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Abstract

Background: Environmental resistomes include transferable microbial genes. One important resistome component

is resistance to arsenic, a ubiquitous and toxic metalloid that can have negative and chronic consequences for

human and animal health. The distribution of arsenic resistance and metabolism genes in the environment is not

well understood. However, microbial communities and their resistomes mediate key transformations of arsenic that

are expected to impact both biogeochemistry and local toxicity.

Results: We examined the phylogenetic diversity, genomic location (chromosome or plasmid), and biogeography

of arsenic resistance and metabolism genes in 922 soil genomes and 38 metagenomes. To do so, we developed a

bioinformatic toolkit that includes BLAST databases, hidden Markov models and resources for gene-targeted

assembly of nine arsenic resistance and metabolism genes: acr3, aioA, arsB, arsC (grx), arsC (trx), arsD, arsM, arrA, and

arxA. Though arsenic-related genes were common, they were not universally detected, contradicting the common

conjecture that all organisms have them. From major clades of arsenic-related genes, we inferred their potential for

horizontal and vertical transfer. Different types and proportions of genes were detected across soils, suggesting

microbial community composition will, in part, determine local arsenic toxicity and biogeochemistry. While arsenic-

related genes were globally distributed, particular sequence variants were highly endemic (e.g., acr3), suggesting

dispersal limitation. The gene encoding arsenic methylase arsM was unexpectedly abundant in soil metagenomes

(median 48%), suggesting that it plays a prominent role in global arsenic biogeochemistry.

Conclusions: Our analysis advances understanding of arsenic resistance, metabolism, and biogeochemistry, and our

approach provides a roadmap for the ecological investigation of environmental resistomes.

Keywords: Arsenic, Functional gene, Bioinformatics, Targeted gene assembly, Horizontal gene transfer,

Biogeography, Phylogeny, Phylogenetic diversity, Resistome, Plasmid

Background

Microbial communities drive global biogeochemical

cycles through diverse functions. The biogeography of

functional genes can help to predict and manage the

influence of microbial communities on biogeochem-

ical cycling [1]. These trait-based analyses require that

the functional genes are well-characterized from both

evolutionary and genetic perspectives [2]. The arsenic

resistance and metabolism genes exemplify a suite of

well-characterized functional genes that have

consequences for biogeochemistry. Arsenic is a toxic

metalloid that, upon exposure, can have negative ef-

fects for all life, including humans, livestock, and mi-

croorganisms. The toxicity and mobility of arsenic

depends, in part, on its oxidation state: the trivalent

arsenite is more mobile and more toxic than the

pentavalent arsenate [3]. The toxicity of methylated

arsenic species varies with oxidation state and num-

ber of methyl groups (monomethyl, dimethyl, tri-

methyl). Pentavalent methylarsenicals are progressively

less toxic than inorganic arsenate, while trivalent

methylarsenicals are progressively more toxic than in-

organic arsenite with the exception of trimethylarsine

which is the least toxic arsenic species [4, 5]. Add-

itionally, volatilization of arsenic can occur through

methylation [6], which has varied impacts. Methylated
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forms of arsenic can be released to new areas through

air [7], captured during bioremediation [8], or accu-

mulate in crops such as rice [9]. Microbial transfor-

mations of arsenic can have consequences for arsenic

speciation and methylation; therefore, they impact ar-

senic ecotoxicity and the fate of arsenic in the

environment.

Arsenic biogeochemical cycling by microbial commu-

nities is both an ancient [10, 11] and a contemporary [3,

12] phenomenon. Changes to the methylation or oxida-

tion state of arsenic alter biogeochemical cycling of ar-

senic, and microbes have evolved a variety of

mechanisms to carry out these functions. Arsenic-related

genes are generally separated into two categories: resist-

ance and metabolism [13]. Arsenic resistance, or detoxi-

fication, is encoded by the ars operon [14]. The ars

operon protects the cell from arsenic but does not de-

toxify arsenic itself in the environment. This operon in-

cludes arsenite efflux (ArsB, Acr3) which is potentially

precluded by cytoplasmic arsenate reduction with either

glutaredoxin (ArsC (grx)) or thioredoxin (ArsC (trx))

[14]. Arsenic metabolisms include methylation (ArsM),

oxidation (AioAB, ArxAB), and dissimilatory reduction

(ArrAB) [13]. While these genetic determinants of ar-

senic detoxification and metabolism are

well-characterized, the full scope of arsenic detoxifica-

tion and metabolism gene distribution, diversity, and in-

terspecies transfer is unknown [15–17].

Microbial arsenic resistance is reportedly widespread

in the environment. Arsenic-resistant organisms have

been found in sites with low arsenic concentrations

(< 7 ppm) [18, 19], and it has been speculated that

nearly all organisms have arsenic resistance genes

[20]. While the number of identified microorganisms

with arsenic resistance genes continues to grow [13],

the number of microorganisms without arsenic resist-

ance genes is unclear. Furthermore, though the

complete arsenic biogeochemical cycle has been de-

tected in the environment [10], the relative contribu-

tions of genes encoding detoxification and metabolism

remain unknown [11]. A global, biogeographic per-

spective of environmental arsenic-related genes would

improve understanding of their ecology. This informa-

tion would expand foundational knowledge of arsenic

detoxification and metabolism, including local and

global abundances, gene diversity, dispersal across dif-

ferent environments, and representations over the mi-

crobial tree of life.

Knowledge gaps concerning the diversity of micro-

bial arsenic-related genes are driven, in part, by nu-

merous inconsistencies in nomenclature and detection

methods. Though public microbial metagenome and

genome data continue to surge, there are several

practical hurdles to achieving a robust, global

assessment of microbial arsenic-related genes from

this wealth of data. First, tools to detect these genes

rely on imperfect annotation [15] and widely vary in

nomenclature [21]. Next, the use of different refer-

ence databases [12, 22–25] and normalization tech-

niques [25, 26] complicates comparisons between

studies. To overcome these hurdles, we developed an

open-access toolkit to examine arsenic resistance and

metabolism genes in microbial sequence datasets.

This toolkit allowed us probe genomic and metage-

nomic datasets simultaneously to investigate

arsenic-related genes in soil microbiomes. We first

asked whether arsenic-related genes are universal in

soil-associated microorganisms. Next, we tested the

hypothesis that genes encoding arsenic detoxification

are more abundant than those encoding arsenic me-

tabolism. We also tested the hypothesis that arsenic

resistance genes with redundant function (i.e., acr3

and arsB; arsC (grx) and arsC (trx)) would have com-

plementary environmental abundances. Third, we

asked whether estimations of arsenic-related gene

abundance are biased by cultivation efforts, as cultiva-

tion is often a research emphasis because cultivable,

arsenic-resistant microorganisms can be used in bio-

remediation [17]. Finally, we tested the hypothesis

that sequence variants of arsenic-related genes are en-

demic, not cosmopolitan.

Results

A bioinformatic toolkit for detecting and quantifying

arsenic-related genes

We developed a toolkit to improve investigations of mi-

crobial arsenic-related genes (Fig. 1a, b) [14, 31–35]. We

selected these nine genes because they are markers of ar-

senic detoxification and metabolism [21, 25] and because

their genetic underpinnings are well established. Seed se-

quences (high-quality and full-length sequences) for

each gene of interest were collected and used to con-

struct BLAST databases [30], functional gene (FunGene)

databases [27], hidden Markov models (HMMs [36]),

and gene resources for gene-targeted assembly (Xander

[28]) (Fig. 1a). Altogether, this toolkit relies on consistent

references and nomenclature and can search both amino

acid and nucleotide sequence data.

To demonstrate the utility of our toolkit, we per-

formed an analysis of arsenic-related genes in

soil-associated genomes and metagenomes. We used

HMMs for marker genes for arsenic detoxification

and metabolism to search RefSoil+ genomes, a set of

complete chromosomes and plasmids from cultivable

soil microorganisms [37]. Additionally, we used a

gene-targeted assembler [28] to test 38 public soil

metagenomes from Brazil, Canada, Malaysia, Russia,

and the USA for arsenic resistance and metabolism
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genes (Additional file 1). Ultimately, these data serve

as a broad baseline of arsenic detoxification and me-

tabolism genes in soil.

Phylogenetic distributions and genomic locations of

arsenic-related genes

We asked whether arsenic resistance and metabolism

genes were universal in RefSoil+ organisms [37]. Of

the 922 RefSoil+ genomes spanning 25 phyla (Fig. 2b;

Additional file 2), 14.3% (132 genomes) did not con-

tain any tested arsenic-related genes. Of the 25 phyla

in RefSoil+, two phyla (Chlamydiae and Crenarch-

aeota) did not have any of these genes. These phyla,

however, had few RefSoil+ representatives (three and

nine, respectively), so other members of these phyla

may have arsenic detoxification and metabolism

genes. Supporting this hypothesis, a Crenarchaeota

isolate was previously reported to oxidize arsenic [38].

Nonetheless, these data suggest that arsenic-related

genes are widespread, but not universal, even among

cultivable soil organisms (Fig. 2).

We next asked whether 16S rRNA gene phylogeny

was predictive of arsenic genotypes using a test for

phylogenetic signal (Bloomberg’s K [39]). No phylo-

genetic signal was observed for plasmid-borne se-

quences or genes encoding arsenic metabolisms (aioA,

arrA, arxA); however, relatively few RefSoil+ microor-

ganisms tested positive for these genes. Despite their

phylogenetic breadth (Additional files 3, 4, 5, 6,

and 7), chromosomally encoded acr3, arsB, arsC

(grx), arsC (trx), and arsM were similar between

phylogenetically related organisms (false discovery rate

adjusted p < 0.01; Fig. 2a).

Phylogenetic diversity of arsenic-related genes: insights

into vertical and horizontal transfer

Arsenite efflux pumps

We examined the phylogenetic diversity of distinct

genes encoding arsenite efflux pumps, acr3 and arsB,

for soil-associated microorganisms (Fig. 3, Add-

itional files 3 and 4). Gene acr3 is separated into two

clades: acr3(1) and acr3(2) [40]. Clade acr3(1) is typ-

ically composed of Proteobacterial sequences while

acr3(2) is typically composed of Firmicutes and Acti-

nobacterial sequences [21, 40, 41]. Though RefSoil+

genomes were mostly composed of acr3(2) sequences

from Proteobacteria (Fig. 3a; Additional file 3), we

observed greater taxonomic diversity observed than

previously reported for this clade [21, 40, 41].

Surprisingly, there were deep branches in acr3(2) that

belonged to Bacteroidetes, Euryarchaeota, Firmicutes,

Fusobacteria, and Verrucomicrobia. Similarly, acr3(1)

contained closely related acr3 sequences present in a

diverse array of phyla (10 out of 25). Both clades had

sequences present on plasmids (6.1%). Plasmid-borne

arsB sequences were only present in Proteobacteria

and Deinococcus-Thermus strains (Fig. 3b;

Additional file 4). Sequences from Actinobacteria,

Proteobacteria, and Firmicutes were each present in

two distinct phylogenetic groups, and previous studies

also observed separation of arsB sequences based on

phylum [40, 41]. Interestingly, our genome-centric

analysis revealed that microorganisms with multiple

copies of arsB did not harbor identical copies. For ex-

ample, seven Bacillus subtilis subsp. subtilis strains

had two copies of arsB, with one from each of the

two clades (Additional file 4).

Fig. 1 Arsenic resistance and metabolism gene toolkit schematic. a Seed sequences for nine arsenic resistance genes were used to construct an

arsenic resistance gene database with existing tools [27–30]. Lines indicate interdependence between modules. b Table of arsenic resistance and

metabolism genes included in the toolkit. The toolkit is freely available on GitHub: https://github.com/ShadeLab/PAPER_Dunivin_meta_arsenic
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A

B

Fig. 2 Arsenic resistance and metabolism genes in RefSoil+ organisms. a Maximum likelihood tree of 16S rRNA genes in RefSoil+ organisms.

Bootstrap support > 50 is shown with black circles. Tree branches and the first ring are colored by organism taxonomy. Each node is annotated

with arsenic resistance genotype where color indicates the gene. Filled boxes indicate gene presence on chromosome, and open boxes indicate

gene presence on plasmid. b Proportion of RefSoil+ organisms and organisms containing arsenic resistance genes are colored by the taxonomy

of the organism containing the gene. “None” refers to the number of genomes that do not test positive for any of the nine arsenic resistance

genes analyzed. Note the difference between y-axes
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Cytoplasmic arsenate reductases

Cytoplasmic arsenate reductase (ArsC (trx)) was phylo-

genetically widespread in RefSoil+ microorganisms

(Fig. 4a; Additional file 5). While some arsC (trx) se-

quences were plasmid-borne, the majority were chromo-

somally encoded. Similarly, plasmid-encoded arsC (grx)

made up 4.6% of RefSoil+ hits (Fig. 4b; Additional file 6).

Notably, several Proteobacteria strains have multiple

copies of arsC (grx) with distinct sequences. It is pos-

sible that this is the result of an early gene duplication

event or HGT of a second arsC (grx).

Arsenic metabolisms

arsM was relatively uncommon in RefSoil+ microorgan-

isms (5.2%) (Fig. 2). In the RefSoil+ database, arsM was

observed in Euryarchaeota as well as several bacterial

phyla Acidobacteria, Actinobacteria, Armatimonadetes,

Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes,

Gemmatimonadetes, Nitrospirae, Proteobacteria, and

Verrucomicrobia (Fig. 5; Additional file 7). Notably, only

one RefSoil+ microorganism, Rubrobacter radiotolerans

(NZ_CP007516.1), had a plasmid-borne arsM.

Arsenic metabolism genes aioA, arrA, and arxA were

phylogenetically conserved (Fig. 6). Genes encoding ar-

senite oxidases aioA and arxA were restricted to Proteo-

bacteria. aioA sequences clustered into two clades based

on class-level taxonomy: all Alphaproteobacteria se-

quences cluster separately from Gamma- and Betapro-

teobacteria sequences. The gene encoding dissimilatory

arsenate reduction arrA was also phylogenetically con-

served in RefSoil+ strains, with strains from Proteobac-

teria clustering separate from Firmicutes (Fig. 6).

Cultivation bias and environmental distributions of

arsenic-related genes

To gain a cultivation-dependent perspective of the abun-

dances of arsenic-related genes in soils, we used inferred

environmental abundances of RefSoil microorganisms

[42, 43]. The environmental abundance of RefSoil micro-

organisms, which are cultivable, soil-associated microor-

ganisms, was previously estimated by comparing 16S

rRNA gene sequences in RefSoil with those in soil meta-

genomes [42]. We used this estimated abundance of cul-

tivable microorganisms along with arsenic-related gene

A B

Fig. 3 Phylogeny of arsenite efflux pumps in RefSoil+ organisms. Maximum likelihood tree with 100 bootstrap replications of a Acr3 and b ArsB

sequences predicted from RefSoil+ genomes. Tree scale = 1. Leaf tip color indicates phylum-level taxonomy. Bootstrap values > 50 are

represented by black circles within the tree. Gray circles on the exterior of the tree indicate that a hit was detected on a plasmid and not

a chromosome
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information from this study (Fig. 2) to estimate the

environmental abundances of arsenic-related genes

from the cultivated bacteria. Arsenic metabolism

genes (aioA, arrA, arsM, arxA) were predicted to be

less common in the environment compared with

arsenic detoxification genes (acr3, arsB, arsC (grx),

arsC (trx), and arsD) (Fig. 7a; Mann-Whitney U test

p < 0.01). Despite similar distributions of acr3 and

arsB in RefSoil+ (Fig. 2b), acr3 was more abundant in

most soil orders (Fig. 7a; Mann-Whitney U test p < 0.05).

For genes encoding cytoplasmic arsenate reductases, arsC

(grx) was more abundant than arsC (trx) (Mann-Whitney

U test p < 0.01).

To gain a cultivation-independent perspective of the

abundances of arsenic-related genes, we examined their

normalized abundance from soil metagenomes (Fig. 7b).

An undetected gene does not confirm absence, so we

present a conservative estimate that only includes meta-

genomes testing positive for a gene. Arsenic detoxifica-

tion genes (acr3, arsB, arsC (grx), arsC (trx), and arsD)

were more abundant than arsenic metabolism genes

(aioA, arrA, arsM, and arxA) (Mann-Whitney U test

p < 0.01; Fig. 7b). Genes encoding arsenite efflux pumps

differed in their abundance with acr3 being more

abundant than arsB (Mann-Whitney U test p < 0.01).

We also observed differences in cytoplasmic arsenate

reductases: arsC (grx) was more abundant than arsC

(trx) (Mann-Whitney U test p < 0.01).

We explored cultivation bias of arsenic-related

genes with a case study comparing

cultivation-dependent (lawn growth on the standard

medium TSA50) and cultivation-independent commu-

nities from the same soil. Genes in the ars operon

(acr3, arsB, arsD, and arsC (trx)) were elevated in the

cultivation-dependent metagenome (Fig. 7c). Addition-

ally, arsenic metabolism genes were not detected

(aioA, arrA, arxA) or in low abundance (arsM) in the

cultivation-dependent sample; however, all four of

these arsenic metabolism genes were detected in the

cultivation-independent sample. Though this is a

single-case study of cultivation-dependent and

cultivation-independent methods, these results recap-

itulate the general discrepancies between RefSoil+ ge-

nomes and soil metagenomes (Fig. 7b). This bias has

A B

Fig. 4 Phylogeny of cytoplasmic arsenate reductases in RefSoil+ organisms. Maximum likelihood tree with 100 bootstrap replications of a ArsC

(trx) and b ArsC (grx) sequences predicted from RefSoil+ genomes. Tree scale = 1. Leaf tip color indicates phylum-level taxonomy. Bootstrap

values > 50 are represented by black circles within the tree. Gray circles on the exterior of the tree indicate that a hit was detected on a plasmid

and not a chromosome
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important implications for studies focusing on arsenic

bioremediation because cultivation-dependent studies

could misestimate the potential of microbiomes for

arsenic detoxification and metabolism in situ.

Arsenic-related gene endemism

Arsenic-related genes are globally distributed, but

their biogeography is poorly understood. Broadly,

arsenic-related genes had comparable abundance

Fig. 5 Phylogeny of ArsM in RefSoil+ organisms. Maximum likelihood tree with 100 bootstrap replications of ArsM sequences predicted

from RefSoil+ genomes. Tree scale = 1. Leaf tip color indicates phylum-level taxonomy. Bootstrap values > 50 are represented by black

circles within the tree. Gray circles on the exterior of the tree indicate that a hit was detected on a plasmid and not a chromosome
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among different soils (Fig. 7a, b). The relative distributions

of distinct arsenic detoxification and metabolism mecha-

nisms in one site, however, are relevant for predicting the

impact of microbial communities on the fate of arsenic. To

understand site-specific distributions, we explored soil

metagenomes from Brazil, Canada, Malaysia, Russia, and

the USA (Additional file 1). These 16 sites had differences

in community membership (Additional file 9) and

arsenic-related gene content (Fig. 8a). Geographic location

was not predictive of arsenic-related gene content (Mantel’s

r = 0.03493; p > 0.05). Soils had different distributions of

arsenic-related genes and therefore differed in their poten-

tial impact on the biogeochemical cycling of arsenic. While

arsC (grx) and arsM dominated most samples, their relative

proportions varied greatly (Fig. 8a). RefSoil+ data suggests

that arsM can be found in Verrucomicrobia (100%, n = 2),

which is of particular importance for soil metagenomes

since Verrucomicrobia are often underestimated with

cultivation-dependent methods [44]. The mangrove sample

had the most even proportions of arsenic-related genes

(Fig. 8a). This distribution was driven by a high abundance

of arsC (trx) and arrA.

We further examined the arsenic resistance gene

abundance at individual sites. We did not include arr

and arx in this analysis due to limited available data. For

each gene, the abundance varied greatly, but replicates

Fig. 6 Phylogeny of AioA, ArrA, and ArxA in RefSoil+ organisms. Maximum likelihood tree with 100 bootstrap replications of dissimilatory arsenic

resistance proteins predicted from RefSoil+ genomes. Tree scale = 0.1. Leaf tips show the name of the RefSoil+ organisms and background color

indicates phylum-level taxonomy. Bootstrap values > 50 are represented by black circles within the tree
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Fig. 7 (See legend on next page.)

Dunivin et al. BMC Biology           (2019) 17:45 Page 9 of 17



within one site had similar abundances (Fig. 8b). The

majority of arsenic-related gene sequences (99.3%) were

endemic and only found in one to two sites, but 24 se-

quences were detected in three or more sites (Fig. 8c;

Additional file 10). The majority (70.8%) of cosmopolitan

sequences belonged to arsC (grx). This analysis suggests

that arsenic-related genes acr3, arsB, arsC (trx), arsD,

arsM, and aioA are generally endemic.

Discussion
A bioinformatic toolkit for detecting and quantifying

arsenic-related genes

We developed a toolkit for detecting arsenic-related

genes from sequence data that supports a variety of ap-

plications (Fig. 1a): arsenic-related genes can be detected

in amino acid sequences from completed genomes

(HMMs [29], BLAST [30]), nucleotide sequences in draft

genomes (BLAST), and metagenomes and metatran-

scriptomes (Xander [28]). Because each tool relies on

the same seed sequences, there is consistency and op-

portunity for comparison between sequence datasets

that were generated from different sources. While

primers already exist for arsenic-related genes: aioA [45,

46], acr3 [41], arsB [41], arsC (grx) [47], arsC (trx) [48],

arsM [9], and arrA [49–51], these FunGene [27] data-

bases can be used for testing primer breadth, designing

new primers, and browsing sequences.

The toolkit is scalable for additional mechanisms for ar-

senic resistance and other functional genes of interest (e.g.,

methylarsenite oxidase (ArsH), C-As lyase (ArsI), trivalent

organoarsenical efflux permease (ArsP), organoarsenical ef-

flux permease (ArsJ) [20]), or redox transformations of ele-

ments involved in arsenic biogeochemical cycling (e.g.,

nitrate reductase (NarG) and sulfate reductase (DsrAB) [3,

20]). This toolkit serves as both a resource and an example

workflow for developing similar toolkits to examine func-

tional genes, beyond arsenic-related genes, in microbial se-

quence datasets.

Phylogenetic diversity and distribution of arsenic-related

genes

It has been conjectured that nearly all organisms have

arsenic resistance genes [20], and though this assump-

tion has propagated in the literature, it had never

been explicitly quantified. Our data suggest that

arsenic detoxification and metabolism genes are ubi-

quitous, but not universal in RefSoil+ microorganisms

(Fig. 2). It is possible for these 132 organisms to have

untested or novel arsenic-related genes; nonetheless,

these nine well-characterized genes were not univer-

sally detected. Additionally, phylogeny was predictive

of the presence of acr3, arsB, arsC (grc), arsC (trx),

and arsM. This correlation suggests that taxonomy is

predictive of arsenic genotype despite documented

potential for HGT [19, 40, 48, 52, 53]. This result

could be explained by ancient rather than contempor-

ary HGT, as seen with arsM [53] and arsC (grx) [48].

Therefore, we next assessed evidence for HGT by

examining the phylogenetic congruence and genomic

location (e.g., chromosome or plasmid) of

arsenic-related gene sequences.

Horizontal transfer of arsenic-related genes has been

well documented [19, 40, 48, 52–55] and is an important

consideration for understanding the propagation and

taxonomic identity of arsenic-related genes. We exam-

ined the phylogenetic diversity of arsenic-related genes

in RefSoil+ microorganisms, including plasmids and

chromosomes, and compared them with the 16S rRNA

gene taxonomy.

Efflux pumps

While known acr3 sequences separate into two clades

[21, 40, 41], plasmid-borne acr3 sequences were present

across clades, suggesting a potential for transfer across

unrelated taxa. Therefore, studies assigning taxonomy to

acr3 in the absence of host information should consider

the clade precisely and proceed with caution. Despite

their functional redundancy as arsenite efflux pumps,

acr3 and arsB have very distinctive diversity. As com-

pared with acr3, arsB was less diverse and more phylo-

genetically conserved (Fig. 3b; Additional file 4). This

observation is in agreement with previous reports com-

paring the diversity of arsB to acr3 [40, 41]. Multiple,

phylogenetically distinct copies of arsB were present in

some RefSoil+ organisms, which could be due to an

early gene duplication and subsequent diversification or

to an early transfer event. Therefore, despite relatively

lower sequence variation, this arsB phylogeny suggests

an interesting evolutionary history that could be investi-

gated further.

(See figure on previous page.)

Fig. 7 Comparison of arsenic resistance and metabolism gene abundance between cultivation-dependent and cultivation-independent methods.

a Mean normalized abundance of arsenic-related genes based on RefSoil microorganisms abundance estimated from corresponding 16S rRNA

gene abundance in Earth Microbiome Project datasets. Points are colored by soil order. b Normalized abundance of arsenic resistance genes in

RefSoil+ and 38 metagenomes. Metagenome abundance was normalized to rplB, and RefSoil+ normalized abundance was calculated using the

number of RefSoil+ genomes. Only metagenomes with an arsenic resistance gene detected are shown, and the total number of datasets

(including RefSoil+) is shown in parentheses. c rplB-normalized abundance of arsenic resistance genes in cultivation-dependent and cultivation-

independent metagenomes from the same soil sample
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Cytoplasmic arsenate reductases

arsC (trx) was predominantly found on RefSoil+ chro-

mosomes, not plasmids, suggesting vertical transfer of

arsC (trx) is common. arsC (trx) was present in both

Bacteria and Archaea, and sequences from the two do-

mains formed two distinct clades. arsC (trx) sequences

that cluster separately from Bacterial-arsC (trx) se-

quences have been documented in Thermococci,

Archaeoglobi, Thermoplasmata, and Halobacteria [56].

Together, this distribution supports an early evolutionary

origin for arsC (trx). Thus, arsC (trx) appears to be an

evolutionarily old enzyme that is phylogenetically con-

served despite its presence on plasmids and potential for

HGT. Plasmid-encoded arsC (grx) were also observed in

RefSoil+ microorganisms, highlighting a contemporary

potential for HGT that has been documented in soil

[48]. Thus, both genes encoding cytoplasmic arsenate re-

ductases were more common on chromosomes.

Arsenic metabolisms

The evolutionary history of the gene encoding arsenite

S-adenosylmethionine methyltransferase, arsM, was re-

cently investigated [52, 53]. Both studies independently

determined that arsM evolved billions of years ago and

was subject to HGT [52, 53]. In this work, arsM se-

quences from Euryarchaeota were dispersed throughout

the arsM phylogeny, supporting the potential for

inter-kingdom transfer events that were recently sug-

gested [52, 53]. Very few RefSoil+ organisms had arsenic

metabolism genes aioA, arrA, or arxA, which limits

phylogenetic analysis. Nonetheless, they were mostly

found in Proteobacteria, which is in agreement with pre-

vious work [13].

Cultivation bias and environmental distributions of

arsenic-related genes

Cultivation-based assessments of arsenic-related gene

content are important since cultivable strains are often

favored for bioremediation [57]. We estimated distribu-

tions of arsenic-related genes in cultivable microorgan-

isms from soils and found a greater abundance of

arsenic detoxification genes acr3, arsB, and arsC (trx)

(Fig. 7a). A previous study also reported an abundance

of acr3 over arsB in cultivable microoganisms from for-

est soils and attributed this to the greater phylogenetic

distribution of acr3 compared with arsB [41].

Additionally, they found that arsC (grx) was more abun-

dant than arsC (trx) in cultivated microorganisms from

these soils. It has been posited in

cultivation-independent studies that arsC (trx) is more

efficient than arsC (grx) and that high local arsenic con-

centrations result in a relatively greater abundance of

arsC (trx) [21, 58]. Our cultivation-dependent abun-

dances suggest that acr3 and arsC (grx), rather than

arsB and arsC (trx), predominantly comprise the arsenic

detoxification pathway in soils.

To assess arsenic-related gene content without cul-

tivation bias, we examined arsenic-related genes in

soil metagenomes. As predicted by cultivable organ-

isms, arsenic metabolism genes (aioA, arrA, arxA)

were generally in low abundance while acr3 and arsC

(grx) were in high abundance. Estimates of genes en-

coding arsenic detoxification (acr3, arsB, arsD, arsC

(grx), arsC (trx)) were considerably lower in these

cultivation-independent samples. This result could be

due, in part, to the large number of RefSoil+ microorganisms

with multiple copies of these genes (Additional file 8).

Cultivation-independent genomes (e.g., single-cell-amplified

genomes and metagenome-assembled genomes) could pro-

vide greater context about the environmental distributions of

copy numbers of arsenic-related genes.

Notably, arsM was abundant in soil (median 48%),

which greatly exceeds cultivation-dependent estimations,

and in a case study of cultivation-dependent and

cultivation-independent techniques, arsM was more

abundant in the cultivation-independent sample (Fig. 7c).

Due to the early phylogenetic origins of arsM and its in-

dependent functionality [53], this abundance of arsM in

soil metagenomes is not unexpected. arsM is typically

studied in paddy soils [6, 59, 60], but metagenomes in

this study suggest it is an important component of the

arsenic biogeochemical cycle in a variety of soils.

Arsenic-related gene endemism

We examined the relative abundance of arsenic-related

genes in soil metagenomes and observed differences in

genetic potential for arsenic transformation that could

impact biogeochemical cycling (Fig. 8a). Notably, the

mangrove sample had the most even proportions of

arsenic-related genes. While the arsenic concentrations

in this sample are unknown, mangroves are considered

sources and sinks for arsenic [61–63]. This could explain

(See figure on previous page.)

Fig. 8 Arsenic resistance and metabolism gene biogeography. a Relative abundance of arsenic resistance genes in soil metagenomes. b Rank

rplB-normalized abundance of arsenic-related genes in soil metagenomes. Sites are ordered by rank mean abundance. Note the differences in y-

axes. c Abundance-occurrence plots of arsenic-related gene sequences clustered at 90% amino acid identity. Number of samples included are as

follows: Brazilian forest n = 3, California grassland n = 2, Centralia active n = 7, Centralia recovered n = 5, Centralia reference n = 1, Disney preserve

n = 2, Illinois soybean n = 2, Illinois switchgrass n = 1, Iowa agricultural n = 2, Iowa corn n = 2, Iowa prairie n = 3, Mangrove n = 2, Minnesota

grassland n = 2, Permafrost Canada n = 2, Permafrost Russia n = 1, and Wyoming soil n = 1
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the greater abundance of arsC (trx), which is hypothe-

sized to be more abundant in high arsenic sites [21, 58].

Additionally, arrA encodes a dissimilatory arsenate re-

ductase that functions in an anaerobic environment [34],

so its greater abundance in sediment is expected. Soil

geochemical data was not available for all metagenomes

examined in this work, so direct comparisons of

arsenic-related gene content and soil geochemistry were

not possible. This highlights the importance and utility

of depositing geochemical data with DNA sequences.

Future work, however, could further examine relation-

ships between arsenic resistance genes and soil geo-

chemical data, including arsenic concentration and

redox potential.

We also measured whether arsenic-related gene se-

quence variants were endemic or cosmopolitan in soil

metagenomes (Fig. 8c). We found that genes acr3, arsB,

arsC (trx), arsD, arsM, and aioA were generally en-

demic, suggesting regional dispersal limitation. Only one

aioA and three acr3 sequences were detected in multiple

sites. This supports a previous finding that acr3 and

aioA from the acid mine drainage in Carnoulès were en-

demic [64]. Conversely, arsC (grx) was cosmopolitan

which could suggest genetic migration via HGT or verti-

cal transfer and a limited gene diversification. Both are

plausible since arsC (grx) was common in RefSoil+ plas-

mids and had low phylogenetic diversity (Fig. 4b;

Additional file 6).

Conclusions

We developed a bioinformatic toolkit for detecting ar-

senic detoxification and metabolism genes in microbial

sequence data and applied it to analyze the genomes and

metagenomes from soil microorganisms. This toolkit in-

forms hypotheses about the evolutionary histories of

these genes (including potential for vertical and horizon-

tal transfers) and how community ecology in situ may

influence their prevalence and distribution. This study

reports the phylogenetic diversity, genomic locations,

and biogeography of arsenic-related genes in soils, inte-

grating information from different ‘omics datasets and

resources to provide a broad synthesis. The toolkit and

the synthesis presented here can catalyze future work to

understand the ecology and evolution of microbial ar-

senic biogeochemistry. Furthermore, the toolkit acts as a

framework for similar studies of other functional genes

of interest.

Materials and methods
Gene selection and functional gene (FunGene) database

construction

Marker genes can be used to estimate their potential to

influence the arsenic biogeochemical cycle [21, 25], so

we selected nine well-characterized genes: acr3, aioA,

arsB, arsC (grx), arsC (trx), arsD, arsM, arrA, and arxA.

FunGene databases [27] were constructed for the follow-

ing arsenic-related genes: arsB, arsC (grx), arsC (trx),

acr3, aioA, arrA, and arxA. The arxA database was con-

structed with seed sequences from [12]. For all other

genes, UniProt [65] was used to obtain full-length,

reviewed sequences when possible. NCBI clusters of

orthologous groups (COG) [66] for each gene were ex-

amined for evidence of function in the literature. All

COG and UniProt sequences were aligned using

MUSCLE [67]. Aligned sequences were included in a

maximum likelihood tree with 50 bootstrap replications

made with MEGA (v7.0, [68]). Sequences that did not

cluster with known sequences and had no evidence of

function were removed. A final FASTA file for each gene

was submitted to the Ribosomal Database Project (RDP)

to construct a FunGene database [27]. All arsenic-related

gene databases are freely available on FunGene (http://

fungene.cme.msu.edu/).

Arsenic-related genes in cultivable soil microorganisms

The RefSoil+ database [37] was used to obtain

high-quality genomes (chromosomes and plasmids) from

soil microorganisms in the Genomes OnLine (GOLD)

database [69]. RefSoil+ chromosomes and plasmids were

searched with hmmsearch [29] using HMMs from Fun-

Gene with an e-value cutoff of 10− 10. The top hits were

analyzed in R [70]. For each gene, scores and percent

alignments were plotted to determine quality cutoffs.

Stringent percent alignment scores were included since

this search was against completed genome sequences:

only hits with scores > 100 and percent alignment > 90%

were included. Hits with the lowest scores were manu-

ally examined to test for false positives. Due to false pos-

itives, hits against aioA, arrA, and arxA were further

quality filtered to have scores > 1000. When one open

reading frame (ORF) contained multiple hits, the hit

with a lower score was removed. Taxonomy was

assigned using the RefSoil database [42], and the relative

abundance of arsenic-related genes within phyla was ex-

amined. A 16S rRNA gene maximum likelihood tree of

RefSoil+ bacterial strains was constructed with RAxML

(v.8.0.6 [71]) based on the Whelan and Goldman (WAG)

model with 100 bootstrap replicates (“-m PROTGAM-

MAWAG -p 12345 -f a -k -x 12345 -# 100”). Based on

accession numbers, gene hits were extracted from

RefSoil+ sequences and used to construct maximum

likelihood trees for each gene.

Reference database construction

Reference gene databases of diverse, near full-length se-

quences were constructed using limited sequences from

FunGene databases [27] for the following genes: acr3,

aioA, arrA, arsB, arsC (grx), arsC (trx), arsD, arsM, and
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arxA. Seed sequences and hidden Markov models

(HMMs) for each gene were downloaded from FunGene,

and diverse protein and corresponding nucleotide se-

quences were selected with gene-specific search parame-

ters (Additional file 11). Briefly, minimum amino acid

length was set to 70% of the HMM length; minimum

HMM coverage was set to 80% as is recommended by

Xander software for targeted gene assembly; and a score

cutoff was manually selected based on a dropoff point.

Sequences were de-replicated before being used in sub-

sequent analysis, and final sequence counts are included

in Additional file 11. Reference databases were converted

to publicly available BLAST databases using BLAST+

[30]. Reference and BLAST databases are publicly avail-

able on GitHub (https://github.com/ShadeLab/PAPER_

Dunivin_meta_arsenic)

Sample collection and preparation

A soil surface core (20 cm depth and 5.1 cm diameter)

was collected in October 2014 from Centralia, PA (GPS

coordinates: 40 48.070, 076 20.574). For

cultivation-dependent work, a soil slurry was made by

vortexing 5 g soil with 25mL phosphate-buffered saline

(PBS) for 1 min. Remaining soil was stored at − 80 °C

until DNA extractions. The soil slurry was allowed to

settle for 2 min. One hundred microliters of the slurry

was then removed and serial diluted using PBS to a 10− 2

dilution. One hundred microliters of the solution was

added to 50% trypticase soy agar (TSA50) with 200 μg/

mL cycloheximide to prevent fungal growth. Plates were

incubated at 60 °C for 72 h. Lawns of growth were ex-

tracted by adding 600 μL trypticase soy broth with 25%

glycerol to plates. The plate scrapings were stored at −

80 °C until DNA extraction.

DNA extraction and metagenome sequencing

DNA for cultivation-independent analysis was manually

extracted from soil using a phenol chloroform extraction

[72] and the MoBio DNEasy PowerSoil Kit (MoBio,

Solana Beach, CA, USA) according to the manufacturer’s

instructions. DNA extraction for cultivation-dependent

analysis was performed in triplicate from 200 μL of plate

scrapings using the E.Z.N.A. Bacterial DNA Kit accord-

ing to the manufacturer’s instructions. All DNA was

quantified using a Qubit dsDNA BR Assay Kit (Life

Technologies, NY, USA) and was submitted for NGS li-

brary prep and sequencing at the Michigan State Univer-

sity Genomics Core sequencing facility (East Lansing,

MI, USA). Libraries were prepared using the Illumina

TruSeq Nano DNA Library Preparation Kit. After QC

and quantitation, the libraries were pooled and loaded

on one lane of an Illumina HiSeq 2500 Rapid Run flow

cell (v1). Sequencing was performed in a 2 × 150 bp

paired end format using Rapid SBS reagents. Base calling

was performed by Illumina Real Time Analysis (RTA)

v1.18.61 and output of RTA was demultiplexed and con-

verted to FastQ format with Illumina Bcl2Fastq v1.8.4.

Public soil metagenome acquisition

In total, 38 soil metagenomes were obtained for this

work (Additional file 1). Datasets from Centralia, PA,

were generated in our research group. All other meta-

genome datasets were obtained from MG-RAST (http://

metagenomics.anl.gov/). The MG-RAST database was

searched on May 15, 2017, with the following criteria:

material = soil, sequence type = shotgun, public = true.

The resulting list of metagenome datasets was ordered

by the number of base pairs (bp). Metagenomic datasets

with the most bp were only included if they were se-

quenced using Illumina to standardize sequencing er-

rors, had an available FASTQ file for internal quality

control, and contained < 30% low quality as determined

by MG-RAST. Within high-quality Illumina samples,

priority for inclusion was given to projects with multiple

samples so that comparisons could be made both within

and between soil sites. When a project had multiple

samples, datasets with the greatest bp were selected.

While we prioritized samples with multiple datasets, sev-

eral replicate samples were omitted early on due to >

30% of data removed during quality filtering, and sam-

ples Illinois soil, Russian permafrost, and Wyoming soil

have just one sample. This search ultimately yielded 26

datasets from 12 locations and 5 countries

(Additional file 2).

Soil metagenome processing and gene targeted assembly

Sequences from MG-RAST datasets as well as Centralia

sample Cen13 were quality controlled using the FASTX

toolkit (fastq_quality_filter, “-Q33 -q 30 -p 50”). Twelve

datasets from Centralia, PA, were obtained from the

Joint Genome Institute and quality filtered as described

previously [73]. Quality-filtered sequences were used in

all downstream analyses. For each dataset, a gene tar-

geted metagenome assembler [28] was used to assemble

each gene of interest. For each gene of interest, seed se-

quences, HMMs, and reference gene databases described

above were included. For rplB, reference gene database,

seed sequences, and HMMs from the Xander package

were used. In most instances, default assembly parameters

were used except to incorporate differences in protein

length (i.e., protein is shorter than default 150 amino

acids) or to improve quality (i.e., maximum length is in-

creased to improve specificity) (Additional file 11). While

the assembler includes chimera removal, additional quality

control steps were added. Final assembled sequences (op-

erational taxonomic units, OTUs) were searched against

the reference gene database as well as the non-redundant

database (nr) from NCBI (August 28, 2017) using BLAST
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[30]. Genes were re-examined if the top hit had an e-value

> 10− 5 or if top hit descriptors were not the target gene.

Genes with low-quality results were re-assembled with ad-

justed parameters.

Soil metagenome comparison

To compare assembled sequences between samples,

gene-based OTU tables were constructed. Aligned se-

quences from each sample were dereplicated and clus-

tered at 90 amino acid identity using the RDP Classifier

[74]. Dereplicated, clustered sequences were converted

into OTU tables with coverage-adjusted abundance.

These tables were subsequently analyzed in R [70]. RplB

OTUs were used to compare community structure. The

six most abundant phyla were extracted to include at

least 75% of each community; the full community struc-

ture is available. To compare the abundance of

arsenic-related genes among datasets, total counts of

rplB were used to normalize the abundance of each

OTU. Relative abundance of arsenic-related genes was

also calculated for each sample.

Additional files

Additional file 1: Available metadata and accession numbers for soil

metagenomes used in this study. (DOCX 22 kb)

Additional file 2: Phylum-level summary of arsenic-related genes in

RefSoil+ chromosomes and plasmids. (DOCX 14 kb)

Additional file 3: Phylogeny of Acr3 in RefSoil+ organisms. Maximum

likelihood tree with 100 bootstrap replications of Acr3 sequences

predicted from RefSoil+ genomes. Leaf tips show the name of the

RefSoil+ organisms and background color indicates phylum-level tax-

onomy. Bootstrap values > 50 are represented by black circles within the

tree. (PNG 4395 kb)

Additional file 4: Phylogeny of ArsB in RefSoil+ organisms. Maximum

likelihood tree with 100 bootstrap replications of ArsB sequences

predicted from RefSoil+ genomes. Leaf tips show the name of the

RefSoil+ organisms and background color indicates phylum-level tax-

onomy. Bootstrap values > 50 are represented by black circles within the

tree. (PNG 9385 kb)

Additional file 5: Phylogeny of ArsC (trx) in RefSoil+ organisms.

Maximum likelihood tree with 100 bootstrap replications of ArsC (trx)

sequences predicted from RefSoil+ genomes. Leaf tips show the name of

the RefSoil+ organisms and background color indicates phylum-level tax-

onomy. Bootstrap values > 50 are represented by black circles within the

tree. (PNG 1911 kb)

Additional file 6: Phylogeny of ArsC (grx) in RefSoil+ organisms.

Maximum likelihood tree with 100 bootstrap replications of ArsC (grx)

sequences predicted from RefSoil+ genomes. Leaf tips show the name of

the RefSoil+ organisms and background color indicates phylum-level tax-

onomy. Bootstrap values > 50 are represented by black circles within the

tree. (PNG 4752 kb)

Additional file 7: Phylogeny of ArsM in RefSoil+ organisms. Maximum

likelihood tree with 100 bootstrap replications of ArsM sequences

predicted from RefSoil+ genomes. Leaf tips show the name of the

RefSoil+ organisms and background color indicates phylum-level tax-

onomy. Bootstrap values > 50 are represented by black circles within the

tree. (EPS 6021 kb)

Additional file 8: Histogram of arsenic-related gene copy numbers in

RefSoil+ organisms. Total copy number is based on hits from both chro-

mosomes and plasmids from the same organism. (EPS 24 kb)

Additional file 9: Phylum-level community structure of soil

metagenomes in this study. (EPS 65 kb)

Additional file 10: Summary of endemic arsenic-related gene se-

quences. A sequence was considered endemic if it was present in less

than three different soil sites. (DOCX 43 kb)

Additional file 11: Summary of reference arsenic resistance and

metabolism gene sequences from FunGene databases. (DOCX 51 kb)
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