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Böttcher, L. Brodský, C.W. Du, A. Chappell, Y. Fouad, V. Genot, C. Gomez,

S. Grunwald, A. Gubler, C. Guerrero, C.B. Hedley, M. Knadel, H.J.M. Morrás,

M. Nocita, L. Ramirez-Lopez, P. Roudier, E.M. Rufasto Campos, P. Sanborn,

V.M. Sellitto, K.A. Sudduth, B.G. Rawlins, C. Walter, L.A. Winowiecki, S.Y.

Hong, W. Ji

PII: S0012-8252(16)30011-3

DOI: doi: 10.1016/j.earscirev.2016.01.012

Reference: EARTH 2222

To appear in: Earth Science Reviews

Received date: 30 October 2015

Revised date: 24 January 2016

Accepted date: 25 January 2016

Please cite this article as: Viscarra Rossel, R.A., Behrens, T., Ben-Dor, E., Brown, D.J.,
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Adamchukj, H. Äıchik, B.G. Barthèsl, H.M. Bartholomeusm, A.D. Bayern,
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Geography, University of Tüebingen, Germany, cThe Remote Sensing and GIS

laboratory Department of Geography, PO Dox 39040, Tel-Aviv University 69989,

Israel, dWashington State University, USA, eDepartment of Soil Science, College of

Agriculture Luiz de Queiroz, São Paulo University, Piracicaba, São Paulo, Brasil,

fWorld Agroforestry Centre, ICRAF, PO Box 30677-00100, Nairobi, Kenya,

gInstitute of Applied Remote Sensing and Information Technology, College of

Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road,

Hangzhou, 310058, China, hSwedish University of Agricultural Sciences, Department

of Soil and Environment, PO Box 234, 532 23 Skara, Sweden, iGeorges Lemâıtre
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Abstract

Soil provides ecosystem services, supports human health and habitation, stores

carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil

from degradation and urbanization are threatening agro-ecological balances and food

security. It is important that we learn more about soil to sustainably manage and

preserve it for future generations. To this end, we developed and analyzed a global

soil visible–near infrared (vis–NIR) spectral library. It is currently the largest and

most diverse database of its kind. We show that the information encoded in the

spectra can describe soil composition and be associated to land cover and its global

geographic distribution, which acts as a surrogate for global climate variability. We

also show the usefulness of the global spectra for predicting soil attributes such as soil

organic and inorganic carbon, clay, silt, sand and iron contents, cation exchange

capacity, and pH. Using wavelets to treat the spectra, which were recorded in

different laboratories using different spectrometers and methods, helped to improve

the spectroscopic modelling. We found that modelling a diverse set of spectra with a

machine learning algorithm can find the local relationships in the data to produce

accurate predictions. The spectroscopic models that we derived are parsimonious and

robust, and using them we derived a harmonized global soil attribute dataset, which

might serve to facilitate research on soil at the global scale. This spectroscopic

approach should help to deal with the shortage of data on soil to better understand it

and to meet the growing demand for information to assess and monitor soil at scales

ranging from regional to global. We hope that this work might reinvigorate our

community’s discussion towards larger, more coordinated collaborations and

encourage other contributions. We also hope that use of the database will deepen our

understanding of soil so that we might sustainably manage it and push the research

outcomes of the soil, earth and environmental sciences towards applications that we

have not yet dreamed of.

Keywords : soil spectral library; global soil dataset; soil vis–NIR spectra; vis–NIR
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spectroscopy, multivariate statistics; machine learning; wavelets.
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1 Introduction

Soil is a vital component of the Earth’s critical zone. It provides ecosystem services,

filters water, supplies nutrients to plants, provides us with food, fibre and energy,

supports human health and habitation, stores carbon, regulates the emissions of

greenhouse gases and it affects our climate. There are unprecedented pressures on soil

from degradation and urbanisation, which are threatening those functions,

agro-ecological balances and food security. It is important that we learn more about

soil to manage it sustainably, in the context of the Sustainable Development Goals

(UN Sustainable Development Knowledge Platform, 2015), and to preserve it for

future generations.

To gain a better understanding of soil, its properties, processes and functions, all

of which vary at different spatial and temporal scales, we need to develop effective

methods to measure and monitor it. Conventional laboratory methods used to

analyse soil properties are generally impractical because they are time-consuming,

expensive and sometimes imprecise (e.g. Lyons et al., 2011). Often, these methods

need significant amounts of sample preparation, harmful reagents and sometimes use

complex apparatus that are inadequate when many measurements are needed, for

example for soil mapping, monitoring and modelling.

Visible and infrared spectroscopy can effectively characterize soil. Spectroscopic

measurements are rapid, precise and inexpensive. The spectra encode information on

the inherent composition of soil, which comprises minerals, organic compounds and

water. The minerals and the tightly bound water are traits that soil has inherited

from its parent material and has acquired during its formation from that material in

response to its environment and treatment by man. All of these encodings are

represented in the spectra as absorptions at specific wavelengths of electromagnetic

radiation, and we can use measurements of them to describe soil both qualitatively

and quantitatively.

Many researchers have shown that spectra in the visible and near infrared
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(vis–NIR) can characterize the chemical, physical and mineralogical composition of

the soil (Stoner and Baumgardner, 1981; Ben-Dor and Banin, 1994). Broad weakly

expressed absorption bands at wavelengths smaller than 1000 nm can result from

chromophores and iron oxides; narrow, well-defined absorption bands near 1400 and

1900 nm are due to hydroxyl bonds and water; absorptions near 2200 nm arise from

clay minerals; organic matter absorbs at various wavelengths throughout the vis–NIR

spectrum. Spectroscopy also provides information on soil particle size and thus

information on the soil matrix. Another attractive feature of spectroscopy is that

spectra can be recorded at points or by imaging, from different platforms; by

proximal sensing in the field, in the laboratory using sampled material, or from

remote sensing platforms with multi- and hyperspectral capabilities (Figure 1).

Figure 1 Platforms near here

Visible–near infrared spectrometers have developed considerably over the past 30

years (Figure 2). Currently, new technologies that use microelectromechanical

structures (MEMSs) (Johnson, 2015), thin film filters, lasers, light emitting diodes

(LED), fibre optic assemblies, and high performance detector arrays (Coates, 2014)

are being used to produce miniaturised hand-held instruments that are rugged and

cheap. Continual improvements in computing and statistics have helped to extract

useful information from the spectra and to improve our understanding of soil.

Figure 2 shows citations for some of the earlier studies that report the effects of soil

water, particle size and chemical composition on vis–NIR spectra, as well as a sample

of published research to date.

Figure 2 Timeline near here

Over the past few decades the exponential increase in the numbers of articles on
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spectroscopy in the soil science and related literature (Guerrero et al., 2010) has been

out of proportion to the reporting of truly novel research. Many of these articles

report little more than the outcomes of multivariate calibrations with data from small

experiments in individual fields, though there have been some for larger regions and

countries. They have shown that the technique can be used to predict attributes such

as amounts of organic carbon, clay and water in soil and cation exchange capacity.

They have also shown that the predictions of some attributes, such as the soil’s pH

and the contents of plant nutrients, cannot be predicted consistently (Stenberg et al.,

2010). But there has been much duplication of objectives and rather few publications

describing significant advances or novel applications. It seems that the adoption of

vis–NIR in laboratories is, in practice, only incremental and still waiting to happen.

These are reasons for the growing interest in an international database of

vis–NIR spectra linked to information on the soil’s composition. The database might

then be used to further the research on soil vis–NIR spectroscopy and for the

prediction of the soil’s attributes, condition and functions where measurements of

those qualities are lacking and would be too expensive to make using conventional

laboratory methods (Viscarra Rossel et al., 2006; Nocita et al., 2015b).

In 2008 we began to develop a global library of soil vis–NIR spectra as a

voluntary collaborative project in response to the growing interest mentioned above.

We were scientists from six countries, each representing Africa, Asia, Australia,

Europe, North America and South America. Part of our aim was to bring together a

community of scientists to further the research, encourage the development of new

applications and the adoption of spectroscopy in the soil, earth and environmental

sciences. The spectral library might then be used for applications at a range of

spatial scales, in the laboratory, in the field and from the air (Figure 1). The

scientists in this core group discussed how the project might proceed and produced

the general guidelines, standards and protocols for the project and for the consistent

measurement of spectra in the laboratory (see Appendix A, B).

8
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Here we report on this global effort and our findings thus far. We describe the

development of the global vis–NIR spectral library. We show that the information it

contains can be used to characterize soil and its variability and diversity globally, and

that by deriving a spectral classification we can describe the associations between

spectra, soil, land cover and geography. We also show the usefulness of the global

database for predicting soil attributes, such as soil organic and inorganic carbon, clay,

silt, sand and iron contents, cation exchange capacity and pH. We propose that this

spectroscopic approach should help to deal with the shortage of data on soil (Sanchez

et al., 2009) and to meet the growing demand for information to assess and monitor

soil at scales ranging from regional to global.

2 The global vis–NIR spectroscopic database

For spectra to be included in the database, we requested that they be from air dry

≤2mm soil and in the range between 350 to 2500 nm recorded in intervals of one,

two, five or 10 nm. We requested a minimum set of analytical data, geographic

location and metadata, but they were not always supplied. We asked contributors

that the spectra be representative of the variation in their spectroscopic databases

and if possible the variation of soil in their countries. Contributors were provided

with guidelines, minimum requirements and the measurement protocol for consistent

measurement of spectra in the laboratory. These are shown in Appendix A and B. To

date, 23 631 soil spectra have been contributed to the database by around 45 soil

scientists and researchers from 35 institutions. The contributors to the database so

far, by country and continent are listed in Table 1. The number of spectra by both

country and continent are given in Table 2.

Tables 1 and 2 Contributors and spectra by country near here
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The global database has spectra from 92 countries, representing seven continents

(Table 2). It includes spectra from soil in the World Soil Information (ISRIC)

collection, which were recorded by the World Agroforestry Centre (ICRAF) (ICRAF,

2015). It also includes spectra with corresponding soil attribute data from other

published, multi-national, national, regional and local databases. They are listed in

Table 1. The geographic locations of the spectra in the database are shown in

Figure 3.

Figure 3 World near here

There are many large gaps in Figure 3. Many countries are poorly represented

with only very few spectra. We would like to encourage participation from as many

countries as possible, particularly, we would like contributions from counties in

Central and South America, Mexico, Canada, Russia and Eastern Europe, Africa and

Asia.

2.1 Metadata

Spectra were recorded with Fieldspec R©, Agrispec R©, Terraspec R© or LabspecR©

instruments (PANalytical Inc., formerly Analytical Spectral Devices–ASD, Boulder,

CO), with a spectral range of 350–2500 nm and spectral resolution of 3 nm at 700

and 10 nm at 1400 and 2100 nm, and mostly with a contact probeR© or mugliteR©

lightsource also from PANalytical Inc.

The spectral resolution varies somewhat depending on type of spectrometer.

However, like Knadel et al. (2013), we also found that different instrumental

resolutions have no noticeable influence on the spectroscopic modelling. The most

common material used to calibrate the instruments was a SpectralonR© white

reference panel, although a different standard (Pimstein et al., 2011) was also used in

some cases to assess instrumental drift. The frequency of calibration with a reference
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panel ranged between once every measurement and once every 50 soil measurements,

with a median of once every 10 measurements. The number of readings averaged

during calibration and measurement ranged between 10 and 50 readings. The median

number of readings averaged during instrument calibration was 30 and during

measurements it was 10. The number of replicates per sample ranged between no

replication and six replicates; in most instances, however, there was no replication.

Approximately 84% of the spectra have coordinates recoded in WGS84 latitude

and longitudes, which belong to 12 509 unique sites (Figure 2). Eleven percent of the

spectra have no depth information recorded. Of those with a record, around 60% of

the spectra originate from within the 0–30 cm soil layer, 30% from within the

30–100 cm layer and 10% of the spectra originate from samples collected at depths

greater than 1 m. Around 15% of the spectra have information on the soil horizons

from where they originate, 95% are assigned a soil classification using the FAO–WRB

system (IUSS Working Group WRB, 2006). Land cover is recorded for around 80%

of the samples. The number of samples in the database by WRB major soil groups

and land cover type are listed in Table 3.

Table 3 WRB and land cover near here

Around 80% of the samples have measurements of soil organic carbon and clay

content, 65% have pH measured in water, around 50% have measurements of silt and

sand contents, 30% have pH measured in calcium chloride and cation exchange

capacity (CEC) and 20% have measurements of inorganic carbon and extractable

iron contents (Table 4). Around 25% of the measurements have records of the

laboratory method used in the analyses.

Table 4 Laboratory analysis near here
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Table 5 lists by continent and overall, the number of data, the soil attributes and

their statistics.

Table 5 Summary of soil data near here

The mean of the organic C data in the global database is 2.16%, the distribution

is positively skewed and the median is 1.00% (Table 5). The distributions of the data

on inorganic C and extractable Fe content were also positively skewed. The median

inorganic C content is 2.10% and the median extractable Fe content is 1.00%

(Table 5). The average CEC of the samples is 17.5 cmolc kg
−1, average pHWater is 6.57

and on average the samples in the database have more sand than clay and silt

(Table 5). The ranges of the soil attribute distributions are wide and their coefficients

of variation large, underlining the varied and diverse origin of the samples (Table 2).

3 Methods

3.1 A spectral classification for characterizing soil globally

To test whether spectra can be used to characterize soil and its variation globally, we

averaged the reflectance spectra from several depths (when recorded) to obtain a

single spectrum of the soil at each site. In doing so, we used the spectra from only

the top metre of soil; that gave us 12 509 individual units to analyse. We used spectra

in the range from 350 to 2500 nm, re-sampled at 10-nm intervals, so that we had 216

wavelengths for this analysis.

3.1.1 Continuum removal

The lower curves in Figure 4 show the average reflectance spectrum of each continent

and their corresponding standard deviation. All the spectra have a similar general

form with reflectance increasing with increasing wavelength in the visible range

12
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(400–700 nm) and a broad region within which are sharp absorption bands in the

infrared (700–2500 nm). We removed the general form of the reflectance spectra by

fitting a convex hull to each spectrum and computing the deviations from the hull

(Clark and Roush, 1984). The upper curves in Figure 4 show the form of the average

continuum removed (CR) spectra by continent. These CR spectra can be used to

isolate and identify characteristic absorptions of minerals, organic compounds and

water.

Figure 4 Spectra by continent

3.1.2 Principal component analyses

The CR spectra were centred and analysed by principal component analysis (PCA)

with the iterative NIPALS algorithm (Martens and Næs, 1989). The algorithm avoids

the computation of the covariance matrix, which when analysing large sets of data

with many variates, can be computationally inefficient. We did not standardize the

data to unit variance because all of our wavelengths are in the same units and the

differences in variation between them are inherently important. We used both the

scores and eigenvectors of the PCA to help interpret the global data. Table 6 shows

the results from the PCA. The three leading principal components of the spectra

described 86% of the information. The remaining components represent only small

proportions of the variance in the spectra and so they were not used subsequently.

Table 6 PCA
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3.1.3 Fuzzy c-means classification

To provide a more general description of the 12 509 spectra, the first three principal

component scores (Table 6) were classified by the fuzzy-c-means algorithm (Bezdek

et al., 1984). We used fuzzy classification instead of a ‘crisp’ method of multivariate

classification, such as the k-means technique, because the fuzzy approach provides

information on class overlaps, which helped to account for the continuous and

complex nature of the information in the spectra.

The fuzzy-c-means technique subdivides a set of multivariate data, in our case

the PCA scores, into c classes so that the pooled within-class variance is minimized,

and provides for individual units a fuzzy membership in each class centre, or centroid.

The membership functions as they are called, are continuous and range from 0 to 1.

As memberships approach zero the degree of similarity between the unit and the

particular class decreases, and as they approach 1, similarity increases. A description

of the fuzzy-c-means algorithm we used, based on Euclidean distances between

individual scores and class centroids, can be found in Bezdek et al. (1984), and we

direct the reader there for a full description.

To determine the optimal number of classes we used two validity indices. The

partition coefficient (Cp) and partition entropy (Ep) (Bezdek et al., 1984). The indices

focus on the within-class variance (or compactness) and the separation between the

classes (or isolation), respectively. The optimal, most compact partition with the

largest separation is obtained by maximization of the Cp and minimization of the Ep.

To assess the classification and the relative associations between the

memberships, we also calculated a confusion index for each unit as the ratio of the

second most dominant membership and the most dominant one. We plot and

interpreted these in the Results below.

14
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3.1.4 Correspondence analysis

We used a correspondence analysis to investigate the associations between soil type,

land cover, and geography, and the spectral classes defined above. Correspondence

analysis (CA) is conceptually similar to PCA in that it enables one to reduce the

dimensions of the data into a few orthogonal components that explain most of the

variation in the data. It is more general than PCA in that it can be applied to

categories in a contingency table and not only to continuous data. Our main purpose

in using it is to summarize the associations between the units in the rows (i.e. the

spectral classes) and the variables in the columns, (i.e. the categories of soil type,

land cover and geography) of the contingency table as a small number of principal

coordinates. The technique transforms both units and variables into the same set of

dimensions, so that one can visualize both the units and variables on the same space.

The algorithm is described in Greenacre (2007).

We plotted the scores for each spectral class and soil type, land cover, continents

and countries, jointly in ordination graphs to get insights into the associations

between them and to provide general descriptions of the soil, as represented by the

spectral classes, in the various countries and continents from which the spectra

originate and the soil types and land cover class in which they occur.

3.2 Global prediction of soil attributes

For the spectroscopic modelling we used data from different depth layers, not the

averaged spectra for each site, like for the analysis above.

3.2.1 Data and spectral screening, preprocessing and transformations

Not all 23 631 spectra have corresponding soil analytical data, and the analytical

methods used to measure the attributes were not recorded for all soil samples. The

records also show that different analytical methods were used to measure individual

soil attributes (Table 4).
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We did not attempt to harmonise the soil analytical data for each attribute

because of the largely incomplete metadata. However, for each soil attribute, when

discrepancies in the units used to report the data were apparent, we converted the

units to a common form. Then, we identified outliers in both the spectra and the soil

attributes, both visually and using the Mahalanobis distances on the correlations

between the spectra and the soil attributes. These were then removed from the data

set before the statistical analysis. Some attributes had strongly positively skewed

distributions, and to stabilize their variances for the spectroscopic modelling we

transformed the data to approximate normal distributions by taking either square

roots or logarithms.

To standardize the spectra for the spectroscopic modelling, we first subtracted

the reflectance of the first wavelength (with the minimum reflectance value) to correct

for potential baseline shifts between the measurements. The measured reflectances

were then converted to apparent absorbance as A = log10(1/Reflectance).

3.2.2 Denoising, compression and variable selection with wavelets

We used the discrete wavelet transform to denoise and compress the spectroscopic

database, and thereby produce a more parsimonious representation of the spectra for

the modelling. For this, we followed the approach described by Viscarra Rossel and

Lark (2009). The decomposition was made using a Daubechies’s wavelet with two

vanishing moments (Daubechies, 1988). Once the wavelet decomposition was

performed, we wanted to retain only those coefficients that produced the most

parsimonious representation of the global spectra and would be useful in the

spectroscopic modelling. Selection was based on the variance of the coefficients,

regardless of the wavelet scale to which they belonged (Viscarra Rossel and Lark,

2009). The rationale is that coefficients with larger variances, which can occur at

different wavelet scales, contain the systematic information in the spectra that is

useful for regression, while coefficients with small variances are less likely to be useful
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and can be discarded. The selected coefficients were then used as the predictors in

modelling and in the interpretation of the models.

3.2.3 Spectroscopic modelling for prediction of soil attributes

To train and then validate the spectroscopic models so that they could be used with

confidence, the dataset for each soil attribute separately were split into a training and

an independent validation set (roughly 75:25 split) by simple random sampling. To

develop the spectroscopic models on the training set, we used the decision trees

algorithm, Cubist. Quinlan (1992) provides detail on the algorithm, the construction

of the trees and the quantification of their errors.

Briefly, Cubist partitions the response data into subsets in which their

characteristics are similar with respect to their spectra and other predictors that

might be used. A series of rules derived using if–then conditions defines the

partitions, and these rules are arranged in a hierarchy. A condition may be simply

based on one wavelength or, more often, it comprises several wavelengths. If it is

true, then the next step is the prediction of the soil attribute by ordinary

least-squares regression from the wavelengths in that partition. If the condition is not

true, then the rule defines the next node in the tree, and the sequence of if–then–else

is repeated. The result is that the regression equations, although general in form, are

local to the partitions and their errors are smaller than they would otherwise be. It is

possible that any one observation and its associated predictors satisfy more than one

set of rules, in which case the average of the predictions is taken as the overall

prediction. Both continuous and categorical variables are allowed in the conditions,

but only numeric variables are used in the regression equations. Our implementation

here is similar to that described by Viscarra Rossel and Webster (2012).

To interpret the output from the modelling, we plotted on scalograms, the

wavelet coefficients that were used in more than 30% of cases by the decision trees.

We could then more clearly identify the dominant wavelengths that contributed to
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the models and the scales at which they occurred.

For each soil attribute we also performed the spectroscopic modelling separately

on each of the six fuzzy-c-means ‘crisp’ classes that we described earlier. In this way

we tested if a pre-classification of the spectra could further improve the spectroscopic

modelling with Cubist.

3.2.4 Estimation and uncertainty

To quantify the uncertainty in the spectroscopic models that we used to estimate the

soil properties, we followed the approach using the nonparametric bootstrap

described in Viscarra Rossel and Hicks (2015). It involves modelling of the soil

attributes with Cubist, as above, but using 100 bootstrap samples (Hastie et al.,

2009; Viscarra Rossel, 2007). We assumed that the spectra in the global database

would be independent and could be used with the bootstrap to measure the

uncertainty in our analysis. We modelled each bootstrap realisation independently

with Cubist and derived cumulative distribution functions for the predictions on the

validation dataset, which we used to compute the mean estimates, their standard

errors and 95% confidence limits to describe their uncertainty. When the soil data

were log or square-root transformed, we computed the estimates and their 95%

confidence limits on the transformed scale and then back-transformed them to assess

the models in the original scale.

3.2.5 Assessment statistics

For each soil property we assessed the performance of the models by comparing the

predicted values on the independent validation data set with the observed ones. In

each case, the root mean squared error (RMSE) was used to quantify the inaccuracy

of the estimates, the standard deviation of the error (SDE) to quantify their

imprecision, and the mean error (ME) to quantify the bias. We also report the

coefficient of determination (R2), the ratio of performance to deviation (RPD)

(Williams, 1987) and the concordance correlation coefficient (ρc) (Lin, 1989), which
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assesses the covariation and correspondence between our estimates and the original

data. The ρc statistic combines measures of both precision and bias to determine how

far the observed data deviate from the line of perfect concordance, which is the 1:1

line. It ranges from -1 to 1, where a value of 1 denotes perfect agreement, values

>0.90 suggest excellent agreement, values between 0.80 and 0.90 substantial

agreement, between 0.65 and 0.80 moderate agreement, and values <0.65 poor

agreement. These categories are only indicative. We encourage readers, in their

assessments of our results, to use the R2, RPD and ρc values in conjunction with the

measures of bias, imprecision and inaccuracy that we provide.

3.3 Harmonising the global soil database

We remodelled each soil attribute using 100 bootstraps and Cubist as described

above, but this time using all of the available spectra with matching analytical data.

These models were used to predict onto the entire database (N = 23361) for each of

the nine soil properties. For each set of predictions, as above, we calculated the

average estimates from the bootstraps, their standard errors and their 95% confidence

limits. Thus for each of the nine soil properties in the database, we produced a

complete set of soil attribute data that was harmonised by the spectroscopic method.

All of the spectroscopic and statistical analyses and modelling described above

were performed using the R software (R Development Core Team, 2008).

4 Results

4.1 Characterizing soil globally using a spectral classification

The eigenvectors of the first three principal components are shown in Figure 5a. That

of the first component is dominated by negative loadings around wavelengths that

show characteristic absorptions for hematite and kaolinite. The eigenvector of the

second component has positive loadings near wavelengths for the characteristic
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absorptions of 2:1 clay minerals and possibly organic matter, near 640 and 1850 nm

(Viscarra Rossel and Hicks, 2015). The eigenvector of the third component has large

positive loadings near 640 nm, which is attributed to organic matter and large

negative loadings that are due largely to illitic and smectitic clays. In the

eigenvectors of the second and third components there are also small loadings near

2340 and 2450 nm, which may be attributed to illite (Post and Noble, 1993), other

minerals with metal–OH bonds and carbonates (Hunt and Salisbury, 1971).

Figure 5 PCA and fuzzy

Figure 5b shows scatter diagrams of the scores from the first three principal

components, coloured by the six (crisp) classes from the fuzzy-c-means classification.

We selected six classes because the partition coefficient, Cp, was maximized and the

partition entropy, Ep, minimized at this partition (Table 7), which was then taken to

represent the most satisfactory classification for the data.

Table 7 Fuzzy validity near here

The first principal component describes variations in the clay and iron oxide

mineralogy of the global samples. On the left most (negative) parts of the first

principal component axis (Figures 5b(i–ii)), there is class 2, the average spectrum of

which (Figure 5e) is characterized by absorptions that depict weathered soil with

abundant kaolinite (a 1:1 clay mineral) and hematite.

The next class along this same axis is class 3 the average spectrum of which

(Figure 5g) is similar to that of class 2, but its absorptions are less intense. Class 4 is

next along the first principal component axis (near the zero value on Figure 5b(i–ii)),

its average spectrum (Figure 5i) is characterized by absorptions from goethite and 2:1

clay minerals. Unlike in classes 2 and 3 the presence of kaolinite in the samples of
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class 4, with its doublet absorption near 2160 and 2200 nm (Hunt and Salisbury,

1970), is not very apparent. Compared with the spectra in classes 2 and 3, the broad

iron oxide absorption is smaller with its centre slightly shifted towards longer

wavelengths near 950 nm, which are indicative of goethite (Sherman and Waite,

1985).

To end the mineralogical sequence on the first axis, there are classes 1 and 6.

They appear in a similar position on the axis (Figures 5b(i–ii)) and represent soil

with mainly 2:1 clay minerals but also some carbonate, that is, generally less

weathered soil. The average spectrum of class 1 (Figure 5c) is characterized by

absorptions that depict soil with abundant smectite (Clark et al., 1990), while the

average spectrum of class 6 (Figure 5m) depicts soil with abundant illite (Post and

Noble, 1993). The average spectra of both class 1 and class 6 also show small

absorptions due to goethite.

The second and third principal components describe variations of the samples in

terms of their mineralogy and organic matter contents. These components also

differentiate between the 2:1 clay minerals. On the negative ends of the second and

third axes (Figures 5b(i–iii)), there is class 5, the average spectrum of which

(Figure 5k) is characterized by a small overall reflectance with a broad absorption

between 400 and 1200 nm, which is characteristic of dark soils containing large

amounts of soil organic matter.

The fuzzy memberships of the global spectra to each individual class are shown

on the scatter diagrams of the scores of the first three principal components

(Figures 5d, f, h, j, l, n (i–iii)). The points, coloured by the membership value, show

the transitions and overlap between the classes. We think that they demonstrate the

continuous, complex and diverse nature of the information in the spectra.

The relative associations between the first two most dominant memberships to

each class are shown in Figure 6, and they support our results above.

21



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

Figure 6 Memberships dominant and associated

There are strong associations between class 1 and class 6, the classes that depict

soil with 2:1 clay minerals and between them and class 4, which represents soil

containing goethite as the dominant iron oxide (Figure 6). Memberships in class 2 are

associated with those of class 3, both classes depicting weathered soils with abundant

kaolinite and hematite. Class 3 has associations with class 4. Soil with large amounts

of organic matter represented by class 5 shows weak associations with soil containing

abundant iron oxides, classes 3 and 4, and smectite, class 1 (Figure 6).

4.1.1 Associations between spectra and soil type and land cover

The ordination diagrams from the correspondence analysis (CA) between the six

spectral classes and soil type and land cover are shown in Figures 7a and 7b.

Figure 7 CA plots

The first two components explained 80% and 93% of the variance in the

associations between the six classes and soil type and land cover, respectively.

Figures 7a and b can be interpreted together with the respective CA contingency

tables (Tables 8 and 9).

Table 8 and 9 correspondence contingencies soil and land cover near here

Vertisols are most closely associated with class 1 (Figure 7a; Table 8) which

represents soil with abundant smectite and some carbonate. Rendzinas, which are

most often derived from carbonate rocks plot in the upper right quadrant of

Figure 7a, but nearest to class 1. Soil in class 1 is mostly associated with
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non-vegetated lands and pastures, but also with mixed farming and cropping

(Figure 7b; Table 9).

Solonchaks and Arenosols occur in arid and semi-arid climates, while Nitosols

and Ferralsols develop as a consequence of deep weathering. They are closely

associated with classes 2 and 3 (Figure 7a; Table 8), which represent soil with

abundant kaolinite and hematite. Soil in class 2 is associated mostly with

non-vegetated lands and pastures, but also with mixed farming and forested areas

(Figure 7b; Table 9). Class 3 soil, however, is most closely associated with

non-vegetated lands and forests, but also pastures, cropping and forested land.

Cambisols, Fluvisols and Andosols are generally young soil types with little

profile development, and are most closely associated with classes 4 and 6 (Figure 7a;

Table 8), which represents soil with abundant goethite. Soil in class 4 is most closely

associated with forested and cropped land, but also with pastures and land used for

mixed farming (Figure 7b; Table 9).

Histosols and Phaeozems are most closely associated with class 5 (Figure 7a;

Table 8), which represents soil with abundant organic matter. Soil in class 5 is fairly

evenly distributed among land used for cropping, mixed farming, forests and pastures

(Table 9).

Gleysols, Podzols, Fluvisols and Cambisols occur in wetter environments from

either, fluvial, alluvial, colluvial or aeolian deposits, and are most closely associated

with class 6 (Figure 6a; Table 8), which represents soil with abundant illite. Class 6

soil is fairly evenly distributed among land used for cropping, mixed farming and

forests, but it is also associated with pastures (Table 9).

4.1.2 Associations between spectra and geography

The first two components from the CA explained 94% of the variance in the

associations between the six classes and the continents and 78% between the six

classes and the countries. The ordination diagrams from the CA between the six
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classes and the continents and countries are shown in Figures 7c and 7d, respectively.

These diagrams can be interpreted together with the CA contingency table

(Table 10).

Table 10 CA correspondence contingency geographic near here

The soil spectra that we have for Africa and South America are closely

associated and are represented by classes 2 and 3 (upper right quadrant of Figure 7c),

which depict weathered soil, typical of the tropics and with abundant kaolinite and

hematite. Their spectra are shown in Figure 4. They have the largest proportions of

samples in these classes (Table 10). The exception are the spectra from Argentina

and Uruguay where Phaeozems and Vertisols occupy large areas. Their spectra are

mostly represented by classes 1, 4, 5 (Table 10).

Antarctica is associated with classes 4 and 6 (bottom left quadrant of Figure 7c),

which represent soil containing goethite and 2:1 clay minerals, respectively. The

Antarctic soils in the database appear not to be deeply weathered and to contain

small amounts of organic matter. They do not have samples in classes 2 and 3 and

five, respectively (Table 10). The average spectrum from soil of the Ross Dependency

in Antarctica (Figure 4) shows a much younger age of the soil with broad absorption

characteristics of goethite near 1000 nm and those near 1400, 1900, and 2200 nm that

might be attributed to micaceous minerals such as illite and swelling smectitic clays

(Figure 4). This agrees with the mineralogical assessment of the region by Claridge

(1965).

Asia and Europe are most closely associated with classes 6 and 4 (upper left

quadrant of Figure 7c). These classes represent soil that is younger and contain

abundant illite and goethite. Asia and Europe have the largest proportions of

samples in these classes (Table 10), and their spectra show absorptions of illite near

2200 and 2340 nm (Figure 4).
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The average spectra of the soil samples from North America and Oceania cover

large latitudinal extents from equatorial, tropical to temperate and arctic regions

(Figure 3) and their spectra represent varied mineral and organic soil composition.

North American samples are represented largely by classes 1, 3, 4 and 6, representing

soil with predominantly 2:1 clay minerals and iron oxides (Table 10). North America

plots in the bottom right quadrant of Figure 7c, whilst Oceania plots on the bottom

right quadrant of Figure 7c, towards the centre of the graph. Its samples are evenly

represented by all six classes, pointing to the diversity of the Australian soil in the

database.

Similar interpretations can be made for the soil from the countries in the

database (Figure 7d). We note however, that our interpretations are based only on

the soil spectra that are in the database and acknowledge that the composition of soil

globally is likely to be more varied.

4.2 Global prediction of soil attributes

Following from the above analyses, it makes sense that vis–NIR spectra can be used

to derive spectroscopic models that predict soil attributes. Table 5 lists the number

of data that we had for the modelling of the soil attributes and their statistics.

Correlations between the soil attributes and the spectra, described by the scores of

their first three principal components, are given in Table 11.

Table 11 Correlations near here

The eigenvectors of the first principal component, which explains 55% of the

variation in the spectra relates primarily to weathered soil mineralogy (Figure 4),

particularly iron oxides and kaolinite. It has the strongest positive correlations to silt,

inorganic C, and Fe, while the strongest negative correlations are to CEC and organic

C (Table 11). The second principal component explains 16% of the spectral variation
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and represents smectitic mineralogy and organic matter in the soil (Figure 5). It is

positively correlated to clay content, pH and CEC, and negatively correlated to

organic C (Table 11). The eigenvectors of the third principal component explains

15% of the variation in the spectra and it relates to illitic and kaolinitic mineralogy.

It is positively correlated to pH and CEC and negatively correlated to clay content

(Table 11).

4.2.1 Validation of the global spectroscopic models

Treating the spectra with wavelets greatly reduced the dimensionality of the data by

removing noise and irrelevant information for the modelling of the soil attributes. For

example, to model organic C we needed only 125 wavelet coefficients, instead of 216

wavelengths, to model clay content we needed 71 coefficients and to model Fe we only

needed 32 wavelet coefficients (Table 12). Therefore, wavelets improved the

parsimony in the spectroscopic modelling with Cubist. Table 12 lists the overall

number of data used to train the models and the number used to validate them.

Table 12 validation near here

The statistics in Table 12 are for the best predictions on the validation samples,

some of which were obtained by modelling the data by spectral class. That is, for

some attributes, such as organic C, pH, clay, and sand contents, modelling the data

separately by spectral class (Figure 5), improved the estimates overall, while for

inorganic C, extractable Fe, CEC and silt content, the pre-classification of the data

before modelling with Cubist was inconsequential.

In Figure 8 we show the estimates of organic C obtained from Cubist with and

without the pre-classification.

Figures 8 and 9 validation near here
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The validation of the spectroscopic models to estimate organic C (Figure 8) and

extractable Fe (Figure 9) were excellent with ρc of 0.92 and 0.91, respectively.

Estimates of organic C were unbiased and their RMSE was 1.11%. The validations of

inorganic C and CEC were very good with ρc values of 0.87 and 0.82. Predictions of

clay and silt contents were also very good with ρc values of 0.80 for clay and 0.79 for

silt, and RMSEs of 10.26% and 10.33%, respectively (Table 12, Figure 9). The

spectroscopic model for estimating pH was somewhat less precise and its estimates

were moderately accurate producing an RMSE of 0.8 pH units and a ρc of 0.76. The

model for sand was imprecise and the RMSE of its estimates was 18.83% (Table 12,

Figure 9).

The estimates of the soil properties were generally unbiased but, as with any

regression, there was a tendency to overestimate smaller and underestimate larger

values (Figures 8 and 9). The pre-classification of the spectra prior to the

spectroscopic modelling reduced the smoothing of the Cubist estimates of organic C

(Figures 8). The imprecision of the estimates (Table 12, Figures 8 and 9), is likely to

be due to the diverse origin of the analytical data, the (unquantified) imprecision of

the laboratory measurements and the absence of any replication in the analysis. The

data comes from different laboratories from around the world, with measurements

made using different analytical methods (Table 4).

4.2.2 Interpretation of spectroscopic models

Figure 10 shows scalograms, which display the wavelet coefficients that were used by

Cubist to predict the soil properties, the scales at which they vary and their

respective wavelengths.

Figure 10 Scalograms near here

In Figure 10, the abscissa on the bottom depict the particular wavelet coefficients
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used in the models and on the top their corresponding wavelengths and a sample A

spectrum. The ordinate represents the wavelet scale. The third dimension,

represented by colour intensity, indicates the amplitude (or degree of importance) of a

particular coefficient at a particular scale.

For the soil attributes that we considered, except extractable Fe, the wavelet

coefficients that were most important in the modelling with Cubist were those that

occurred at the coarse scales (≥ 32) (Figure 10). They correspond to broad or

complex absorptions in the visible and in the near infrared and contain the lower

frequency systematic information in the spectra that are useful in the regressions

(Viscarra Rossel and Lark, 2009). Fewer wavelet coefficients from medium and fine

scales (≤ 16) were retained for the modelling of the soil attributes and when used,

they were generally less important compared to those from the coarse scales

(Figure 10). The coefficients from finer scales represent the high frequency, often

uncorrelated random noise elements in the spectra and many of these were discarded

and not used in the modelling. Hence there were generally fewer coefficients that were

used at the finest scales (areas of green Figure 10 where the amplitude of the

coefficients is 0). When coefficients at the finer scales (≤ 4) were used, they were at

discrete locations that correspond to specific and mostly known absorptions of soil

constituents. The exception is the model for sand, which appears to have fairly

evenly used coefficients from all scales (Figure 10f).

At the coarsest scale, Cubist used the wavelet coefficients that correspond to

absorptions throughout the visible range and in the near infrared near 1000 nm and

beyond 2200 nm (Figure 10). At scale 32, the coefficients used correspond to

absorptions between 400–500 nm, and near 680 nm. In the near infrared, the

coefficients used correspond to absorptions near 1000 nm, near 1625 nm, and between

2200 nm and 2400 nm. Surprisingly, the model for CEC, did not use coefficients in

the 2200–2500 nm range (Figure 10e), although this region contains absorptions that

relate to the soil’s mineral and organic composition. The model for extractable Fe did

28



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

not use coefficients at the coarsest scale, but at scale 32 it used coefficients that

correspond to absorptions in the visible and the short-wave near infrared up to

around 1100 nm, that are likely to be due to iron oxides (Figure 10g).

Wavelet coefficients that correspond to absorptions in the visible range

(Figure 10) up to the short-wave infrared around 1100 nm may be attributed to

electronic transitions in atoms of iron oxides, primarily hematite and goethite

(Sherman and Waite, 1985), but also organic matter (Viscarra Rossel and Hicks,

2015). Absorptions between 1000–1600 nm may be attributed to overtones of O–H

vibrations in clay minerals and water, while those between 1600–1900 nm may be due

to overtones of C–H and C–OH and O–H vibrations inorganic structures. The

absorptions near 1400 nm and 1900 nm are due to a H–O–H vibrations of water

adsorbed on mineral surfaces and in the structures of 2:1 clay minerals like smectite

(Clark et al., 1990). Absorptions between 2000–2500 nm are due to soil clay minerals,

carbonate and organic matter. Kaolinite absorbs near 2160 nm and 2200 nm, illite

near 2200 nm, 2340 nm and 2450 nm, smectite absorbs near 2200 nm but also near

2230 nm, depending on the lattice metal configuration. Carbonates absorb near

2340 nm, and there are absorptions in this range that result from overtones and

combination vibrations of organic matter compounds, including those of amines near

2100 nm, amides near 2030 nm, polysaccharides near 2140 nm, aliphatics near

2275 nm, carbohydrates near 2380 nm and methyls in the range between

2300–2500 nm (Viscarra Rossel and Behrens, 2010).

4.3 Harmonising the global soil attribute database

We used the spectroscopic models, described above, to predict onto the entire

spectroscopic database. These predictions provide a harmonised set of soil attribute

data because they were derived using a single method, vis–NIR spectroscopy, and

come with estimates of uncertainty that are described by 95% confidence limits.

Descriptive statistics for the harmonised data are given in Table 13.
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Table 13 Statistical summary of harmonised dataset.

The statistics in Table 13 are summarised by continent as an indicative means to

provide continental information and to show that our predictions for each attribute

produced sensible values. In doing so, we acknowledge that the sampling over many

of the worlds regions is sparse and strongly biased so that statistical comparisons of

continental means and variances may not be entirely appropriate.

The spatial distribution of the harmonised data is sensible (Figure 11). For

instance, it shows that there is more organic C in the soil of cooler and wetter

environments towards the highest latitudes, except in Antarctica (Figure 11). The

soil near the equator and that which occurs at mid-latitudes in either hemisphere,

where most agriculture occurs also has more organic C. Soil in these regions also

generally has larger CEC and is generally more acidic (Figure 11). The soil in Europe

and Asia has more silt than soil that is older and deeply weathered near the equator,

in Australia and Africa. Deeply weathered soil of the tropics, near the equator also

have larger amounts of extractable Fe. Soil in the arid regions of southern United

States, in Europe and Australia have more inorganic C.

Figure 11 Spatial distribution of sampled data near here

The harmonised soil data can also be interpreted considering the six spectral

classes from the fuzzy-c-means classification (Figure 12).

Figure 12 Harmonised boxplots near here

Soil belonging to class 1, dominated by smectitic mineralogy, contains the most

clay—on average around 45% clay, the least amount of sand, and the largest pH and

CECs (Figure 11). Although there was little evidence of carbonates in the average
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spectra, which commonly produce an absorption near 2335 nm (Clark et al., 1990),

soil belonging to this class also contained more inorganic C than soil in other classes.

Soil with large CECs were associated with soil that has either large amounts of

clay (class 1) or organic carbon (class 5). Weathered soil in classes 2 and 3, rich in

kaolinite and hematite contain more sand—on average 60% and 50%,

respectively—more extractable iron, smaller CEC and pH. On average, these soils

have around 20% clay and around 10% and 20% silt, respectively. Soil in classes 4

and 6, rich in goethite and illite, have the largest silt contents—on average around

25% and 30%, respectively, around 40% sand and 15% clay (Figure 12). The large

amount of sand in the soil of these classes might be due to poor dispersion of stable

micro-aggregates in strongly weathered soils. Class 4, like classes 2 and 3, also has

larger amounts of extractable iron. Soil in class 5 contains the most organic carbon,

the second largest CEC, after class 1, low pH, the least inorganic C and the least

amount of iron (Figure 12).

5 Discussion

5.1 The information content of the global spectra

Stoner and Baumgardner (1981) and Price (1990) suggested that the diversity of soil

reflectance spectra could be explained with four or five characteristic reflectance

curves. We now know that generalised spectral curves or a spectral classification, like

we did above, are useful for organising and then describing the information content of

soil spectra. The spatial (and temporal) variation in soil reflectance in the vis–NIR

cannot be adequately described by such general descriptions—this is confirmed by

our analyses. For example, none of the six spectral classes can describe soil type

variability and each soil type is associated with more than one spectral class (Figure

7; Table 8).

Soil reflectance, like other soil properties, varies continuously and the resulting

spectra represent complex compositional mixtures of soil materials from diverse
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origins, that are also affected by their environments. The membership functions from

the fuzzy-c-means classification (Figure 5) show the continuous nature of soil spectral

variation. Similar to soil classification, spectral classifications can help to understand,

explain, teach and communicate, but they are not useful for adequately describing

the variability of soil spectra.

5.2 Relative accuracy of the global predictions

The accuracies of the global spectroscopic models predictions were comparable to

those reported in the literature for prediction at different scales (Figure 13; Tables

with the review data in appendix C).

Figure 13 Review of literature

The accuracies of our estimates are similar to those of other studies conducted at

continental and global scales (Figure 13). In some cases they are better and in other

a little worse, although direct comparisons are difficult because there are no other

studies made using a global dataset that is as large or diverse as the one here.

Our results show that vis–NIR spectroscopy can be used to predict soil attributes

using historical soil spectroscopic databases, developed by different people and for

different applications. Filtering and standardising the global spectra with wavelets

helped account for the inconsistencies in sample preparation, different measurement

protocols and instruments used in the many laboratories (Table 2). Modelling of the

global spectra with a data mining machine learning algorithm helped to find local

relationships in the data to produce relatively accurate predictions of the soil

attributes studied (Figure 13). Soil spectroscopy is a highly reproducible analytical

method so the inaccuracies in the spectroscopic models are largely due to the

inconsistencies of the reference soil analyses.

We have not tested the use of the global database for predictions of soil
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attributes at local scales (e.g. Ramirez-Lopez et al., 2013; Guerrero et al., 2016). This

was not our objective here, however, we believe that more research is needed to

optimally use large spectroscopic databases for local predictions of soil attributes.

Large databases such as this one, should at the very least help to improve the

robustness of local spectroscopic models.

5.3 The global database for soil mapping, modelling and mon-

itoring

Both the models and the harmonised data and uncertainties, may be used in different

applications and for different purposes. For instance, the harmonised soil attribute

data, with estimates of uncertainty, could be used to complement and help to

improve regional, continental and global soil resource assessment at those scales. The

spectra and spectroscopic models could be used to make predictions of soil attributes,

mineralogy and soil type, where these measurements are lacking and would be too

expensive to make by conventional laboratory means. The global spectroscopic

database should also help to reduce the number of soil samples that need to be

measured with the reference analytical method, thereby making the assessments of

soil more affordable. The spectra can also be used as a proxy for classifying soil

(Viscarra Rossel and Webster, 2011; Vasques et al., 2014) and could form the basis

for a unifying and objective global soil classification system to organise our

understanding and to help communicate and teach.

Although the spectroscopic estimates might be less accurate than laboratory

measurements, the models provide rapid and inexpensive measures, with estimates of

uncertainty, compared to the traditional wet chemistry and laboratory physics (Nanni

and Demattê, 2006; Viscarra Rossel et al., 2006; Nocita et al., 2015a). If one cannot

afford many conventional laboratory measurements then vis–NIR spectroscopy should

provide harmonised soil data that are sufficiently accurate for mapping, modelling

and for use in data-model assimilation techniques for monitoring. The accuracies of

spectroscopic estimates made from using large continental spectroscopic databases,
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have been shown to be sufficient for large scale mapping of soil mineralogy

(Viscarra Rossel et al., 2010; Viscarra Rossel, 2011), organic carbon (Viscarra Rossel

et al., 2014) and other soil attributes across the whole of Australia and Africa

(Viscarra Rossel et al., 2015; V̊agen et al., 2016).

The largest uncertainty in the use of soil information is in predicting soil

behaviour from measured soil attributes. Future efforts might therefore be best

focused on relating soil behaviour and management responses directly to soil spectral,

which provide a reliable and composite measure of mineral and organic composition.

5.4 Linking the global database with proximal and remote

sensing

Spectroscopy, in the laboratory and in the field by proximal and remote sensing, has

become an indispensable tool for soil, earth and environmental scientists who need

soil information.

There is significant advantage to be gained by combining the use of laboratory

spectra with proximal and remote sensing. Spectra measured in the laboratory

provide a useful basis for proximal and remote sensing measurements. The

advantages of proximal sensing are that one can measure the soil with minimal

preparation, no interferences (e.g. from atmosphere, clouds or vegetation) and to

depth. Remote sensing enables measurements over larger areas (and scales) and at

potentially finer temporal resolutions. There are examples of laboratory, proximal,

and remote vis–NIR spectroscopic sensing research, but few that combine their use

(Ben-Dor and Banin, 1995; Ben-Dor et al., 2002; Gomez et al., 2008; Stevens et al.,

2008). The reason might be that there are significant challenges posed by the

inherent differences between the standardised laboratory measurements and those

made under natural conditions, in the field.

Approaches are being developed to account for the effects of water and other

environmental factors on proximally sensed spectra so that they may be used

together with spectroscopic databases measured in the laboratory (e.g. Minasny
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et al., 2011; Ji et al., 2015). Accounting for these effects on remote sensing spectra

are fundamentally more difficult because of the interferences mentioned above and

because the natural roughness of the soil surface creates anisotropic patterns that

cast shadows, which affect the measurements (e.g Pinty et al., 1989; Chappell et al.,

2006; Croft et al., 2009). The global database might help to develop methodologies

that bridge the gap between laboratory, proximal and remote sensing.

The global spectra might form the basis for new developments in hyperspectral

remote sensing of soil, or at least, they may enable appropriate validation of the

reflectance information extracted from the remote sensing products of current and

future airborne and satellite hyperspectral spectrometers. The spectra might also be

used for downscaling of the coarse resolution remote sensing images to help with

regional assessments of soil condition. As we have shown here, vis–NIR spectra

measure the inherent composition of the soil, so using the global spectra as baselines

and proximal and remote sensors for monitoring changes in the spectra at those

locations, might form a strong base for the development of an effective global soil

monitoring network. This approach might be increasingly important to maintain the

soil resource, human activities and food supply, as global population continues to

grow.

6 Conclusions and future considerations

The global vis–NIR soil spectroscopic database we developed and analyzed is the

largest and most diverse currently available. Its spectra can effectively describe global

soil composition and our understanding of soil type. Information encoded in the

spectra can be associated to land cover and its global geographic distribution, which

may be acting as a surrogate for global climate variability.

We have shown that a global vis–NIR spectroscopic database describes soil

variation and that the spectra provide an integrative measure of the soil, which can

be used for both qualitative and quantitative soil analyses. We derived global

spectroscopic models for prediction of individual soil attributes and their
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uncertainties. Using wavelets as a pretreatment before the spectroscopic modeling

helped to remove unwanted background noise from the spectra. This allowed us to

analyze a fairly inconsistent database with spectra and soil attributes that were

measured in different laboratories using different spectrometers and methods and

derive spectroscopic models that were parsimonious and robust.

We found that globally, modeling a diverse set of spectra with a data mining

algorithm can, for most attributes, find the local relationships in the data to produce

accurate predictions. Modeling regionally did not always help, except for some

attributes (e.g soil organic C) where grouping the spectra into more homogeneous

spectral classes (irrespective of geographical position) improved the modeling by

removing bias in the predictions. Our results show that the global spectroscopic

database can accurately estimate soil organic and inorganic C and extractable Fe and

fairly accurately estimate CEC, clay and silt contents and pH. Using these

spectroscopic models, we derived a harmonized global soil attribute dataset, which

might facilitate research on soil and biogeochemical cycles at regional and global

scales.

Soil vis–NIR spectroscopy is a versatile tool that can provide harmonized data

with sufficient accuracy for different applications. It can help to overcome the

world-wide shortage of soil data and it could also help to assess and monitor global

changes in soil condition. We hope this work and the global vis–NIR spectroscopic

database might reinvigorate our community’s discussion of scientific practice towards

larger, more coordinated collaboration and encourage other contributions. We also

hope that use of the database will deepen our understanding of soil (so that we might

sustainably manage it) and push the research outcomes of the soil, earth and

environmental sciences towards applications that we have not yet dreamed of.
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Wetterlind, J., Stenberg, B., Söderström, M., 2010. Increased sample point density in

farm soil mapping by local calibration of visible and near infrared prediction

models. Geoderma 153 (3–4), 152–160.

Wetterlind, J., Stenberg, B., Viscarra Rossel, R. A., 2013. Soil analysis using visible

and near infrared spectroscopy. In: Maathuis, F. J. (Ed.), Plant Mineral Nutrients.

Vol. 953 of Methods in Molecular Biology. Humana Press, pp. 95–107.

Williams, P. C., 1987. Variables affecting near infrared reflectance spectroscopic

analysis. In: Williams, P., Norris, K. (Eds.), Near infrared technology in the

agricultural and food industries. American Association of Cereal Chemists Inc.,

Saint Paul, MN, pp. 143–167.

59



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

Winowiecki, L., 2008. Soil biogeochemical patterns in the Talamanca foothills, Costa

Rica: Local soil knowledge and implications for agroecosystems. Ph.D. thesis,

University of Idaho, USA and CATIE, Costa Rica.

Xie, H. T., Yang, X. M., Drury, C. F., Yang, J. Y., Zhang, X. D., 2011. Predicting

soil organic carbon and total nitrogen using mid and near infrared spectra for

Brookston clay loam soil in Southwestern Ontario, Canada. Canadian Journal of

Soil Science 91 (1), 53–63.

Xie, X., Pan, X., Sun, B., 2012. Visible and near infrared diffuse reflectance

spectroscopy for prediction of soil properties near a copper smelter. Pedosphere

22 (3), 351–366.

Yang, X. M., Xie, H. T., Drury, C. F., Reynolds, W. D., Yang, J. Y., Zhang, X. D.,

2012. Determination of organic carbon and nitrogen in particulate organic matter

and particle size fractions of Brookston clay loam soil using infrared spectroscopy.

European Journal of Soil Science 63 (2), 177–188.

Zornoza, R., Guerrero, C., Mataix-Solera, J., Scow, K., Arcenegui, V.,

Mataix-Beneyto, J., 2008. Near infrared spectroscopy for determination of various

physical, chemical and biochemical properties in mediterranean soils. Soil Biology

and Biochemistry 40 (7), 1923–1930.

60



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

Figure captions

Figure 1. Soil vis–NIR spectra can be measured at points or by imaging, from

different platforms; by proximal sensing in the field, in the laboratory using sampled

material, or from remote sensing systems with multi- and hyperspectral capabilities.

The graph shows typical spectra for soil noting absorptions to minerals and organic

matter in the visible (vis) and near infrared, separating the regions where overtones

(OT) and combination vibrations occur.

Figure 2 The soil vis–NIR spectroscopy timeline showing important

developments, early publications and a small but important sample of the published

research to date. The black disc in 2008 represents the conception of the global soil

spectroscopy project..

Figure 3 Locations of the 12 509 unique sites with reflectance spectra that are

in the global database.

Figure 4 Average reflectance spectra by continent (see Table 1 for

abbreviations) and their standard deviations. Upper curves are the continuum

removed (CR) spectra..

Figure 5 Principal component analysis (PCA) and fuzzy-c-means classification:

(a) first three loadings of the PCA analysis, (b, i–iii) PCA scores coloured by the six

‘crisp’ fuzzy-c-means classes, (c, e, g, i, k, m) average continuum removed (CR)

spectra (solid curves) and standard deviations (broken curves) for the six

fuzzy-c-means classes (colours correspond to the classes shown in (b)), (d, f, h, j, l, n,

i–iii) are the membership functions for each class, which show that the information

content of the soil spectra vary continuously.

Figure 6 Associations between the six different spectral classes derived by

classifying the scores from the principal component analysis of the global spectra with

the fuzzy-c-means algorithm.

Figure 7 Ordination diagrams from the correspondence analysis (CA) between

the six spectral classes and (a) soil type, (b) land cover, (c) continent and (d) country
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(see Table 2 for country name abbreviations).

Figure 8 Independent test set validation of the soil organic C predictions from

Cubist showing the observed values against the predicted ones and their

uncertainties coloured by continent, using (a) a pre-classfication of the spectra into

the six spectral classes, and (b) without the pre-classication. The statistics shown are

the concordance correlation coefficient (ρc) and the root mean square error (RMSE).

Figure 9 Independent test set validations of the best soil attribute predictions

from Cubist showing the observed values against the predicted ones and their

uncertainties coloured by continent. The statistics shown are the concordance

correlation coefficient (ρc) and the root mean square error (RMSE).

Figure 10 Scalograms showing the wavelet coefficient that were used by

Cubist to predict the soil properties, the scales at which they vary and their

respective wavelengths. The abscissa on the bottom depict the particular wavelet

coefficient used in the models and on the top their corresponding wavelengths and a

sample A = log(1/Reflectance) spectrum. The ordinate represents the wavelet scale.

The third dimension, represented by colour intensity, indicates the amplitude (or

degree of importance) of a particular coefficient at a particular scale..

Figure 11 Spatial distribution of the predicted soil attribute data harmonised

with the spectroscopic method. The attributes shown are (a) soil organic C (SOC) in

the log scale, (b) pHw, (c) cation exchange capacity (CEC), (d) extractable Fe in the

log scale, (e) soil inorganic C (SIC) in the log scale, (f) clay content, (g) sand content

and (h) silt content. For (a), (d) and (e) we transformed the predictions to the log

scale to help visualise their global variability.

Figure 12 Boxplots of the predicted harmonised soil properties by spectral

class. Class 1 represents soil with smectitic mineralogy and with some carbonates,

classes 2 and 3 represent weathered soil rich in kaolinite, hematite and sand, classes 4

and 6 represent soil with goethite and illite and soil in class 5 represents soil with

organic material.
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Figure 13 Review of literature showing quantile boxplots of the root mean

square error (RMSE) of predictions made with visiblenear infrared spectroscopic

models, grouped by scale. RMSEv are from the independent test set validations and

RMSEc are from the cross validations. The local scale comprises studies on single or

several fields, or small areas with similar soil types, the regional scale comprises

studies over larger geographical areas than local, or including several soil types, the

country scale comprises studies over entire countries or from many regions across a

country, or many soil types, and the global and continental scale comprises studies

across several countries and across diverse soil types. The black diamonds represent

the RMSEs obtained in the modelling of the global data. The data used to derive the

boxplots are given in Appendix C.
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Table 1: Contributors to the global spectral database, their affiliations and citations
for the spectra that are included in the database

.
Contributor Continent, Country Abbreviation Reference

Africa AF
K. Shepherd, A. Sila Kenya KE ICRAF
H. Aı̈chi Tunisia TN Aı̈chi et al. (2013)
B.G Barthès, M. Bernoux Madagascar MG IRD
M. Bernoux, D. Brunet Senegal SN IRD
A. Bayer South Africa ZA Bayer et al. (2012)
M. Nocita Nocita et al. (2011)
A. Demattê Angola AO São Paulo University

Antarctica AN
C. Hedley, P. Roudier Ross Dependency RD Roudier et al. (2013)

Asia AS
E. Ben Dor Israel IL Ben-Dor and Banin (1994)
Z. Shi, China CN Shi et al. (2014b)
D. Changwen China CN Ma et al. (2012)
H. Abbaslou Iran IR Uni. Shiraz
R. Viscarra Rossel Brunei BN CSIRO
A. Ringrose-Voase Philippines PH CSIRO
S. Y. Hong and E. Choi South Korea KR Chung et al. (2012)
S. Shibusawa, M. Kodaira Japan JP TUAT

Europe EU
B. Stenberg, J. Eriksson Sweden SE Stenberg (2010)
M. Knadel, A. Thomsen, Denmark DK Knadel et al. (2012)
H. Bartholomeus Netherlands NL WUR
H. Bartholomeus Russia RU Bartholomeus et al. (2012)
A. Stevens, V. Genot Belgium BE Genot et al. (2011)
Y. Fouad, C. Walter, France FR Aı̈chi et al. (2009)
C. Gomez France FR Ouerghemmi et al. (2011)
C. Guerrero, V Barrón Spain ES Uni. M. H. de Elche
T. Behrens Germany DE Uni. of Tüebingen
K. Böttcher, Italy IT Böttcher et al. (2008)
T. Kemper, S. Sommer
M. Sellito
B. Rawlins, A. Chappell United Kingdom UK Rawlins et al. (2011)
A. Gubler Switzerland CH Gubler (2011)
L. Brodsky Czech Republic CZ Brodský et al. (2011)

North America NA
D. Brown United States (+ other) US Brown et al. (2006)
K. Sudduth, N.R. Kitchen, United States US Lee et al. (2010)
S.T. Drummond, S. Grunwald
P. Sanborn, Canada CA Uni. Northern British Columbia
V. Adamchuk Uni. McGill
B.G Barthès, M. Bernoux Martinique MQ IRD
L. Winowiecki Costa Rica CR Winowiecki (2008)

Oceania OC
R. Viscarra Rossel Australia AU Viscarra Rossel and Webster (2012)
C. Hedley, B. Kusumo New Zealand NZ Kusumo et al. (2008)

South America SA
A. Demattê Brazil BR Bellinaso et al. (2010)
L. Ramirez Lopez Colombia CO CORPOICA
C. Castilla
H. J.M. Morrás Argentina AR CIRN-INTA
E. Rufasto Campos Perú PE UNPRG

Other
ISRIC World Soil Information Other countries–see Table 2 ICRAF (2015)64
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Table 3: Number of samples in the global soil spectroscopic database by World Refer-
ence Base (WRB) major soil groups and land cover type

.
WRB Soil type Count % Total Land use type Count % Total
Acrisols 1690 7 Bare 353 1
Albeluvisols 86 < 1 Cropland 4743 20
Andosols 657 3 Forest 4199 18
Arenosols 1508 6 Grassland-Shrubland 6709 28
Cambisols 2306 10 Mixed farming 2616 11
Chernozems 218 1 Native vegetation 549 2
Ferralsols 915 4 Other 224 1
Fluvisols 703 3 Paddy 60 < 1
Gleysols 1422 6 Not recorded 4178 18
Gypsisols 940 4
Histosols 121 < 1
Kastanozems 880 4
Leptosols 671 3
Luvisols 3665 16
Nitosols 488 2
Phaeozems 1102 5
Planosols 1290 5
Podzols 1014 4
Regosols 368 2
Solonchaks 175 < 1
Solonetz 686 3
Vertisols 1981 8
Not recorded 745 3
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Table 4: Metadata of analytical methods. N is the number of data, M is the total
number of data with a record of the analytical method and m is the number of records
with the specific method used

.

Soil attribute N M Method m

Organic C /% 17 931 9757 Walkley-Black 7509
Oxidation with H2O2 978
Loss on ignition 671
CHN Pyrolysis 269
Tyurin method 134
Springer-Klee 110
Dry combustion 86

Inorganic C /% 2690 1388 HCl treatment and manometer 1363
Volumetric calcimeter 25

pH 20 515 20 515 1:5 Water 14 820
1:5 0.01M Calcium chloride 5695

CEC /cmol(+)kg−1 9588 5014 Ammonium acetate pH 7 4262
Ammonium chloride pH 7 584
Silver thiourea 130
Compulsive exchange 31
Ammonium chloride pH 8.5 7

Fe /% 4151 3311 Citrate-Dithionite 3239
DTPA 67
Oxalate 5

Clay /% 17 463 10 064 Pipette 5389
Sand /% 12 058 3395 Hydrometer 3395
Silt /% 9542 1280 Laser granulometer 572

Plummet balance 358
Bouyoucos 298
Spectroscopic 52
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Table 5: Statistical summary of the soil data. N is the number of units for which
measurements exist.

.
Continent N Mean St. dev. Min. Med. Max. Skew. Coeff. var.
Organic C /%
Africa 1606 1.193 1.714 0.01 0.62 24.91 4.648 143.7
Antarctica 144 0.09 0.107 0.01 0.05 0.59 2.359 118.8
Asia 2516 2.11 3.996 0.02 1.18 55.7 6.938 189.4
Europe 3187 2.633 3.552 0.02 1.8 50.6 6.494 134.9
North America 4821 1.595 4.198 0.01 0.54 55.27 8.084 263.2
Oceania 4315 2.069 3.163 0.01 1.17 46 6.702 152.8
South America 1339 4.871 5.97 0.01 1.96 28.16 1.553 122.6
All 17928 2.163 3.917 0.01 1.00 55.7 6.133 181.2
Inorganic C /%
Africa 132 3.341 6.135 0.024 1.4 30.7 3.506 183.6
Asia 594 7.962 8.338 0.024 7.15 69.1 2.984 104.7
Europe 354 10.794 13.769 0.012 3.3 69.8 1.617 127.6
North America 1286 2.555 5.218 0.012 1.338 75.7 6.634 204.2
Oceania 11 4.536 2.008 2.3 4.3 9.4 1.087 44.3
South America 156 3.739 4.144 0.024 2.2 20.4 1.777 110.8
All 2533 5.097 8.341 0.012 2.1 75.7 3.478 188.5
Fe /%
Africa 453 3.831 4.908 0.04 1.28 20.2 1.524 128.1
Asia 331 1.347 1.386 0.02 1.00 8.7 2.612 102.9
Europe 288 0.711 0.952 0.01 0.45 11.5 6.239 134.0
North America 2543 1.67 1.776 0.1 1.2 15.8 3.588 106.3
Oceania 452 0.757 1.151 0.006 0.33 13.7 4.366 151.9
South America 32 0.98 0.717 0.09 1.00 2.7 0.786 73.2
All 4099 1.709 2.38 0.006 1.00 20.2 3.77 139.9
CEC /cmolc Kg−1

Africa 918 11.384 13.047 0.2 6.9 84.1 2.693 114.6
Asia 1777 17.365 14.301 0.1 13.3 104.2 2.118 82.4
Europe 807 17.438 12.381 0.2 15 75.1 1.03 71.0
North America 4048 19.582 13.642 0.2 16.1 98.3 1.199 69.7
Oceania 1329 18.078 16.198 0.1 12.3 84 1.047 89.6
South America 619 12.527 13.226 0.2 8.3 77.6 1.875 105.6
All 9498 17.522 14.219 0.1 13.7 104.2 1.439 82.3
pHwater

Africa 905 5.863 1.117 3.6 5.6 9.1 0.821 19.0
Antarctica 144 7.861 0.514 6.71 7.89 9.22 -0.143 6.5
Asia 1767 6.097 1.335 3.5 5.81 10 0.544 21.9
Europe 1028 6.575 1.397 3.4 6.6 10 -0.156 21.2
North America 4042 6.614 1.36 3.4 6.6 9.9 -0.087 20.6
Oceania 6055 6.818 1.251 3.5 6.6 10.03 0.263 18.40
South America 621 5.881 1.291 3.6 5.5 9.6 0.77 21.9
All 14562 6.568 1.338 3.4 6.4 10.03 0.15 20.62
Clay /%
Africa 1266 31.964 19.781 0.2 29.7 90.8 0.51 61.9
Asia 1692 32.071 20.187 0.2 29.05 95.6 0.857 62.9
Europe 3165 21.92 16.042 0.2 17.8 96.8 1.324 73.2
North America 5040 26.029 18.056 0.1 23.9 90 0.78 69.4
Oceania 4896 28.011 19.766 0.3 23.4 85 0.495 70.6
South America 1223 35.719 24.345 0.2 29 92.7 0.524 68.2
All 17282 27.55 19.441 0.1 23.4 96.8 0.793 71.2
Sand /%
Africa 1005 50.088 26.003 1.4 50.1 99.4 -0.109 51.9
Asia 1077 29.918 23.875 0.1 25.2 98.9 0.725 79.8
Europe 1762 36.062 26.762 0.2 29.67 99.2 0.618 74.2
North America 4088 35.71 26.351 0.1 31.35 99 0.513 73.8
Oceania 3095 57.995 25.539 1.07 61 99 -0.314 44.0
South America 609 42.498 27.169 1.3 39.4 97.2 0.272 63.9
All 11636 42.752 27.952 0.1 40 99.4 0.237 65.5
Silt /%
Africa 896 16.096 14.334 0.2 11.8 84.3 1.721 89.0
Asia 974 32.704 19.324 0.4 28.2 88.3 0.434 59.1
Europe 1938 36 21.892 0.9 32.4 90.5 0.363 60.8
North America 403 34.794 16.941 0.4 32.9 81 0.313 48.7
Oceania 4636 13.68 10.003 0.4 12.0 80.3 1.367 73.1
South America 603 25.661 15.685 1.00 23 79.8 0.599 61.1
All 9450 22.112 18.172 0.2 17 90.5 1.211 82.6
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Table 6: Principal component analysis of the continuum removed spectra

.

Principal component Eigenvalue % Total cumulative %
1 0.33 55 55
2 0.10 16 71
3 0.09 15 86
4 0.02 4 90
5 0.02 3 93
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Table 7: Fuzzy validity indices, the partition coefficient, Cp, and the partition entropy,
Ep

.

Class Cp, Ep,
2 0.695 0.642
3 0.699 0.578
4 0.705 0.561
5 0.709 0.558
6 0.710 0.551
7 0.664 0.771
8 0.590 0.856
9 0.570 0.919
10 0.579 0.917
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Table 8: Correspondence contingency table for soil type

.

Soil type Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Acrisols 4 17 22 24 5 28
Andosols 4 10 15 33 18 19
Arenosols 4 30 20 21 13 13
Cambisols 3 9 14 32 17 26
Chernozems 35 0 3 15 23 24
Ferralsols 1 27 37 18 6 10
Fluvisols 6 5 11 35 5 38
Gleysols 7 2 4 20 13 54
Greyzems 0 0 0 0 0 100
Histosols 0 6 3 18 45 27
Kastanozems 33 13 13 10 12 18
Lithosols 8 18 17 26 7 24
Luvisols 15 10 19 27 8 21
Nitosols 6 32 27 15 8 12
Phaeozems 21 2 11 19 36 11
Planosols 15 6 15 23 14 27
Podzols 5 5 7 16 26 40
Podzoluvisols 0 2 56 19 2 21
Rankers 20 0 80 0 0 0
Regosols 24 21 24 12 5 14
Rendzinas 50 11 21 7 0 11
Solonchaks 12 33 21 12 8 15
Solonetz 21 13 13 13 16 24
Vertisols 57 6 9 9 9 10
Xerosols 13 24 34 18 4 6
Yermosols 23 30 21 15 1 10
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Table 9: Correspondence contingency table for land cover
.

Land cover Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Cropping 13 6 14 24 13 29
Forested 7 10 20 25 11 27
Mixed farming 18 10 13 18 13 27
Non-vegetated 30 24 30 9 0 7
Pastures/Grasses/Shrublands 26 17 14 19 9 15
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Table 13: Statistical summary of the predictions—the harmonised global dataset. N=
23631.

Continent Mean St. Dev. Min. Med. Max.
Organic C /%
Africa 1.24 (0.90, 1.72) 1.42 (1.03, 1.97) 0.05 (0.04, 0.07) 0.81 (0.60, 1.10) 24.82 (18.38, 33.52)
Antartica 0.1 (0.08, 0.13) 0.08 (0.06, 0.10) 0.02 (0.01, 0.03) 0.07 (0.05, 0.09) 0.35 (0.27, 0.46)
Asia 1.75 (1.30, 2.36) 2.47 (1.71, 3.63) 0.06 (0.04, 0.08) 1.10 (0.82, 1.48) 48.22 (30.65, 75.87)
Europe 2.59 (1.93, 3.49) 2.68 (1.90, 3.83) 0.11 (0.09, 0.15) 2.00 (1.49, 2.66) 40.62 (25.82, 63.91)
North America 1.46 (1.07, 2.00) 3.48 (2.34, 5.24) 0.03 (0.02, 0.04) 0.64 (0.48, 0.86) 74.62 (47.43, 117.40)
Oceania 1.71 (1.26, 2.32) 1.49 (1.07, 2.10) 0.09 (0.07, 0.11) 1.29 (0.96, 1.72) 34.23 (21.76, 53.85)
South America 5.6 (3.72, 8.47) 7.12 (4.60, 11.09) 0.06 (0.04, 0.07) 2.13 (1.55, 2.87) 38.73 (24.62, 60.93)
All 1.98 (1.44, 2.74) 3.08 (2.07, 4.64) 0.02 (0.01, 0.03) 1.18 (0.89, 1.58) 74.62 (47.43, 117.40)
Inorganic C /%
Africa 1.83 (0.89, 4.06) 2.25 (1.29, 4.47) 0.04 (0.02, 0.07) 1.25 (0.57, 2.89) 25.47 (17.32, 41.24)
Antartica 4.61 (2.11, 10.41) 4.09 (1.95, 8.99) 0.37 (0.17, 0.83) 3.06 (1.38, 6.72) 23.21 (11.48, 48.18)
Asia 4.52 (2.67, 8.25) 6.67 (4.23, 11.59) 0.04 (0.02, 0.08) 1.79 (0.88, 3.81) 69.47 (52.80, 114.51)
Europe 5.07 (2.86, 9.58) 10.47 (6.47, 17.70) 0.05 (0.01, 0.13) 1.62 (0.76, 3.51) 83.23 (54.21, 141.57)
North America 1.41 (0.83, 2.62) 3.75 (2.46, 6.11) 0.03 (0.00, 0.07) 0.48 (0.22, 1.04) 72.90 (52.22, 108.92)
Oceania 1.93 (0.84, 4.78) 3.09 (1.62, 6.58) 0.09 (0.03, 0.23) 1.08 (0.44, 2.71) 68.31 (36.20, 132.34)
South America 1.42 (0.69, 3.19) 1.90 (1.10, 3.56) 0.07 (0.03, 0.14) 0.97 (0.41, 2.32) 26.04 (15.99, 43.50)
All 2.61 (1.39, 5.37) 5.70 (3.55, 9.92) 0.03 (0.00, 0.07) 1.14 (0.50, 2.64) 83.23 (54.21, 141.57)
Fe /%
Africa 1.49 (1.03, 2.20) 2.43 (1.72, 3.60) 0.08 (0.04, 0.14) 0.69 (0.48, 1.05) 17.84 (13.36, 24.02)
Antartica 1.09 (0.68, 1.79) 0.19 (0.12, 0.40) 0.47 (0.28, 0.80) 1.09 (0.68, 1.74) 1.65 (1.04, 3.09)
Asia 1.01 (0.69, 1.53) 0.69 (0.49, 1.02) 0.08 (0.03, 0.19) 0.93 (0.62, 1.40) 11.99 (8.70, 16.69)
Europe 0.77 (0.51, 1.20) 0.52 (0.36, 0.83) 0.06 (0.02, 0.14) 0.65 (0.43, 1.01) 10.28 (6.64, 16.07)
North America 1.28 (0.95, 1.75) 1.15 (0.84, 1.68) 0.12 (0.07, 0.16) 1.00 (0.75, 1.32) 14.64 (10.22, 22.12)
Oceania 0.73 (0.47, 1.17) 0.49 (0.32, 0.78) 0.03 (0.01, 0.07) 0.62 (0.39, 1.00) 6.97 (4.24, 11.56)
South America 1.36 (0.85, 2.22) 1.08 (0.65, 1.86) 0.08 (0.04, 0.14) 1.10 (0.69, 1.74) 7.47 (4.88, 14.73)
All 0.99 (0.67, 1.49) 1.02 (0.72, 1.52) 0.03 (0.01, 0.07) 0.76 (0.50, 1.14) 17.84 (13.36, 24.02)

CEC /cmol(+)kg−1

Africa 14.95 (11.34, 19.18) 11.92 (9.71, 14.56) 1.86 (0.67, 2.96) 10.97 (7.88, 14.21) 62.11 (52.97, 79.33)
Antartica 30.89 (23.47, 39.50) 11.60 (9.79, 13.81) 12.62 (6.99, 17.21) 29.22 (22.48, 38.36) 59.66 (49.11, 71.33)
Asia 15.68 (12.33, 19.53) 11.19 (9.47, 13.23) 1.38 (0.42, 2.93) 11.71 (8.97, 14.91) 67.86 (54.80, 84.33)
Europe 19.02 (14.48, 24.35) 9.98 (8.26, 12.25) 2.19 (0.97, 3.56) 16.75 (12.43, 21.60) 69.51 (60.59, 79.81)
North America 20.38 (16.50, 24.79) 10.68 (9.24, 12.52) 1.41 (0.45, 2.59) 18.51 (14.96, 22.36) 75.81 (65.43, 87.07)
Oceania 21.28 (16.70, 26.56) 16.87 (14.39, 19.69) 1.14 (0.26, 2.32) 15.11 (11.22, 19.63) 77.22 (66.29, 90.01)
South America 15.39 (11.82, 19.56) 12.32 (10.58, 14.29) 0.80 (0.22, 1.47) 10.97 (7.98, 14.51) 65.56 (56.11, 75.86)
All 19.28 (15.13, 24.07) 13.66 (11.60, 16.09) 0.80 (0.22, 1.47) 15.31 (11.65, 19.44) 77.22 (66.29, 90.01)
pHWater

Africa 6.12 (5.78, 6.46) 0.93 (0.87, 1.01) 4.52 (4.17, 4.80) 5.81 (5.51, 6.13) 9.40 (9.03, 9.82)
Antartica 7.75 (7.44, 8.06) 0.36 (0.38, 0.35) 6.31 (5.88, 6.74) 7.75 (7.45, 8.05) 8.72 (8.31, 9.25)
Asia 6.57 (6.24, 6.89) 1.08 (1.07, 1.10) 4.13 (3.85, 4.40) 6.48 (6.14, 6.81) 8.87 (8.46, 9.38)
Europe 6.59 (6.19, 6.99) 0.91 (0.91, 0.94) 4.05 (3.51, 4.33) 6.45 (6.06, 6.86) 9.41 (9.02, 9.84)
North America 6.59 (6.26, 6.92) 1.01 (1.03, 1.00) 3.96 (3.37, 4.29) 6.43 (6.09, 6.78) 9.59 (9.27, 9.91)
Oceania 6.75 (6.41, 7.09) 0.80 (0.79, 0.83) 4.54 (4.06, 4.92) 6.63 (6.30, 6.96) 9.03 (8.59, 9.67)
South America 6.10 (5.77, 6.43) 0.82 (0.81, 0.85) 3.90 (3.55, 4.25) 6.00 (5.67, 6.32) 8.92 (8.55, 9.45)
All 6.59 (6.25, 6.93) 0.94 (0.94, 0.96) 3.90 (3.37, 4.25) 6.48 (6.13, 6.82) 9.59 (9.27, 9.91)
Clay /%
Africa 31.90 (26.71, 37.79) 14.69 (13.86, 15.83) 2.87 (1.25, 4.69) 29.93 (24.18, 36.41) 77.39 (71.91, 87.39)
Antartica 16.59 (11.07, 23.38) 10.92 (8.35, 13.93) 2.70 (0.86, 5.25) 13.88 (8.73, 20.07) 46.32 (33.96, 60.71)
Asia 26.16 (22.00, 30.86) 13.38 (12.03, 15.10) 2.05 (0.95, 3.61) 22.55 (19.06, 26.41) 83.62 (74.88, 103.87)
Europe 22.76 (19.03, 26.99) 12.35 (11.13, 13.88) 1.47 (0.23, 2.47) 20.27 (17.03, 23.99) 81.67 (69.35, 98.03)
North America 26.59 (22.81, 30.82) 14.42 (13.23, 15.81) 0.72 (0.08, 1.57) 24.94 (21.45, 28.73) 82.79 (76.22, 90.42)
Oceania 26.22 (21.17, 32.00) 11.63 (10.52, 13.16) 2.55 (0.87, 4.93) 23.30 (18.61, 28.80) 77.99 (66.40, 93.37)
South America 34.62 (29.64, 40.18) 19.01 (17.69, 20.51) 1.42 (0.49, 2.54) 29.85 (25.10, 35.49) 91.58 (80.72, 103.47)
All 26.62 (22.15, 31.69) 13.68 (12.49, 15.20) 0.72 (0.08, 1.57) 23.52 (19.33, 28.26) 91.58 (80.72, 103.47)
Sand /%
Africa 48.66 (40.56, 56.76) 14.98 (14.90, 15.41) 8.12 (3.46, 12.78) 48.68 (40.66, 56.54) 86.20 (75.81, 99.77)
Antartica 44.46 (30.53, 58.38) 9.57 (7.92, 11.65) 21.09 (12.19, 29.99) 45.38 (31.72, 59.56) 64.50 (50.35, 80.30)
Asia 38.40 (29.77, 47.04) 13.72 (13.43, 14.37) 6.39 (1.15, 11.06) 36.69 (27.85, 45.58) 82.91 (73.54, 93.39)
Europe 40.36 (31.96, 48.76) 15.29 (14.53, 16.33) 5.15 (0.56, 9.64) 40.20 (31.58, 48.75) 92.14 (85.73, 98.55)
North America 35.77 (27.96, 43.58) 15.33 (14.56, 16.39) 2.88 (0.14, 6.91) 34.53 (26.79, 42.34) 91.04 (83.26, 103.63)
Oceania 53.52 (45.29, 61.75) 13.68 (14.26, 13.47) 6.71 (1.01, 12.40) 55.50 (47.14, 63.70) 86.89 (80.88, 100.60)
South America 44.92 (36.43, 53.40) 14.51 (14.48, 14.85) 4.61 (0.44, 9.67) 44.61 (35.81, 53.04) 92.21 (83.64, 100.79)
All 44.77 (36.51, 53.02) 16.22 (16.09, 16.68) 2.88 (0.14, 6.91) 44.96 (36.24, 53.47) 92.21 (85.73, 103.63)
Silt /%
Africa 17.31 (13.05, 22.36) 7.75 (13.05, 22.36) 3.89 (1.09, 5.47) 15.82 (11.88, 20.22) 58.33 (43.70, 77.55)
Antartica 25.82 (16.36, 37.69) 5.81 (5.39, 6.22) 10.66 (5.03, 18.44) 26.50 (16.91, 38,19) 37.10 (29.94, 50.32)
Asia 35.62 (28.46, 43.79) 15.34 (13.47, 17.61) 3.45 (0.81, 7.49) 32.64 (25.61, 40.79) 71.49 (64.24, 80.93)
Europe 30.68 (24.52, 37.81) 13.46 (12.60, 14.70) 3.33 (1.11, 6.12) 28.88 (22.62, 36.01) 74.61 (67.58, 92.52)
North America 28.64 (22.26, 35.98) 8.09 (7.42, 8.95) 6.05 (3.10, 9.39) 27.92 (21.51, 35.46) 61.56 (54.18, 69.53)
Oceania 15.18 (11.66, 19.29) 6.74 (5.68, 8.14) 3.54 (0.80, 6.16) 13.85 (10.60, 17.60) 59.42 (51.47, 68.05)
South America 19.00 (14.73, 23.95) 9.61 (8.41, 11.13) 4.15 (1.98, 5.83) 17.08 (12.97, 21.65) 61.34 (52.43, 71.07)
All 23.58 (18.42, 29.55) 12.68 (10.96, 14.82) 3.33 (0.80, 5.47) 20.56 (15.59, 26.49) 74.61 (67.58, 92.52)
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Appendix A

Requirements to contribute to the global spectroscopic database.

To include new spectra in the global database they need to be recorded in the range

350 to 2500 nm at intervals of one, two, five or 10 nm, from air or oven dry soil

crushed or sieved to a size fraction of ≤ 2mm. The minimum dataset requested for

each spectrum is:

1. Name(s) and affiliation(s) of contributor(s).

2. Country(ies) from which the spectra originate.

3. Coordinates in latitude and longitude using the World Geodetic System

(WGS-84).

4. Organic carbon (and reference laboratory method used).

5. Clay, sand and silt contents (and reference laboratory method used).

Other data, which is also desirable includes:

6. Inorganic carbon (and reference laboratory method used).

7. Cation exchange capacity and exchangeable cations (and reference laboratory

method used).

8. Extractable iron content (and reference laboratory method used).

9. pH measured in water and/or calcium chloride (and reference laboratory method

used).

10. Soil classification (in the FAO-WRB system).

11. Land use classified as cropping, pasture, forest, natural vegetation, other.
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We also request details on how the spectroscopic measurements were made:

i. The white reference used e.g. Spectralon R©.

ii. The internal standard if one is used (e.g. (Ben-Dor et al., 2015))

iii. The frequency of re-calibration with the white reference.

iv. The number of averaged readings per saved spectrum for both reference and

samples.

v. The number of replicates per sample.

vi. The instrument brand and type.

vii. The measurement configuration and setup, e.g. contact probe or if an external

light source, the distance and angle to sample of both the light and the detector

as well as the colour temperature of the light.

viii. If spectra were collected through a sample holder, what material?

Appendix B

Measurement protocol.

The measurement protocol described below is general and will enable the

recording of consistent and good quality soil vis–NIR spectra using benchtop and

portable spectrometers. The instrument should have a spectral resolution of 10 nm or

less across the visible and near infrared range (between 400 and 2500 nm), and

spectra should be recorded in this range at 1 nm intervals. The soil samples should

be air or oven dry, crushed or sieved to a size fraction of ≤ 2mm. If the samples are

sieved, it is important to avoid preferential sieving, that is, all of the sample should

pass through the mesh.

Most instruments include the necessary accessories to perform the spectroscopic

measurements. Depending on the instrument, they can be specific to suit the
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particular instrument or they can be more general. We suggest that the analyst

follow the instructions of the instrument manufacturer and if necessary adapt these

for measuring soil, following the guidelines below.

This protocol was tested and is easy to follow. It was developed to be practical

and straight-forward because we do not need to overcomplicate the measurement of

soil vis–NIR spectra. vis–NIR spectroscopy is an attractive soil analytical technique

because of, amongst other, the robustness and simplicity of its measurements.

We note that since the conception of this project a measurement protocol was

published by Wetterlind et al. (2013) and recommendations on the use of internal

standards by Pimstein et al. (2011) and Ben-Dor et al. (2015). For completeness, the

analyst might wish to also consults the mentioned publications before measuring.

Instrument setup.

a. Turn instrument on for a minimum of one hour before measurements.

b. If separate to a. above, turn the light source on for around 30 minutes before

measurements.

c. Set the instrument control and data logging software to record (and average) 30

readings per soil sample measurement, and 50 readings per calibration with the

white and dark reference measurement.

d. Set the instrument control and data logging software to record in wavelength

intervals of 1 nm.

Instrument calibration.

e. Use a Halon white reference (Spectralon R© is a commonly used commercial

product) to optimise and calibrate the sensor.

f. The spectrometer should be calibrated every 10 minutes or around once every 10

measurements if you are sequentially measuring many samples in blocks of time.
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g. If the measurement configuration uses an external calibration, then ensure that

this configuration is the same as that used for the soil sample measurements.

h. Check that the spectrum of the white reference represents 100% reflection at all

wavelengths across the 400–2500 nm range with no more than around

approximately 0.03 reflectance units (or 3%) of noise. Often noise is be present

towards the edges of the sensors response and towards the extremes near

400 nm and near 2500 nm. If the reference spectrum shows noise that exceeds

this threshold, check the setup and repeat the calibration. If it persists, check

with the instrument manufacturer.

i. To track spectral sensitivity, uniformity and wavelength accuracy over time, we

recommend the use of a standard material (e.g. Ben-Dor et al., 2015) or

alternatively, a uniform, non-specular material such as a sample of pure

kaolinite, which should represent a smooth, clean spectrum across the

350–2500 nm range. Using kaolinite, sensitivity, uniformity and wavelength

accuracy may be monitored over time by tracking the absorptions at 967 nm

and the doublets at 1404 nm and 2200 nm. Measurements of the standard

material should be made at the start of each day after the calibration with the

Halon white reference and using the same measurement configuration as that

used for the soil measurements.

Soil sample preparation and measurements.

j. Different instruments will have their own sample presentation setup and

compatible sample containers. We recommend to follow the manufacturer

instructions for the specific instrument. Generally however, we recommend that

the soil sample container be at least 6 cm in diameter and 1cm deep. If

measurements are made using a bare fibre optic, the diameter of the soil sample

container will depend on the distance between the fibre and the sample.
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k. Ensure that the sample is thoroughly mixed in the sample container and that the

instrument measures a representative sample. If the measurement area is small,

we recommend to take two to four replicate measurements.

l. Ensure that the soil sample surface is smooth and if needed, use a spatula to

carefully flatten the surface.

m. Fill the sample containers in the same way for all samples. Avoid packing and

compressing the samples.

n. If the same container is to be used for several samples it is important to clean it

between samples. You can use water, however, ensure that the sample container

is completely dry before filling it with a soil sample.

o. If the measurements are made through a window that comes in direct contact

with the soil, ensure that the window is thoroughly cleaned between

measurements. You can use water but ensure that the window is completely dry

before measuring.

p. Measure the soil samples and record the (diffuse) reflectance. Do not record the

spectra in Log1/R or first derivative.

q. Check that the spectrum of the soil sample does not exceed approximately 0.03

reflectance units (or 3%) of noise. Often noise is be present towards the edges

of the sensors response and towards the extremes near 400 nm and near

2500 nm. If the spectrum shows noise that exceeds this threshold, check the

setup, repeat the calibration (see above) and the measurement. If it persists,

check with the instrument manufacturer.

r. Check that the smallest reflectance value of the spectrum does not exceed a

reflectance value of around 0.2. If it does, check the setup, repeat the

calibration (see above) and the measurement. If it persists, check with the

instrument manufacturer.
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s. Check that the spectrum does not have discontinuities. Some instruments that use

a two or three spectrometers to cover the vis–NIR range will produce spectra

with discontinuities at the interface between the different sensors. Often these

can be ‘spliced’ using the instrument’s control and data logging software to

produce a continuous spectrum. Check the instrument’s manual if this applies.

Measurement configuration and setup.

Different instruments will describe their particular measurement configuration

and set up. They can be specific to suit the particular instrument or they can be

quite general. We suggest that the analyst follow the instructions from the

instrument manufacturer and if necessary adapt these for measuring soil following the

guidelines below.

t. Measuring using a ‘bare’ fibre optic and external illumination:

• Install the bare fibre and lamps on stable surfaces and ensure that their relative

position (distances and angles) to each other and to the surface of the sample

are constant.

• Ensure that the fibre’s field of view, the fibre to sample distance and the sample

surface area are compatible and that no shading occurs.

• The light source should have a colour temperature of approximately 3000 K and

be sufficiently strong with relation to the distance from the fibre optic to soil

sample surface to prevent excessive noise.

• The power supply for the lamps should be from a stable voltage. Note that it

must be DC power to prevent any lamp-induced modulation of the spectra,

which will occur if you use AC–powered lamps

• Eliminate all other interfering light sources during measurements, e.g. fluorescent

lights and ambient light coming through windows.
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• Calibrations and measurements should be performed as described above. It is

important that you use the same geometry for the calibrations and for the soil

measurements.

For example, a setup might be: The fibre optic placed on a stable stand 7 cm

above the soil sample surface. Two lamps with halogen bulbs (12 volt, 50 w, 24

degree illumination angle) and integral parabolic (aluminium) reflectors. Place one on

each side of the fibre optic approximately 60 cm from and at 45◦ to the sample.

Ensure that the light spot of each lamp falls on the sample. Adjust the position of the

lamps (change angle and distance) so that there is no shading on the measurements

u. Measuring using different accessories:

• As before, we recommend that the analyst follow the instructions from the

instrument and accessory manufacturer and if necessary, adapt these using the

guidelines given in this Appendix.

• Ensure that the sensor and light source are in a stable position and that this

position is constant for the calibrations and all the soil measurements.

• If measurements are made through the accessory’s (e.g. sapphire) window, ensure

that there is full contact between this and the soil sample.

• If the measurements need to be made through the sample container, load them

into Duran glass or optical glass Petri dishes to 1 cm depth. To calibrate, place

the white reference face down in one dedicated dish of the same type and

sample batch. Wipe the bottom of reference dish to clean off any dust between

samples. Maintain consistency in the type of sample container used (e.g.

manufacturer, specifications).

• Calibration and measurements should be performed as described above. It is

important that the setup of the accessory is constant for the calibrations and

for the soil measurements.
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Appendix C

Review of the literature.

The literature review in Tables 14–20, includes only studies with spectra recorded in

the laboratory and in the range between 350–2500 nm. We grouped the review into

four scales:

• Local: comprises studies on single or several fields, or small areas with similar

soil types,

• Regional: comprises studies over larger geographical areas than local, or

including several soil types,

• Country: comprises studies over entire countries or from many regions across a

country, or many soil types,

• Global or Continental: comprises studies over several or many countries.

The data reported in the tables (below) are N , the number of samples used for

training (T ) and validating (V ) the spectroscopic models (the number of samples in

T and V are separated by /) , the coefficient of determination R2, the root mean

squared error (RMSE) and the ratio of performance to deviation (RPD). Each

statistic is reported for the for T and V separately. Missing values in the tables

indicate that those statistics were not reported.

Table 14: Literature review of organic C content (%) predictions.

Scale Country N R2

T
RMSET (%) RPDT R2

V
RMSEV (%) RPDV Reference

Local USA 180 0.94 Reeves III and McCarty (2001)
Local USA 161/83 0.88 0.4 2.7 Chang et al. (2005)
Local Spain 91CV 0.79 Hill and Schütt (2000)
Local Netherland 70/35 0.69 1.1 Kooistra et al. (2003)
Local Canada 143/144 0.78 0.3 2.2 Martin et al. (2002)
Local USA 179CV 0.97 0.1 Reeves III et al. (2002)
Local USA 64CV 0.93 0.1 Reeves III et al. (2002)
Local USA 136CV 0.78 0.2 Reeves III et al. (2002)
Local USA 136CV 0.84 0.1 Reeves III et al. (2002)
Local Belgium 117CV 0.1 2.0 Stevens et al. (2008)
Local Australia 228CV 0.57 0.4 1.8 Summers et al. (2011)
Local Madagascar 101 0.94 0.6 0.92 0.8 V̊agen et al. (2006)
Local Australia 118CV 0.60 0.2 Viscarra Rossel et al. (2006)
Local Sweden 25/58 0.70 0.1 1.9 Wetterlind and Stenberg (2010)
Local Sweden 25/112 0.85 0.2 2.6 Wetterlind and Stenberg (2010)
Local Sweden 24/65 0.71 0.5 1.5 Wetterlind and Stenberg (2010)
Local Sweden 25/81 0.57 0.3 1.9 Wetterlind and Stenberg (2010)
Local Sweden 25/72 0.89 0.2 3.0 Wetterlind and Stenberg (2010)
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Local USA 181/363 0.90 0.2 0.88 0.2 McCarty and Reeves III (2006)
Local USA 107/118 0.82 2.9 2.4 Sankey et al. (2008)
Local USA 52 0.86 0.7 2.6 Sankey et al. (2008)
Local USA 54 0.31 1.1 1.1 Sankey et al. (2008)
Local USA 1548/118 0.89 2.6 2.7 Sankey et al. (2008)
Local USA 1548/52 0.96 0.4 4.9 Sankey et al. (2008)
Local USA 1548/54 0.60 0.8 1.6 Sankey et al. (2008)
Local USA 1548/118 0.80 3.3 2.1 Sankey et al. (2008)
Local USA 1548/52 0.93 0.7 2.5 Sankey et al. (2008)
Local USA 1548/54 0.60 0.8 1.6 Sankey et al. (2008)
Local Canada 165 0.92 0.1 3.6 0.87 0.1 2.8 Yang et al. (2012)
Local Canada 221 0.86 0.1 3.0 0.84 0.1 2.5 Yang et al. (2012)
Local Canada 221 0.87 0.1 3.0 0.88 0.1 2.9 Yang et al. (2012)
Local Canada 221 0.92 0.1 3.5 0.91 0.1 3.3 Yang et al. (2012)
Local USA 181 0.92 0.7 0.91 0.7 Dick et al. (2013)
Local USA 181/45 0.96 0.6 0.83 0.7 Dick et al. (2013)
Local Germany 422 0.93 3.5 Heinze et al. (2013)
Local Germany 142 0.41 1.2 Heinze et al. (2013)
Local China 49 0.83 0.1 2.3 Lu et al. (2013)
Local China 66/32 0.85 0.2 0.82 0.2 2.2 Shi et al. (2014a)
Local China 62/31 0.92 0.2 0.84 0.2 2.4 Shi et al. (2014a)
Local Canada 150 0.91 0.8 0.86 Nduwamungu et al. (2009)
Local Belgium 117 0.7 2.0 Stevens et al. (2008)
Local Australia 112 0.65 0.9 1.7 Forouzangohar et al. (2009)
Local Poland 74 0.4 0.81 0.5 1.6 Chodak et al. (2007)
Local Spain 205 0.41 1.3 0.34 1.3 Fontán et al. (2010)
Local Spain 205 0.37 1.3 0.48 1.6 Fontán et al. (2010)
Local USA 360/154 0.83 0.4 0.86 0.3 2.7 Sarkhot et al. (2011)
Local USA 360/154 0.95 0.2 0.61 0.5 1.5 Sarkhot et al. (2011)
Local USA 360/154 0.95 0.2 0.65 0.5 1.7 Sarkhot et al. (2011)
Local Germany 109/40 0.88 0.2 2.9 0.89 0.3 2.7 Vohland and Emmerling (2011)
Local Germany 109/40 0.86 0.2 2.6 0.89 0.3 2.8 Vohland and Emmerling (2011)
Local Germany 109/40 0.93 0.2 3.5 0.89 0.3 2.8 Vohland and Emmerling (2011)
Regional USA 76/32 0.96 0.6 4.7 0.89 0.6 4.2 Chang and Laird (2002)
Regional Brazil 140/60 0.96 0.3 Fidêncio et al. (2002)
Regional Brazil 140/60 0.88 0.4 Fidêncio et al. (2002)
Regional USA 237 0.8 5.3 0.82 5.5 Reeves III (2010)
Regional USA 237 0.8 5.5 0.80 5.8 Reeves III (2010)
Regional Spain 393CV 0.98 0.6 5.8 Zornoza et al. (2008)
Regional Australia 146 0.71 0.5 1.9 Gomez et al. (2008)
Regional USA 177/60 0.90 0.6 0.82 0.6 McCarty et al. (2002)
Regional USA 177/60 0.85 0.5 0.80 0.6 McCarty et al. (2002)
Regional France 43/21 0.91 0.4 3.4 0.83 0.5 2.4 Aı̈chi et al. (2009)
Regional Norway 75/48 0.95 0.7 0.80 0.7 2.2 Fystro (2002)
Regional USA 376/164 0.73 0.5 1.7 Morgan et al. (2009)
Regional Germany 30CV 0.85 0.1 2.6 Patzold et al. (2008)
Regional Germany 30CV 0.93 0.1 3.8 Patzold et al. (2008)
Regional USA 150/35 0.88 0.4 0.78 0.8 Reeves III et al. (2006)
Regional Sweden 346/50 0.71 0.9 0.71 0.9 Stenberg (2010)
Regional USA 30CV 0.89 0.2 Sudduth and Hummel (1993)
Regional USA 4761/2359 0.94 1.3 0.79 2.5 2.1 Vasques et al. (2010)
Regional USA 4676/2306 0.97 0.2 0.97 0.7 1.8 Vasques et al. (2010)
Regional USA 85/50 0.89 5.3 0.35 10.2 1.2 Vasques et al. (2010)
Regional USA 4639/2294 0.96 0.2 0.67 0.7 1.7 Vasques et al. (2010)
Regional Germany 48CV 0.83 0.3 2.4 Vohland and Emmerling (2011)
Regional Germany 21 0.89 0.2 3.1 Vohland and Emmerling (2011)
Regional Germany 23 0.92 0.2 3.6 Vohland and Emmerling (2011)
Regional Brazil 120CV 0.99 0.1 Madari et al. (2006)
Regional Australia 270/90 0.62 0.3 0.66 0.3 1.7 Dunn et al. (2002)
Regional Australia 121/40 0.61 0.4 0.76 0.4 1.7 Islam et al. (2003)
Regional Australia 121/40 0.81 0.4 Islam et al. (2003)
Regional Australia 121/40 0.68 0.5 Islam et al. (2003)
Regional Australia 195 0.76 0.5 2.0 Pirie et al. (2005)
Regional Brazil, Martinique 67/25 0.88 0.3 2.9 0.89 0.2 Brunet et al. (2008)
Regional Brazil, Martinique 64/27 0.96 0.2 5.1 0.70 0.3 Brunet et al. (2008)
Regional Senegal 44/20 0.85 0.1 2.4 0.85 0.1 Brunet et al. (2008)
Regional Senegal 46/21 0.89 0.1 2.9 0.91 0.1 Brunet et al. (2008)
Regional Poland 74CV 0.81 5.1 1.6 Chodak et al. (2007)
Regional Australia 72/48 0.86 0.2 0.86 0.2 Dalal and Henry (1986)
Regional Germany 102CV 0.97 0.2 4.7 Terhoeven-Urselmans et al. (2008)
Regional Germany 110CV 0.98 0.2 3.8 Terhoeven-Urselmans et al. (2008)
Regional Lithuania 127 0.93 0.05 0.91 0.1 Butkuté and Šlepetiené (2004)
Regional USA 283 0.11 0.77 0.1 2.1 Brown et al. (2005)
Regional USA 283 0.12 0.86 0.1 2.6 Brown et al. (2005)
Regional Germany 60 0.74 0.33 2.0 Vohland et al. (2014)
Regional Canada 145/49 0.95 0.3 3.7 0.88 0.4 2.8 Luce et al. (2014)
Regional Mozambique 129 0.84 0.32 1.9 Cambule et al. (2012)
Regional Poland 36 0.98 1.18 Pietrzykowski and Chodak (2014)
Regional Poland 36 0.98 0.23 Pietrzykowski and Chodak (2014)
Regional USA 150/206 0.97 Rabenarivo et al. (2013)
Regional USA 150/206 0.99 Rabenarivo et al. (2013)
Regional Ethiopia 64/64 0.97 0.2 0.91 0.3 Amare et al. (2013)
Regional China 138/45 0.81 0.3 2.2 Ji et al. (2014)
Regional China 82/42 0.93 0.5 3.4 Ji et al. (2015)
Regional Belgium 1300 0.70 1.1 1.8 Genot et al. (2011)
Regional Turke, UK 270 0.80 0.88 1.3 2.8 Tekin et al. (2012)
Regional USA, Canada 720 0.53 1.74 1.5 Reeves III and Smith (2009)
Regional USA, Canada 360/360 0.58 1.8 0.34 1.9 1.2 Reeves III and Smith (2009)
Regional South Africa 76/37 0.81 0.4 0.93 0.3 3.7 Nocita et al. (2011)
Regional South Africa 75/36 0.88 0.87 0.3 3.0 Nocita et al. (2011)
Regional Poland 77/77 0.96 0.31 0.94 0.3 3.4 Chodak et al. (2002)
Regional Italy 374 0.82 0.6 2.4 0.91 1.0 3.0 Leone et al. (2012)
Regional Italy 186 0.84 0.6 2.5 0.88 0.9 2.5 Leone et al. (2012)
Regional Italy 67 0.78 0.2 2.1 0.84 0.3 2.5 Leone et al. (2012)
Regional Italy 121 0.78 0.8 2.1 0.93 0.2 2.4 Leone et al. (2012)
Regional Belgium 1038/500 0.89 0.39 0.88 0.4 2.9 Van Waes et al. (2005)
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Regional Canada 217/78 0.97 0.2 6.1 0.95 0.2 4.0 Xie et al. (2011)
Regional Canada 165 0.92 0.1 3.6 0.87 0.1 2.8 Yang et al. (2012)
Regional Canada 221 0.92 0.1 3.5 0.91 0.1 3.3 Yang et al. (2012)
Regional USA 697 0.87 0.27 2.7 Lee et al. (2009)
Regional USA 165 0.80 0.30 2.3 Lee et al. (2009)
Country Australia 1104 0.62 1.5 Viscarra Rossel and Behrens (2010)
Country Australia 1104 0.89 0.8 Viscarra Rossel and Behrens (2010)
Country Australia 1122 0.86 0.9 Viscarra Rossel and Lark (2009)
Country Australia 1122 0.74 1.3 Viscarra Rossel and Lark (2009)
Global World 3793 0.82 0.9 Brown et al. (2006)
Global World 3793 0.87 0.8 Brown et al. (2006)
Global Africa 674/337 0.91 0.2 0.80 0.3 Shepherd and Walsh (2002)
Global World 2743/900 0.8 0.68 0.8 Ramirez-Lopez et al. (2013)
Global World 20/20 0.87 3.2 3.4 4.1 2.7 Bartholomeus et al. (2008)
Global World 20/20 0.76 5.2 1.9 4.8 2.1 Bartholomeus et al. (2008)
Global EU 20,000/2828 0.79 0.4 2.2 Stevens et al. (2013)
Global EU 20,000/1383 0.87 0.6 2.7 Stevens et al. (2013)
Global EU 20,00/1564 0.89 1.0 2.9 Stevens et al. (2013)
Global EU 20,000/6053 0.86 0.8 2.6 Stevens et al. (2013)
Global EU 20,000/36 0.76 5.1 2.0 Stevens et al. (2013)

Table 15: Literature review of pHw predictions.

Scale Country N R2

T
RMSET (%) RPDT R2

V
RMSEV (%) RPDV Reference

Local Japan 25 0.54 Shibusawa et al. (2001)
Local China 165 0.87 0.06 0.87 0.07 He et al. (2007)
Local Turkey 359/153 0.35 0.11 0.27 0.13 1.2 Bilgili et al. (2010)
Local Turkey 359/153 0.36 0.11 0.26 0.12 1.3 Bilgili et al. (2010)
Local Turkey 153/359 0.5 0.11 0.21 0.13 1.0 Bilgili et al. (2010)
Local Turkey 153/359 0.5 0.11 0.18 0.14 1.0 Bilgili et al. (2010)
Local USA 181/363 0.73 0.24 0.53 0.31 McCarty and Reeves III (2006)
Local Australia 118CV 0.57 0.17 Viscarra Rossel et al. (2006)
Local Sweden 25/94 0.49 0.10 1.3 Wetterlind and Stenberg (2010)
Local Sweden 25/112 0.33 0.19 1.1 Wetterlind and Stenberg (2010)
Local Sweden 24/103 0.5 0.22 1.4 Wetterlind and Stenberg (2010)
Local Sweden 25/81 0.48 0.31 1.4 Wetterlind and Stenberg (2010)
Local Kenya 130/64 0.83 0.36 0.72 0.57 Awiti et al. (2008)
Local Germany 422 0.89 0.25 2.6 Heinze et al. (2013)
Local Germany 142 0.87 0.14 2.4 Heinze et al. (2013)
Local China 49 0.63 0.21 1.6 Lu et al. (2013)
Local Canada 150 0.6 0.2 0.89 0.18 Nduwamungu et al. (2009)
Local Canada 151/38 0.94 0.1 0.91 0.13 3.2 Abdi et al. (2012)
Regional USA 180/93 0.97 0.79 0.36 2.4 Cohen et al. (2007)
Regional Spain 39/109 0.48 0.16 0.2 0.9 Moros et al. (2009)
Regional USA 743 0.55 0.57 1.4 Chang et al. (2001)
Regional Sweden 92/31 0.65 0.1 1.6 Wetterlind et al. (2010)
Regional Sweden 94/31 0.85 0.15 2.8 Wetterlind et al. (2010)
Regional Spain 393CV 0.72 0.14 1.9 Zornoza et al. (2008)
Regional USA 1300/600 0.68 0.35 0.65 0.36 1.7 Cohen et al. (2007)
Regional USA 1300/600 0.71 0.34 0.46 0.45 1.4 Cohen et al. (2007)
Regional Australia 121/40 0.73 0.62 0.71 0.61 1.8 Islam et al. (2003)
Regional Australia 121/40 0.63 0.68 Islam et al. (2003)
Regional Australia 121/40 0.7 0.62 Islam et al. (2003)
Regional Australia 173 0.65 0.73 1.7 Pirie et al. (2005)
Regional China 67/33 0.28 0.79 0.21 1.8 Dong et al. (2011)
Regional Brazil 86/44 0.27 0.4 1.2 0.25 0.6 1.1 Vendrame et al. (2012)
Regional China 138/45 0.82 0.51 2.4 Ji et al. (2014)
Regional Turkey, UK 270 0.59 0.65 0.70 1.7 Tekin et al. (2012)
Regional USA 697 0.84 0.5 2.5 Lee et al. (2009)
Regional USA 165 0.68 0.48 1.8 Lee et al. (2009)
Country Australia 18501 0.61 2.3 0.63 2.3 Viscarra Rossel and Webster (2012)
Country Australia 1104 0.81 0.53 Viscarra Rossel and Behrens (2010)
Country Australia 1104 0.62 0.77 Viscarra Rossel and Behrens (2010)
Country China 2955/225 0.69 0.64 2.6 Ji et al. (2015)
Global Africa 758/378 0.83 0.34 0.70 0.43 Shepherd and Walsh (2002)

Table 16: Literature review of cation exchange capacity (CEC, cmmolc/kg) predictions.

Scale Country N R2

T
RMSET (%) RPDT R2

V
RMSEV (%) RPDV Reference

Local Turkey 359/153 0.77 1.5 0.79 1.42 2.3 Bilgili et al. (2010)
Local Turkey 359/153 0.78 1.48 0.79 1.44 2.3 Bilgili et al. (2010)
Local Turkey 153/359 0.79 1.46 0.68 1.88 1.7 Bilgili et al. (2010)
Local Turkey 153/359 0.83 1.35 0.7 1.74 1.8 Bilgili et al. (2010)
Local USA 179/82 0.86 4.85 1.7 Chang et al. (2005)
Local Madagascar 67/34 0.8 2.55 0.68 3.12 V̊agen et al. (2006)
Local Australia 49 0.13 1.04 Viscarra Rossel et al. (2006)
Local USA 50/50 0.83 1.36 2.4 van Groenigen et al. (2003)
Local USA 299/74 0.73 1.4 2.0 0.87 1.22 2.3 Sudduth et al. (2010)
Local China 49 0.47 1.24 1.4 Lu et al. (2013)
Local Canada 150 0.93 1.4 0.89 1.8 Nduwamungu et al. (2009)
Local USA 299/74 0.73 1.4 2.0 0.87 1.22 2.3 Sudduth et al. (2010)
Regional Belgium 396/113 0.75 3.33 Fernández Pierna and Dardenne (2008)
Regional Belgium 396/113 0.66 3.45 Minasny and McBratney (2008)
Regional USA 802 0.81 3.82 2.3 Chang et al. (2001)
Regional Australia 121/40 0.75 3.8 0.64 4.33 1.6 Islam et al. (2003)
Regional Australia 121/40 0.68 3.92 Islam et al. (2003)
Regional Australia 121/40 0.67 4.07 Islam et al. (2003)
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Regional Australia 193 0.52 5.83 1.4 Pirie et al. (2005)
Regional Australia 422/139 0.88 2.19 0.9 1.88 3.3 Dunn et al. (2002)
Regional Australia 237/79 0.71 3.27 0.8 2.74 2.3 Dunn et al. (2002)
Regional Brazil 89/44 0.70 1.2 1.8 0.81 1 2.0 Vendrame et al. (2012)
Regional Kenya 136/120 0.80 5.9 2.4 0.7 9.6 1.7 Waruru et al. (2014)
Regional Poland 36 0.83 6.63 2.0 Pietrzykowski and Chodak (2014)
Regional Belgium 1300 0.43 5.1 1.3 Genot et al. (2011)
Regional Italy 374 0.69 5.82 1.8 0.70 6.26 1.9 Leone et al. (2012)
Regional Italy 186 0.45 4.56 1.4 0.593 5.13 1.6 Leone et al. (2012)
Regional Italy 67 0.78 5.2 2.1 0.74 5.69 1.9 Leone et al. (2012)
Regional Italy 121 0.78 6.2 2.2 0.85 5.55 2.6 Leone et al. (2012)
Regional USA 697 0.81 3.86 2.3 Lee et al. (2009)
Regional USA 165 0.83 3.43 2.5 Lee et al. (2009)
Country Australia 3706 6.28 2.3 7.08 2.1 Viscarra Rossel and Webster (2012)
Country Israel 35/56 0.82 6.72 0.64 8.46 Ben-Dor and Banin (1994)
Global world 4183 0.74 6.7 Brown et al. (2006)
Global world 4183 0.83 5.5 Brown et al. (2006)
Global Africa 740 0.95 2.6 0.88 3.8 Shepherd and Walsh (2002)

Table 17: Literature review of extractable Fe (%) predictions.

Scale Country N R2

T
RMSET (%) RPDT R2

V
RMSEV (%) RPDV Reference

Local Spain 45CV 0.76 0.37 Richter et al. (2009)
Local Australia 229CV 0.61 0.23 1.7 Summers et al. (2011)
Local Germany 52CV 0.84 0.24 Udelhoven et al. (2003)
Local China 254 0.81 0.27 2.3 0.75 0.3 2.0 Xie et al. (2012)
Local China 254 0.79 0.13 2.2 0.83 0.13 2.3 Xie et al. (2012)
Local China 254 0.74 0.28 1.9 0.68 0.33 1.5 Xie et al. (2012)
Local Germany 195/211 0.96 0.08 0.94 0.08 Chodak et al. (2002)
Local Canada 141/38 0.81 0.77 2.1 Abdi et al. (2012)
Local Italy 119/118 0.71 2.0 Kemper and Sommer (2002)
Local Italy 119/118 0.72 1.9 Kemper and Sommer (2002)
Regional USA 784 0.64 0.006 1.7 Chang et al. (2001)
Regional Australia 161 0.78 0.31 0.52 0.46 1.3 Islam et al. (2003)
Regional Australia 161 0.48 0.49 Islam et al. (2003)
Regional Australia 161 0.49 0.48 Islam et al. (2003)
Regional Israel 91 0.57 1.15 0.51 1.25 Ben-Dor and Banin (1994)
Regional USA 1300/600 0.53 1.84 0.38 2.04 1.3 Cohen et al. (2007)
Regional USA 1300/600 0.34 2.19 0.26 2.66 1.3 Cohen et al. (2007)
Regional Brazil 93/44 0.76 1.48 2.0 0.80 1.55 2.1 Vendrame et al. (2012)
Regional USA & Canada 720 0.59 0.86 1.6 Reeves III and Smith (2009)
Regional USA & Canada 360/360 0.59 0.99 0.38 0.87 1.3 Reeves III and Smith (2009)
Country Australia 1448 1.79 1.9 0.26 1.8 Viscarra Rossel and Webster (2012)
Country Uruguay 311 0.92 0.002 0.003 Cozzolino and Moron (2003)
Global World 2909CV 0.73 0.96 Brown et al. (2006)
Global World 2909CV 0.77 0.89 Brown et al. (2006)

Table 18: Literature review of clay content (%) predictions.

Scale Country N R2

T
RMSET (%) RPDT R2

V
RMSEV (%) RPDV Reference

Local Turkey 359/153 0.82 3.83 0.87 4.05 2.6 Bilgili et al. (2010)
Local Turkey 359/153 0.89 3.19 0.9 3.39 3.1 Bilgili et al. (2010)
Local Turkey 153/359 0.88 3.54 0.83 4.03 2.3 Bilgili et al. (2010)
Local Turkey 153/359 0.91 3.17 0.85 3.66 2.5 Bilgili et al. (2010)
Local USA 529 0.78 1.54 0.69 1.8 McCarty and Reeves III (2006)
Local Australia 237CV 0.66 3.13 2.0 Summers et al. (2011)
Local Madagascar 0.93 3.31 0.72 6.1 V̊agen et al. (2006)
Local Australia 116CV 0.6 1.91 Viscarra Rossel et al. (2006)
Local Sweden 25/61 0.61 3.5 1.3 Wetterlind and Stenberg (2010)
Local Sweden 25/112 0.82 3.7 2.3 Wetterlind and Stenberg (2010)
Local Sweden 24/65 0.5 3.6 1.2 Wetterlind and Stenberg (2010)
Local Sweden 25/81 0.81 4.3 2.4 Wetterlind and Stenberg (2010)
Local Kenya 130/64 0.87 0.35 0.77 0.404 Awiti et al. (2008)
Local USA 42/13 0.49 3.59 1.4 0.15 2.68 1.9 Sudduth et al. (2010)
Local USA 210/234 0.52 4.92 1.4 Sankey et al. (2008)
Local USA 52 0.02 10.85 1.0 Sankey et al. (2008)
Local USA 54 0.09 13.76 1.0 Sankey et al. (2008)
Local USA 4184/234 0.38 5.63 1.2 Sankey et al. (2008)
Local USA 4184/52 0.21 9.54 1.1 Sankey et al. (2008)
Local USA 4184/54 0.49 10.25 1.4 Sankey et al. (2008)
Local USA 4184/234 0.24 6.51 1.1 Sankey et al. (2008)
Local USA 4184/52 0.19 9.62 1.1 Sankey et al. (2008)
Local USA 4184/54 0.51 12.31 1.1 Sankey et al. (2008)
Local Canada 150 0.98 0.97 Nduwamungu et al. (2009)
Local South Africa 575 0.92 Van Vuuren et al. (2006)
Local Neitherlands 69 2.39 2.65 Kooistra et al. (2001)
Regional Sweden 92/31 0.75 3.6 2.3 Wetterlind et al. (2010)
Regional Sweden 94/31 0.95 2.7 3.7 Wetterlind et al. (2010)
Regional USA 743 0.67 4.06 1.7 Chang et al. (2001)
Regional Brazil 120CV 0.94 3.24 Madari et al. (2006)
Regional Denmark 784 0.2 2.9 Sörensen and Dalsgaard (2005)
Regional Sweden 346/50 0.9 5.55 0.89 5.38 Stenberg (2010)
Regional Australia 1287 0.77 8.3 Viscarra Rossel et al. (2009)
Regional USA 188/82 0.84 6.2 2.3 Waiser et al. (2007)
Regional Australia 121/40 0.82 7.8 0.72 8.9 1.9 Islam et al. (2003)
Regional Australia 121/40 0.73 8.7 Islam et al. (2003)
Regional Australia 121/40 0.75 8.7 Islam et al. (2003)
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Regional Australia 208 0.61 12.3 1.6 Pirie et al. (2005)
Regional Brazil 93/42 0.83 6.48 2.4 0.74 6.89 2.0 Vendrame et al. (2012)
Regional Kenya 136/120 0.5 11 1.4 0.5 16 1.1 Waruru et al. (2014)
Regional Italy 70/30 0.87 6.6 0.87 5.8 Curcio et al. (2013)
Regional Belgium 1300 0.41 6.74 1.3 Genot et al. (2011)
Regional Italy 374 0.81 6.91 2.3 0.829 6.65 2.4 Leone et al. (2012)
Regional Italy 186 0.80 5.92 2.2 0.81 5.45 2.3 Leone et al. (2012)
Regional Italy 67 0.82 5.66 2.4 0.83 4.88 2.5 Leone et al. (2012)
Regional Italy 121 0.77 8.79 2.1 0.88 6.05 3.0 Leone et al. (2012)
Regional USA 697 0.8 4.69 2.2 Lee et al. (2009)
Regional USA 165 0.76 3.74 2.1 Lee et al. (2009)
Country Australia 1134 0.81 8.36 Viscarra Rossel and Lark (2009)
Country Australia 1104 0.88 6.42 Viscarra Rossel et al. (2009)
Country Australia 15205 8.54 2.4 8.49 2.4 Viscarra Rossel and Webster (2012)
Country Australia 1104 0.75 9.44 Viscarra Rossel and Behrens (2010)
Country Australia 1104 0.88 6.42 Viscarra Rossel and Behrens (2010)
Country Israel 35/56 0.76 8.6 0.56 10.3 Ben-Dor and Banin (1994)
Country Uruguay 321 0.9 3.6 3.8 Cozzolino and Moron (2003)
Global World 4184 0.73 9.5 Brown et al. (2006)
Global World 4184 0.91 5.4 Brown et al. (2006)
Global World 3150/1050 7.97 0.77 12.01 Ramirez-Lopez et al. (2013)
Global Africa 457/225 0.88 5.4 0.8 Shepherd and Walsh (2002)

Table 19: Literature review of sand content (%) predictions.

Scale Country N R2

T
RMSET (%) RPDT R2

V
RMSEV (%) RPDV Reference

Local Turkey 359/153 0.81 4.33 0.84 4.45 2.5 Bilgili et al. (2010)
Local Turkey 359/153 0.84 3.98 0.82 4.76 2.3 Bilgili et al. (2010)
Local Turkey 153/359 0.84 4.48 0.7 5.67 1.8 Bilgili et al. (2010)
Local Turkey 153/359 0.86 4.1 0.72 5.39 1.9 Bilgili et al. (2010)
Local USA 187/87 0.57 12.2 0.9 Chang et al. (2005)
Local USA 176/353 0.75 3.94 0.42 6.1 McCarty and Reeves III (2006)
Local Australia 116CV 0.59 3.3 Viscarra Rossel et al. (2006)
Local Sweden 25/61 0.3 2.6 0.8 Wetterlind and Stenberg (2010)
Local Sweden 25/112 0.89 0.3 3.0 Wetterlind and Stenberg (2010)
Local Sweden 24/65 0.53 0.5 1.5 Wetterlind and Stenberg (2010)
Local Sweden 25/81 0.73 6.2 2.0 Wetterlind and Stenberg (2010)
Local Kenya 130/64 0.83 0.62 0.75 0.57 Awiti et al. (2008)
Local USA 42/13 0.04 2.53 1.0 0.76 1.91 1.4 Sudduth et al. (2010)
local Canada 150 0.91 1.93 0.95 4.16 Nduwamungu et al. (2009)
Regional Sweden 92/31 0.93 2.5 3.4 Wetterlind et al. (2010)
Regional Sweden 94/31 0.91 3.8 3.3 Wetterlind et al. (2010)
Regional USA 743 0.82 11.93 2.3 Chang et al. (2001)
Regional Brazil 120CV 0.99 1.71 Madari et al. (2006)
Regional Australia 199 0.28 90.9 0.3 Pirie et al. (2005)
Regional Australia 121/40 0.72 12.2 0.53 14.5 1.5 Islam et al. (2003)
Regional Brazil 92/42 0.67 7 1.7 0.56 6.25 1.5 Vendrame et al. (2012)
Regional Brazil 94/44 0.66 6.23 1.7 0.72 5.47 1.9 Vendrame et al. (2012)
Regional Italy 70/30 0.89 8 0.8 7.7 Curcio et al. (2013)
Regional Italy 374 0.59 1.59 1.6 0.58 11.84 1.5 Leone et al. (2012)
Regional Italy 186 0.49 9.2 1.4 0.52 8.66 1.5 Leone et al. (2012)
Regional Italy 67 0.72 8.85 1.9 0.71 9.83 1.8 Leone et al. (2012)
Regional Italy 121 0.71 12.26 1.9 0.81 10.02 2.1 Leone et al. (2012)
Regional USA 697 0.78 10.89 2.1 Lee et al. (2009)
Regional USA 165 0.79 7.74 2.2 Lee et al. (2009)
Country Australia 11783 13.3 1.6 13.56 1.6 Viscarra Rossel and Webster (2012)
Country Australia 12426 10.21 1.6 9.77 1.6 Viscarra Rossel and Webster (2012)
Country Australia 11829 10.59 2.4 12 2.1 Viscarra Rossel and Webster (2012)
Country Uruguay 319 0.8 6.8 7.2 Cozzolino and Moron (2003)
Global Africa 682 0.91 6.1 0.76 10.8 Shepherd and Walsh (2002)

Table 20: Literature review of silt content (%) predictions.

Scale Country N R2

T
RMSET (%) RPDT R2

V
RMSEV (%) RPDV Reference

Local Turkey 359/153 0.41 4.63 0.4 4.43 1.4 Bilgili et al. (2010)
Local Turkey 359/153 0.51 4.22 0.35 4.72 1.3 Bilgili et al. (2010)
Local Turkey 153/359 0.51 3.99 0.32 5.06 1.2 Bilgili et al. (2010)
Local Turkey 153/359 0.55 3.87 0.29 5.32 1.1 Bilgili et al. (2010)
Local USA 187/87 0.27 7.14 0.7 Chang et al. (2005)
Local USA 176/353 0.67 3.25 0.22 5.1 McCarty and Reeves III (2006)
Local Madagascar 101 0.84 2.5 0.4 6.45 V̊agen et al. (2006)
Local Australia 116CV 0.41 2.35 Viscarra Rossel et al. (2006)
Local Sweden 25/61 0.62 3.2 1.4 Wetterlind and Stenberg (2010)
Local Sweden 25/112 0.43 5 1.2 Wetterlind and Stenberg (2010)
Local Sweden 24/65 0.3 4.2 0.9 Wetterlind and Stenberg (2010)
Local Sweden 25/81 0.12 4.3 1 Wetterlind and Stenberg (2010)
Local Kenya 130/64 0.83 0.52 0.77 0.61 Awiti et al. (2008)
Local USA 42/13 0.68 3.12 1.8 0.63 1.79 3.1 Sudduth et al. (2010)
local Canada 150 0.91 1.93 0.97 3.26 Nduwamungu et al. (2009)
Regional Sweden 92/31 0.73 3.4 1.8 Wetterlind et al. (2010)
Regional Sweden 94/31 0.63 2.8 1.5 Wetterlind et al. (2010)
Regional Brazil 120CV 0.64 3.35 Madari et al. (2006)
Regional USA 743 0.84 9.51 2.5 Chang et al. (2001)
Regional Australia 121/40 0.34 7.1 0.05 9.8 0.9 Islam et al. (2003)
Regional Australia 207 0.14 130.7 0.3 Pirie et al. (2005)
Regional Brazil 93/44 0.71 2.38 1.9 0.46 3.97 1.3 Vendrame et al. (2012)
regional Italy 70/30 0.82 5.4 0.6 7.2 Curcio et al. (2013)
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regional Italy 374 0.57 8.58 1.5 0.51 8.84 1.4 Leone et al. (2012)
regional Italy 186 0.24 7.36 1.1 0.16 6.78 1.1 Leone et al. (2012)
regional Italy 67 0.53 6.07 1.4 0.44 7.24 1.2 Leone et al. (2012)
regional Italy 121 0.28 7.21 1.2 0.48 5.7 1.4 Leone et al. (2012)
regional USA 697 0.72 8.94 1.9 Lee et al. (2009)
regional USA 165 0.79 6.47 2.2 Lee et al. (2009)
Country Australia 14831 5.57 1.6 5.5 1.6 Viscarra Rossel and Webster (2012)
Country Uruguay 317 0.84 6 6.2 Cozzolino and Moron (2003)
Global Africa 682 0.79 3.9 0.67 4.9 Shepherd and Walsh (2002)
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