FW + 1.0) , (4)

where Ts is the effective surface temperature and Tc is

the frequency-dependent vegetation transmissivity, which is

Tc = exp(−VOD); t = 2πω−π ; ω =
doy
n

; γ = sign(Lat)(1−

abs(abs(Lat)−45)
45

) in which doy is the day of year, n is the to-

tal days in a year, and Lat is the geographic latitude. FW is

the fractional proportion (%) of standing water cover within

a grid cell and is used for minimizing open water impacts on

the temperature retrievals.

In addition to the above updates, we performed addi-

tional FW calibration for improving the VSM retrievals in

this study. As described above, the iterative retrieval algo-

rithm proposed in Jones et al. (2010) and revised in Du et

al. (2015) assumes dry soil conditions for estimating FW,

VOD, and atmosphere properties. Consequently, the FW re-

trieval is likely to be affected by a soil moisture signal

when the simplified dry soil assumption is not fully satis-

fied. Therefore, an empirical calibration of AMSR-E/2 FW

was made for the purpose of improving the soil moisture

inversion as follows: (a) AMSR-E FW values for the non-

frozen period over the 2003–2010 record were averaged for

each 25 km grid cell and compared with an ancillary MODIS

250 m MOD44W static FW map (Carroll et al., 2009); (b) the

resulting AMSR-E FW summer average values were grouped

into 1000 population ranges from 0.0 to 1.0 and 0.001 in-

tervals; (c) for each group, mean AMSR-E FW and corre-

sponding MOD44W values were calculated; and (d) rela-

tionships between AMSR-E and MOD44W FW retrievals
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were analyzed based on their mean group values and de-

rived for two respective conditions, AMSR-E FW < 0.15 and

FW ≥ 0.15. The 0.15 FW threshold was selected for describ-

ing the AMSR-E and MOD44W FW relationships over the

different AMSR-E FW levels. Soil moisture was then esti-

mated after open water correction using the calibrated FW

record (denoted as FWcal). The resulting empirical relation-

ships were used for calibrating AMSR-E/2 ascending (PM)

and descending (AM) FW estimates prior to their use in VSM

retrievals against the MOD44W open water maps:

FWcal_PM = 4.4267FW3
+ 1.3447FW2

+ 0.4114FW FW < 0.15

FWcal_PM = −0.4683FW2
+ 1.0182FW − 0.0458 FW ≥ 0.15,

(5)

FWcal_AM = −23.752FW3
+ 7.7518FW2

+ 0.1565FW FW < 0.15

FWcal_AM = −0.4014FW2
+ 0.9837FW − 0.0422 FW ≥ 0.15.

(6)

Here we note that the ancillary MOD44W map was used

solely for open water correction of the VSM estimates and

is independent from the LPDR FW retrievals. The general

LPDR retrieval process is illustrated in Fig. 1.

2.3 Evaluation of the LPDR

The resulting LPDR environmental parameters for non-

frozen land surface conditions were evaluated based on their

full-year records (2003–2010 and 2013–2015) and follow-

ing similar approaches used in previous studies (Jones et

al., 2010; Du et al., 2015, 2016a). The evaluations included

analyzing the global distributions of climatological means

and standard deviation (SD) or coefficient of variation (CV)

in LPDR full-year records. The LPDR ascending and de-

scending retrievals have similar spatial distributions, so only

the ascending result maps are presented in the following anal-

ysis. To compare with the LPDR results, similar climatolog-

ical mean and CV maps (if applicable) from alternative ref-

erence data were utilized, including MOD44W FW, normal-

ized difference vegetation index (NDVI) observations from

the third-generation Global Inventory Monitoring and Mod-

eling System project record (GIMMS3g; Tucker et al., 2005;

Pinzon and Tucker, 2014), and (AIRS) PWV (Divakarla et

al., 2006).

Global seasonal cycles defined from monthly means and

CV variations in the LPDR daily observations and full-year

data records were compared against similar aggregations

from the reference data, including GIMMS3g NDVI and

AIRS PWV. In particular, the vegetation seasonality indi-

cated by VOD and NDVI was compared for the global do-

main and six major plant functional types.

The LPDR-derived FW composites over the 2003–

2010 (representing AMSR-E) and 2013–2015 (represent-

ing AMSR2) periods were compared against the MOD44W

static open water map. While the MOD44W record is used

for surface water correction of Tb observations for the soil

Figure 1. The LPDR algorithm retrieval process.

moisture retrievals (Eqs. 5 and 6), the correction is inde-

pendent of the LPDR FW retrieval (Jones et al., 2010). The

LPDR-derived Tmx and Tmn estimates were compared with

independent daily air temperature measurements from 142

World Meteorological Organization (WMO) sites for the se-

lected years 2010 (representing AMSR-E) and 2013 (repre-

senting AMSR2). The LPDR-derived PWV results were an-

alyzed against AIRS PWV observations from the same 142

WMO site locations for the 2010 and 2013 periods. Finally,

the LPDR-derived daily VSM results were compared against

independent surface soil moisture measurements from four

regional soil station networks. The metrics used to evalu-

ate agreement between the LPDR results and independent

observations included correlation coefficient (R), root mean

square error (RMSE), and bias.

For evaluating LPDR consistency, only grid cells with

high-quality retrievals were considered in the analysis,

which excluded areas with higher vegetation biomass cover

(VOD > 2.3 representing over 90 % loss of underlying soil

and open water signals from vegetation attenuation) or where

the difference between V-pol and H-pol Tb retrievals at 18

or 23 GHz was less than 1.0 K (i.e., indicating microwave

signal saturation). Grid cells containing large water bodies

(FW > 0.2) were also excluded to avoid excessive contam-

ination of the land signal by open water (Du et al., 2015;

Jones, 2016). Moreover, we divided 365 (366 for leap year)
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days of a year into 122 3-day periods and for each 3-day

period selected for the consistency evaluation, we required

at least one high-quality retrieval within the period for each

year of the 2003–2010 and 2013–2015 portions of the record.

Based on the above data selection criteria, the global monthly

mean of the high-quality LPDR daily estimates were cal-

culated for each month of the AMSR-E (2003–2010) and

AMSR2 (2013–2015) full-year records and analyzed using

statistical metrics, including mean, SD, and range.

3 Data processing and ancillary datasets

3.1 AMSR-E and AMSR2 Tb records used for land

parameter retrievals

Multifrequency Tb observations from AMSR-E and AMSR2

provide the primary inputs for LPDR processing. The

AMSR-E sensor was launched on 4 May 2002 onboard

the NASA EOS Aqua satellite and operated until 4 Oc-

tober 2011. AMSR-E was succeeded by AMSR2, which

was launched on 18 May 2012 onboard the JAXA GCOM-

W1 satellite. Both sensors provide global measurements

of vertically (V) and horizontally (H) polarized microwave

emissions at six frequencies (6.9, 10.7, 18.7, 23.8, 36.5,

89.0 GHz) with descending and ascending orbital equatorial

crossings at 01:30 and 13:30 local time. Though succeed-

ing most characteristics of its predecessor, AMSR2 is differ-

ent from AMSR-E in several aspects, including (a) an ad-

ditional Tb channel at 7.3 GHz designed for mitigating ra-

dio frequency interference (RFI), (b) a larger (2.0 m diame-

ter) main reflector providing enhanced spatial resolution re-

trievals, and (c) an improved calibration system (Imaoka et

al., 2010).

For developing a consistent global land parameter record,

the AMSR-E/2 Tb retrievals were preprocessed in four steps.

(1) AMSR-E orbital swath Tb data from the Remote Sensing

Systems (RSS) version 7 product were spatially resampled

and re-projected to a 25 km resolution global Equal-Area

Scalable Earth (EASE) Grid version 1 format following pre-

viously established methods (Armstrong and Brodzik, 1995;

Ashcroft and Wentz, 1999; Brodzik and Knowles, 2002). In

this study, an additional altitude correction of the Tb orbital

swath retrievals was made to improve sensor footprint ge-

olocation accuracy prior to the gridding process. The alti-

tude correction to the AMSR2 L1R data considers the ac-

tual surface of the Earth instead of an ideal Earth ellipsoid

(T. Maeda et al., 2016), which helps to ensure reliable anal-

ysis of AMSR-E/2 land surface retrievals over high eleva-

tion areas, including the Qinghai–Tibetan Plateau; (2) a sim-

ilar gridding process was performed on the AMSR2 L1R

swath data. (3) The AMSR2 multifrequency (X- to W-band)

Tb retrievals were empirically calibrated against the same

AMSR-E channels using similar overlapping Tb observations

from the Microwave Radiation Imager (MWRI) onboard the

Chinese FY3B satellite (Du et al., 2014). However, in con-

trast to Du et al. (2014) in which the Tb calibration was

conducted on a per grid cell basis for each frequency, po-

larization, and orbit, the approach used for this investiga-

tion involved calibrating within 5 × 5 grid cell windows to

minimize the impact of the different sensor footprints. Both

ascending- and descending-orbit X-band Tb data for a given

polarization were calibrated together because the largest dif-

ferences and lowest correlations were found between over-

lapping MWRI and AMSR-E/2 X-band observations among

all sensor frequencies utilized (Du et al., 2014). The com-

bined orbit X-band calibration was also found to produce

better consistency between the AMSR2 ascending and de-

scending X-band VOD retrievals, which are particularly sen-

sitive to Tb calibration uncertainties, especially for higher

vegetation biomass conditions. (4) Finally, the gridded and

calibrated AMSR-E/2 Tb data were subjected to additional

screening prior to implementing the retrieval algorithms to

minimize potential noise effects from RFI, active precipita-

tion, frozen conditions, and permanent ice and snow cover

using previously established methods (Jones et al., 2010).

The Tb screening under frozen land surface conditions was

identified using an existing global daily freeze–thaw (FT)

data record derived from a refined classification algorithm

(Kim et al., 2017) and AMSR-E/2 36.5 GHz V-polarized Tb

retrievals in a consistent 25 km resolution global EASE-Grid

projection format; the FT mask is represented as a grid-cell-

wise daily binary bit flag in the LPDR dataset and was used

to identify and screen frozen land surface conditions from

further LPDR processing and retrievals (Fig. 1).

3.2 Ancillary data used for algorithm calibration and

LPDR performance assessment

A variety of ancillary data were used for calibrating the

LPDR algorithms and evaluating LPDR global performance.

The ancillary data included atmosphere PWV retrievals from

AIRS (Divakarla et al., 2006), a static MOD44W open wa-

ter map (Carroll et al., 2009), GIMMS3g NDVI (Pinzon

and Tucker, 2014), and in situ surface soil moisture mea-

surements from four globally distributed measurement net-

works (Jackson et al., 2010; Yang et al., 2013; Smith et

al., 2012). All ancillary data were re-projected to the same

25 km EASE-Grid version 1 format as the LPDR to facilitate

algorithm calibration and product comparisons.

The AIRS PWV products were used for LPDR PWV al-

gorithm calibration and product comparisons. The LPDR

iterative retrieval algorithm for PWV (Jones et al., 2010;

Sect. 2.1) was empirically calibrated and quantitatively vali-

dated using synergistic PWV observations (version 6 level 2

swath product) from AIRS and the Advanced Microwave

Sounding Unit (AMSU) instruments (Du et al., 2015). Both

AIRS and AMSU are deployed on the Aqua satellite together

with AMSR-E and have the same local overpass time as

AMSR2. The AIRS version 6 product is expected to have

higher accuracy than the previous AIRS version 4 water va-

www.earth-syst-sci-data.net/9/791/2017/ Earth Syst. Sci. Data, 9, 791–808, 2017
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Figure 2. Global distribution of WMO weather station locations where collocated AIRS observations and WMO air temperature measure-

ments were used for calibrating (white circles) and validating (black circles) the LPDR PWV, Tmx, and Tmn estimates; the locations of the

four independent soil moisture networks used for validating the LPDR VSM retrievals are also shown (white rectangles).

por record, which shows retrieval uncertainties of less than

15 % in comparison with radiosonde measurements in 2 km

troposphere layers (Divakarla et al., 2006; Diao et al., 2013).

For calibrating LPDR-derived PWV, Tmx, and Tmn re-

trievals over different land cover types, in situ daily Tmx

and Tmn measurements were obtained along with coincident

AIRS PWV retrievals for year 2010 from 250 globally dis-

tributed WMO weather station locations (Fig. 2). The spatial

distribution of the WMO stations selected was designed to

be representative of major global land cover classes (Justice

et al., 2002; Friedl et al., 2010). The WMO air temperature

record was obtained from the National Climate Data Center

(NCDC) Global Summary of the Day (GSOD version 7) us-

ing previously established criteria (Jones et al., 2010). The

calibration was made for the year 2010 and the derived rela-

tionships were applied to the entire AMSR-E/2 record. In-

dependent daily air temperature measurements and collo-

cated AIRS PWV retrievals from 142 other globally dis-

tributed WMO weather stations (Fig. 2) operating from 2010

to 2013 were selected for the evaluation of LPDR-derived

Tmx, Tmn, and PWV accuracy; relative consistency in perfor-

mance between the AMSR-E (represented by the year 2010)

and AMSR2 (represented by the year 2013) portions of the

LPDR record was also assessed.

The LPDR-derived FW record was evaluated against

the higher-resolution (250 m), global-scale MOD44W static

open water product (Carroll et al., 2009). The MOD44W

product is derived from a compilation of the SRTM (Shut-

tle Radar Topography Mission) water body dataset and the

MODIS MOD44C Collection 5 (2000–2008) open water

classification (Haran et al., 2005; Carroll et al., 2009). The

MOD44W map was re-projected and aggregated to the same

25 km EASE-Grid format as the LPDR prior to the compar-

isons.

The LPDR-derived VOD record was evaluated over the

global domain using synergistic satellite optical–IR obser-

vations of vegetation greenness defined from NDVI. The

GIMMS3g (version 1) global NDVI record derived from cal-

ibrated NOAA Advanced Very High Resolution Radiometer

(AVHRR) sensor observations (Pinzon and Tucker, 2014) has

been widely used in evaluating global vegetation status and

changes (Zhu et al., 2016); the bimonthly NDVI data were

re-projected from their native 1/12◦ spatial resolution and

geographic projection format to the same 25 km resolution

global EASE-Grid format as the LPDR for the 2003 to 2015
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record. The NDVI is sensitive to changes in vegetation green-

ness and differs from LPDR-derived 10.65 GHz VOD sensi-

tivity to canopy biomass and water content variations, includ-

ing both photosynthetic (e.g., foliar) and non-photosynthetic

(e.g., stem and branch) elements (Jones et al., 2013). Both

satellite NDVI and VOD records have been shown to provide

similar synergistic canopy phenology metrics distinguishing

both seasonal and spatial differences among different plant

functional types (Jones et al., 2011).

The LPDR VSM retrieval accuracy was evaluated using

a similar approach as Du et al. (2016a) by comparing the

satellite X-band (10.65 GHz) daily soil moisture retrievals

against collocated in situ surface soil moisture measurements

from four globally distributed soil moisture measurement

networks (Fig. 2). The four soil moisture regional networks

represent the approximate spatial heterogeneity and sensing

depth as the AMSR-E/2 Tb footprint retrievals and were de-

signed for validating satellite regional soil moisture retrievals

as detailed in Jackson et al. (2010), Smith et al. (2012), and

Yang et al. (2013). The Little River network (LR; centroid

83.61◦ W, 31.65◦ N) has a humid climate representing forest,

cropland, and pasture vegetation (Jackson et al., 2010). The

Little Washita network (LW; centroid 98.1◦ W, 34.95◦ N) has

a subhumid climate dominated by rangeland and pasture veg-

etation (Jackson et al., 2010). A 3-year (2003–2005) LR

and LW daily soil moisture record representing surface (0–

5 cm of depth) soil layer conditions was used for this study.

The Nagqu (NQ; centroid 91.875◦ E, 31.625◦ N) soil mois-

ture network was located on the Tibetan Plateau in west-

ern China. Surface soil moisture measurements extending

from August 2010 to September 2011 from the NQ net-

work were used for evaluating LPDR performance in an

environment characterized as high elevation with large sur-

face soil moisture variability and sparse vegetation (Chen

et al., 2013; Yang et al., 2013). The Yanco (YC; centroid

146.0915◦ E, 34.842◦ S) network is part of the larger Mur-

rumbidgee Soil Moisture Monitoring Network (MSMMN) in

Australia (Smith et al., 2012; Panciera et al., 2014) and repre-

sents a Southern Hemisphere semiarid agricultural and graz-

ing landscape; a 2-year (2009–2010) YC surface soil mois-

ture record was also used for this study.

4 Results

4.1 Fractional open water

The LPDR FW composites (Fig. 3a) for nonfrozen periods

capture characteristic global inundation patterns consistent

with the ancillary MOD44W static water map (Fig. S1 in

the Supplement), including extensive wetland complexes in

the pan-Arctic region, Bangladesh, and Argentina and ma-

jor river systems such as the Amazon, Mississippi, Yangtze,

and Yenisei. Large FW seasonal variations (Fig. 3b) associ-

ated with seasonal precipitation and/or snowmelt events oc-

cur over the Mississippi basin, the Paraná River basin, north-

Figure 3. LPDR fractional water mean (a) and 2 times the coeffi-

cient of variation (b) over the years 2003–2010 and 2013–2015.

ern Canada and Eurasia, the Indian subcontinent, southern

Tibet, and eastern China. The LPDR FW record also dis-

tinguishes dynamic flooding events not represented by the

ancillary static water map, including extensive water inun-

dation (Fig. 3a) and large seasonal FW variations (Fig. 3b)

in Bangladesh where the summer monsoon brings large

precipitation-driven flooding (Brouwer et al., 2007).

Quantitative comparisons of LPDR FW annual means in

relation to MOD44W were made for respective AMSR-

E (2003–2010) and AMSR2 (2013–2015) full-year records

(Table 1). Both AMSR2 and AMSR-E FW annual means

show favorable spatial correspondence with the MOD44W

results (R ≥ 0.75, RMSE ≤ 0.06). The LPDR inundated area

percentage also shows a mean 1.50 % wet bias relative to the

MOD44W product, which may partially result from better

LPDR microwave sensitivity to surface water dynamics, in-

cluding water beneath vegetation (Du et al., 2016b). Higher

LPDR FW levels along coastlines are due to larger water

cover of coastal grid cells within the land mask. The LPDR

results also show generally larger coastal FW levels than

MOD44W, indicating ocean contamination of adjacent land

grid cells within the coarser AMSR-E/2 Tb footprint.
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Table 1. Comparisons of FW global averages over AMSR-E

(2003–2010) and AMSR2 (2013–2015) periods in relation to the

MOD44W static open water map. All products were projected into a

consistent 25.0 km resolution EASE-Grid format; positive and neg-

ative bias indicates FW overestimation and underestimation, respec-

tively, relative to the static water map.

AMSR-E/2 FW vs. MOD44W

R RMSD Bias

Asc Dsc Asc Dsc Asc Dsc

AMSR-E 0.767 0.750 0.057 0.057 0.016 0.012

AMSR2 0.795 0.775 0.054 0.054 0.017 0.013

R denotes Pearson correlation coefficient; RMSD denotes root mean square difference; Asc

and Dsc denote respective ascending and descending orbits.

Figure 4. LPDR PWV climatology mean (a) and 2 times the coeffi-

cient of variation (b) from the combined 2003–2010 and 2013–2015

record.

4.2 Atmosphere precipitable water vapor

The spatial distributions of LPDR PWV climatology mean

(Fig. 4a) and CV (Fig. 4b) results derived from ascending-

orbit Tb retrievals and full-year observations were com-

pared with benchmark satellite PWV retrievals from AIRS

(Fig. S2). Both LPDR and AIRS PWV retrievals show sim-

ilar global patterns and latitudinal distributions, with gener-

ally higher water vapor levels at lower latitudes and warmer

Figure 5. LPDR and AIRS PWV monthly means and seasonal vari-

ability (2 times the standard deviation or 2× SD) over the globe and

combined for the 2003–2010 and 2013–2015 period.

climate zones, which is consistent with the near-exponential

relationship between atmospheric temperature and moisture-

holding capacity except for dry desert regions distinguished

by lower characteristic PWV levels. Especially large PWV

levels are observed over the Bay of Bengal and adjacent

regions (Fig. 4a) where a large amount of water vapor is

transported by the summer monsoon (Uma et al., 2014).

Large PWV seasonal variations (CV) are apparent in re-

gions with distinct dry and wet seasons, including the In-

dian subcontinent, eastern China, and the African Sahel

(Fig. 4b); these spatial and temporal patterns are consistent

between the LPDR and AIRS products. The LPDR shows

larger PWV seasonal variability in tropical rainforest re-

gions (Fig. 4b) than the AIRS observations, which is at-

tributed to ill-conditioned LPDR retrievals associated with

microwave signal saturation over dense vegetation cover.

Relatively large CV values in regions with average dry-air

conditions (e.g., the Tibetan Plateau) reflect the strong sensi-

tivity of the CV metric to small mean humidity values in the

denominator (% CV = 100· SD/mean). Overall, the LPDR

and AIRS ascending- and descending-orbit-derived PWV

monthly means are highly correlated (R = 0.99) (Fig. 5) with

a major peak in the Northern Hemisphere summer months

(July and August) and a secondary peak in the Southern

Hemisphere summer months (January and February).

The LPDR PWV retrievals were quantitatively validated

against the AIRS observations at 142 global WMO weather

station locations for the years 2010 and 2013 (Table 2).

The AMSR-E/2 retrievals show strong agreement with the

AIRS PWV product (R ≥ 0.91; RMSE ≤ 4.94 mm), though

a slight PWV overestimation and underestimation are in-

dicated for the respective AMSR-E (bias ≤ 0.27 mm) and

AMSR2 (bias ≥ −0.37 mm) portions of the record (Table 2).
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Table 2. LPDR daily Tmn, Tmx, and ascending- or descending-orbit-based PWV accuracy in relation to respective in situ air temperature

measurements and AIRS PWV observations for 142 global WMO site locations for the selected years 2010 (AMSR-E) and 2013 (AMSR2).

Tmx (◦C) Tmn (◦C)

R RMSE Bias∗ R RMSE Bias

AMSR-E 0.928 3.428 0.637 0.899 3.307 0.061

AMSR2 0.917 3.484 0.260 0.899 3.150 0.265

PWV (mm) from PWV (mm) from

ascending orbits descending orbits

R RMSE Bias R RMSE Bias

AMSR-E 0.926 4.241 0.266 0.923 4.788 0.197

AMSR2 0.914 4.473 −0.369 0.911 4.941 −0.050

∗ Bias is calculated from retrievals minus observations.

4.3 Daily maximum and minimum surface air

temperature

The LPDR-derived global mean and CV variability maps for

Tmx are presented in Fig. 6, while the Tmn results show sim-

ilar global and seasonal patterns. The LPDR results show

characteristic global temperature patterns following major

climate zones and latitudinal gradients and are similar to the

PWV results (Fig. 4) but with generally greater surface spa-

tial complexity influenced by proximity to coastal areas, veg-

etation and land cover conditions, and elevation-driven tem-

perature lapse rates (Du et al., 2015). The LPDR results show

expected smaller seasonal temperature variability (CV) near

the Equator and larger variability at higher latitudes, espe-

cially in the interior of large landmasses such as North Amer-

ica and Asia. The resulting temperature maps (Fig. 6) only

represent nonfrozen land surface conditions rather than com-

plete annual cycles (i.e., Sects. 2.3, 3.1). We also note that the

LPDR surface air temperatures are derived from ascending-

and descending-orbit Tb retrievals empirically adjusted to

represent daily Tmx and Tmn conditions using in situ tem-

perature measurements from sparse global weather stations.

Thus the LPDR results may deviate from actual daily max-

imum and minimum temperature conditions for some areas

and periods; these and other uncertainties impact LPDR ac-

curacy and performance, which are evaluated in the follow-

ing temperature assessment.

The LPDR-derived Tmx and Tmn retrievals were vali-

dated against independent in situ daily air temperature mea-

surements from 142 global WMO weather stations for the

years 2010 and 2013 (Table 2). Overall, the LPDR temper-

atures corresponded favorably with the WMO temperature

measurements (R ≥ 0.90; RMSE ≤ 3.48 ◦C). The AMSR-

E (2010) and AMSR2 (2013) retrievals show similar Tmx

and Tmn retrieval accuracy, with associated RMSE differ-

ences within 0.16 K in relation to the WMO daily tem-

perature measurements. These results indicate improved

LPDR temperature accuracy relative to previously reported

Figure 6. LPDR Tmx mean (a) and 2 times the coefficient of varia-

tion (b) for the years 2003–2010 and 2013–2015.

AMSR2-derived accuracies for Tmx (RMSE = 3.64 ◦C) and

Tmn (RMSE = 3.54 ◦C) from a prior study (Du et al., 2014);

the higher LPDR temperature accuracy (RMSE ≤ 3.48 ◦C)

suggests an improvement in sensor inter-calibration and al-

gorithm refinements (Sect. 3.1). However, the calibrated

AMSR2 Tb is not identical to that of AMSR-E as reflected by

a maximum 0.38 ◦C difference in their Tmx and Tmn retrieval
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biases against WMO measurements (Table 2). To evaluate

the impact of the fractional water corrections on the LPDR

v2 air temperature retrievals, Eqs. (1)–(4) were re-derived us-

ing the same procedure (Sect. 2.2) but assuming zero frac-

tional water cover. The results indicated approximately 13 %

improved RMSE performance in the Tmx and Tmn retrievals

using the FW correction relative to air temperature retrievals

derived without accounting for fractional water influence.

4.4 Vegetation optical depth

The previous UMT LPDR v1 AMSR-E VOD record was

assessed globally (Jones et al., 2011) and has been used

for a range of regional ecosystem studies, including vege-

tation phenology and disturbance recovery assessments (Liu

et al., 2013; Jones et al., 2013, 2014). The VOD record can

also be used as a data quality mask for the VSM retrievals be-

cause soil moisture retrieval accuracy is generally degraded

under higher vegetation biomass levels (Du et al., 2016a). In

this study, the LPDR-derived VOD was compared with the

GIMMS3g NDVI record based on an assumption of propor-

tionality between vegetation canopy biomass and greenness

variations (Jones et al., 2011). The evaluation results of the

previous and current studies are consistent, including gener-

ally favorable correlations between VOD and optical vegeta-

tion indices and reduced correspondence at higher biomass

levels.

The LPDR VOD pattern and seasonal variability (CV)

are generally consistent with the global pattern in vegetation

cover indicated from the NDVI record (Fig. S3).The LPDR-

derived mean annual VOD results (Fig. 7a) show character-

istic global patterns in vegetation biomass, including higher

VOD in tropical rainforests (e.g., the Amazon Basin, the

Congo Basin, and Southeast Asia) and much lower VOD in

arid and sparsely vegetated areas, including the Sahara and

Sonoran deserts and Central Australia. Moderate VOD levels

occur in grassland, shrubland, and cropland areas, including

the central USA, sub-Saharan Africa, central China, and In-

dia. Larger VOD relative seasonal variability (Fig. 7b) occurs

over predominantly deciduous and lower biomass areas, in-

cluding grassland, shrubland, and cropland. Large VOD sea-

sonal variations also occur in semiarid climate zones with

distinctive wet and dry cycles, including the African Sahel

where plant growth depends on seasonal rainfall (Proud and

Rasmussen, 2011). A few VOD change hotspots occur in

wetland areas (e.g., the Iberá Wetlands in Argentina and the

Bangweulu Wetlands in Zambia), which may reflect emer-

gent vegetation overlying a standing water background dur-

ing the wet season. Lower VOD seasonality occurs in the

tropics, which is consistent with a smaller seasonal climate

cycle near the equatorial zone. Arid areas show the generally

low VOD levels and seasonality consistent with sparse vege-

tation cover except for some areas, including portions of the

Arabian Peninsula, where relatively large VOD seasonality

may be a result of irrigation activities (Siebert et al., 2005).

Figure 7. Annual mean (a) and 2 times the coefficient of varia-

tion (b) of LPDR 25 km global X-band VOD daily estimates from

AMSR-E/2 ascending observations encompassing the years 2003–

2010 and 2013–2015.

Both VOD and NDVI display similar seasonal cycles rep-

resented by their mean monthly time series (R ≥ 0.88) but

with temporal phase offsets in VOD and NDVI cycles for dif-

ferent land cover types (Fig. 8). Here, the mean seasonal cy-

cle in VOD and NDVI is depicted for major IGBP global land

cover types, including evergreen needleleaf forest (ENF),

evergreen broadleaf forest (EBF), deciduous needleleaf for-

est (DNF), deciduous broadleaf forest (DBF), grassland, and

cropland. The LPDR VOD and GIMMS3g NDVI compar-

ison results are summarized in Table 3 and show strong

correspondence for both ascending-orbit (0.67 ≤ R ≤ 0.90)

and descending-orbit (0.84 ≤ R ≤ 0.95) retrievals for ENF,

DNF, grassland, and cropland areas with relatively well-

defined seasonal cycles. A VOD temporal phase shift relative

to NDVI is evident for croplands and detectable for other

land cover types, reflecting different vegetation biophysical

properties that the microwave and optical–infrared instru-

ments are sensitive to (Jones et al., 2011, 2012). Weaker

and even negative VOD and NDVI correlations in EBF re-

gions coincide with lower characteristic canopy seasonality

in the tropics, but may reflect degraded signal-to-noise ra-

tios due to persistent cloud and atmospheric aerosol effects

limiting effective NDVI retrievals and VOD and NDVI sat-
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Table 3. Pearson correlations (R) between LPDR VOD and GIMMS3g NDVI climatology monthly means for the aggregate 2003–2010 and

2013–2015 observation record. The comparisons were made for all global vegetation and selected land cover areas, including ENF, EBF,

DNF, DBF, grassland, and cropland. Both products were projected into a consistent 25.0 km resolution EASE-Grid format. VOD results are

delineated for LPDR ascending- and descending-orbit records.

Pearson correlation Global ENF EBF DNF DBF Grassland Cropland

coefficient

Ascending 0.878 0.715 0.218 0.893 0.201 0.903 0.665

Descending 0.937 0.898 −0.116 0.944 0.871 0.951 0.845

Figure 8. Monthly means and variations (2× SD) of LPDR X-band vegetation optical depth (VOD) and GIMMS3g NDVI for all global

vegetation (a) and selected land cover types, including ENF (b), EBF (c), DNF (d), DBF (e), grassland (f), and cropland (g) areas over the

aggregate 2003–2010 and 2013–2015 observation period.

uration over dense canopies (Jones et al., 2011). For dense

canopies, NDVI seasonality can be strongly driven by the on-

set of new leaves flushing (E. E. Maeda et al., 2016), while

the asynchrony between leaf flush and vegetation growth

may also affect the VOD and NDVI correlations (Jones et

al., 2014). The VOD estimates derived from the descending-
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Figure 9. LPDR 25 km X-band volumetric soil moisture (VSM)

mean (a) and 2 times the coefficient of variation in percentage of

mean values (b) derived from the aggregate 2003–2010 and 2013–

2015 observation record.

orbit Tb retrievals also show overall stronger correspon-

dence with NDVI than the ascending retrievals, especially

for DBF regions (descending orbit R = 0.87; ascending orbit

R = 0.20). Differences in NDVI correspondence between the

ascending- and descending-orbit VOD records may reflect

regional VOD retrieval uncertainties contributed by deficien-

cies in the underlying LPDR algorithm assumptions and pa-

rameterizations, which are discussed below (Sect. 5).

4.5 Soil moisture

The global soil moisture pattern depicted by the LPDR X-

band VSM record (Fig. 9) is generally consistent with the

known global climatology, including characteristically wet

surface soil moisture conditions in northern high-latitude ar-

eas and drier soil moisture extremes in deserts and semiarid

regions such as the African Sahara, the southwestern USA,

and Central Australia. Wetter VSM conditions along coastal

boundaries may reflect remaining ocean Tb contamination of

adjacent land grid cells within the coarser sensor footprint

despite explicit FW correction of the VSM retrievals. Rela-

tively large seasonal soil moisture variations are associated

with areas having distinctive wet and dry seasons, includ-

ing the African Sahel, Central USA, the Indian subconti-

nent, and southern Tibet. For arid regions such as Central

Australia, high relative (%) seasonal CV variability is due

to low average VSM conditions. Lower VSM variability oc-

curs over higher vegetation biomass (VOD) areas, including

forests, where AMSR-E/2 soil moisture sensitivity and VSM

retrieval performance are expected to be lower due to loss of

soil sensitivity; the global range of effective VSM retrievals

and other LPDR observations is represented by the data qual-

ity metrics described below (Sect. 5.2).

The LPDR VSM retrievals were compared against glob-

ally distributed validation watershed measurements (Ta-

ble 4). The LPDR results show overall favorable VSM ac-

curacy in relation to independent in situ soil moisture obser-

vations from the globally distributed monitoring sites within

the effective LPDR domain (0.63 ≤ R ≤ 0.84; 0.03 ≤ bias-

corrected RMSE ≤ 0.06 cm3 cm−3). The apparent retrieval

biases (−0.10 to 0.09) may partially reflect inconsistencies in

horizontal and vertical representativeness between the in situ

soil moisture measurements and AMSR-E/2 Tb retrievals

(Du et al., 2016a). These results indicate similar or better

accuracy than the reported performance of other AMSR-E

soil moisture products (Jackson et al., 2010; Du et al., 2016a)

and generally better LPDR performance for descending-orbit

(AM) than ascending-orbit (PM) VSM retrievals.

5 Discussion

The latest (v2) LPDR incorporates recent algorithm refine-

ments and updates over the original baseline algorithms and

data record (Jones et al., 2010) while also including an

extended global data record spanning both AMSR-E and

AMSR2 observation periods (June 2002–December 2015).

The resulting data record produces global environmental pat-

terns and seasonal dynamics consistent with characteristic

climate and land cover variability; the LPDR also shows fa-

vorable agreement with a diverse set of independent obser-

vation benchmarks. The LPDR algorithms and parameter es-

timates are internally consistent and include an integrated set

of environmental parameters representing atmosphere, veg-

etation, surface, and soil conditions derived from simulta-

neous satellite multifrequency Tb observations. The itera-

tive algorithm and multiparameter retrieval approach enable

the decomposition of the satellite observations into atmo-

sphere, vegetation, standing water, and soil moisture compo-

nents. In particular, the dynamic open water (FW) correction

in the LPDR algorithm benefits VSM retrievals over areas

with significant spatial and seasonal inundation variability.

The current algorithm is limited to nonfrozen land surface

conditions determined using an independent AMSR-E/2 FT

product (Kim et al., 2017), while the FT parameter is rep-

resented as a simplified daily frozen flag in the LPDR. Po-

tential extension of the LPDR to represent snow cover prop-

erties and frozen conditions would enable continuous land
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Table 4. Summary of satellite LPDR soil moisture retrieval accuracy in relation to in situ surface soil moisture measurements from four

globally distributed validation watersheds.

Statistics Little River Little Washita Nagqu Yanco All sites

(USA; 2003–2005) (USA; 2003–2005) (China; 2010–2011) (Australia; 2009–2010)

Ascending orbits

R 0.627 0.762 0.790 0.755 0.815

RMSE 0.035 0.036 0.051 0.059 0.045

Bias 0.041 0.053 −0.102 −0.042 0.012

Descending orbits

R 0.696 0.733 0.831 0.787 0.835

RMSE 0.032 0.036 0.042 0.055 0.042

Bias 0.071 0.086 −0.063 −0.031 0.038

R is correlation coefficient; RMSE (root mean square error) and bias are in cm3 cm−3. RMSE and all site statistics except bias are calculated with

watershed bias corrected.

parameter observations over a full annual cycle while incor-

porating observations of other key environmental indicators

of the changing cryosphere. The complex microwave emis-

sion and scattering signatures of snow, lake ice, frozen soil,

and vegetation must first be carefully accounted for to enable

the further development and extension of the LPDR retrieval

algorithms (Tedesco et al., 2010; Du et al., 2017).

5.1 LPDR data format

The resulting LPDR is available in a 25 km resolution global

EASE-Grid (v1) projection and GeoTIFF file format. The

data files are organized by ascending and descending orbits

on a daily basis. Each GeoTIFF file consists of six 2-D (1383

columns, 586 rows) data arrays representing five float-type

retrieval data bands (FW, Tmx or Tmn, Tc, PWV, VSM) and

one byte-type QC band. A set of product QC flags are in-

cluded to inform the user about the estimated quality of re-

trieved parameters or missing data. The QC binary bit flags

are summarized in Table 5 and indicate the presence or ab-

sence of the following land surface conditions: frozen ground

(bit 1), snow or ice presence (bit 2), strong precipitation (bit

3), RFI at 18.7 GHz (bit 4), RFI at 10.65 GHz (bit 5), dense

vegetation with VOD > 2.3 (bit 6), large water bodies with

FW > 0.2 (bit 7), and saturated microwave signals (differ-

ence between V-pol and H-pol brightness temperature at 18

or 23 GHz less than 1.0 K; bit 8). The percentages of land ar-

eas with high QC retrievals were summarized by seasons and

sensor orbits (Table 6).

5.2 Data record consistency

The LPDR record described in this study extends from June

2002 to December 2015 and captures both short-term (di-

urnal, daily, annual) variability and longer-term (annual,

decadal) climate trends over the global terrestrial environ-

ment for a diverse set of significant environmental param-

Figure 10. Temporal frequency distribution map of estimated high-

quality (QC) retrievals, which exclude areas with dense vegetation

(VOD > 2.3), saturated microwave signals (V-pol and H-pol Tb dif-

ference at 18 or 23 GHz less than 1.0 K), and large water bodies

(FW > 0.2).

eters. Potential differences in Tb characteristics and algo-

rithm performance between the AMSR-E and AMSR2 por-

tions of the LPDR are expected to introduce artifacts and de-

grade LPDR precision for analyzing long-term environmen-

tal changes. LPDR data consistency was examined through

statistical comparison of best-quality (QC) retrievals be-

tween the AMSR-E and AMSR2 portions of the record

(Sect. 2.3); the global pattern and temporal frequency of

the estimated best retrievals are presented in Fig. 10. As

summarized in Table S1 in the Supplement, the land pa-

rameter retrievals have similar mean values, variations, and

ranges between the AMSR-E and AMSR2 portions of the

record, indicating general LPDR consistency and quality.

However, the underlying Tb retrieval biases between the two

sensors are not completely removed by the sensor inter-

calibration process (Du et al., 2014), which may propa-

gate to uncertainty in the higher-order LPDR retrievals and
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Table 5. LPDR data quality flag description.

Bit number Land surface condition Indication

1 Frozen ground No LPDR retrieval

2 Snow or ice presence No LPDR retrieval

3 Strong precipitation No LPDR retrieval

4 RFI at 18.7 GHz No LPDR retrieval

5 RFI at 10.65 GHz No LPDR retrieval

6 Dense vegetation with VOD > 2.3 Possible large retrieval uncertainty

7 Large water bodies with FW > 0.2 Possible large retrieval uncertainty

8 Saturated microwave signals with V-pol and H-pol Tb Possible large retrieval uncertainty

difference at 18 or 23 GHz less than 1.0 K

Table 6. The percentages of land areas having high QC retrievals

summarized by seasons and sensor orbits; seasons aggregated by

spring (MAM), summer (JJA), autumn (SON), and winter (DJF)

months of the Northern Hemisphere.

Ascending Descending

Northern Southern Northern Southern

Hemisphere Hemisphere Hemisphere Hemisphere

MAM 95.8 % 92.6 % 93.1 % 88.4 %

JJA 95.3 % 92.6 % 94.4 % 89.2 %

SON 95.1 % 93.5 % 93.4 % 89.2 %

DJF 76.5 % 92.2 % 73.0 % 88.3 %

trends. For ascending retrievals, the AMSR2 biases relative

to AMSR-E for the LPDR parameters FW, PWV, Tmx, VOD,

and VSM are about 0.00, −0.50 mm, −0.24 ◦C, −0.03, and

−0.01 cm3 cm−3, respectively. For descending retrievals,

the corresponding biases are 0.00, −0.45 mm, 0.13 ◦C, 0.01,

and 0.01 cm3 cm−3. The AMSR2 record also tends to have

smaller PWV- and VOD-derived SD variability and ranges

compared with AMSR-E (Table S1). Similar differences be-

tween AMSR-E and AMSR2 retrievals are also evident in the

validation assessments against the independent observations,

including WMO surface air temperature measurements and

AIRS PWV (Table 2).

5.3 LPDR uncertainty

While the v2 data record provides new refinements and en-

hancements over the earlier LPDR baseline, several prod-

uct uncertainty and consistency issues remain unresolved.

The LPDR VOD and VSM analysis (Sect. 4.4 and 4.5) in-

dicated generally better performance for descending- than

ascending-orbit retrievals. Better descending (∼ 01:30) per-

formance may result from seasonal changes in thermal gradi-

ents between surface air, canopy, and ground layer conditions

through the process of leaf development (Durre and Wallace,

2001), which is not accounted for in the VOD retrieval algo-

rithm (Jones et al., 2012). The AMSR-E/2 descending obser-

vations reflect relatively isothermal early morning conditions

that promote better VOD and VSM performance relative to

ascending observations under midday (∼ 13:30) conditions

characterized by larger thermal gradients.

The LPDR retrievals in more densely vegetated areas

(e.g., VOD > 2.3) are expected to have greater uncertainty

and should be used with caution; these areas are flagged

in the LPDR QC data fields and distinguished from areas

with expected higher-quality retrievals (Fig. 10). In more

densely vegetated areas, the higher-frequency AMSR-E/2 Tb

retrievals are more likely to have smaller polarization dif-

ferences and signal saturation, resulting in less sensitivity

to VOD and PWV and higher retrieval uncertainties. For

this reason, differences in VOD and PWV retrievals be-

tween AMSR-E and AMSR2 may be magnified over more

densely vegetated areas where sensor inter-calibration uncer-

tainties further lower the signal-to-noise ratio. Denser vege-

tation cover also promotes stronger attenuation of underlying

soil and water microwave signals, increasing VSM retrieval

uncertainty in these areas (Du et al., 2016a). Similarly, the

retrieval accuracy for standing water with overlying vegeta-

tion cover, a different scenario from the exposed open water

with surrounding vegetation cover assumed in this study, is

expected to decrease exponentially under higher VOD lev-

els (Du et al., 2016b). The land parameter grid cells and

retrievals along coastlines and other large water bodies are

likely to be affected by water contamination of the coarse

sensor Tb footprint, though these effects are partially ac-

counted for by representation of FW on the associated land

parameter retrievals within a grid cell. Regions with larger

FW cover may have higher retrieval uncertainties, which are

represented as a water flag (FW > 0.2) in the LPDR quality

mask (Fig. 10).

The AMSR2 and AMSR-E Tb records used for this study

were previously calibrated (Du et al., 2014), but remaining

artifacts from the different sensor spatial resolutions and in-

strument calibration systems likely contribute to differences

in land parameter characteristics and performance between

the two sensor periods of the record. Though small in quan-

tity, the AMSR2 retrieval biases relative to AMSR-E (Ta-

bles 2 and S1) should be considered when analyzing long-

term environmental trends. Differences in parameter accu-
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racy and performance between AMSR2 and AMSR-E ob-

servations and a limited (12.5 years) LPDR (v2) period of

record constrain capabilities for assessing subtle environ-

mental trends. Future LPDR releases are expected to benefit

from continuing AMSR2 operations and calibration refine-

ments to the integrated AMSR-E/2 Tb record, enabling more

accurate environmental change assessments.

6 Data availability

The AMSR-E/2-derived LPDR described in this study is

publicly available through the following link: http://files.

ntsg.umt.edu/data/LPDR_v2.

7 Conclusions

We developed an extended global land parameter data record

for ecosystem studies using similar calibrated satellite multi-

frequency and polarization Tb retrievals from AMSR-E and

AMSR2. The latest (v2) LPDR represents an advance over a

prior (v1) product release by incorporating recent algorithm

refinements and an extended (June 2002–December 2015)

satellite observation record. The LPDR algorithms are inter-

nally consistent and rely on AMSR-E and AMSR2 bright-

ness temperatures as primary inputs. The algorithms exploit

the strong microwave sensitivity to liquid water in the land-

scape and the variable sensitivity of different Tb frequen-

cies and polarizations to vegetation, soil, and atmosphere el-

ements to derive a set of synergistic daily land parameters,

including VSM, FW, VOD, Tmx, Tmn, and PWV. The result-

ing data record shows favorable accuracy and performance

in relation to a diversity of other observation benchmarks.

However, small but significant differences were found be-

tween the AMSR-E and AMSR2 portions of the record due

to artifacts from cross-sensor calibration; these effects should

be considered when interpreting environmental trends from

the long-term record. The LPDR provides global coverage

and up to twice-daily observations for non-snow- or non-ice-

covered land surface conditions. The data are publicly avail-

able with detailed documentation and data quality informa-

tion and with suitable precision to support a range of envi-

ronmental studies. Example LPDR applications from the lit-

erature include land surface phenology monitoring, vector-

borne disease risk, surface hydrology and drought severity,

and climate-change-related assessments. Continuing opera-

tions from AMSR2 and similar microwave sensors allow

for future LPDR extensions, while further calibration refine-

ments and a longer data record are expected to yield addi-

tional gains in precision and product utility for distinguishing

and diagnosing global environmental changes.
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