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Introduction

Need for new methods in sensitivity analysis

Complex chemical mechanisms are increasingly used in models
describing a range of important chemical processes (e.g.
combustion)
Models contain a large number of parameters and are often highly
non-linear
Large uncertainty ranges for the parameters
Models are computationally expensive to run
Traditional methods for global uncertainty and sensitivity analysis
not suitable due to their computational expense and the difficulty
in interpreting the results
Aim: method that can cope with large parameter numbers
Do we need a screening method, which identifies unimportant
parameters beforehand?
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HDMR - High Dimensional Model Representation

High Dimensional Model Representation (HDMR)

HDMR basics
Output f (x) of a model can be expressed as finite hierarchical
function expansion in terms of the input parameters x

f (x) = f0 +
n∑

i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi , xj) + . . . + f12...n(x1, x2, . . . , xn)

Usually HDMR expansion to second order provides satisfactory
results and a good description of f (x)

Provides detailed input-output mapping suitable to create a model
replacement and for global SA
Several decomposition methods: e.g. cut-HDMR, RS-HDMR
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HDMR - High Dimensional Model Representation

Random Samping (RS)-HDMR

Principles
Only one set of random samples necessary to estimate all
component functions
Component functions can be approximated by analytical basis
functions such as polynomials or splines

fi(xi) ≈
k∑

r=1

αi
rϕr (xi)

fij(xi , xj) ≈
l∑

p=1

l ′∑
q=1

β ij
pqϕp(xi)ϕq(xj)

Here:ϕr (xi), ϕp(xi) and ϕq(xj) orthonormal polynomials
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HDMR - High Dimensional Model Representation

Random Samping (RS)-HDMR extension

Optimisation of the polynomial expansion order (1)
Usually the same polynomial order is used for all first-order and
second-order component functions respectively
Order of the polynomial approximation should be chosen
separately for each component function
Optimisation algorithm is based on least square method
Sum of square errors is calculated using the results of the full
model runs and the approximation of the component functions by
various orders (e.g. 0th to 5th order)
Smallest sum of square errors indicates the best approximation
order for the corresponding component function
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HDMR - High Dimensional Model Representation

Random Samping (RS)-HDMR extension

Optimisation of the polynomial expansion order (2)
Exclude component functions which do not contribute (identified
as 0th order by optimisation)
Threshold to exclude unimportant component functions (not
identified as 0th order, but only very small contribution to overall
value)
Idea: avoid the need for screening methods
Low computational effort to calculate optimal order for all
polynomials
Improvement in the accuracy of the final model replacement
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HDMR - High Dimensional Model Representation

Global sensitivity analysis

Sensitivity Indices
Sensitivity Indices measure the effect of one or more input
parameters on the output
Si measures the effect of xi (fractional contribution)
Sij measures the interactive effect of xi and xj

Computation
Easily calculated from the HDMR expansion (no additional full
model runs required), e.g.

Di ≈
ki∑

r=1

(αi
r )

2 Si =
Di

D
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Application and Results

Application

Modelling in combustion
Aim: development of combustion applications with low emissions
of pollutants such as nitrogen and sulphur oxides
Design of low emission technologies depends on accurate
computational models describing combustion processes
Trace amounts of sulphur in fuel can have an impact on the extent
of nitrogen oxide emissions
Models required which describe the interaction of sulphur
containing compounds with other species within flames
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Application and Results

Application

Methane flame model
Premixed methane flame model describing the influence of
sulphur containing compounds on the formation of nitrogen oxides
Assessment of the resulting uncertainty in predictions of nitrogen
oxide emissions is important to improve the confidence in the
design process
Modelling using CHEMKIN and simulation using PREMIX
Model contains large number of parameters (with large
uncertainty ranges)
177 uncertain parameters: 153 reactions rates and 24 heats of
formation (calculated by NASA polynomials)
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Application and Results

Methane flame model

Investigated scenarios
Output of interest: NO concentration
Uncertainty ranges for all parameters according to min and max
value with equal probability
Ranges for the 153 reaction rates according to Tomlin (2006)
3 different sets of ranges for the 24 heats of formation:

1 ∆Hf = ±10KJ for all 24 parameters (assume equal uncertainties)
2 Ranges according to Burcat table if available (∆Hf SN = ±105KJ)

(http://technicon.ac.il/˜aer0201)
3 Ranges according to Burcat table, but ∆Hf SN = +13KJ (based on

updated value for heats of formations for SN according to Peebles
and Marshal (2002) with smaller uncertainty range)
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Application and Results

Methane flame model

HDMR set up
Second order RS-HDMR expansion
Approximation of the component function by orthonormal
polynomials
Quasi-random sampling (N=1024)
Optimisation of the polynomial order:

Maximum order for approximation of first-order component
functions: 10
Maximum order for approximation of second-order component
functions: 3

Excluding component functions via threshold
Correlation method for variance reduction (Li et. al 2002)
HDMR method including all 177 parameters
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Application and Results

Results - Scenario 3 (Burcat table, ∆Hf SN = +13KJ)

Sample size: N=1024
Threshold to exclude component functions: 1 %

Optimal polynomial order
5 of 177 first-order component functions are non-zero

2 have been approximated by 1st-order polynomials
2 have been approximated by 2nd-order polynomials
1 has been approximated by 8th-order polynomial

0 of 15576 second-order component functions are non-zero
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Application and Results

Results - Scenario 3 (Burcat table, ∆Hf SN = +13KJ)

Sample size: N=1024
Threshold to exclude component functions: 0.001 %

Optimal polynomial order
51 of 177 first-order component functions are non-zero

25 have been approximated by 1st-order polynomials
17 have been approximated by 2nd-order polynomials
6 have been approximated by 3rd-order polynomials
1 has been approximated by 4th-order polynomial
1 has been approximated by 5th-order polynomial
1 has been approximated by 9th-order polynomial

4 of 15576 second-order component functions are non-zero
4 have been approximated by 1st-order polynomials
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Application and Results

Results - Scenario 3 (Burcat table, ∆Hf SN = +13KJ)

Accuracy - variance
No additional full model runs required
Variance full model runs (N=1024): D = 1.7367 · 10−8

Variance 1st-order model replacement:
D̂1st = 1.7002 · 10−8 → 97.89 %

Variance 2nd-order model replacement:
D̂2nd = 1.7043 · 10−8 → 98.13 %

Accuracy - Relative Error (RE)
Additional set of full model runs required (N=2000)
1st-order model replacement 5 % RE: 99.50 %

2nd-order model replacement 5 % RE: 99.65 %
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Application and Results

Results - Scenario 3 (Burcat table, ∆Hf SN = +13KJ)

Scatter plots
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Application and Results

Results - Scenario 3 (Burcat table, ∆Hf SN = +13KJ)

Scatter plots + first-order RS-HDMR component function
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Scatter
1st−order HDMR + mean
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Application and Results

Results - Scenario 3 (Burcat table, ∆Hf SN = +13KJ)

Scatter plots + first-order RS-HDMR component functions
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Application and Results

Results - Scenario 3 (Burcat table, ∆Hf SN = +13KJ)

First and second-order sensitivity indices (N=1024)
Parameter Rank Si

SO + NH = NO + SH 1 0.5956
SO + N = NO + S 2 0.2758
SO + OH = SO2 + H 3 0.0735
∆Hf SO 4 0.0140
SH + NH = NS + H2 5 0.0111P

Si 0.9784
Parameter 1 Parameter 2 Sij

SO + OH = SO2 + H SO + NH = NO + SH 0.0018
SH + H = H2 + S SH + NH = NS + H2 0.0015
S + CS2 = CS + S2 HS2 + H + M = H2S2 + M 0.0005
H2S + M = H2 + S + M S + NO2 = NO + SO 0.0004P

Sij 0.0042
S 0.9826
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Application and Results

Results - comparison of all scenarios

First-order sensitivity indices (N=1024)

Scenario 1 Scenario 2 Scenario 3
(∆Hf = ±10KJ) (∆Hf SN = ±105KJ) (∆Hf SN = +13KJ)

Parameter Si (Rank) Si (Rank) Si (Rank)
SO + NH = NO + SH 0.2297 (3) 0.3631 (1) 0.5956 (1)
SO + N = NO + S 0.1007 (4) 0.1219 (3) 0.2758 (2)
SO + OH = SO2 + H 0.0255 (5) 0.0316 (4) 0.0735 (3)
∆Hf SO 0.3082 (1) 0.0101 (5) 0.0140 (4)
SH + NH = NS + H2 0.0035 0.0019 0.0111 (5)
∆Hf SO2 0.2874 (2) 0 0
∆Hf SN 0.0001 0.3479 (2) 0.0001∑

Si 0.9771 0.8904 0.9784
S 0.9842 0.9055 0.9826
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Application and Results

Results - Scenario 2 (Burcat table, ∆Hf SN = ±105KJ)

Improvement of the accuracy
1 RS-HDMR method using 177 inputs (N=4096)
2 Morris Method to identify unimportant parameters first (N=1780) +

RS-HDMR method using 47 inputs (N=1024)

RS-HDMR RS-HDMR Screening + RS-HDMR
(N=1024) (N=4096) (N=1780+1024)

1st-order 5 % RE 85.85 % 90.40 % 89.90 %
2nd-order 5 % RE 86.25 % 94.80 % 95.30 %
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Application and Results

Results - Scenario 2 (Burcat table, ∆Hf SN = ±105KJ)

First-order sensitivity indices
1 RS-HDMR method using 177 inputs (N=4096)
2 Morris Method to identify unimportant parameters first (N=1780) +

RS-HDMR method using 47 inputs (N=1024)

RS-HDMR Screening + RS-HDMR
Parameter Si (Rank) Si (Rank)
∆Hf SN 0.3815 (1) 0.3855 (1)
SO + NH = NO + SH 0.3700 (2) 0.3719 (2)
SO + N = NO + S 0.1344 (3) 0.1365 (3)
SO + OH = SO2 + H 0.0410 (4) 0.0386 (4)
∆Hf SO 0.0086 (5) 0.0087 (5)∑

Si 0.9524 0.9590
S 0.9695 0.9755
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Application and Results

Results - Scenario 2 (Burcat table, ∆Hf SN = ±105KJ)

First-order RS-HDMR component functions and scatter plot
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Application and Results

Results - Scenario 2 (Burcat table, ∆Hf SN = ±105KJ)

First-order RS-HDMR component functions and scatter plot
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HDMR Software

Graphical User Interface for RS-HDMR
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HDMR Software
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Conclusions

Conclusions

RS-HDMR method provides straightforeward approach for global
sensitivity analysis
However, extension to existing HDMR tools necessary to explore
large number of input parameters
Optimisation method in combination with excluding component
functions via a threshold is one useful extension
Variance reduction method (correlation method, Li et. al 2003)
useful to further improve accuracy
Generally no screening method necessary in order to reduce the
number of parameters, but using one can in certain cases reduce
the computational effort
Final ranking of the important parameters is critically dependent
on the input ranges chosen
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