A global sensitivity study of sulphur chemistry in a premixed methane flame model using HDMR

Tilo Ziehn

Alison S. Tomlin

School of Process, Environmental and Materials Engineering Energy and Resources Research Institute University of Leeds

SAMO 2007

SAMO 2007 1 / 28

A (10) > A (10) > A (10)

2 HDMR - High Dimensional Model Representation

- 3 Application and Results
- 4 HDMR Software

• • • • • • • • • • • • •

Particular And Par

- 3 Application and Results
- 4 HDMR Software

Tilo Ziehn (University of Leeds)

< 🗇 🕨 < 🖃 🕨

2 HDMR - High Dimensional Model Representation

3 Application and Results

HDMR Software

Tilo Ziehn (University of Leeds)

A .

Physical Action 10 (2014) 10 (201

- 3 Application and Results
- 4 HDMR Software

- 3 →

Need for new methods in sensitivity analysis

- Complex chemical mechanisms are increasingly used in models describing a range of important chemical processes (e.g. combustion)
- Models contain a large number of parameters and are often highly non-linear
- Large uncertainty ranges for the parameters
- Models are computationally expensive to run
- Traditional methods for global uncertainty and sensitivity analysis not suitable due to their computational expense and the difficulty in interpreting the results
- Aim: method that can cope with large parameter numbers
- Do we need a screening method, which identifies unimportant parameters beforehand?

Need for new methods in sensitivity analysis

- Complex chemical mechanisms are increasingly used in models describing a range of important chemical processes (e.g. combustion)
- Models contain a large number of parameters and are often highly non-linear
- Large uncertainty ranges for the parameters
- Models are computationally expensive to run
- Traditional methods for global uncertainty and sensitivity analysis not suitable due to their computational expense and the difficulty in interpreting the results
- Aim: method that can cope with large parameter numbers
- Do we need a screening method, which identifies unimportant parameters beforehand?

High Dimensional Model Representation (HDMR)

HDMR basics

 Output f(x) of a model can be expressed as finite hierarchical function expansion in terms of the input parameters x

$$f(\mathbf{x}) = f_0 + \sum_{i=1}^n f_i(x_i) + \sum_{1 \le i < j \le n} f_{ij}(x_i, x_j) + \ldots + f_{12\dots n}(x_1, x_2, \ldots, x_n)$$

- Usually HDMR expansion to second order provides satisfactory results and a good description of f(x)
- Provides detailed input-output mapping suitable to create a model replacement and for global SA
- Several decomposition methods: e.g. cut-HDMR, RS-HDMR

イロト イヨト イヨト イ

Random Samping (RS)-HDMR

Principles

- Only one set of random samples necessary to estimate all component functions
- Component functions can be approximated by analytical basis functions such as polynomials or splines

$$f_{i}(x_{i}) \approx \sum_{r=1}^{k} \alpha_{r}^{i} \varphi_{r}(x_{i})$$

$$f_{ij}(x_{i}, x_{j}) \approx \sum_{p=1}^{l} \sum_{q=1}^{l'} \beta_{pq}^{ij} \varphi_{p}(x_{i}) \varphi_{q}(x_{j})$$

• Here: $\varphi_r(x_i)$, $\varphi_p(x_i)$ and $\varphi_q(x_j)$ orthonormal polynomials

Random Samping (RS)-HDMR extension

Optimisation of the polynomial expansion order (1)

- Usually the same polynomial order is used for all first-order and second-order component functions respectively
- Order of the polynomial approximation should be chosen separately for each component function
- Optimisation algorithm is based on least square method
- Sum of square errors is calculated using the results of the full model runs and the approximation of the component functions by various orders (e.g. 0th to 5th order)
- Smallest sum of square errors indicates the best approximation order for the corresponding component function

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Random Samping (RS)-HDMR extension

Optimisation of the polynomial expansion order (2)

- Exclude component functions which do not contribute (identified as 0th order by optimisation)
- Threshold to exclude unimportant component functions (not identified as 0th order, but only very small contribution to overall value)
- Idea: avoid the need for screening methods
- Low computational effort to calculate optimal order for all polynomials
- Improvement in the accuracy of the final model replacement

< □ > < □ > < □ > < □ >

Global sensitivity analysis

Sensitivity Indices

- Sensitivity Indices measure the effect of one or more input parameters on the output
- S_i measures the effect of x_i (fractional contribution)
- S_{ii} measures the interactive effect of x_i and x_i

Computation

• Easily calculated from the HDMR expansion (no additional full model runs required), e.g.

$$D_i pprox \sum_{r=1}^{k_i} (lpha_r^i)^2 \qquad S_i = rac{D_i}{D_i}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Global sensitivity analysis

Sensitivity Indices

- Sensitivity Indices measure the effect of one or more input parameters on the output
- *S_i* measures the effect of *x_i* (fractional contribution)
- S_{ii} measures the interactive effect of x_i and x_i

Computation

 Easily calculated from the HDMR expansion (no additional full model runs required), e.g.

$$D_i pprox \sum_{r=1}^{k_i} (lpha_r^i)^2 \qquad S_i = rac{D_i}{D}$$

▲ 同 ▶ - ▲ 三 ▶

Application

Modelling in combustion

- Aim: development of combustion applications with low emissions of pollutants such as nitrogen and sulphur oxides
- Design of low emission technologies depends on accurate computational models describing combustion processes
- Trace amounts of sulphur in fuel can have an impact on the extent of nitrogen oxide emissions
- Models required which describe the interaction of sulphur containing compounds with other species within flames

• • • • • • • • • • • • •

Application

Methane flame model

- Premixed methane flame model describing the influence of sulphur containing compounds on the formation of nitrogen oxides
- Assessment of the resulting uncertainty in predictions of nitrogen oxide emissions is important to improve the confidence in the design process
- Modelling using CHEMKIN and simulation using PREMIX
- Model contains large number of parameters (with large uncertainty ranges)
- 177 uncertain parameters: 153 reactions rates and 24 heats of formation (calculated by NASA polynomials)

Investigated scenarios

- Output of interest: NO concentration
- Uncertainty ranges for all parameters according to min and max value with equal probability
- Ranges for the 153 reaction rates according to Tomlin (2006)
- 3 different sets of ranges for the 24 heats of formation:
- **①** Δ **Hf** = ±10**KJ** for all 24 parameters (assume equal uncertainties)
- Ranges according to Burcat table if available (ΔHf SN = ±105KJ) (http://technicon.ac.il/~aer0201)
- ③ Ranges according to Burcat table, but △Hf SN = +13KJ (based on updated value for heats of formations for SN according to Peebles and Marshal (2002) with smaller uncertainty range)

Investigated scenarios

- Output of interest: NO concentration
- Uncertainty ranges for all parameters according to min and max value with equal probability
- Ranges for the 153 reaction rates according to Tomlin (2006)
- 3 different sets of ranges for the 24 heats of formation:

• Δ Hf = ±10KJ for all 24 parameters (assume equal uncertainties)

Ranges according to Burcat table if available (ΔHf SN = ±105KJ) (http://technicon.ac.il/~aer0201)

③ Ranges according to Burcat table, but △Hf SN = +13KJ (based on updated value for heats of formations for SN according to Peebles and Marshal (2002) with smaller uncertainty range)

Investigated scenarios

- Output of interest: NO concentration
- Uncertainty ranges for all parameters according to min and max value with equal probability
- Ranges for the 153 reaction rates according to Tomlin (2006)
- 3 different sets of ranges for the 24 heats of formation:
- AHf = ±10KJ for all 24 parameters (assume equal uncertainties)
- Ranges according to Burcat table if available (ΔHf SN = ±105KJ) (http://technicon.ac.il/~aer0201)

■ Ranges according to Burcat table, but △Hf SN = +13KJ (based on updated value for heats of formations for SN according to Peebles and Marshal (2002) with smaller uncertainty range)

Investigated scenarios

- Output of interest: NO concentration
- Uncertainty ranges for all parameters according to min and max value with equal probability
- Ranges for the 153 reaction rates according to Tomlin (2006)
- 3 different sets of ranges for the 24 heats of formation:
- Δ Hf = ±10KJ for all 24 parameters (assume equal uncertainties)
- Ranges according to Burcat table if available (ΔHf SN = ±105KJ) (http://technicon.ac.il/~aer0201)
- Sanges according to Burcat table, but △Hf SN = +13KJ (based on updated value for heats of formations for SN according to Peebles and Marshal (2002) with smaller uncertainty range)

HDMR set up

- Second order RS-HDMR expansion
- Approximation of the component function by orthonormal polynomials
- Quasi-random sampling (N=1024)
- Optimisation of the polynomial order:
 - Maximum order for approximation of first-order component functions: 10
 - Maximum order for approximation of second-order component functions: 3
- Excluding component functions via threshold
- Correlation method for variance reduction (Li et. al 2002)
- HDMR method including all 177 parameters

★ ∃ ► 4

- Sample size: N=1024
- Threshold to exclude component functions: 1 %

Optimal polynomial order

5 of 177 first-order component functions are non-zero

- 2 have been approximated by 1st-order polynomials
- 2 have been approximated by 2nd-order polynomials
- 1 has been approximated by 8th-order polynomial

• 0 of 15576 second-order component functions are non-zero

- Sample size: N=1024
- Threshold to exclude component functions: 0.001 %

Optimal polynomial order

• 51 of 177 first-order component functions are non-zero

- 25 have been approximated by 1st-order polynomials
- 17 have been approximated by 2nd-order polynomials
- 6 have been approximated by 3rd-order polynomials
- 1 has been approximated by 4th-order polynomial
- 1 has been approximated by 5th-order polynomial
- 1 has been approximated by 9th-order polynomial
- 4 of 15576 second-order component functions are non-zero
 - 4 have been approximated by 1st-order polynomials

Accuracy - variance

- No additional full model runs required
- Variance full model runs (N=1024): $D = 1.7367 \cdot 10^{-8}$
- Variance 1st-order model replacement: $\hat{D}_{1st} = 1.7002 \cdot 10^{-8} \rightarrow 97.89\%$
- Variance 2nd-order model replacement: $\hat{D}_{2nd} = 1.7043 \cdot 10^{-8} \rightarrow 98.13\%$

Accuracy - Relative Error (RE)

- Additional set of full model runs required (N=2000)
- Ist-order model replacement 5 % RE: 99.50 %
- 2nd-order model replacement 5 % RE: 99.65 %

• • • • • • • • • • • • •

Accuracy - variance

- No additional full model runs required
- Variance full model runs (N=1024): $D = 1.7367 \cdot 10^{-8}$
- Variance 1st-order model replacement: $\hat{D}_{1st} = 1.7002 \cdot 10^{-8} \rightarrow 97.89\%$
- Variance 2nd-order model replacement: $\hat{D}_{2nd} = 1.7043 \cdot 10^{-8} \rightarrow 98.13\%$

Accuracy - Relative Error (RE)

- Additional set of full model runs required (N=2000)
- Ist-order model replacement 5 % RE: 99.50 %
- 2nd-order model replacement 5 % RE: 99.65 %

Results - Scenario 3 (Burcat table, Δ Hf SN = +13KJ)

Scatter plots

< 🗇 🕨

Results - Scenario 3 (Burcat table, Δ Hf SN = +13KJ)

Scatter plots + first-order RS-HDMR component function

Tilo Ziehn (University of Leeds)

SAMO 2007 17 / 28

Results - Scenario 3 (Burcat table, Δ Hf SN = +13KJ)

Scatter plots + first-order RS-HDMR component functions

18/28

• • • • • • • • • • • •

Tilo Ziehn (University of Leeds)

First and second-order sensitivity indices (N=1024)

Parameter	Rank	S_i
SO + NH = NO + SH	1	0.5956
SO + N = NO + S	2	0.2758
$\mathrm{SO} + \mathrm{OH} = \mathrm{SO}_2 + \mathrm{H}$	3	0.0735
ΔHf SO	4	0.0140
$\mathrm{SH} + \mathrm{NH} = \mathrm{NS} + \mathrm{H}_2$	5	0.0111
$\sum S_i$		0.9784
Parameter 1	Parameter 2	S_{ij}
$SO + OH = SO_2 + H$	SO + NH = NO + SH	0.0018
SH + H = H2 + S	$\mathrm{SH} + \mathrm{NH} = \mathrm{NS} + \mathrm{H}_2$	0.0015
$\mathbf{S} + \mathbf{C}\mathbf{S}_2 = \mathbf{C}\mathbf{S} + \mathbf{S}_2$	$\mathrm{HS}_2 + \mathrm{H} + \mathrm{M} = \mathrm{H}_2 \mathrm{S}_2 + \mathrm{M}$	0.0005
$H_2S+M=H_2+S+M$	$S + NO_2 = NO + SO$	0.0004
$\sum S_{ij}$		0.0042
		0.0000

4 A N

Results - comparison of all scenarios

First-order sensitivity indices (N=1024)

	Scenario 1		Scenario 2		Scenario 3	
	$(\Delta Hf = \pm 10 KJ)$		$(\Delta Hf SN = \pm 105 KJ)$		$(\Delta Hf SN = +13KJ)$	
Parameter	S _i (Rank)		<i>S_i</i> (Rank)		<i>S_i</i> (Rank)	
SO + NH = NO + SH	0.2297	(3)	0.3631	(1)	0.5956	(1)
SO + N = NO + S	0.1007	(4)	0.1219	(3)	0.2758	(2)
$SO + OH = SO_2 + H$	0.0255	(5)	0.0316	(4)	0.0735	(3)
Δ Hf SO	0.3082	(1)	0.0101	(5)	0.0140	(4)
$SH + NH = NS + H_2$	0.0035		0.0019		0.0111	(5)
Δ Hf SO ₂	0.2874	(2)	0		0	
Δ Hf SN	0.0001		0.3479	(2)	0.0001	
$\sum S_i$	0.9771		0.8904		0.9784	
S	0.9842		0.9055		0.9826	

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Improvement of the accuracy

- RS-HDMR method using 177 inputs (N=4096)
- Morris Method to identify unimportant parameters first (N=1780) + RS-HDMR method using 47 inputs (N=1024)

	RS-HDMR	RS-HDMR	Screening + RS-HDMR
	(N=1024)	(N=4096)	(N=1780+1024)
1st-order 5 % RE	85.85 %	90.40%	89.90 %
2nd-order 5 % RE	86.25 %	94.80 %	95.30 %

First-order sensitivity indices

- RS-HDMR method using 177 inputs (N=4096)
- Morris Method to identify unimportant parameters first (N=1780) + RS-HDMR method using 47 inputs (N=1024)

	RS-HDMR		Screening + RS-HDMR		
Parameter	S_i	(Rank)	S_i	(Rank)	
ΔHf SN	0.3815	(1)	0.3855	(1)	
SO + NH = NO + SH	0.3700	(2)	0.3719	(2)	
SO + N = NO + S	0.1344	(3)	0.1365	(3)	
$SO + OH = SO_2 + H$	0.0410	(4)	0.0386	(4)	
ΔHf SO	0.0086	(5)	0.0087	(5)	
$\sum S_i$	0.9524		0.9590		
S	0.9695		0.9755		

Results - Scenario 2 (Burcat table, Δ Hf SN = \pm 105KJ)

First-order RS-HDMR component functions and scatter plot

ロトメ 聞き メヨトメヨト 三星 三名

SAMO 2007

23/28

Tilo Ziehn (University of Leeds)

First-order RS-HDMR component functions and scatter plot

SAMO 2007

24/28

Tilo Ziehn (University of Leeds)

HDMR Software

Graphical User Interface for RS-HDMR

🛃 <student version=""> : RS-HDMR GUI Ver</student>	s. 0.1 - Setup	_ = ×
File Help		r
_ Sample files		
Sample input-file (for HDMR): Sample output-file (for HDMR):	177 Inputs and 10000 Samples 1 Output and 4096 Samples	
Sample input–file (for accuracy test): Sample output–file (for accuracy test):	177 Inputs and 2000 Samples 1 Output and 2000 Samples	
Settings		
Number of samples to use for HDMR: Number of samples to use for accuracy test + Max order for approximation of 1st-order cor Max order for approximation of 2nd-order co	- scatter plots: mponent functions : mponent functions :	1024 1000 9 3
Variance reduction method : Number of iterations for 1st-order componen Number of iterations for 2nd-order componen	correlation 100 10	
Do you want to use a threshold? Value of threshold for 1st–order component f Value of threshold for 2nd–order component	iunctions (in %): functions (in %):	yes • 0.001 0.001
Default		ОК

HDMR Software

Graphical User Interface for RS-HDMR

File Help • Results Ist-order 51 out of 177 first-order component functions are computed to be non-zero Ist-order S1 out of 177 first-order component functions are computed to be non-zero Component functions approximated by Ist-order polynomials: 25 Ist-order polynomials: 17 3rd-order polynomials: 17 Ist-order polynomials: 1 Sth-order polynomials: 1 Output: 0 Output: 1 Output: 1 Accuracy Relative Error	🛃 <student th="" v<=""><th>'ersion> : RS-HDMR GUI Vers.</th><th>0.1 - Results</th><th></th></student>	'ersion> : RS-HDMR GUI Vers.	0.1 - Results	
Results First-order component functions for output: 1 S1 out of 177 first-order component functions are computed to be non-zero Ist-order Component functions approximated by Ind-order 1st-order polynomials: 25 Accuracy 3rd-order polynomials: 17 3rd-order polynomials: 6 4th-order polynomials: 1 Sth-order polynomials: 0 5th-order polynomials: 0 2nd-order 7th-order polynomials: 0 9th-order polynomials: 1 1 Output: 10th-order polynomials: 0 4 9th-order polynomials: 0	File Help			ы
Results 51 out of 177 first-order component functions are computed to be non-zero Ist-order Component functions approximated by Ind-order 1st-order polynomials: 25 Accuracy Ist-order polynomials: 17 Sth-order polynomials: 17 3rd-order polynomials: 6 Accuracy 4th-order polynomials: 1 Ist-order 5th-order polynomials: 0 Ist-order 7th-order polynomials: 0 Sth-order polynomials: 1 0 Output: 10th-order polynomials: 0 I		First-order component function	ons for output: 1	
1st-order Component functions approximated by 2nd-order 1st-order polynomials: 25 2nd-order polynomials: 17 Accuracy 3rd-order polynomials: 17 1st-order Sth-order polynomials: 1 2nd-order polynomials: 1 1 2nd-order Sth-order polynomials: 0 2nd-order Sth-order polynomials: 0 2nd-order Sth-order polynomials: 0 2nd-order Sth-order polynomials: 0 3th-order polynomials: 1 0 Output: 10th-order polynomials: 0 1 Accuracy - Relative Fror	Results	51 out of 177 first-order cor	nponent functions are computed to be non-zero	
2nd-order 1st-order polynomials: 25 2nd-order polynomials: 17 Accuracy 3rd-order polynomials: 17 1st-order 5th-order polynomials: 1 2nd-order 5th-order polynomials: 1 2nd-order 7th-order polynomials: 0 2nd-order 7th-order polynomials: 0 3th-order polynomials: 1 0 2nd-order 7th-order polynomials: 0 3th-order polynomials: 1 0 0utput: 10th-order polynomials: 0 1 - Accuracy - Belative Fror -	1st-order	Component functions approximated by		
Accuracy 2nd-order polynomials: 17 Accuracy 3rd-order polynomials: 6 1st-order 4th-order polynomials: 1 2nd-order 5th-order polynomials: 1 2nd-order 5th-order polynomials: 0 2nd-order 7th-order polynomials: 0 3th-order 9th-order polynomials: 1 Output: 10th-order polynomials: 0 1 - Accuracy - Belative Fror -	2nd-order	1st-order polynomials:	25	
Accuracy 3rd-order polynomials: 6 1st-order 4th-order polynomials: 1 1st-order 5th-order polynomials: 1 2nd-order 7th-order polynomials: 0 8th-order polynomials: 0 3th-order polynomials: 0utput: 10th-order polynomials: 1 - Accuracy - Belative Frror -		2nd-order polynomials:	17	
Accuracy 4th-order polynomials: 1 1st-order 5th-order polynomials: 1 2nd-order 7th-order polynomials: 0 3th-order polynomials: 0 9th-order polynomials: 1 0utput: 10th-order polynomials: 1 - Accuracy - Belative Fror	A	3rd–order polynomials:	6	
1st-order 5th-order polynomials: 1 2nd-order 6th-order polynomials: 0 2nd-order 7th-order polynomials: 0 9th-order polynomials: 1 0 Output: 10th-order polynomials: 0 1 - Accuracy - Relative Fror -	Accuracy	4th-order polynomials:	1	
2nd-order 6th-order polynomials: 0 2nd-order 7th-order polynomials: 0 8th-order polynomials: 0 9th-order polynomials: 1 0utput: 10th-order polynomials: 0 1 - Accuracy - Relative Fror -	1st–order	5th-order polynomials:	1	
2nd-order 7th-order polynomials: 0 8th-order polynomials: 0 9th-order polynomials: 1 Output: 10th-order polynomials: 0 1		6th-order polynomials:	0	
8th-order polynomials: 0 9th-order polynomials: 1 Output: 10th-order polynomials: 0 1 - Accuracy - Belative From	2nd-order	7th–order polynomials:	0	
Output: 9th-order polynomials: 1 1 10th-order polynomials: 0 1 - Accuracy - Relative Error		8th-order polynomials:	0	
Output: 10th-order polynomials: 0		9th-order polynomials:	1	
Accuracy - Relative Fron	Output:	10th-order polynomials:	0	
		Accuracy – Relative Error		
1% RE: 68.5 % 10% RE: 100 %	Exit	1% RE: 68.5 %	10% RE: 100 %	
5% RE: 99.8 % 20% RE: 100 %		5% RE: 99.8 %	20% RE: 100 %	

- 4 ∃ →

HDMR Software

Graphical User Interface for RS-HDMR

<ロ> <同> <同> < 同> < 同> 、

Conclusions

- RS-HDMR method provides straightforeward approach for global sensitivity analysis
- However, extension to existing HDMR tools necessary to explore large number of input parameters
- Optimisation method in combination with excluding component functions via a threshold is one useful extension
- Variance reduction method (correlation method, Li et. al 2003) useful to further improve accuracy
- Generally no screening method necessary in order to reduce the number of parameters, but using one can in certain cases reduce the computational effort
- Final ranking of the important parameters is critically dependent on the input ranges chosen

• • • • • • • • • • • •