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A GLOBAL THEORY OF INTERNAL SOLITARY WAVES
IN TWO-FLUID SYSTEMS
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ABSTRACT. The problem analyzed is that of two-dimensional wave motion
in a heterogeneous, inviscid fluid confined between two rigid horizontal planes
and subject to gravity g. It is assumed that a fluid of constant density p+
lies above a fluid of constant density p_ > p+ > 0 and that the system
is nondiffusive. Progressing solitary waves, viewed in a moving coordinate
system, can be described by a pair (A, w), where the constant A = g/c2, c being
the wave speed, and where w(x, r¡) + r] is the height at a horizontal position
x of the streamline which has height 77 at x = ±00. It is shown that among
the nontrivial solutions of a quasilinear elliptic eigenvalue problem for (A, w)
is an unbounded connected set in R x (Hq n C0,1). Various properties of the
solution are shown, and the behavior of large amplitude solutions is analyzed,
leading to the alternative that internal surges must occur or streamlines with
vertical tangents must occur.

1. Introduction. The study of single-crested progressing gravity waves was
initiated over a century ago. It began with the observations by Russell [24] of
what he termed solitary waves, which progressed without change of form over a
considerable distance on the Glasgow-Edinburgh Canal. The mathematical analysis
of this wave motion on the surface of water, begun in the nineteenth century, has
undergone a rapid development in the last three decades, due to the scattering
theory for the Korteweg-de Vries equation, which models the motion of long waves,
and due to the development of techniques in nonlinear analysis allowing for the
study of finite amplitude motions (cf. [5, 19] and references given there). The work
on surface waves has many parallels in the study of waves in fluids with variable
density. In the case of a heterogeneous fluid with a free upper surface, gravity waves
still occur, in analogy with surface waves in a fluid of constant density (cf. [23, 25,
27]). What is distinctive about a fluid with density stratification, however, is the
presence of waves which are predominantly due to the stratification and not to the
free surface. These waves, called internal waves, exist in a heterogeneous fluid even
when it is confined between horizontal boundaries, a configuration which precludes
gravity waves in a fluid of constant density.

For surveys of earlier work on permanent waves in stratified fluids and for more
complete references than given here, we refer the reader to the articles by Benjamin
[8], Bona, Bose, and Turner [10], and Turner [26].
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432 C J. AMICK AND R. E. L. TURNER

Our concern in this paper is with progressing solitary waves in a system consisting
of two fluids of differing densities confined in a channel of unit depth and infinite
horizontal extent. The undisturbed state consists of a fluid of constant density p_
having depth h in contact with the lower, planar boundary and a second fluid of
constant positive density p+ < p-, lying above the first and having depth l — h, so as
to fill the channel. The motion studied is assumed to be two-dimensional, inviscid,
incompressible, and nondiffusive. We shall always remove the time variable from
consideration by taking a moving coordinate system in which the flow is steady and
symmetric about the vertical axis.

The problem of finding nontrivial wave motion can be posed in terms of a pair of
harmonic stream functions, t¡)+ for the upper fluid and tp~ for the lower fluid. At the
interface between the two fluids, a free boundary in this setting, one must impose
the continuity of pressure and of normal velocity components. A direct analysis of
the problem in this setting might be attempted along the lines of the work on two
fluid jets by Alt, Caffarelli, and Friedman [1, 2]. However, they make essential use
of having a minimizer for an appropriate functional and must do a delicate analysis
to show that the interface separating the two fluids is of class Cx. In the present
context the analogous minima would correspond to trivial parallel flows (cf. [10,
26]) and the nontrivial flows, to what are undoubtedly saddle points. By taking
a different approach we obtain a global picture of the solitary wave solutions and
show that for each wave the interface between the two fluids is analytic.

The approach taken in this paper is to approximate the discontinuous density
function by a sequence of smooth density profiles and to obtain sufficiently good
estimates in the smooth case to allow appropriate limits to be taken. In this way we
also show that discontinuous densities and smooth, rapidly varying densities give
rise to motions which are close to each other. Using methods of global bifurcation,
the first author in [4] gave a global theory for solitary waves in the case of an
arbitrary smooth density. The solutions are given by stream functions which are
smooth everywhere in the channel. This approach is not limited by the particular
shape of the density profile, as was the variatonal approach used in [10]. However,
a limiting process to obtain solutions for the density having a jump, from p^ to
p+, would still entail a confrontation with an unknown free boundary.

An alternative is to use semi-Lagrangian coordinates. To describe these co-
ordinates we first note that the stream function referred to in the last paragraph
differs from the usual one in having an intervening density factor (see formula 2.14).
Using accepted terminology we call it a pseudo-stream-function and denote it by
ip = ip(x, y), where x is a horizontal coordinate and y is a vertical coordinate chosen
so that gravity acts in the negative y direction. In the semi-Lagrangian formula-
tion one uses x and i¡) as independent variables and y as a dependent variable. In
this formulation the equation to be considered is highly singular. However, what
would be free boundaries in the spatial domain correspond to coordinate lines, ip —
constant, in the new variables. This formulation was used by Ter-Krikorov [25] in
combination with fixed point methods to show the existence of small amplitude pe-
riodic and solitary waves in the case of a fixed or free boundary at the upper surface
of a fluid with smoothly varying density. Using this formulation, but applying a
variational method, the second author in [26 and 27] studied the two-fluid system
under consideration here as well as a multiple-fluid system with a free upper sur-
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INTERNAL SOLITARY WAVES IN TWO-FLUID SYSTEMS 433

face. The existence of periodic and solitary wave was shown, the latter waves being
obtained as the limit of periodic ones with ever-increasing periods. In the present
paper, to obtain large amplitude waves in the case of a discontinuous density, we
work principally with the semi-Lagrangian formulation, but as a starting point use
the solutions provided by [4]. It will be shown that there is a global theory for a
discontinuous density analogous to that derived in [4] for a smooth density.

In §2.1 the passage from the postulated physical model to the relevant equations
is made. The equations are of two types. The first is a semilinear elliptic equation
for a pseudo-stream-function ip(x,y). The second is a singular, quasilinear ellip-
tic equation which governs the deviation of streamlines from parallel flow when
semi-Lagrangian coordinates are used. In both equations there enters an unknown
parameter which describes the speed c of a progressive wave as seen in "labora-
tory" coordinates. In the second formulation it appears explicitly as an eigenvalue
parameter A = g/c2, where g is the gravity constant.

In §2.2 the main results of the paper are stated in Theorem 2.1. It describes
a branch S of solution pairs (X,w), where w — w(xf,X2) is the deviation at the
horizontal position xi of the streamline which has height X2 at xi = ±oo. If T
denotes the domain of the pairs (£1,2:2), the branch is unbounded and connected
in R x (Ho(T)CiC°'x(T)). It emanates from a pair (A<¿,0), where X¿ is a particular
function of p+, p_, and h. The speed c<¿ = (g/Xd)1^2 is a critical speed for the
stratified configuration, the analogue of the speed \fgK for long waves on the surface
of water of depth h. For all nontrivial solutions in S, 0 < X < A<¿, and thus the
associated speeds are supercritical, a result consistent with all analyses of solitary
wave phenomena.

The sign of another parameter e, a function of p+, p_, and h, predicts the sign
of streamline displacements. If e > 0, the undistributed state will allow waves
of elevation, while for e < 0 it allows waves of depression. The phenomenon de-
scribed here, as distinct from that associated with simple eigenvalue bifurcation,
is one-sided. If e > 0 there are elevation waves but no depression waves near the
bifurcation point (Ad,0). Finally, all waves are symmetric about their crests and
decay monotonically and exponentially to zero as x —> ±oo.

The core of the proof of Theorem 2.1 is carried out in the course of §§3 through
6. We begin with a sequence pn, n = 1,2,3,..., of smooth density profiles in
the undisturbed channel configuration, which, as n —> oo, converge to the given
discontinuous density function. It is shown in §3 that for each n a subset of the
pseudo-stream-functions from [4] provides an unbounded, closed, connected set of
solutions (X,w) in R x Hq(T) with which to work in the new coordinates. In §4 a
general scheme for the limiting process is given. Then, after imposing restrictions
on the gradient of w, regularity estimates for solutions are derived, the estimates
being independent of n. These estimates are used in §5 to obtain connected sets of
solutions in R x i/g (T) for the case of a discontinuous density. In §6 the solution
sets are examined in the stronger topology of R x (Ho(T) n C°'X(T)). Here it is
shown that connectedness is preserved. The next step concerns the restrictions
imposed on the gradient of w in §4. It must be shown that for any solution (X,w)
under consideration, the gradient of w does not take values in a range that would
make the underlying elliptic equation singular. This is accomplished by returning to
the original formulation involving the pseudo-stream-functions ip^ and obtaining
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434 C. J. AMICK AND R. E. L. TURNER

bounds on their gradients, that is, bounds for the velocities in the flow domain.
These bounds translate into the desired estimates for the gradient of w.

In §7 results constituting the proof of Theorem 2.1 are collected. Many properties
of solutions are obtained in the course of proving the existence of the set 5. To these
are added the proofs that the interface is analytic and that depression (elevation)
waves are absent near the bifurcation point (Ad,0) if e > 0 (e < 0).

Numerical studies have been made of periodic, interfacial, gravity waves for two
unbounded fluids of differing densities (cf. [17, 28]). It is found that along a branch
of waves of fixed wavelength, the separating streamline steepens, eventually man-
ifesting a vertical tangent and, past that, an overhanging region in which heavier
fluid lies above the lighter one. From these studies one might conjecture that, along
the branch of solutions S found in this paper, w becomes large in C°'x. In fact, the
introduction of the C°'x topology, apart from having a crucial role in the estimates
of §4, was suggested by the numerical work. §8 concerns the behavior of large am-
plitude solutions on the branch S. The fact of having a channel of finite depth and
solitary rather than periodic waves may change the character of large amplitude
waves. We pursue the implications of assuming that wave profiles do not steepen
to the point of having vertical profiles. A first consequence is that there must exist
a solution (X,w) of the flow equations for which w is not in L2(T). Rather, at
x = ±oo it asymptotically approaches a nontrivial parallel flow, a "conjugate" flow
in the terminology of Benjamin [9]. A further consequence is the existence of an
"internal surge" of predictable size and speed. As yet, no contradiction has arisen
from this train of arguments and so the large amplitude behavior remains an open
question. In a project in progress the second author and J.-M. Vanden-Broeck [29]
are carrying out a numerical study of the solitary wave patterns shown to exist here
and hope to shed light on their behavior.

2. Formulation of the flow problem and results.
2.1. The flow equations. Here we describe the physical model under consideration

and the passage to a boundary-value problem for a partial differential equation.
The boundary-value problem, in turn, is formulated in essentially two ways, and
the interplay between these is used in our analysis. Consider an incompressible,
inviscid fluid acted on by gravity and restrict attention to a two-dimensional flow
confined to and filling a region S = {(x,y)\ — oo < x < oo, —h < y < 1 — h}.
The acceleration of gravity has magnitude g in the negative y direction. Further
assumed characteristics of the fluid which make propagation of permanent waves
possible and their study tractable are that it is heterogeneous and nondiffusive. To
explain the last term it is worthwhile to first describe a diffusive system. Consider
a mixture of two components, say water and a dissolved salt. In a mixture the
molecules can trade places without having any net mean-molar velocity. However,
if the molecules have different masses, there can be a net movement of mass. Let q
denote the mean-molar velocity and Q, the mean-mass velocity (cf. [11, Chapter
1]). Let p denote the density of the fluid, and suppose, to begin with, that p is a
smooth function of space and time. Subsequently we shall formulate the problem
for a discontinuous density. If v denotes the diffusion coefficient (assumed the same
for the two types of molecules), then the Fick diffusion law (cf. [71; 11, p. 23; 14])

We wish to thank the authors for a discussion of the diffusive model.
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gives

(2.1) Q = q-!A7p/p.
The Euler momentum equation is

(2.2) p(dQ/dt + (Q • V)Q) - -Vp - pgk,
where p is the pressure and k is a unit vector in the y direction. Conservation of
mass takes the form

(2.3) dp/dt + div(pQ) = 0,
and the volume incompressibility, the form

(2.4) divq=:0.

A set of equations for p and q is obtained by using (2.1) in (2.2) and (2.3). We
will seek a wave motion which has a permanent form when viewed in a coordinate
system moving in the x direction with constant speed and in such a coordinate
system the equations will have no explicit time dependence. To avoid introducing
new notation, let us assume for the remainder of the paper that all quantities are
referred to the moving system, but retain the notation already introduced. With
no time derivatives present, the equations for p and q reduce to

(2.5) p(q.V)q+0^) = -Vp-pgk,

(2.6) q-Vp-t/Ap = 0,

(2.7) divq = 0,
where 0(v) refers to terms of order v for v small. Time scales for diffusion (e.g., in
stratified salt solutions) are on the order of hours, while a wave of the type sought
here will pass in a matter of seconds. Thus, diffusion plays an insignificant role in
the wave propagation phenomenon. By a nondiffusive fluid we merely mean a fluid
governed by (2.5)-(2.7) with v = 0. The resulting equations are the standard ones
used for nondiffusive stratified fluids, but the condition q • Vp = 0, attributed to
nondiffusivity, is hereby rationalized. Otherwise, it would seem to arise from using
a single solenoidal field q together with mass conservation and not have any clear
connection with diffusion (or lack of it).

The equations which result from setting v — 0 in (2.5)-(2.7) and which are the
basis for our analysis are:

(2.8) p(q-V)q=-Vp-pgk,

(2.9) q-Vp = 0,

(2.10) divq = 0.

For use in the sequel we let q = (U, V), where U and V denote the horizontal and
vertical components of velocity, respectively. It will be assumed that in the original
"laboratory" coordinates the fluid is at rest at x = ±oo and there has a positive
density poo(y) which is nonincreasing in y and satisfies Poo(-h) > Poo(l — h). Thus
if a wave under consideration is moving from right to left in the "laboratory" with
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speed c > 0, a corresponding boundary-value problem in the new coordinates is to
find c\(x,y), p(x,y), p(x,y), and c satisfying (2.8)-(2.10) and

(2.11) , hm   p(x,y) = Poo(y),
\x\—>00

(2.12) lim (U,V) = (c,0),
\x\—*oo

(2.13) V = 0   on dS,
where dS denotes the boundary of 5. Note that ci(x,y) = (c,0), p(x,y) =
~ Jo Poo(s)gds, and p(x,y) = Poo(y) is a solution of (2.8)—(2.13) for any real c
and will be referred to as a trivial solution. We shall find nontrivial solutions of the
boundary-value problem (2.8)—(2.13), properly interpreted, for a piecewise constant
density Pd(y), given as poo(y) and shall do this by way of smooth approximating
densities. In the treatment of smooth or discontinuous densities it will always be
assumed that each streamline (i.e., integral curve for q) is a simple Jordan arc con-
necting x — —oo to x — +00. In particular, there are to be no "internal eddies,"
that is, no relatively compact regions in S bounded by parts of streamlines.

From (2.9) and (2.10) it follows that q admits a stream function, as does q
multiplied by any function of p, since p is locally constant on streamlines for q. In
particular, there is a "pseudo-stream-function" ip(x,y) for which

(2.14) P1/2q = (t/V-tM,

the subscripts denoting partial derivatives. The total head pressure H is defined
by

(2.15) H(x,y) =p(x,y)+ ±p(x,y)\q(x,y)\2 + p(x,y)gy,

and from (2.8) it follows that

(2.16) dH/dx = Pv(vx - uy) + Px(èlq|2 + gy)
and

(2.17) dH/dy = pU(Uy - Vx) + py(\H2 + gy).
Since q • Vp = 0, the Bernoulli condition

(2.18) q-Vff = 0
follows. Thus, H and p may be considered as functions of the single variable ip, and
we shall write H(x,y) or H(ip) and p(x,y) or p(ip) when no confusion is possible.
Since all streamlines go to infinity where p and q are known and where p can be
assumed hydrostatic:

(2.19) p(y) = ~ [  Poo(s)gds
Jo

the functions H(ip) and p(ip) can be computed explicitly when p^ and c are given
(cf. (2.21), (2.22)). The explicit examples in [10, §6], illustrate the computation.

Define
rv    _

(2.20) *(j/)=c/    y/p00(8)da1
Jo
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the pseudo-stream-function "at infinity." Let Y (iß) denote the function inverse to
^ so that Y(^(y)) — y for — h < y < 1 — h. Then all along the streamline with
value iß, the density has the value

(2.21) p(iß) = Poo(Y(iß)),
and for a flow with a pseudo-stream-function iß(x, y), the density at (x, y) is p(x, y)
= Poc(Y(tp(x,y))). That is, the streamline through (x,y) must be followed to oo
to ascertain its associated density. Similarly, from the data at infinity we have

(2.22) iff» = p(Y(iß)) + p(iß){c2/2 + gY(ip)},
and each of (2.21) and (2.22) is defined for *(-/i) <ip<V(l- h).

To obtain a partial differential equation for iß, suppose U 7¿ 0 (as we shall).
Using the chain rule to express the derivatives of H and p in (2.17), one obtains

£-vW.-v.) + $(iW" + w)
after cancelling a factor yfpU = diß/dy. If Uy — Vx is evaluated using (2.14), the
last equation becomes the semilinear elliptic equation

<"3> **+»$'w
which is Yih's version of Long's equation (cf. [10] for references). The associated
boundary conditions are

(2.24) iß(x, -h) = *(-Ä),    ip(x, 1 - h) = *(1 - h),        xeR,
and

(2.25) lim  iß(x,y) = V(y).
|x|—»oo

The formulation at this stage, given Poo(y), is to find c and a function iß(x,y)
satisfying (2.23)-(2.25). If poo is smooth, one seeks a smooth iß. If p^ is the
piecewise constant function

v*> *«-{£: o_<,Ví-\
then the meaning of (2.23) must be clarified. The dividing streamline between the
portions of fluid with different densities is that on which iß = 0. Suppose it is
the graph of a function Y = {(x,^(x))\ — oo < x < oo}. In each of the regions
S~ - {(x,y)\ - h < y < -y(x)} and 5+ = {(x,y)\i(x) < y < 1 - h}, p is constant,
taking the values p~ and p+, respectively. From (2.19) and (2.22) H is constant in
each region and by calculating its values at x = oo and y = Or on either side of V,
one sees the values to be H~ = p_c2/2 and H+ — p+c2/2, respectively. Equation
(2.23) requires iß to be harmonic in S^, as expected. As iß is a measure of flux, we
require it to be continuous. Thus

(2.27) V = 0   onT
and since it should also satisfy (2.24), by the maximum principle it will be positive
in 5+ and negative in S~. Let ip^ denote the restrictions to S±, respectively. An
additional requirement on the free boundary T is that the pressure

p=H-\\Vip\2 -pgy
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438 C. J. AMICK AND R. E. L. TURNER

be continuous. Thus

(2.28) i{|V^+|2-|V^-|2} = (p+-p-){c2/2-^}    onr,

using the values H^ from above. To summarize, the boundary-value problem for
the given discontinuous density (2.26) is to find T, c, and iß(x,y) such that iß is
harmonic in S± and satisfies (2.24), (2.25), (2.27), and (2.28). There will be no
problem interpreting the conditions as it will be seen that T is smooth as are the
extensions of ip^ to the closures S+.

Next we give alternate formulations of the boundary-value problems correspond-
ing to the smooth and discontinuous densities, respectively. We shall work only with
flows in which no reversal occurs; that is, for which U(x,y) > 0 in S. From (2.14)
this corresponds to ißy > 0 and for such functions one can solve for y as a function
of the spatial coordinate x and the "material coordinate" iß. The utility of this
semi-Lagrangian description is that for the density (2.26) the unknown interface
function 7 is merely the unknown function y(x,ip) evaluated on iß = 0; i.e.

(2.29) 1(x) = y(x,0).

A disadvantage of using y as a dependent variable is that the semilinear equation
(2.23) is replaced by a singular quasilinear equation for y(x,iß). Since y(x,iß(x,y))
= y, one has the relations

(2.30) yx + y^ipx =0,        y^ ■ ißy = 1,

from which one derives the equation

<231»       4(-H¿(^)+»S=^ox yy^J     2 dip \   y^   ) dip      dip
in R x (^(—/i),^(l — h)) from (2.23). The associated boundary conditions are

(2.32) y(x, tf(-/i)) = -h,    y(x, *(1 - h)) = 1 - h,        xGR,
and

(2.33) lim   y(x,iP)=Y(iß).
\x\—>oo

One final change of variables will bring the equation to the form used by the second
author in [26]. Let Xf = x, x2 — Y(iß), and

(2.34) w(xf,x2) =y(xf,^(x2)) - x2

so that w represents the deviation at a horizontal position Xf of the streamline
which has height X2 at oo. It should be emphasized that X2 is a rescaled stream
coordinate. In describing an equation for w we set

(2.35) f{pltP2) = A±±.2(1+p2)

fi = df/dpp, i = 1,2; A = g/c2; T = R x (-h, 1 - h); and use the summation
convention. A calculation produces an eigenvalue problem for the pair (X,w):

(2.36) -(dldXi)Pao(x2)h(Vw) = -Xp'00(x2)w    in T,

(2.37) w(xf,-h) =w(xf,l- h) =0,        Xf e R,
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(2.38) lim  w(xi,x2) = 0.
|x|—*oo

The case for the discontinuous density (2.26) requires a separate formulation. While
T and S coincide, the domain T+ = {(x\, x2) G T | X2 > 0} is what corresponds to
S+. One defines T~ similarly. By a solution of_(2.36)-(2.38) for the density (2.26)
we understand a function w G C°'X(T) n CX(T±) satisfying (2.37), (2.38), and the
weak equation

(2.39) f pdfi(Vw)^■ = -X f p'dw<p = A(p_ - p+) f    w(xf,0)ip(xi,0)dxf

for all f e QfiT). To keep both (2.36) and (2.39) in mind we shall simply refer to
a solution of (2.36)-(2.39). Throughout the paper standard notation for function
spaces will be used (cf. [13]).   We shall write C for a space C° of continuous
functions.

2.2 Results.

THEOREM 2.1.  Let pd be the discontinuous density given in (2.26), let

and let

i2-41» e = ̂ -(íV

Then if e > 0,
(a) there exists an unbounded, closed, connected set S C R x (H0X(T) fl C0,1(T))

of solutions (A, it;) of (2.36)-(2.39) with (Xd,0) G S.
(b) There is a positive constant X — A(p_, p+) such that if (A, w) G S\ {(Ad, 0)},

then X < X < Xd, w > 0 on T, w(-Xf,x2) = t/;(xi,X2) on T, and dw/dxf < 0 on
(0,oo) x (-h,l-h).

(c) The function w has real-analytic extensions toT+ andT~, dw/dxf 6 Ca(T),
and

(2.42) Pd(x2){f2(Vw)-Xw}GCa(T)

for some Holder exponent a > 0, uniformly for w in bounded sets of C°'X(T).
(d) There exists a constant K — Ä"(p_, p+, h) such that for all (X,w) G S,

0< 1/(1+ wX2) <K    inT

and
\wxJ(l + wX2)\<K    inT.

(e) For each (X,w) G S \{(Ad,0)},

Hxi,x2)| + \Vw(xf,x2)\ < Cie-^l1'!

where Ci and C2 are positive constants depending on (X,w).
(f) // |A — Xd\ + |H/ii(T) "*" l^lc^ir) zs sufficiently small, the only solution of

(2.36)-(2.39) for which w is even in xi and for which both w and —dw/dx have
signs opposite to that of e for Xf > 0 is the trivial solution.
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If e < 0, the results (a)-(f) hold with the change w < 0 in T and dw/dxf > 0
for Xf > 0 in part (b).

We shall restrict attention to proving parts (a)-(f) for e > 0 since the case e < 0
is analogous.

The implications of the assertions in the theorem for the fluid flow are not all
transparent and some discussion is in order. The value A^ at which bifurcation takes
place and the sign of e as an indicator of the direction of streamline displacements
both arise in the small-amplitude calculations of Long [16] and Benjamin [8] as well
as in the variational approach of the second author in [26]. In the passage from the
physical flow model to the problem (2.36)-(2.39) we did not address the question
of which solutions (A, w) give rise to physically reasonable flows. In the approaches
using the equation (1.23) for ip(x,y) further restrictions intervene (cf. [4, 10]).
Here, however, each pair (A, w) G S corresponds to a physical flow. The main point
is to verify that all streamlines connect x = — oo to x = +oo or, equivalently, that
-h < x2 + u>(xt,X2) < 1 - h for —h < x2 < 1 - h. Since w = 0 îor x2 = —h and
x2 = 1 - h and since 1 + wX2 > 0 by part (d), it follows that x2 + w lies in the
desired range. The bounds in part (d) are, in reality, bounds on velocities, for the
use of the relations (2.30) together with (2.14) and (2.34) yields

(2.43) U = ±d/ = -^,        V = -±d7Tt = -^-.
yfpdy      l + wX2 -Jpdx      l + wX2

The velocity c satisfies

(2.44) (g/Xd)x/2<c<(g/X)x/2

by part (b), and thus U and V have bounds depending only on p_, p+, and h.
The velocity (g/Xd)x/2 is the so-called "critical velocity" associated with the fluid
system, and (2.44) shows that all solitary waves found here have supercritical ve-
locities. The remaining parts of (b) describing the shape of w are self-explanatory
and are in accord with observed phenomena (cf. [30] ). The smoothness of w is more
than sufficient to give a sense to (2.36)-(2.39). The condition (2.42) corresponds
to the pressure condition (2.28). To see this, one uses (2.43) to obtain

it m   \     \   \ Íw*2 + 5wx2 ~ èw*i       9    1

1    j i r    /c2      \   |vv>|2\

On the dividing streamline w(xf,0) = y(xf, 0), and the continuity of the expression
in (2.45) yields the continuity of pressure expressed by (2.28). With w having
the regularity stated in part (c), it is a simple matter to verify that (2.36) holds in
T+ UT~ and that the weak equation (2.39) holds. The exponential decay described
in part (e) shows that the wave is of essentially finite extent. Of course, the proof
makes it evident that the constant C2 approaches 0 as A approaches Xd, and this is
to be expected in solitary wave phenomena (cf. [6, 8, 12, 25]). The nonexistence
result in (f) exhibits the delicate nature of the bifurcation at (Xd,0), a behavior
quite different from that at a simple eigenvalue wherein the bifurcating branch
crosses the line of trivial solutions.
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3. Solutions for smooth densities. Let pn, n = 1,2,..., be a sequence
of nonincreasing functions in C°°[—h, 1 — h] which converge as n —+ oo to the
discontinuous density pd given in (2.26). For definiteness suppose that pn = p_
for —h < y < 0 and that pn = p+ for 1/n < y < 1 — h. Let pn play the role of
the smooth density poo in (2.20), and consider solutions (X,iß), X = g/c2, of the
corresponding problem (2.23)-(2.25). Let u = u(x,y) be defined by the relation

(3.1) cy/pn(y)u(x,y) = *(j/) -ip(x,y).
To avoid introducing more notation, we will refer to the pairs (A, it) as solutions
of (2.23)-(2.25). In an earlier paper [4] the first author obtained global solution
branches for the flow problem with a smooth density, and those results will be used
here. The description involves a parameter pn defined as follows. Hereafter let /
denote the interval (—h, 1 — h) and define

(3.2) — =   max    f
Pn      v€H¿(I) jjpn(v')2

For the smooth density pn the quantity pn plays the same role that Xd in (2.40)
plays for the discontinuous density. That is, (p:n,0) is the bifurcation point of a
branch of solutions. It will be shown in Lemma 5.5(c) that

(3.3) lim pn = Xd.
n—»oo

Corresponding to e defined in (2.2) is a parameter An (cf. [4, formula (7.25)]) which
satisfies
(3.4) lim An - e.

n—»oo

For An > 0 one obtains waves of elevation for the smooth density p„, and that is
the case discussed here. In §7.2 of [4] it is shown that there is a maximal, connected
set Dn C R x (Hq(S) i)C(S)) of solutions (A,tz) containing (pn,0). Furthermore,
for (X,u) G Dn\ {(pn,0)} the parameter A satisfies 0 < 7„ < A < pn, where in is
a constant, and the function u satisfies u > 0 in S, u(—x,y) = u(x,y) in S, and
du/dx < 0 for x > 0.

For our purposes the nonlinearity in the basic equation (1.1) of [4] can be as-
sumed smooth and bounded for a fixed smooth density pn (cf. the discussion fol-
lowing 7.14 in [4]). Standard elliptic theory applied to such an equation gives local
H2 bounds from local Hx (or L2) bounds and by embedding theorems, local Holder
estimates (cf. [22]). Hence, if a sequence of solutions converges in H0X(S), it will
converge uniformly on bounded subsets of S, according to the Arzela-Ascoli theo-
rem. Since u varies monotonically for x > 0, the argument given in Lemma 4.6 of
this paper shows that u converges to zero as x —>,+oo, uniformly on bounded sub-
sets of Hq(S). As a consequence the topology of R x H¿(S) is stronger than, and
hence equal to, that of R x (H¿(S) n C(S)) when restricted to the set of solutions
Dn- We conclude that we may replace H0X(S) D C(S) by H0X(S) in the preceding
paragraph.

A solution (X,ip) of (2.23) gives rise to a solution (X,w) of (2.36) provided the
strict inequality ipy > 0 holds in S. If u = 0, then ib(x,y) = V(y), whence
diß/dy = 9'(y) > 0 in S. Let

(3.5) Cn = \ maximal connected subset of Pn | —- > 0 in 5 >I dy I
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and

(3.6) £n = {(X,w) \ (X,u) G Cn}.
This defines a one-to-one correspondence between Cn and £n, a set of solutions of
(2.36)-(2.39). For nontrivial solutions (X,u) we have du/dx < 0 for x > 0, whence
dw/dxf < 0 for xi > 0 by (2.30), (2.34), and (3.1). Since w is even in Xf and
vanishes at infinity, it follows that w > 0 in T if (X,w) G £n\ {(pn,0)}.

LEMMA 3.1. The map from Cn to £n taking (X,u) to (X,w) is one-to-one and
continuous from R X Ho(S) ioRx H0X(T). For any rectangle B = J X I, J open
(and possibly unbounded) in R,

(3.7) \v>\hi(b) < Ki\u\Hi,B)

and

(3.8) \u\hhb) < K2\w\HirB),

where Kf and K2 depend on n and Kf also depends on a lower bound for ipy, iß
being associated with u. The constants Kf and K2 are independent of the horizontal
interval J.

PROOF. The assertions of the lemma are valid for any smooth density, and in
the proof we write p for pn, supposing we have fixed n. For any pair (A, it) G Cn
the corresponding ißy > 0, and hence the correspondence between u and w, via
y(x,ip), is well defined and one-to-one. A further consequence of ißy > 0 is the
bound ^l(-h) < iß < *(1 - h) in view of the boundary conditions (2.24). This
bound, together with standard elliptic estimates applied to the semilinear equation
(2.23), yields L°° estimates for derivatives of iß of all orders, depending only on p
(that is, on n). In particular ipy < K, where K depends on n.

In comparing the Hx norms of u and it;, we first note that since p is smooth and
positive and the speed c = (g/X)1^2 is bounded above and below on Cn, it suffices
to prove inequalities (3.7) and (3.8) with u replaced by

(3.9) <p(x, y) = cyfp(y)u(x, y) = *(y) - ip(x, y).
From (2.20), (2.30) and the coordinate relation (2.34) one obtains

dw       dy ,    T,    .. dV ,    .
iW2=4iXMX2))dx-2{X2)-1

(3 10) =_^/S_i
[      } diP(x,y(xMx2)))/dy

= Cs/p(Y(iß(x,y)))     1
dip(x,y)/dy

and
dw      dy        dip(x,y)/dx
dxf      dx        dip(x,y)/dy

It follows that, for each fixed x — Xi,

(3.12)        /IV-I»^,-/ ' {^('VW)-*,)'| »

(3.11)
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For a wave of elevation w  >  0 and ip(x,y)  <  ^(y), and so p(Y(ip(x,y)))  >
p(Y(9(y))) = p(y). Thus

c fV s/p(Y(iß(x,s)))ds + *(-/i) - iß(x, y)
J-h

/y     _ i—h      _s/p(s)ds+ cy/p(s)ds-ip(x,y)

= c f    y/pjs)ds-ip(x,y)
Jo

= V(y) -i*(x,y)

in view of the definition (2.20). Since c J^h \/p(Y(ip)) + ^(-h) - ip(x, y) vanishes
at y — —h, (3.13) can be combined with the Poincaré inequality to yield

J <p2(x, y) dy = j(*(y) - iß(x, y))2

< f ( r c^/p(Y(iP(x,S)))ds + *(-Ä) - tß)
(3.14) JlKJ-h _ {

= ^(cv/pTvM-V'v)2.

Since ipy < K it follows from (3.12) and (3.14) that, for any rectangle B — [a, ß] x I,

(3.15) J ^-K'\B 'Vw|2 - K>^KBY
where one uses the bounds on ißy and c in the denominator in (3.12). Since ißx — <px,
(3.12) also yields

(3.16)
K' is |VU;|2 - is {^ + (CV^^ ~ C^^W + CyfpY(¥) - iPy)2}

> ¿{rf + itf-ÄV}
where the mean value theorem is used to obtain

sfpY^P) - y/pYj¥)\2 < K"\iP - tf|2.
From (3.15) and (3.16) it is clear that

(3.17) \<p\hhb) < K0\w\Hi(B)

and hence (3.8) holds.
For a fixed (A,V>) G Cn, there holds ipy > K' > 0 and one readily derives

(3.18) \w\hhb) < Ä"i|y|/ii(B)
from (3.12) using a mean value estimate as in (3.16). Hence (3.7) holds.

To see continuity of the map from Cn to £n, consider a sequence of solutions
(Am,itm), m = 1,2,..., converging in R x H0X(S) to (A,u) G C„.  Let wm and w
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be the respective counterparts of um and u. If A = pn, then u = 0 according to
the description of Vn- Then since itm converges to zero in H¿(S), elliptic estimates
show VitTO to be small uniformly on S for all large m. The y derivatives of the
corresponding ißm are bounded below by a positive constant, uniformly for m large,
and hence (3.7) implies the convergence of wm to zero in Hq(S).

If A < pn, then Am < (A + pn)/2 < pn for all large m and the function iß
corresponding to it satisfies dip/dy > 0 in S. In fact, there is a constant K > 0
so that dip/dy > K on S and dipm/dy > if on 5 for all sufficiently large m. To
see this, consider first the behavior for large x. The method of proof of Theorem
2.3(b) of [4] is easily used to show that |itTO| < K'e~^x^ and \u\ < K'e~^x\ where
ß > K"(pn — A). Elliptic estimates show that Vitm and Vit have the same type of
decay for large x. Let B^ denote the subset of S (or T) where |x| < N. It follows
from (3.1) and the exponential decay that for some N > 0 and all m sufficiently
large the y derivatives of iß and ipm are bounded below by a constant K'" > 0. As
noted at the outset of the proof, the second derivatives of the function ißm have a
bound on 5, independent of m. By the Arzela-Ascoli theorem it can be assumed
that the functions dißm/dy converge uniformly to dip/dy on B^. Since dip/dy > 0
on Bn, it is clear that for all sufficiently large m there is a positive K which serves
on Sjv and on its complement as a lower bound for the y derivatives of iß and ipm.

To see that wm converges to w, first note that, according to the lower bound
just estabished, (3.7) holds for the pair (u,w) and for the pairs (um,wm) with
K independent of m, provided m is sufficiently large. For any given e > 0 the
norm of u in HX(S — B^) will be less than £ for N sufficiently large, and the
norm of um in HX(S — B^) will be less than 2e for m sufficiently large. Then
the norm of wm in HX(T — B^) will be at most 2KfS, and so it suffices to show
that wm converges to w in Hx(Bm) for each N. Since the y derivatives of the ipm
have a positive lower bound K for all large m, one readily sees that the inverse
functions ym(x,ip) converge uniformly to y(x,ip) on Bn as do the functions it;m to
w on Bn- Derivatives of the formulas (3.10) and (3.11) provide C2 bounds for the
functions it;m, uniformly in m for all sufficiently large m, and hence another use of
the Arzela-Ascoli theorem gives convergence of wm to it; in Cx(Bn) and hence in
HX(BN).    Q.E.D.

THEOREM 3.2. For each n, £n is an unbounded, closed, connected subset of
R x H¿(T) containing (pn,0).

PROOF. The continuity of the map from Cn to £n implies that £n is connected.
To see that £n is closed, let (Am,it;m) G £n, m — 1,2,..., converge to (A,it;) in
R x Hq(T). The inequality (3.8) shows that the corresponding functions um are
uniformly bounded in Hq(S). From §5 of [4] it follows that the sequence (Xm,um)
converges in R x H0X(S) to a solution (A,i¿). The function u will be smooth as
will the corresponding ip, again from elliptic estimates. In order to show that £n is
closed, it suffices to show that dip/dy > 0 in S.

If u = 0, then iß = $ and its y derivative is positive in S. If u ^ 0, then X < pn
and Vit decays exponentially to zero as |x| —> oo as was indicated in the previous
proof. This decay means that dip/dy is positive for (x,y) G S \ B^, for some N.
Since p is constant near y = —h and near y — 1 — h, iß is harmonic near those lines.
Moreover, iß is nonconstant near those lines, for otherwise it could not approach *
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as |x| —> oo. From the maximum principle it follows that dip/dy is positive on the
boundary dS and so if it vanishes, it must do so at a point (x, y) G S. Suppose this
occurs. Then since dip/dy > 0 in S, the gradient of dip/dy must vanish at (x, y)
with the result that
(3.19) 0 < dip/dy < K'((x - x)2 + (y - y)2)
in a neighborhood of (x,y). But then (ipy)~x has a nonintegrable singularity at
(x,y). Now apply (3.12) to wm and ißm and integrate the result over an x interval
containing x. Since wm is bounded in Hx uniformly in m, one can conclude that
the integral of (dipm/dy)~x over a neighborhood of (x,y) is bounded, uniformly
in m. Fatou's lemma would then show (dip/dy)~x to be integrable near (x,y), a
contradiction.

The contradiction just reached also arises if one assumes £n bounded. For then
(3.8) shows that Cn is bounded, and hence there is a sequence (Am, um) converging
to (A, it) G Dn\Cn for which the corresponding ipy must vanish somewhere.    Q.E.D.

For later use we include the following result.

LEMMA 3.3. For each n, the identity map on £n is continuous from R x Üq (T)
toRx^^nC^T)).

PROOF. The proof is similar to the proof of continuity in Lemma 3.1, and we use
notation from that proof. In fact the continuity on bounded subsets of T follows
from the arguments in the last paragraph of that proof and so only the "tail"
behavior need be examined. Suppose (Am,wm) converges to (A,iu) in R x H¿(T).
Then from (3.8) the corresponding \um\Hi(s-BN) can be made arbitrarily small for
large N, uniformly in m. Elliptic estimates then show \um\ci(s-BN) to be small,
uniformly in m. Since the function iß corresponding to it; satisfies dip/dy > K > 0
in S, one has dipm/dy > K/2 in S for the corresponding ipm when m is sufficiently
large. Then the formulas (3.9)—(3.11) show \wm\ci(s-BN) to be small uniformly in
m, so the identity map is continuous.    Q.E.D.

4. Sets of solutions with restricted gradients. In §3 it was shown that for
each n the problem
(4.1) -(d/dxl)(pn(x2)fl(Vw)) = -Xp'n(x2)w    inT,

(4.2) w(xf,-h)=w(xf,l-h) =0,        if G R,

(4.3) lim   iu(xi,X2)=0
|xi|->oo

has an unbounded, closed, connected set of solutions £n emanating from the pair
(pn,0). As stated earlier, the existence of solutions for the problem with discon-
tinuous density will be obtained by allowing n to approach infinity. The intricacies
of the limiting process will be described in §5. Here we describe a general setting
for obtaining connected sets of solutions by letting parameters approach limits and
also prove some estimates which will be used in the limiting process.

Consider a metric space X and a collection of sets A = {An}, n = 1,2,..., with
An C X for each n. By definition lim inf A consists of points p G X such that every
neighborhood of p contains points of all but a finite number of the sets An while
lim sup A consists of those p G X such that every neighborhood of p contains points
from infinitely many of the sets An. The following result from Whyburn [31, p.
15] provides a tool for demonstrating the permanence of connected sets.
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LEMMA 4.1. Let {An}, n — 1,2,..., be a sequence of connected sets in a metric
space such that

(a) U^Li An is precompact and
(b) liminf{An}^0.

Then limsup{A„} is a compact, connected set.

While our eventual goal is an unbounded, connected set S in R x (H¿(T) n
C°'X(T)), a first step will be the application of Lemma 4.1 to bounded sets in
X — Rx H¿(T). The bounded sets to be considered are defined as follows. For
6 G (0,1) and R > 0 let

(4.4) B(R) = {(X,w) G R x H0X(T) \ \w\Hi < R and 0 < A < 2Ad}

and

(4.5) QS = {(pf,p2) G R2 | p, G [-i"1,*-1], P2 G [-1 + ë,6~x]}.

Starting with £n from the previous section, let

FniStR = {{\,w)e£n\(\,w)eB(R); Vw(xf,x2)GQ6, (x1;x2)gT}

and

(4.6) í'n.e.ñ = {maximal connected subset of Fn¿^R containing (p:„,0)}.

Here £n and Fn,6,R are regarded as subsets of R x H0X(T). For (A, it;) G <f„, Vw is
smooth and approaches zero as |xi| —► oo, so the condition Vu; G Qs is unambigu-
ous. It will be shown in Lemma 5.5(c) that pn —► Xd as n —► oo so that for each
pair (6, R), lim'mî{Fn,6,R} contains (Xd,0). It may also be assumed that the values
of n under consideration are large enough so that pn < 2A<j, making (pn,0) lie in
B(R).

From Theorem 3.2, £n is an unbounded, connected set containing (pn,0). In §5
it will be shown that for each 6 € (0,1) and each R > 0 the collection (Jn Fn¿^R is
precompact. Thus from Lemma 4.1

(4.7) G¿,ñ = limsup{F„,¿,A}

is a compact, connected set containing (A^, 0). In §6 it is shown that Gg^ is still con-
nected as a subset of R x (Hq (T) H C°'X(T)). Moreover, it is shown that Gs,r must
contain a pair (A,u;) for which \w\Hi — Roí for which max{|it;;ri|¿oo(T), |«;x2|Lo°(r)}
= 6~x. The set

oo

(4.8) S = (J G1/N<N
N=2

will then be seen to fulfill the requirements of Theorem 2.1.
The restrictions embodied in the definition of Fn¿tR reflect an intimate link

between the topologies in which there are unbounded solution branches and those
in which one can do analysis. The solution pairs (A, it;) G <?„ will not be unbounded
in R x C(T) nor could we hope to analyze equation (4.1) adequately for it; having
less than C0'1 regularity. The singularity of f(pi,P2) for p2 = -1 and the lack of
uniform convexity for large values of (pi,P2) make elliptic estimates elusive. The
behavior of pn compounds the difficulty. For solutions in Fn^,R, however, one can
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obtain the estimates needed for the delicate compactness arguments carried out in
the next section and ultimately used in Lemma 4.1.

For the remainder of this section it is assumed that n, 6, and R are fixed and
estimates are derived for solutions (A, w) G Fn,s,R- We suppress n, writing p for pn.
The constants in the estimates may depend on one or more of the parameters n, 6,
and R and this will be indicated. Dependence on p+, p_, and h is still suppressed.
Recall that for large n, the number A is bounded above by 2A<j for solutions under
consideration. Thus, while the size of A enters in the estimates, it can be absorbed
into constants depending only on p+, p_ and h.

LEMMA 4.2.   If(X,w)€ Fn,s,R and m G R,

(4.9) / / \VwXl\2 <Kf / |Viíj|2 <K2 / w2,
Jm Jl Jm~l    Jl Jm-2    Jl

where Kf and K2 depend on S. For e > 0 let Ie — {x2 G / | |x2| > e}. Then
rm+l    /• /•m+2    r

(4.10) / /   \VwX2\2<K3 / / |VH2,
Jm JIE Jm—1    Jl

where K3 depends on 6 and s.

PROOF. Let c G Co°(R) be a function which has range in [0,1], has support in
[m - 2, m + 3], and is 1 for Xf G [m - 1, m + 2]. Multiply equation (4.1) by c2w and
integrate over T to obtain

(4.11) 2 ItPÏ
2 + wX2

(1 + WxJ2
IVtül aPff

WWT

l + wx If 2A /  pç'

after an integration by parts. For Vit; G Qg the expression (2 + wX2)/(l + wX2)2 is
bounded below by a positive constant depending on 6. Thus if Young's inequality
is used on the right-hand side of (4.11) and a small multiple of f/pC2|Vit;|2 is
subtracted from the left side, the second inequality in (4.9) follows.

Now let v = wXl and fij = d2f/dpldpj for i,j = 1,2.  The result of applying
d/dxf to both sides of (4.1) is

(4.12)
d .      . dv .

dx-pf^w)d^ = -XpV-

Let ç denote a new cutoff function which is 1 on [m, m + 1] and has support in
[m - l,ra + 2], If (4.12) is multiplied by ç2v and an integration by parts is used,
the equation

dv  dv f      ,        dv
'dx-dx- = '2JTP^Vfl3dx-

is obtained. A simple calculation shows that the quadratic form determined by
fij(Pi,P2) satisfies

«■i3>   /T"**w=-2/T«^i|+2AX"

fij ai aj
(4.14)

a,
2piQiQ2   .  a^l+p2)

(1+Pa) I   l       I + P2 +

«\
(I+P2)2

(1 + P2)2 L -e-oí}
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for ail (qi, 02) G R2 and any r] > 0. In Q¿, p\ < è 2 and <(><l+p2<l-r-(5 x ■
The choice r?-1 = 1 + é2/2 in (4.14) yields

(4.15) hjaittj >63(a2f+a22)/16.

Furthermore, for (pi,P2) G Qs,

(4.16) |/y| < K/65,
and so the use of Young's inequality, as before, yields the first inequality in (4.9).
One cannot hope to obtain an inequality just like (4.9) for it;l2, independently of n,
for the discontinuity in the limiting density produces a discontinuity in it;X2 along
X2 = 0. However, for —h < X2 < —e/2, p is constant and w satisfies

(4.17) dfl(Vw)/dxi = 0.

If w is extended to — 2h + e/2 < x2 < —h so as to be odd with respect to X2 = —h,
it will satisfy (4.17) in the extended region. Suppose now that c is a cutoff function
which is 1 on [m,m + 1] X [—2h + e, —e] and which has support on [rn — l,m +
2] x [-2/i + e/2,-e/2]. Let z(xf,x2) — wX2(xf,x2). Differentiation of (4.17) with
respect to X2 produces

(4.18) ¿/„(v.jljL.ft
If equation (4.18) is multiplied by c2z and the pattern of the previous estimates
repeated, there results an inequality similar to (4.10) but with the left-hand member
integrated over —h < x2 < -e. The constant A3 depends on 6 and on e (through
the derivative dç/dx2). The estimate for X2 > £, valid for all n such that p = pn is
constant for X2 > e/2 (i.e., n > l/2e), is done similarly.    Q.E.D.

The next lemma can be obtained using standard elliptic theory as in [26, Lemma
3.2]. However, in the case of two independent variables, Holder estimates follow
from the readily accessible results of Meyers [18], and we choose to use those here.

LEMMA 4.3. Suppose (X,w) G Fn¿,R. Then there is an a > 0, depending on
6, such that for any m G R

/■m+3    ç

(4-19) Hc-([m,m+llx/)  - K°  / /  ™2'Jm — 2    Jl

/■m+3    /■

(4-20) kx,lc-([m,m+l]x/)^Ä'l   / /  ™2>
Jm-2    Jl

and for n > l/2e
/•m+3    r

(4-21) kx2lc»([m,m+l]x/£)  < K2   / /   V>*,
Jm—2    Jl

where Ko, Kf, and K2 depend on 6 and K2 depends on s as well.

PROOF. The function it; satisfies the equation

(4.22) é¡^d% = Xp'W'
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where

(4.23) fij(xi,x2)= f  flj(tVw(x1,x2))dt.
Jo

Since Qs is convex, fij satisfies the inequalities (4.15) and (4.16) obtained for fij.
Let A be the matrix with components pfij (i,j = 1,2), and let u — cm, where t
is a function of xi which has support inm-l<xi<m + 2 and which is 1 for
m < Xf < m + 1. Let fi be a domain with a boundary dû of class C°° satisfying

[m - 1, m + 2] x / C fi C [m - 2, m + 3] X I.

From (4.22) it follows that

(4.24) div(Agradit) = div f + g   in fi,
(4.25) u = 0   on dû,

where
f = wÄ grad ç + (0, Xcpw)

and
g = -XçpwX2 + grade ■ (A grad it;).

From Lemma 4.2 and the Sobolev embedding theorem it follows that

(4-26) l/lz,P(f2) + loU^f!) < ■Kp|HL2([m-2,m+3]x/)

for any p G [2,oo). Since A satisfies a uniform ellipticity condition (cf. (4.15),
(4.16)), Theorem 1 of Meyers [18] yields

(4.27) |gradu|LP(n) < K\w[L2{[m_2^m+j,]xI)

for some p = p(6) > 2 and a K depending on 6 and p(6). Now from embedding
theory (cf. [13, 22]) the inequality (4.19) follows.

Inequality (4.20) follows in a similar manner by using equation (4.12). One uses
A with entries pfij(Vw) in place of A, lets / = «Agrade + (0,Xçpv), and lets
g = —XcpvX2 + grade • A grad v. The Sobolev embedding theorem together with
Lemma 4.2 (with a cutoff function equal to 1 on f2) yields

(4-28) blLP(n) < -K"ML2([m_2,m+3]X/)>

and Meyer's result gives

(4-29) |gradi;|LP(n) < K\w[m[m-2,m+3]xi)-

This last inequality implies (4.20) and will also be used in what follows. The proof
of (4.21) is done similarly but with a cutoff function c which vanishes for |x2| < e/2.
To complete the proof we merely note that while the values of a occurring in the
three estimates may differ, we may let a stand for the smallest one. Likewise we
let p — p(6) stand for the smallest one occurring.    Q.E.D.

The estimates obtain so far can be combined with equation (4.1) to produce
improved estimates for wX2.
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THEOREM 4.4.   Suppose (X,w) G Fn¿,R and m G R.  Then

(cm       ç \ 2/p /-m+4    /•

/        / | grad{p(/2(Vu;) - Xw)}Y < kJ w2,
Jm-lJl J Jm-3   Jl

where p = p(6) from Lemma 4.3 and Kf depend on 6.

/•m+4    /•

(4.31) (b)    |p(/2(VuO - Xw)\2Ca([m¡m+f]xI) <K2 / tt;2,
Jm — 3    Jl

where a (as in Lemma 4.3) and K2 depend on 6.
/•m+4     /•

(4-32) (C)     Ka|c([m,m + l]x/) <K3  / / w2,
./m-3    Jl

where K3 depends on 6.
(d) If p' = 0 on a convex subset fi of [m, m + 1] x i", then

/•m+4    /•

(4.33) \wX2\2Ca(Q) < K, / /it;2,
./m-3    .//

tt;/iere a is i/ie exponent from part (b) and K4 depends on 6.

PROOF. For part (a) let F(xi,x2) = p(a;2){/2(Vit;) - Aw}. Recalling the nota-
tion v = wXl, one has

dF/dxf = p{f2i(Vw)vXl + f22(Vw)vX2 - Xv}

and from equation (4.1)

- dF/dx2 = (d/dxf)(pff(Vw)) + XpwX2
= p{fii(Vw)vXl + fi2(Vw)vX2 +AlüX2}.

Since Iti^l" < 6~^-^\wXa\2, it follows from inequalities (4.9), (4.28), and (4.29)
that (4.30) holds with p and Kf depending on 6.

Part (b) follows from the embedding of Wx'p in Ca for p > 2.
For parts (c) and (d) let N denote the L2 norm of w on the set [m — 3, m + 4] X /.

Since p is bounded below by p+, it follows from part (b) that

|/2(Vlü) - Aw|c([m,m+l]x/) < KN

for a K depending on S. Since it; is bounded by KqN from Lemma 4.3, it follows
that

\f2(Vw(xux2))\<K'N
on [m,m + 1] x I with K' depending on 6. From the same lemma wXl is likewise
bounded. Now

2P2 + P2 - p\ !\h{VuV2

and so the estimate

2(1+ P2)2
>     H      _ Jpi]— 2(1 + Ä-1)     2<53:

|wl2|c([m,m+l]x/)  < ^3AT

follows.
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For part (d) let p¿ = tuXi(xi,x2) and p¿ = wXi(xf,x2) for t = 1,2, where (xi,x2)
and (xi,x2) are in fi. From (4.19) and part (b) the Ca norm of /2(Vtt;) on fi is
bounded by KoN, where Ko depends on 6. Thus
(4.34) |/a(Pi,Pa) - /2(pi,P2) + /2(Pi,Pa) - h(pi,fc)\ < K0NAa,
where A denotes the distance between (xi,x2) and (xi,x2). From Lemma 4.3 the
Ca norm of tt;Xl on fi is bounded by KN. Now for (pi,p2) G Qs, /2i is bounded
above and /22 is bounded below by positive constants depending on 6.   If these
estimates are used in (4.34), the result is

|p2-p2|<K4JVAa,

that is, wX2 satisfies the desired Holder condition. This last inequality, combined
with part (c) yields the Ca bound in (4.33).    Q.E.D.

LEMMA 4.5. Let fi be any relatively open subset of T on which the density p
is constant. Then for any solution (A, it;) G Fn,e,R, u> is real analytic on fi.

PROOF. Extend p to be p_ for x2 < —h and to be p+ for x2 > 1 - h. Extend
it; to be odd about x2 = —h for —2h < x2 < —h and to be odd about x2 = 1 - h
for 1 - h < x2 < 2(1 - h). Then u> satisfies (4.17) in each region where p is
constant. Since w G Cx'a in fi, the Schauder theory [13, Chapter 6] shows that
w G C2'a(fi). Then the results of Morrey [20; 21, Chapter 6] show it; is analytic.
Alternatively a change of variables back to ip(x,y) which is harmonic where p is
constant, yields analyticity for iß and, since diß/dy > 0, for y(x,ip) and iü(xi,x2)
(cf. (2.34)).    Q.E.D.

The estimates up to this point, regarding the restriction of it; to [m, m + 1] x /,
have been independent of m. Estimates which reflect the decay in it; as \xf[ —> oo
will also be needed. Before giving these estimates we make the simple observation
that since wX2 > —1 for any solution (A, it;) G Fn¿^R and since it; = 0 for x2 = 1 — h,
we have
(4.35) 0<tu(xi,x2) < 1    inT.
Recall that we are treating the case e > 0 (cf. (2.41)) and hence it; > 0 in T. In the
case e < 0 one would have — 1 < tu < 0 in place of (4.35). For e > 0, dw/dxf < 0
on (0, oo) x /, and this is used in obtaining the following bound.

Lemma 4.6.  For (A,tu) G Fn,s,R,
(4.36) maxtu(s,x2) <ñ(2/s)1/2.

x2er

PROOF. For any s G (0, oo), there exists an x(s) G (s/2, s) such that

(4-37) ^ > [J< = yw2X2(x,x2)dx2,

by the intermediate value theorem. Since tu is decreasing for xi > 0,

(4.38) — > /    I w2>x (w2(x,x2)dx2.

Combining these last two inequalities one has
( 2R2

max|it;(x,x2)|2 < 2 / u;(i, x2)u;X2(x, x2)dx2 < .
^e/ f¡ \J2xs

Since 2x > s, inequality (4.36) follows.    Q.E.D.
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Now we combine Lemma 4.3, Theorem 4.4, and Lemma 4.6 to obtain the follow-
ing estimates, wherein a is the Holder exponent from the earlier results.

COROLLARY 4.7.   Let d(m) = mm(l,R/y/m).  Thenfor(X,w)GFn,s,R

(4-39) \w\c°-i{[m,<x,)xi)<Kid(m),

(4.40) kxjcüm.oojx/) < K2d(m),

(4-41) |wx2|c°({[m,oo)x/}nn) < K3d(m),

and

(4-42) \p(f2(Vw) - Aw)|c°([m,oo)x/) < KAd(m),

where fi is any relatively open subset of T on which p is constant and the Ki,
i — 1,2,4, depend on 6, but are independent of rn, n, R, and fi. The constant K3
depends only on 6 and fi.

5. Precompactness of approximating flows. In this section it will be shown
that Un Fn¿tR is precompact in R x H0X (T). The use of Lemma 4.1 will then enable
us to obtain certain connected sets of solutions of problem (4.1)-(4.3) as a step
toward obtaining the set S in the stronger topology R x (H0X (T) D C0,1 (T)) given in
Theorem 2.1. Throughout this section 8 G (0,1) and R > 0 will be fixed. It will be
shown below in Corollary 5.3 that for each fixed n, Fn,s,R is precompact. The heart
of the compactness question concerns a sequence of solutions (A„,tt;n) G Fn,s,R,
where n = 1,2,3,_ The estimates of the previous section allow one to extract a
subsequence of these pairs which converges to a pair (A, tu), the convergence being
weak convergence in H¿(T); norm convergence in C, uniformly on bounded sets;
and norm convergence in C0'1, uniformly on compact subsets of T — {x2 = 0}.
Moreover, from Lemma 4.2 it can be assumed that vn — dwn/dxf has v = dw/dxf
as its weak H¿(T) limit. Henceforth it will be assumed that a subsequence has
been chosen and renumbered so that (An,iun) has the aforementioned properties.
Moreover, it can be assumed that wn ^ 0 for all n; otherwise there would be a
subsequence with second components all zero and thus convergent. The notation
/± = {x2 G / | ±x2 > 0}; T± = R x J± (from §1); Tm = [m,oo) x /; T± =
[m, oo) x I±; and d(m) from Corollary 4.7 will be used.

THEOREM 5.1. Suppose (A„, tu„) G Fn,b,R ¡or n — 1,2,..., that Xn -> A, and
that tu„ —> tu weakly in H¿ (T).  Then

(a) A < Xd, and
(b) tun —> it; strongly in HX(B) for any bounded B C T.
(c) The function w is real analytic in T — {x2 = 0}, even in xi, and satisfies

(5.1) |tu|co,i(rm) < Kd(m),

(5.2) K,lc°(rm) < Kd(m).

The function wX2 has extensions to T±, differing on {x2 — 0} in general, and

(5-3) \w^c°(Tj)-Kdim)
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while
(5.4) IM/2(Vtu) - Xw}\cHTm) < Kd(m).
Here K and a depend on 6, but are independent of m and R.

(d) The function w is a solution of (2.36)-(2.39) for the density pd.
PROOF, (a) From Theorem 2.3 of [4], we have Xn < pn- It will be shown in

Lemma 5.5 below that pn converges to Xd as n —► oo, whence A < Ad-
(b) The convergence of tun in C0,1 on compact subsets of T — {x2 = 0} together

with the gradient bounds (4.20) and (4.32) show that it;„ converges to tu in HX(B),
yielding part (b). In fact, the Schauder theory provides C2,a estimates on compact
subsets of T — {x2 = 0} and thus wn will converge to it; in C2 on such sets.

(c) The analyticity of tu follows as in the proof of Lemma 4.5. Since the estimates
in Corollary 4.7 are independent of n, the function tu = limtun inherits properties
(4.39)-(4.42) and the estimate on tuX2 extends to the closures T±.

(d) Recall that tun converges to tu in C2 on compact subsets of T± so equation
(2.36) holds on those sets. The conditions (2.37) and (2.38) are also preserved in
the limit. For <p G Co°(T) one obtains

dtp _ .     f      d(wnip)
j   Pn/¿(VlUn)— = An   /   pn-
It oxi JT ÔX2

from (4.1). Since the vectors grad tun are uniformly bounded and converge to grad tu
on T±, it follows that

/ pdfi(Vw)— = X       pd-—(w<p) + A /    pd-—w<p
,. cs fr °Xi        JT~     dx2 JT+     dx2
(5-5) roo

= A(p_-p+)/     w(xf,0)<p(xf,0)dxf,
J — oo

showing that tu satisfies (2.39).    Q.E.D.
LEMMA 5.2. Suppose (A,tu) G Fn,s,R and that 9=1- (X/pn) > 0. Then for

m > 0

(5-6) \w\HHTm)<K/s/m,
where K depends on 6, R, and 0.

PROOF. Since |tu|#i(x) ^ R hy assumption, the inequality (5.6) need be demon-
strated only for m larger than some mo. If equation (4.1) is multiplied by tu and
integrated over Tm, it yields

Ö /    Pn(i _L,,^2lVwl2 = ~ / Pnw(m,X2)fi(Vw)dx2 - X        p'nw2
,e -i   ¿ Jrrm     \>- + Wx2) Ji Jrm
(5.7) , A    ,

< - I pnw(m,x2)ff(Vw)dx2 H-/    p„|Vtu|
Ji ßn Jrm

from the characterization (3.2) of pn. For m > mo, m0 depending on 6 and R,

(2 + wX2)/2(l + wX2)2 > l-(6/2)    and     - tu/i(Vtu) < 2tutuXl    for xt > m.
Hence, from (5.7)

-6p+ /    |Vtu|2 < p_ / |tu(m,X2)||tuXl(m,X2)(ix2|,
L       JTm Ji

which, with Corollary 4.7 and the Poincaré inequality, provides (5.6).    Q.E.D.

2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



454 C. J. AMICK AND R. E. L. TURNER

COROLLARY 5.3.   For each fixed n, Fnts,R is precompact in R x Hq(T).

PROOF. Let (Afc,tUfc), k — 1,2,3,..., be a sequence in Fn,s,R- If a subsequence
converges to (pn, 0), we are done. If not, then |Afc - pn[ + |wfc|/fi(T) > V > 0 for all
large k. Suppose a subsequence, still denoted (Afc,tUfc), is such that A¡t converges
to pn as k —» oo. Since tUfc lies in the ball of radius R in HX(T), Uk lies in the ball
of radius K2R in HX(S) by (3.8). According to [4, §5], the collection {(Xk,Uk)},
k = 1,2,..., is precompact in R x (L2(S) n C(S)). (The exponent a in (1.4) of [4]
is 1 as established in the discussion following (7.14) of that paper.) It follows that
a subsequence, still denoted (Xk,Uk), converges to (pn, u) in R x (L2(S) n C(S)).
From local elliptic estimates one sees that (pn,tt) is a solution and that the u^
converge to u in C2(S). Then Theorems 2.3 and 2.4 of [4] show that u — 0. From
this information one can conclude that the y derivatives of the corresponding ipk
are bounded below by K > 0, uniformly on S and uniformly in m for m large.
Elliptic estimates, used once more, show that the L2 convergence of Uk to zero
implies convergence to zero in HX(S), and (3.7) implies convergence of u>k to zero
in HX(T). However, from an earlier inequality it follows that \wk\Hi(T) > r//2 > 0
for all large k, a contradiction.

From the last paragraph it is clear that Xk/pn < Ö < 1 for all k, and thus (5.6)
holds for all tUfc, uniformly in k. The precompactness of {tu/t}, k = 1,2,..., in
HX(B) for each bounded set B C T follows as in the proof of Theorem 5.1. These
two properties combine to yield precompactness in R x H0X(T).    Q.E.D.

To show precompactness of Un Fnj,R it will now suffice to show that the sequence
{(A„,tun)}, n = 1,2,..., selected at the outset of this section, converges in R x
H0X(T). We next show this together with some of the properties of the branch
required for Theorem 2.1. For the case limAn = A < Ad, we need merely quote
results already established to see the convergence of tun. For A = Ad, a delicate
analysis must be carried out using the nonlinearity in equation (4.1).

The case X < Xd.

THEOREM 5.4. Suppose (A„,tt;n) G Fn,s,R satisfy Xn —* X < Xd and wn —* w
weakly in H0X(T) as n —> oo.  Then

(a) wn converges to w strongly in H0X(T).
(b) tu > 0 in T and dw/dxf < 0 for xi > 0 and x2 G J.

PROOF, (a) It will be shown in Lemma 5.5(c) that pn approaches Ad as n —* oo.
Hence inequality (5.6) holds for wn, uniformly in n for all large n. This decay in
the tail together with Theorem 5.1(b) yields strong convergence in HQX(T).

(b) From (5.5) it follows that

f     -  dw dipI pdfij-^-^— >0JT dxi dxj

for all nonnegative ip G Co°(T), where fij is defined by (4.23). Hence, from the
strong maximum principle [13, Theorem 8.19], either tu = 0 or w > 0 in T. The
function v = dw/dxi is in Hq(T) by Lemma 4.2, and is the weak Hx limit of
vn = dwn/dxf. The equation (4.12) is satisfied by (Xn,Wn,vn), and since vn < 0
for Xf > 0, one obtains
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for all nonnegative <p G Co°([0, oo) x I). From the strong maximum principle v = 0
or v < 0 on (0, oo) x /, corresponding to the case tu = 0 or tu > 0, respectively.
If tu s 0, then the functions tun, which are even in xi and decreasing in Xf on
(0, oo) X J, must converge uniformly to zero on T. The gradient estimates (4.20)
and (4.32) show that Vtun converges uniformly to zero on T, and thus wn converges
to zero in C0,X(T). The analogue of (5.7) taken over all of T yields

/r a\ I 2 + (ti;n)X2    ,_     l2     An   /      .        l2(5-8) /  Pn,,,.  ,   —rr» Vtu„r < — /  p„\Vwn\*.Jt       2(l + (tUn)X2)2' Pn Jt
Since Xn/pn converges to X/Xd < 1 and |Vtu„| —> 0 uniformly on T as n —> oo,
(5.8) leads to a contradiction for large n. Thus it; > 0 on T and dw/dxf < 0 for
xi > 0.    Q.E.D.

The case X = Xd- As stated earlier, it is assumed that we are working with a
sequence (An,tun) G Fn,s,R for which An —> A = Ad and tun converges to w in the
weak topology of H0X(T) as n —> oo. In addition, the conclusion of Theorem 5.1
hold. The plan here is to show in Theorem 5.6 that the weak limit is it; = 0 and
then to show in Theorem 5.7 that tun —> 0 strongly in Hq(T) so that the limiting
point is the bifurcation point (Ad,0).

To begin recall that pn is defined by

1    .        „.„      -i>n
2

(5.9) — =   max
Pn     ueH*(i) }jpn(u'y

Let 9n = ön(x2) be the associated positive maximizer normalized by J¡ pn9n = 1-
The function 6n satisfies the Euler equation

(5.10) (pn6'n)' = PnP'Jn-
An associated quantity an is defined by

,,fU m r-Aj»2-/^')2)(5.11) a„(A) =   max   <-*-T-^-}
ueHi(I) { fjPnU2 J

for each A G R. Let ^n = ln(x2) be the positive maximizer in (5.11) when A = A„;
again suppose that f¡ pnl2 = 1- The function 7„ satisfies the Euler equation

(5.12) (Pnl'n)' - XnPnln = an(Xn)pnln-

Of course, 0n and ^n both vanish at the endpoints of / = (—h, 1 — h).

LEMMA 5.5.   Let(Xn,wn) be in Fnj^R\{(pn,0)}.  Then
(a) an(Xn) < 0.
(b) Assume Xn —> Ad as n —> oo. Then the functions {9n} and {in}, n= 1,2,...,

are bounded in CX(I) uniformly in n and for each e > 0 converge in C(I)CiCx(I£),
I£ = I n {|x2| > e}, to the function

{a(x2 + h), x2 < 0,

^fe-l + C),    I2>0,

where o2 = 3/h2(p-h + p+(l - h)). Let

-IlP>2 _(p--p+)u2(0)(5.14) Q(u)
¡,Pä(u')2~       StPÁW?
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Then ^d is the positive maximizer of Q(u) for u G H¿(I) and

Q(ld) = 1/Ad,
where Xd is defined by (2.40).

(c) limn^ooMn = Ad.

PROOF, (a) From the characterization (5.11) an is a strictly increasing function
of A and from (5.9), an(pn) = 0. As noted in the proof of Corollary 5.3, for
(A„, tt;„) G Fn¿,R \ {(pn, 0)}, A„ < pn, and so an(An) < 0.

(b)-(c) Since evaluation at X2 — 0 is a compact mapping for functions in Hq(I),
the maximum of Q(u) is attained, and the form of Q ensures that this maximizer
must be linear on I+ and I~. A calculation shows that ^d is the positive maximizer
which has the normalization f¡Pd"id = 1 and that Q(^d) = X¿x.

Suppose the maximizer 9n for (5.9) is renormalized to have max0n = 1 on J and
that its maximum occurs at ¿2- Since ^(¿2) = 0, an integration of (5.10) from x2
to x2 yields ,.X2

Pn9'n(x2) =   /       p'Jn,
Jx2

and so |^(x2)| < (p- — p+)/p+. This bound easily implies that the eigenfunction
normalized by JjPnO2 = 1 must also satisfy \9'n\ < Kf, where Kf depends only
on p± and h.  On Ie, that is, where |x2| > e, the derivative p'n — 0 for n > 1/e
and hence 9n = 0. It follows from the Arzela-Ascoli theorem that a subsequence of
{9n} converges as asserted to a function f?oo which must be linear on I+ and I-.
Since Jj Pd#oo = 1) a calculation shows that 9oo must be ^d and the uniqueness of
the limit shows that the whole sequence converges.  The maximum value in (5.9)
converges to , .  9,_.

(P-- P+hdM
fiPdd'd)2     '

and thus pn —> Xd as n —> 00.
All values of A under consideration for a fixed n lie in the interval [0,p;n], and

since an is increasing, an(0) < o;„(A) < an(pn) = 0. Moreover, the quantity a„(0)
is readily seen to be bounded below by a negative constant K2 depending on p±
and h, but not on n. By integrating the equation (5.12) for 7„ as was done with
(5.10), one finds that |^| < K3 on I and |^| < Ä"4|aTl(A„)| on Ie for n > 1/e.
To see that ifn, like 9n, converges to id, it suffices to show that |an(An)| —> 0 as
n —► 00. Since An —* Xd, pn -^ Xd, and an(pn) — 0, the desired convergence will
follow if it is shown that an has a modulus of continuity independent of n. To see
this let ttr be a maximizer associated with an(r) in (5.11) and suppose fj pnu2 = 1.
Then for r > s,

a„(r) = -r I p'nu2 - / p„«)2

(5-15) =-{r-s)l ̂  - SI ̂  - IPnKf
<(r - s)Kb(p- - p+) + an(s),

since ur is an admissible function in the definition of an(s). Since an is an increasing
function, it follows from (5.15) that

\otn(r) -an(s)\ < K6|r-s|

with Kq independent of n.    Q.E.D.
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THEOREM  5.6.   Let 6 £ (0,1) and R > 0 be fixed, and suppose (An,u>n) G
Fn,6,R for n = 1,2,_   If Xn —> Xd and wn converges weakly to w G Ho CO as
n —» oo, then

(a) tu = 0 in T.
(b) |tun| and |Vtun| converge to zero uniformly in T as n —> oo.

PROOF, (a) The argument revolves about the behavior of it;n for large Xi and
that behavior, as we shall see, is reflected in the projection of iun along the eigen-
function 7„ of (5.12). Let

(5.16) Wn(Xf,X2) = Fn(Xf)ln(x2) + Rn(Xf,X2),

where

(5.17) Fn(xf) =  / p„(x2)tun(xi,X2)7„(x2)

with in normalized by

(5.18) ¡ Pnll = l-

It follows that in and Rn are orthogonal with respect to pn for each fixed x\:

(5.19) / pnRnlndx2 =0, Xf G R.

Let

(5.20) Gn(*l)=   flnPn.^l      -
Jj 1 + (Vjn)x2

If the principal equation (4.1) is multiplied by 7„ and the result integrated over /,
there emerges

(5.21) dx~Gn " Xn  I   lnP'nWn + / TnPn/2(VtUn)

after an integration by parts in the integral containing f2.   A simple calculation
shows that

(5.22) /2(pi,P2) = P2 - !p! + ¿(Pi,P2),

where

(5.23) A = (3p| + 4pi-p2)/2(l+p2)2.

From equation (5.12) for ^n one has

and the use of this last identity with the expression (5.22) in (5.21) yields

(5.24) G'n = -an(Xn) j pnWnln ~ jj  / ÍnPn[(Wn)x2? + j inPnMVl .).
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With the use of (5.16) the second integral in (5.24) can be written

l   flnPn(Fnln + (Rnx2)2
(5.25)

= \F2nJiPn(in? + ZFnJiPn(in)2(Rn)x2 + \ £ iM^l,,

where here and in what follows the convention (Rn)X2 is used for [(Rn)X2]2. Now
use the definition of ^d in (5.13) to compute

1=   lim   -   /  Pn(inf = Ö   / PÁid.n-»oo I J, It,
(5-26)       •   V    ;„_   P+

id)

2[p_h + p+(l-h)}3/2\h2     (l-h)2J-

Since the expression (p_//i2) — (p+/(l — h)2) = e (cf. §2.2) is positive by assumption,
è > 0. Only the positivity of è is important in what follows, so to simplify notation
we omit the tilde. We conclude that, for any e > 0 and all n > N(e),

\FlJMf-eFl < eF2,        Xf G R.
|2

The use of this last inequality in (5.25) together with Young's inequality gives

(5.27) | \ ^ inPn(wn)l2 - eF2  < 2eF2 + Kfji pn(Rn)l2 ,

where Kf depends on e, but is independent of n and Xf. From the form of A given
in (5.23) and from the decay of tt;„ and Viun as xi —» oo given by (4.39), it follows
that

(5.28) \A(Vwn)\ < K2((Fn)2 + Fn3 + |VÄn|2)

for xi larger than some value X. The use of the last two estimtes in (5.24) yields

(5.29) \G'n + an(Xn)Fn + eF2\ < 2eF2 + K(e) j pn{(Fn)2 +F* + |Viü|2}

for n > AT(e) and Xf > X where K(e) is independent of n and xi.
Note that the term Gn approximates ^(xi) for wX2 small and thus (5.29) is akin

to a differential inequality for Fn. The aim is to show that in the limit as n —► oo
and o:n(An) —» 0, (5.29) is inconsistent with having a positive function iu(xi,x2)
which decreases in Xf for xi > 0. To arrive at this contradiction we first estimate
the integral in (5.29).

If the principal equation (4.1) is multiplied by wn and the two sides are integrated
over / there results

/  Pn(Wn)x2/2(VtUn) = -An   /  p^lU2 +   /  P„lUn — ff (Vwn)

(5.30) = -A„   I   p'nW2n + —        pnWnfl(VWn)

-   / PnK)i,/l(V«;„).
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Let

(5.31) Un(xf) = / p„tu„/i(Vtun).

Then since f2(pi,p2) = P2 - (2p2 + 3p% +p\)/2(l +p2)2, equation (5.30) yields

f       f       \2 f K)x!
/   Pn(wn)X2 +   /   pn ,        .fl Si        l + (wn)x3

(5.32) =_Xnj p'nW2n + ^-Un(xi)

+ llPn(l+W(Wn)x2)2{2{Wn)^ + 3K)'2 + K)'l}'
Now from the representation tu„ = Fn^n + Rn, the equation (5.12) for 7„, and the
orthogonality (5.19)

(5.33) J Pn(wn)2X2  = F2 j pnd'n)2 -2XnFn J p'nlnRn + j pn(Rn)l2-

A second use of the representation for tu„ yields

(5.34) j Pn(Wn)l2 +Xnj P>2 = -Q„(A„)F2 + Xn j P'nRn + j Pn(Rn)2X2 -

Now define rn by

(5.35) -=      max       zliAu*
rn u€H¿(/)      JIPn(u')'i

J7 1iPn1n=0

Since an extra condition on u has been added to the characterization of pn in (5.9),
it is natural that rn > pn and this is shown in [4, Lemma 3.1]. An argument similar
to that given in Lemma 5.5 shows that as n —> 00 the numbers rn approaches a
limit Too > Ad so that An/rn —» Xd/T00 < 1. Thus 1 — An/rn > 9 > 0 for all large n.
Since

/  Rn(xl,X2)pn(x2)ln(x2)dx2 =0

for each Xf,

-Xnj¡p'nR2n<>^j¡Pn(Rn)l2<(l-9)jiPn(R

The use of this last inequality in (5.34) gives

(5.36) j Pn(Wn)2X2 + Xn J p'nW2n > ~an(Xn)F2 + 9 I Pn(RnfX2

for all large n. The inequality (5.36) will be used in (5.32). First, however, note
that because of the decay given by Corollary 4.7, for any e > 0 there is an X(e),
independent of n, such that

(5-37) IP»-i+u}\     > ^-e) [pn(wn)2Xl,
Jl        L + Vwn)x2 Jl

2
n)X2-
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provided xi > X(e). This same decay coupled with the decomposition (5.16) of tun
and Young's inequality gives

(5.38)
< KfFl + K2S j Pn(Rn)2X2 + S I Pn(Wn)2Xl

for xi > X(e) (taking X(e) larger if necessary). The last three inequalities, with e
chosen so that if2e < 9/2, combined with equation (5.32), produce the inequality

(5.39) 6-jpn(Rn)2X2-an(Xn)Fl + (l-2e)jpn(wn)2Xl<U'n(xf) + KfFn-

valid for n > N(e) and xi > X(e). To further decompose terms using Fn and Rn,
note that

j Pn(Wn)2Xl  = (Fn)2 jiPnl2n + 2Fn J Pnln(Rn)Xl + j Pn(Rn)2Xl

(5.40) =(Fn)2 + j¡Pn(Rn)2Xl,

using (5.18) and (5.19). It can be assumed that e is chosen so that 9/2 < 1 — 2e.
Then since an(Xn) < 0, it follows from (5.39) and (5.40) that

(5.41) (Fn)2 + jt Pn\VRn\2 < ]u'n + K>F%.

For these same parameter ranges, the use of (5.41) in (5.29) yields

(5.42) \G'n + an(Xn)Fn + eF2\ < 2eF2 + KUn + KF%,

where e is positive and K depends on e, but not on n or Xf. Since Fn(xf) —> 0 as
xi —> oo, uniformly in n, we may assume that X(e) is chosen so that KFn(xf) < e
for xi > X(e), leading to

(5.43) IG; + an(Xn)Fn + eFn2| < 3eF2 + KU'n.
Now one can integrate the inequality (5.43) (without the absolute value taken on
the left side) over the interval [xi, ¿i] where X(e) < xi < xi < oo. Next let n —> oo
using the results of §4 and the fact that an(Xn) —► 0. Finally let Xi —► oo to obtain

(5.44) - f Pdldy^- < -(e-3e) ¡°° F2(s)ds - K f pdwff(Vw).
Jl 1 + wX2 fXl J¡

Here tu is the weak limit in Hq (T) of the sequence {tu„} and F is defined in analogy
with Fn in (5.17). Inequality (5.44) can be written as

(5.45) f Pdj^-lM {1 - ^j^ }>(e- 3e) f F2(s) ds.
Jl       1 + Wx2 ld(x2)       J JXl

< Ä"|tuX2(xi,.)|L«»(/),

Now from the mean value theorem

tu(xi,.
1Á-) L°°(l)
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and from Theorem 5.1(c) the right-hand side approaches zero as xi -»oo. It follows
from the last two inequalities that for all large Xf

(5.46) 2 ipdwXl~id > (e - 3e) /    F2(s)ds.

As in the proof of Theorem 5.4 one concludes from the strong maximum principle
that tuXl < 0 in (0, oo) x I or that w = 0 onT. The inequality (5.46) ensures that
only the latter can occur, completing the proof of part (a) of Theorem 5.1.

For part (b) recall that tun was taken to converge to tu uniformly on compact
sets. Since u;n has its maximum on the line xi = 0, the convergence to it; = 0 is
uniform on T. Lemma 4.3 and Theorem 4.4 show that |Vtu„| —► 0 uniformly in T
as n —► oo.    Q.E.D.

THEOREM 5.7.   Let S G (0,1) and R > 0 be fixed and suppose (An,tt;n) G Fn,s,R
for n — 1,2,_  Assume Xn —► Ad and wn converges weakly to zero in H0X(T) as
n —> oo. Then wn converges strongly to zero in H0X(T).

PROOF. In the previous proof it was shown that the inequality (5.43) holds for
n > N(e) and xi > X(e), the latter restriction being made solely to insure that wn
is sufficiently small in C0,1([xi,oo) x I). From the previous theorem we know that
tun approaches zero in C°'X(T) and thus inequality (5.43) can be shown to hold for
all Xf > 0. This will enable us to relate the H¿ norm of wn to the quantity Fn(0)
in such a way as to show that wn approaches zero strongly in H¿(T) as Fn(0) —► 0.

From (5.43) one obtains the two differential inequalities

(5.47a) (d/dxf){Gn - KUn} < -an(Xn)Fn - (e - 3e)F2

and

(5.47b) (d/dxf){Gn + KUn} > -an(Xn)Fn - (e + 3e)F2

valid for n > N(e) and for all xi > 0. As noted earlier, we have

(5.48) Gn±KUn=   [ Pn f^l      In i 1 ± ^ } ■7/ 1 +- (wn)X2 ( In     J

Since

(5.49) U>n(xl,-)\ ^iv7       ,
—-p— < K|Vtt;n|i,cx>(/)

InV)      \L°°(n'(I)

and |Vtt;ri|¿<x>(T) —» 0 as n —» oo, N(e) may be increased, if necessary, so that for
all n > N(e)

(5.50)
(1 + s)Fn = (1 + 6)   f Pnln(Wn)Xl  <Gn + KUn

< (1 - e) J Pnln(Wn)Xl  = (1 - £)Fn.

Recall that Fn is negative.
The expression an(Xn) + (e + 3e)Fn(xi) is monotone decreasing on 0 < Xf < oo

and approaches an(Xn) < 0 as Xf —y oo. Let [Zn,oo) be the subset of [0, oo) on
which the expression is nonpositive.  Suppose first that Zn = 0.  If the inequality
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(5.47b) is multiplied by the positive quantity — (Gn + KUn), the result integrated
from Xf to oo, and use is made of (5.50), then

(5.51) (1 + e)2(F'n)2 > -(1 - s)(an(Xn)F2 + ¡(e + 3e)Fn3).

Since Fn(0) = 0, it follows from (5.51) that

(5.52) F2(0)(an(Xn) + |(e + 3e)Fn(0)) > 0.

However, the assumption that Zn — 0 or that a„(A„) + (e +- 3e)F„(0) < 0 is in
contradiction to (5.52), given that Q„(A„) < 0.

We now know that Zn > 0 and that

(5.53) an(Xn) + f (e + 3e)Fn(Zn) < an(Xn) + (e + 3s)Fn(Zn) < 0.

Using this inequality in (5.51) one finds

(5.54) (1 + e)2(Fn(xf))2 > |(1 - e)(e + 3e)F2(x1)(Fn(Zn) - Fn(Xl))

on [Zn,oo). This last inequality yields

rFn(Zn)     t2/•oo rtnV¿n)     ,2

/     F2(Xf)dxf= —dt
JZ„ Jo -**n

/'Jo

(5.55) <       /-F"(z") t2dt
o t^Fn(Zn) - t

< KfFl'2(Zn) < KfFl'2(0).
On the interval [0, Zn\,

-an(Xn) <(e + 3e)Fn(xf),

and the use of this in (5.47a) yields

(d/dXf)(Gn - KUn) <(e + 3e)F2 - (e - 3e)F2
(5.56) = 6eF2.

We now carry out a process similar to the one above of multiplying (5.56) by
— (Gn — KUn), integrating from 0 to xi, and using (5.50) to obtain

(5.57) _«*.-*"->'
F3

<6e(l + e)^
o ó

Xf G [0,Zn\.

Now (5.50) can be used to show that Gn - KUn = 0 at Xi =0 and to bound
(Gn(xi) - KUn(xi))2 above by (1 + e)2(F;(xi))2. Hence from (5.57) one has

(5.58) (1 + e)2(Fn(xf))2 > 4e(l + e)(Fn3(0) - F3(xx)),

valid for xi G [0, Zn\. We use this estimate as follows

i2"  V2,      u fFni0)    t2dt
/      F2(Xf)dxf= —

JO JFn{Zn) -fn

/■F"(0) t2dt<K,  / t at
~ JFn(Zn)  X/^W-Í3
< K2F%2(0)
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and combining this with (5.55) yields
/•oo

(5.59) /     Fl(xf)dxf<K3Fl'2(0).
Jo

Now we use inequality (5.41) which, like the inequality (5.43) used at the outset
of the proof, will hold on 0 < xi < oo provided n is sufficiently large, thereby
guaranteeing that tu„ is sufficiently small in C°>X(T). From (5.41) it follows that

/•oo /»oo    ç roo

(5.60) /    (Fn)2dxf+ Pn\VRn\2<K3        Fldxf
Jo                      Jo    Ji Jo

since J0   Undxf — 0. The Poincaré inequality yields
/•OO       /• /»OO       /•

(5.61) /      / pnR2n <K4 / p„|VÄ„|2.Jo    Ji                   Jo    Ji
Now, since tun is even in xi and has the form tun = Fn^n + Rn (cf. (5.16)-(5.19)),
it follows from the last three inequalities that

(5.62) \wn\2„è,T) < K(FV2(0) + F^2(0)).

By Theorem 5.6 Fn(0) —► 0 as n —> oo and hence tun converges strongly to zero in
H0X(T).    Q.E.D.

The result just completed, together with Corollary 5.3 and Theorem 5.4, yields

THEOREM 5.8. For each 6 G (0,1) and each R > 0 the set (jnFn,6,R is pre-
compact in R x H0X (T).

The concluding result of this section, in which the Hx topology still plays the
major role, is

THEOREM 5.9.   Let 6 G (0,1) andR> 1 be fixed.  Then
(a) the set

Gs,r = lim sup Fn,s,R
n

is a compact, connected subset of B(R) (defined in 4.4) with (Ad,0) G Gs.r.
(b) Each (A,tu) in Gs,r satisfies parts (a), (c), and (d) of Theorem 5.1 and

Vtu(xi,x2) eQs for all (xi,x2) eT~ UT+.
(c) // (A, tu) G Gs,r \ {(Ad,0)}, then A < Ad, tu > 0 in T, and dw/dxf < 0 on

(0,oo) xi.

PROOF, (a) From Lemma 4.1 and Theorem 5.8 one can conclude that Gs,r is a
compact, connected set in B(R). It was shown in Lemma 5.5(c) that pn —> Ad as
n->oo and thus (Ad,0) G Gs,r-

Parts (b) and (c) follow from Theorems 5.1, 5.4, 5.6, and 5.7.    Q.E.D.

6. The set Gs,r as a subset of R x (H¿(T)nC°'x(T)). To show the existence
of the unbounded, connected set of solutions S described in part (a) of Theorem
2.1 two issues must be confronted. The first is the connectedness of G^,r when the
stronger topology of H¿(T) n C°'X(T) is used in place of the H¿ topology for tu.
The second is roughly to show that in the set Gs,r there are solutions for which tu
has size R in i/¿ or size 6~x in C0,1. If this can be done for any R > 0 and any
S G (0,1), then the unboundedness of S will follow. It will be shown that in G¿ r
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there is a pair (A,it;) for which |tu|//i = R or for which Vw(ïi,x2) G dQs for some
(xi,x2). This almost resolves the second issue. The final step is to show that for
sufficiently small 8, Viu cannot take values on that part of dQs where p2 = —1 + 8.

THEOREM 6.1. For each 8 G (0,1) and each R > 0, the set Gs,r is connected
inRx(H0x(T)nC°'x(T)).

PROOF. Since Gs,r is connected in the original topology of R x H¿(T), it will
suffice to show that on Gs,r the stronger topology coincides with the original one.
That is, if solutions (Xk,u>k) of the problem with discontinuous density pd converge
to (A,tu) in R x Hq, then tUfc converges to w in C0,X(T). The Holder estimates
in Theorem 5.1 are satisfied by each Wk, uniformly in k. The compactness of the
collection {tufe} in C°'X(T) is then assured and the desired convergence follows
immediately.    Q.E.D.

Recall that for the density p„ the set of solutions £n emanating from (pn,0) is
unbounded in R x H¿(T) and that Fn,¿,ñ is the maximal connected subset of

{(A, tu) G £n\Vw(xi,x2) G Qs, (xi, x2) G T)
which contains (p:„,0) and is contained in B(R). We can assume n is large enough
so that pn < 2Xn, and hence for each n there is a pair (A„,tu„) G Fn,s,R for which
either

(A) \wn\Hi = R, or
(B) Vu;ri(x(1n),x2")) G dQs for some (x(1"),x2n)) G T.
If alternative (A) holds for an infinite sequence of values for n, a subsequence,

still denoted by (An,tt;n) may be chosen so that A„ —> A and iu„ converge weakly
to it; in Hq(T) as n —» oo. Theorems 5.4 and 5.7 show the convergence to be strong
in H0X and hence there is a pair (A, it;) in G¿,r with |tu|wi = R.

If alternative (B) occurs infinitely often, it can be assumed that a subsequence
is chosen so that the following result is applicable.

THEOREM 6.2. Suppose (Xn,wn) G Fn>s,R, n = L2,..., and that for each n
there exists a point (x-[   , x2   ) in T for which

(6.1) Vit;n(xin),x2n))GÔQé.

Then there is a pair (X,w) G Gs,r and a point (xi,x2) such that

(6.2) Vw(xf,x2)€dQs,
where, if x2 = 0, the limit from above or below x2 = 0 is intended.

PROOF. The proof is divided into three cases according to which part of the
boundary dQs is in question. Once again a subsequence can be chosen and renum-
bered so that wn converges to w in H¿(T), Vit; G Qs on T, and one of the following
three cases is relevant.

Case 1.  \dw(Xf   ,x2n )/dxf\ = ¿-1; n = 1,2,.... First note that Corollary 4.7
guarantees that Vtu„ decays to zero at infinity, uniformly in n, so that (x\n ,x2 )
remains bounded. Without loss of generality assume that these points converge
to (ïf,x2). From the Holder estimate (4.20) it is clear that dwn/dxf converges
uniformly to dw/dxf and thus

|diu(xi,x2)/ôxi| = 6~l,

implying (6.2), since Vtu G Qs-
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Case 2.   dwn(Xf   ,x2   )/dx2 — 8~x, n = 1,2,_   As with Case 1 it can be
assumed that (x[n ,x2   ) -* (x\,x2). If x2 ^ 0, the Holder estimate (4.21) applies
to give

dw(ïf,x2)/dx2 — 8~x

and hence (6.2).
Suppose x2 = 0. From Lemma 4.3 it can be assumed that both tun and dwn/dxf

converge uniformly in a neighborhood N of (xi,0). The functions dwn/dx2 can-
not, in general, converge uniformly since dw/dx2 is discontinuous along {x2 = 0}.
However, from (5.3), the limits of the x2 derivatives of it; from above and below
{x2 = 0} exist, and we define

WX2 =    arri   wX2(xi,x2)
x2—»0+

and
w~ =   lim   iuX2(xi,x2).

x2 —»u—

The link among these various limits in provided by the combination

Pn(z2)(/2(Vtun) - Antt;n),

which, according to Theorem 4.4(b), has a Holder exponent a > 0, uniformly in n.
This information combines to give

(6.3) lim Pn(x{2n)){f2(vJXl,8-x)-Xw}
n—»oo

(6.4) = p+ {/2 (wXl ,w+2)-Xw}

(6.5) =p_{/2(wXl,ii;-)-Ait;},

where the terms other than tt;X2 are evaluated at (xi,0).
Now one considers cases. If

f2(wXl,8~x) - Atu = 0,

then the bracketed terms in (6.4) and (6.5) must also vanish, yielding

/2(u;Xi,ií;~ ) = f2(wXl,wt2) = f2(wXl,8-x).

Since /22 > 0, it follows that

™x2 =wt2 =8~x,

and thus (6.2) holds.
Next, suppose

(6.6) /2(it;Xl,¿-1)-Ait;>0.

Since p+ < pn(x2) for all x2, it follows from (6.3) and (6.4) that

P+{/2(wXl,<5-1) -Ait;} < p+{/2(tt;Xl,tu+) -Ait;}

and so
f2(wXl,8~x) < f2(wXl,w+2).

Again using /22 > 0 one concludes that

8~1<<2,

and since any limiting values of the gradient of w must lie in Qs, (6.2) follows.
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If the inequality in (6.6) is reversed, an argument similar to that just given, but
using the equality of (6.3) and (6.5), leads to (6.2).

Case 3. dwn(x\   , x2   )/dx2 = -1 + 8; n = 1,2,_
The argument here is similar to that given in Case 2, but with 8~x replaced by

-1 + 8.    Q.E.D.
Our next task is to show that wX2 cannot assume the value —1 + 8 if 8 is

sufficiently small. Since —1 + 8 < wX2 < 8~x, the value —1 + 8 would be a minimum
for wX2.

LEMMA 6.3. The minimum of wX2 is assumed on the line {x2 =0} as a limit
from above or below.

PROOF. Since tu satisfies the equation

(6.7) dfl(Vw)/dxl - 0   in T+ U T~,

it follows from differentiation that

<68> irM^irM'0 inT+UT"
for k — 1 or 2. By the maximum principle, wX2, which is continuous in T+ and in
T~, must take its minimum value on the boundary of T+ UT~. Since tu is positive
in T and vanishes for x2 = — h and for x2 = 1 — h, the strong maximum principle
implies that tuX2 > 0 for x2 = — h and tul2 < 0 for x2 = 1 — h. Consequently the
minimum is negative and must occur where x2 — 0 or x2 = 1 — h.

The function wXl is negative in (0, oo) x I+ (cf. Theorem 5.4) and is zero on the
half line (0,oo) x {1 — h}. Since it; is even in xi,iuXl is zero on {0} x J+ and the
strong maximum principle implies

(6.9) tuXlX2 > 0   on (0, oo) x {1 - h}

and

(6.10) wXlXl < 0    on {0} x I+.

The inequality (6.9) implies that the minimum of tuX2 on the line x2 = 1 — h must
occur at xi = 0. Suppose the equation (6.7) is written out in nondivergence form.
Since tt;XlX2 =0on {0} x I+, it follows from (6.10) and the ellipticity of (6.7) that

(6.11) iuX2l2 >0    on {0} x I+.

Hence the minimum of tuX2 on {0} x /+ must occur at (0,0), showing that the
minimum must occur on {x2 = 0}.    Q.E.D.

The next result establishes a lower bound for A which serves in Theorem 2.1,
part (b) and which will also be used in obtaining a lower bound for tuX2. The proof
of this lemma will be given in connection with related computations at the end of
§8.

LEMMA 6.4.   For any 8 G (0,1) and R > 0, let (X,w) belong to Gs,r.  Then

(6.12) A>l(v^+v^)2,
2       p- - P+
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Recall that the switch from spatial to semi-Lagrangian independent coordinates
was made to circumvent the difficulties inherent in a direct approach to a free
boundary. For each solution (A,iu) G Gs,r the free boundary is merely the graph
T = {x,tu(x,0)} of the function tu(x,0). Recall from Theorem 5.9 that it;(-,0) G
Cx'a(R). In §7 it will be shown that it is real-analytic. Having obtained the
boundary separating the two fluid components we now revert to the pseudo-stream-
function ip(x,y), where (x,y) are spatial coordinates in the strip S (cf. §2). Recall
from (3.10) that

(fil^ IM3™ °^
(6-13) i+dx-2-dïJây
in S+, the upper fluid region, and in S~, the lower one, respectively. Since c2 >
g/Xd, (6.13) will give a lower bound for iuX2 if an upper bound for ipy is established.
The next lemma is a first step towards bounding ipy.

LEMMA 6.5. Let (A, tu) belong to Gs,r and let ip be the corresponding pseudo-
stream-function.  Then for any real m

/•m+l     r-

(6.14) / [Vip\2dxdy<c2Kf,
Jm-l   Jl

where Kf depends only on p± and h.

REMARK. From Lemma 6.4 it is clear that c2Kf — gKf/X is bounded in terms
of p± and h.

PROOF OF LEMMA 6.5. Let the integral in (6.14) be denoted by E. From the
relations (2.20), (2.30), (3.10), and (3.11) there results

/•m+l   r-n(i-h) ,   ,2
E= / / h^JhidxdTp

Jm-i Jv(-h)     y^

(6-!5) =/ /        .  ,    Xl csjpd x2)dxf —- dx2
Jm-i  J-h    x- + wX2 dx2

,m + l     ,1-fc       1 + W2x
= c* I /        pd-r¡--dxfdx2.

Jm-l    J-h 1+Wx2
Let p(xi) be a smooth cutoff function which equals 1 on [m — 1, m + 1] and

has support on [m - 2,m +- 2]. Consider the fundamental equation (4.1) for a
pair (An,tun) G Fn,s,R converging to (X,w) G Gs,r- Multiplying (4.1) by p2wn,
integrating by parts, and letting n —> oo, one obtains (cf. 4.11)

f tutu f°°
(6.16) = -2 /  pdpp! .      Xl    +X(p--p+) /     /t2(x1)«;2(xi,0)dx1

JT 1 + Wx2 J-oo

f w2 o     fm+2

JT        (l + wX2y      e  fm_2
where |iu| < 1 (cf. 4.35) has been used. If e is set equal to 1/2 in (6.16), the resulting
inequality implies

(6,7)     i r /„#±s¿<+1 r' \, < < k:
¿Jm-l   Jl       (l + WX2y 2Jm_f   J,       l + tUX2
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where K' depends only on p± and h. The last integrand in (6.15) contains a sum
of (1 + iuX2)"1 and tuXl(l + it;X2)_1. The second of these also occurs in the second
integral of (6.17) and so is estimable.

Now consider pd(l + tuX2)_1. Where tuX2 > — 5, this integrand is at most 2pd,
while on the complementary set

1 < 4   2 + tuX2 2
IU

l + wX2      3 (l+-tt;X2)2

Use of these estimates with the first integral in (6.17) gives a bound for the integral
of pd(l + tuX2)_1, and the combined estimates yield an estimte for (6.15).    Q.E.D.

To make use of the bound (6.14) it will be necessary to show that the distance
from the streamline T to the boundary dS, denoted dist(r,öS'), is bounded below.

Lemma 6.6.  Suppose (A,tu) gGs.r- Then

(6.18) dist(T,dS)>K >0,

where K depends only on p± and h.

PROOF. In the case of elevation waves (e > 0) being treated, tu > 0 so the
distance from T to the lower boundary is at least h. Since w is even in Xf and
decreasing on 0 < xi < 00, the distance to the upper boundary is d = l — h—w(0,0).

Consider polar coordinates centered at (x, y) — (0,1 — h) so that points within
the strip S have angular coordinates in [0, tt]. From Lemma 6.5

/■1   r7* pi—h   /.i
(6.19) /    /    \Vip\2rdrd9< j        j    \Vip\2 dxdy < c2Kf,

Jd   Jo J-h      J-l
with Kf depending only on p± and h. From (6.19)

(6.20)
fx dr   r

Jd    r Jo
dip
do d9<c2Kf.

For each fixed r G (0,1), ip(r, 9) = ^(1 — h) when 9 = 0 or 7r, while for each r G (d, 1)
the semicircle of radius r (0 < 9 < tt) must intersect T; that is, there must be an
angle 9 = 9(r) in (0,tt) for which ip(r,9) = 0. Since

Je
dip
¡JO r, 0) d9 <(6.21)        *2(l-/i)

it follows from (6.20) that

(6.22)

From (1.20), *(1 - h) = c./p^(l - h) and so

fJo
dip
OO d9<

i'TX

Jo
dip
39 dO,

log 1\ *2(l-/i)
<c2Kf.

l0g^p7ir^F'
from which (6.18) follows.    Q.E.D.

The following lemma of Alt, Caffarelli, and Friedman [1] will be used.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INTERNAL SOLITARY WAVES IN TWO-FLUID SYSTEMS 469

LEMMA 6.7. Let u be a function in C(Ba) n Wx'2(Ba), where Br C R2 is a
ball of radius r centered at (x,y), where u(x,y) = 0. Suppose u is harmonic in
Ba\{u = 0} and set

(6.23) <p{r) = -kf   \Vu+\2dxdy\ f   \Vu~\2 dxdy,
r       JBr r       Jßr

where u+ — sup(tt, 0) and u~ = inf(u, 0).  Then <p(r) is an increasing function of r
for 0 < r < a.

THEOREM 6.8.   Suppose (X,w)e Gs,r. Then

(6.24)

and

(6.25) ^- < K
1 + wx2 ¿»(r)

where the constants depend only on p± and h.

PROOF. In Lemma 6.3 it was shown that the minimum of 1 + wX2 is assumed
on the line {x2 = 0}, from above or below. From the discussion surrounding (6.13)
an upper bound for dip/dy on the upper and lower sides of T will yield (6.24). The
estimate (6.25) follows similarly from a bound on dip/dx which is harmonic in S±
and must assume its maximum and minimum on dS+ U dS~. Since ip is constant
on the lines {y = -h} and {y = 1 - h}, it suffices to bound \ipx[ on T.

Let iß+ denote the restriction of ip to S+ and tß~, the restriction to S~. Since
ip+ > 0 in S+ and iß~ < 0 in S~, this notation is consistent with that in the
previous lemma. According to Theorem 5.1 the function tu(x,0) describing T is of
class Cx'a and Vtu is of class Ca in T+. Since Vtu lies in Qs, the relations (3.10)
and (3.11) show that Vi/;* is of class Ca in 5±, respectively. Let (x,y) be a point
on T and let cr* = |Vi/'±(x,y)|. If Br denotes the ball of radius r centered at (x,y),
then from the previous lemma

(6.26) <P(r) = ±[ |Vt/>+|2-4/ IViTI2
r   Jßrns+ r   ^Brns-

is increasing in r for 0 < r < a where a = min(h,dist(T, dS)). From the regularity
just cited it follows that <p(r) has a limit, denoted <p(0), as r —> 0 and

(6.27) f (o+)2 ■ f (o-)2 = <p(0) < p(a) < (a~2c2Kf)2
by Lemma 6.5.

Recall that the continuity of Pd(/2(Vtu) — Ait;) (cf. 4.31) is a translation of the
pressure condition (2.28) which becomes

(6.28) \[(o+)2 - (a-)2] = (p+ - p_){c2/2 - gy}

in the current notation. The two relations (6.27) and (6.28) easily imply that a+
and a~ are bounded in terms of p± and h.    Q.E.D.

It follows from the last result that there is a ¿o > 0 so that for 0 < 8 < 8q and
R > 0 there is a pair (A, tu) G Gs,r for which

\w\h¿(t) = R
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or

max(|wXl|Lo=(r),|tuXa|L=o(T)) =r5_1.

Hence S C R x (H0X(T) n C°'X(T)) defined by

S — (jGf/nn
n

is an unbounded, connected set of solutions of equations (2.36)-(2.39).

7. Proof of Theorem 2.1.
7.1. Existence and basic properties. The major part of the work involved in

proving Theorem 2.1 has been done. In this section we summarize those results
already obtained and add proofs for the remaining parts of the theorem, with one
exception. As already noted, the lower bound A for A, given by (6.12), is derived
in §8.

Part (a) The basic existence result in Theorem 2.1 was the culmination of the
analysis in §§3-6 and was asserted at the end of the previous section. That elements
of S are solutions of (2.36)-(2.39) follows from Theorem 5.1(d). The inclusion of
(Ad,0) in 5 follows from Lemma 5.5(c).

Part (b) The inequality A < Ad was given in Theorem 5.1. From Theorem 5.6 it
follows that (Ad, tu) G S implies it; = 0. All functions tu under consideration have
been even in xi and hence their limits are even in xi. The remaining parts of (b)
were shown in Theorem 5.4.

Part (c) The analyticity of tu in the closed strips T^ will be shown in Theorem
7.6 below. As for the other assertions of regularity, they follow from Theorem 5.1.

Part (d) These bounds, which translate into bounds on velocities, were obtained
in Theorem 6.8.

Part (e) In Lemma 7.4 of [26] the exponential decay of solutions was shown both
for periodic waves over a half period and for solitary waves. The proof in [26] can
be simplified if only solitary waves are considered.

Part (f) This nonexistence result is shown in Theorem 7.7 below.
In the event e < 0, one can use (5.43) to arrive at the reversal of inequality

(5.46) and so prove Theorem 5.6. Similar small changes are required for the proof
of Theorem 5.7.

7.2. Analyticity of the interface. As was observed by Kinderlehrer, Nirenberg,
and Spruck [15] the analyticity of tu in T± will follow from results of Morrey [20;
21, Chapter 6] once it is shown that tu is of class C2 in T±. In [15] solutions of
free boundary problems are examined under a typical assumption that the solution
is known to be C2. Then a partial hodograph or Legendre transformation together
with suitable combinations and reflections of solutions in abutting domains produce
an elliptic system adapted to Morrey's results. Here we have worked in a semi-
Lagrangian (partial hodograph) setting for most of the analysis and hence need
only do a reflection once the C2 character of it; in T± is established. The C2
estimates could be carried out using the techniques from [3], but a relatively short
direct proof can be given and we do that in Corollary 7.5. A lemma is required
(and could be given in a local version).
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LEMMA   7.1.   Let (X,w) be an element of Gs,r (cf. (4.7)).    Then there is a
P = p(8) > 2 and a constant K depending on 8 and R such that

(u)     /T<s4+(/T'v«-'2r'i
for i = 1,2, where v = wXl.

PROOF.   It will suffice to work with an element (A, it;) G Fn,s,R (see §4) and
obtain an estimate which is independent of n. The subscript n will be suppressed.

The function v satisfies

(7.2) _¿(pAí(V«,)^)=-V«   inT,

and

(7.3) t; = 0    ondT.

From inequalities (4.9) and (4.29) it follows that there is a p = p(8) > 2 such that

(7.4) |Vv|L.(T) < K\w\Li,T) < K'R

for all s in the interval [2,p(r5)], where K and K' depend on 8. A version of
the Gagliardo-Nirenberg inequality will be needed for a function it G HX(T). By
extending u as an even function across the lines {x2 = —h} and {x2 = 1 — h} and
using a cutoff function in the x2 direction, one easily derives
In r\ II ^-   rs   I    11 — p/4 i    ip/4(7-5) Ml<(t) <KiHm{T)\u\Lv{T)

from the main theorem in lecture II of [22].   Here p can take any value in the
interval [1,4]. We can, without loss of generality, assume p(8) < 4 and let p — p(8).

Equation (7.2) can be written as

(7.6)

where

,    dv        ,    dv      .    \ d   (   .    dv\     .    dv
dx2 \PÍ21dxf + Pf22dx~2 - XpV) = -¿3x7 V^dx-J - Xpdx~2

{dv   dv <9~y 1 dv
fi'kd^dx~k+h:idx~rXpdx-2'

in i\ dv       d2™
(7'7) 1=dx-f = dxJ>
fijk denotes a third derivative, and the summation convention is used.   Without
using the equation one has

d   (   ,    dv ,    dv \
-5—   PJ21W— + P/22^-Apt;

/78^        dxf \       dif dx2 )
(        dv   dv c?7 dv   dv d^j \

= pl/21feä^o^ + /21^ + /22fc^ä^ + /22t3x7"A7/-

With pf2jVXj — Xpv denoted by tt, it follows from (7.6) and (7.8) that

(7.9) jf |Vu|2 < K2 [jT(\Vl\2 + \Vv\2 + vXl +vX2)   ,
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where K2 depends on <5 and R. Since the L2 norm of |Vi>| and, by embedding, any
Lp norm of v are bounded in terms of R (cf. (4.9)), such terms can be accommodated
by including additive or multiplicative constants. Since /22 is bounded below by a
positive constant depending on 8, the use of (7.5) yields

41
p/21 ~-Xpv

dxf

(7.10) <K4f u4 + K[(f v4+ [ v*Xl
Jt \Jt Jt

<Kñ IVitl4 — P     I    IP
L2(T)IUILP(T) + 1 + L<.

Using (7.4) to estimate u in Lp and (7.9) to estimate Vit in L2, we have

(7.11) jT<^K*   1 + JT< + {jT^2 + <+<)}

Since 2 - p/2 < 1, equation (7.11) provides a bound

2-P/2

2-P/2

(7.12) jT<^K"   1 + /T^ + {/r|V'y|2}

where K-j depends only on 8 and R.
The embedding inequality (7.5) applied to vXl G H0X(T), gives

2-P/2 2-P/2
(7.13) jT< < K8 jjT |V7|2} JÍ \vXlI? < Kg {^ |V7|2}

again using p = p(8) and (7.4). The use of (7.13) alone, and in (7.12) produces the
result (7.1).    Q.E.D.

THEOREM 7.2.   Suppose (X,w) eGs.R.  Then

(7.14) J \VwXlXl\2<K,

where K depends on 8 and R.
PROOF. Continuing the analysis in the previous proof for a solution in Fn^,R,

one differentiates (7.2) to obtain

and, since 7 = d2w/dx2,
(7.16) 7 = 0   ondT.
The ellipticity of the equation (7.15) yields

d~f d'y
"fTW*fT"«*

(7.17) -    f  ftlf   È!L— + 2X Í
JT   dxx  l3kdxjdxk Jt       *2

<? /|V7|2 + ^i/«+<+72).¿ Jt Jt
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The bound (7.14) now follows from the previous lemma and Lemma 4.2. We note
again that the estimates are all uniform in n and so hold in Gs,r-    Q.E.D.

COROLLARY 7.3.   If (X,w) G Gs,R, then

(7.18) |Vit;Xl|Lp(T) <K

for all p G [2, oo), where K depends only on p, 8, and R.

PROOF. From the previous theorem the integral of |V-7|2 over T is bounded and
from Lemma 7.1, so are the integrals of vx   and vX2. From (7.9)

dv ,    dv
¡T\v{pf21d^f+pf22dY2- <Kf,

where Kf depends upon 8 and R. Hence pf2iVXi - Xpv is in LV(T) for all p G [2, oo),
according to embedding theory. The same embedding result, used with (4.9) and
Theorem 7.2, shows that v and vXl are in LP(T) for all p G [2, oo). Since /22 has
a positive lower bound depending only on 8, it follows that vX2 is in the same Lp
spaces.    Q.E.D.

It is now possible to return to the elliptic equation for -y to obtain

THEOREM 7.4.   Let (A,tu) be in Gs,r-   Then there is a q = q(8) > 2 so that
7 = tuXlXl satisfies

(7.19) J IV7I« < K,
where K depends on 8 and R.

PROOF. For (A, tu) G Fn,s,R the equation (7.15) for 7 = tuXlXl can be written

(p/^)=divF + /t,d   (   c    d^j
dx

where

and

dv   dv dv  dv
pfi* dx-jdxS    F2=Ph*dx-jdx-k-X(n

Xpdx~2

By the previous corollary Ff and F2 are in LP(T) fer p G [2,00), while from Theorem
7.2, h G L2(T). As for equation (4.24), Theorem 1 of Meyers [18] yields (7.19) for
some q > 2. All estimates are independent of n so the inequality (7.19) follows for
all (X,w)eGs,R.   Q.E.D.

COROLLARY 7.5. Let (A,tu) be in GS<R. Then w G C2'Q(T±) for some a > 0
and hence the fluid interface y = tu(x, 0) is of class C2'a.

PROOF. The C2,a character of the interface follows from (7.19) and embedding
theory. The Schauder theory [13, Lemma 6.18] provides the same regularity in
T±.    Q.E.D.
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THEOREM 7.6. Suppose (A,tu) is a solution of (2.36)-(2.39) belonging to S.
Then w is real-analytic in T~ and T+.

PROOF. Since tu is of class C2'a in T±, the techniques of [15] can now be used.
In fact, if we revert to the formulation in which ip(x,y) is harmonic in S+ and S~
and satisfies (2.27), (2.28), then Theorem 3.2 of [15] yields analyticity.

7.3. Nonexistence of small solutions with e ■ w < 0. We now prove part (f) of
Theorem 2.1.

Theorem 7.7. Suppose

e = p-/h2-p+/(l-h)2 >0.

There is a positive r¡ such that if (A, it;) G R x (H0X(T) n C°'X(T)) is a solution of
(2.39) with w < 0, dw/dxf > 0 for xx > 0, and

(7.20) |A - Ad| + \u)\Hi,T) + |HCo.i(r) < ^
then w = 0.

PROOF. Repeating estimates already used, in conjunction with difference quo-
tients in the xi direction, one can show w is smooth in each of T~ and T+, and we
shall assume the smoothness necessary for the calculations to follow. First it will be
shown that if the hypotheses of the theorem are met and A > Ad, then tu = 0. The
steps involved in the proof of Theorem 5.6 up to (5.40) can be duplicated for the
case of a discontinuous density, that is, for pd- The equation (5.12) which formally
becomes

(pdl'Y - Apd-y = apd~f
is replaced by the weak form

(7.21) - / pdiv' + X I pd(Tp)' = a J pdiv,

where 7 and p are in H0X(I). Equation (7.21) arises from the variational problem

{X(p.-P+)u2(0)-JIpd(u')2}
a =    max   -¡=-¡5—l-,

ueH¿(/) hPdU2

which corresponds to (5.11). The maximizer 7 is normalized by /pd72 = 1 and,
as in the proof of Lemma 5.5, we have a > 0 since A > Ad- In following the
proof of Theorem 5.6 one need only let the derivative of a density in an integral be
interpreted as

p'dg(xi,x2)dx2 = -(p_ - p+)g(xf,0)

in the case of the discontinuous pd from (2.26). As regards (5.35), let r correspond
to the density pd. The extra condition of orthogonality yields r > Ad, and it can
be assumed that A is sufficiently close to Ad to make 1 — X/r — 9 > 0.

As regards the steps in the proof of Theorem 5.6 past (5.40), the only change
is in the discussion following (5.40), for now a is positive rather than negative.
Inequality (5.41) is replaced by

(F')2 + JPd|VA|2 < fF2 + lu' + K'F\
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and in place of (5.42) one has

/ ?^F2   ,   2_rr/   ,    is> »r3G' + aF + eF2 > -2eF2 - K"   —F2 + -U' + K'F
\ 9 9

It follows from this inequality that at each x

G' - KU' + (a- Kf\F\L~)F > 0
for constants K and K\, where |F|l~ = maxx<s<00 |F(a)|. The last inequality,
integrated from x > 0 to oo yields (cf. (5.45))

-fpalfTÁT\\1'— }dx2 + (a-Kf\F\L~)rF(s)ds>0.Ji      l + u;X2(x,X2) I        7  J Jx
If it; is small in C°'X(T) and x is large, both 1 - Ktu/7 and a — Ki\F\r,ç*> will be
positive. Since tuXl > 0 and F < 0, w = 0 ïor x large. However, tu is analytic in
T^ so it; = 0.

Now we may assume A < Ad- If <p is set equal to tu in the equation (2.39), the
result is

f     \Vw\2(2 + wX2)      f     fm  , w ,f    2,     „u/  Pd   0(1 _l-^2~ = /  Pdfi(vw)wXt = A(p_ - p+) /      w (xi,0)dxi
JT ¿(1 + WX2) Jt J-00

or, rewritten,

(7.22) / pd|VH2 - A(p_ -p+) r w2(xf,0)dxf = f Pd\Vw\2W;f + 2w*l].
Jt J-00 Jt ¿\*- + Wx2)

In analogy with (5.16)—(5.18), we decompose w as

(7.23) tu(xx, x2) = F(xi)7d(x2) + R(xx,x2),

where 7d is the function described in (5.13) and

F(xf) = / pdw(xf,x2)~iddx2,        Xf G R.

Note that 7d satisfies the weak equation

(7-24) j Pdl'dP' = Ad(p- - p+)7d(0)^(0)

for any p G HQX(I). A further relation, the analogue of (5.19), is

(7.25) / pdR(xf,x2)^ddx2 = 0,        xx G R.

The decomposition (7.23) and the relations (7.24)-(7.25), used in the left-hand side
of (7.22), result in

/ pd|Vu;|2-A(p_-p+) /     w2(xf,0)dxf
Jt J-00

/OO /• /"OO(F')2 dxf + / pd| Vñ|2 - A(p_ - p+) /     R2(Xf, 0) dxf
-00 Jt J-00

(7.26)

/OO
FR(xu0)dXf

-OO

/OO
F2dx

-OO-00

"OO
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In analogy with the discussion following (5.35), the orthogonality (7.25) ensures
that

(7.27) f Pd\VR\2-X(p--p+) f    R2(xu0)dxf>K f \VR\2
Jt J-oo Jt

for some K > 0 whenever |A - Ad| is sufficiently small. For the last term in (7.26)
we use the Schwarz and Poincaré inequalities to obtain

(7.28)
/OO

F(Xf)R(xf,0)dx
-OO

< f / |VÄ|2 + K'\Xd - A|27^(0) |°° F2 dxf.

If (7.27) and (7.28) are used in (7.26) and if Ad - A is made still smaller if necessary,
there results

(7.29)   /'pd|Vit;|2-A(p_-p+) f° w2(xu0)dxf > [°° (F')2 dxf + ^- Í \WR\2.
Jt J-oo J-oo ¿ Jt

Now consider the right-hand side of (7.22). First, for any e > 0,

provided tu is sufficiently small in C°'X(T). Next, with the use of (7.23) one obtains
(7.31)

for tu sufficiently small in C°'X(T), where K is the constant appearing in (7.29).
The first term on the right-hand side of (7.31) is the integral over R of ëF3(xf),
where ë is defined by (5.26) and is positive, being a positive multiple of e in (2.41).
If the inequalities (7.29), (7.30), and (7.31) are used with equation (7.22) and the
integrand F4 is estimated above by — \F\l<xF3, there results

(7.32)  (j-e)f \VR\2 + (l-e) i°° (F')2dxf-(ë-K'\F\LX) f°° F3dxf < 0.

Since F = fj PdW^d < 0, it is clear from the estimates just completed that if tu has
a sufficiently small norm in H0X(T) H C°'X(T) and if |A — Ad| is sufficiently small,
F = \VR\ = 0 and hence tu = 0.    Q.E.D.

8. Waves of large amplitude. Since the branch of solutions S from Theorem
2.1 is unbounded in R x (HQX(T) nC°'x(T)) and the range of A is bounded, the
norms of tu in H¿(T) and in C°'X(T) cannot both remain bounded on S.

In §6 it was established that there is a ¿o > 0 so that iuX2 > — 1 + ¿o for all
(A,it;) G S. If the gradient of it; were uniformly bounded for (A,iu) G S, there
would be a positive ¿i < ¿o such that for all solutions in S, Vtu G Qsx ■ But then
the coefficients fij would satisfy the bounds (4.15) and (4.16) with 8 = 8f, uniformly
for (A, tu) G S. This, in turn, would imply that in S there would be solutions having
|tu|L2(T) arbitrarily large. For, if not, then the local estimates (4.20) and (4.33),
summed over m, would lead to a bound for Vit; in L2 (T) and hence to a bound for
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tu in Hq(T). To go one step further, since 0 < tu < 1, a large norm for tu in L2 can
arise only by having a wave which is very "broad." The alternatives, then, are to
have waves which are arbitrarily broad or ones with arbitrarily large gradients. Of
course, waves may exhibit both properties.

Numerical computations in the related problem of the interface between two un-
bounded fluids of differing densities (cf. [17, 28]) show that there are branches of
periodic waves along which the gradients approach infinity. The condition (6.25)
necessitates wX2 being large if the vector Vit; is large. However, in the computations
cited tuXl goes to infinity and thus both components of Vtu must grow unboundedly
along the branch. In fact, the streamlines steepen to the point of having vertical tan-
gents and continue past this configuration to one of "overhanging" waves, in which
the separating streamline is no longer a graph over the horizontal axis. Computa-
tions are underway on the solitary wave problem studied here (cf. [29]), and they
show surges occur in certain parameter ranges. We will show that if waves broaden
indefinitely, maintaining uniformly bounded gradients, then a solution representing
an "internal surge" with specified amplitude and speed (determined by (8.23) and
(8.24)) must exist. If, on the other hand, there were a sequence (Afc,tujt) G S,
k — 1,2,..., with sup|VtUfc| —> oo as k —* oo, one could expect these to converge
to a limiting wave with a vertical tangent on the interface.

8.1. Internal surges. Let (Afc,tUfc) G S, k — 1,2, be a sequence of solutions of
(2.36)-(2.39) for the density pd- Suppose that for some 8 > 0, Vu>k G Qs for all
k and that \u>k\L3(T) —>■ oo as A; —► oo. As already noted, the Holder estimates
(4.20) and (4.33) for the gradients will hold uniformly in k. Consequently one
can use the diagonal method to select a subsequence, still denoted (Afc,tt;fe), for
which Afc —> A < Ad and it;*: converges in C°'X(B), for all bounded sets B, to a
function tû(xi,x2) G C°'x(T)nCx'a(T^). The limiting function w will satisfy all of
the estimates derived in Lemma 4.3 and Theorem 4.4; namely, the local estimates
which are independent of R. Naturally, tû inherits the evenness in xi and satisfies
dw/dxf < 0 for xi > 0. Since w is also nonnegative,

(8.1) lim  tû(xi,x2) = iûoo(x2)
Xl —»oo

exists. To examine further the implication of this convergence, we shift it to B =
[—1,1] x 7 by letting it)m(xi,x2) = w(xf +m,x2). Now wm is bounded in Cx'a(B)
uniformly in m, according to the Holder estimates (4.20) and (4.33).   Since wm
converges in C(B) to tûoo, it must also converge n C°'X(B n T ) according to the
Arzela-Ascoli theorem, and the limit tûoo must be in Cx'a(I ) as a function of x2
alone.

Now let ß(xf) be an arbitrary element of Co°(-l, 1) and r an arbitrary element
of Co°(I). Using the product ßr as a test function in (2.39) with tu = wm and
letting m —► oo, one obtains

(8-2) jiPd(x2)f2 (O, ̂ ) £ = V - p+)^(0)r(0),

which is the weak form of
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As a consequence the nonnegative, continuous function tûoo will be linear where
p'd = 0, that is, on I~ and on /+.

Suppose Woo — 0. That is, suppose that tu —► 0 as xi —> oo. Then as xt —> oo the
functions tUfc defined at the outset of this discussion must converge to zero uniformly
in k as elements of L°°(I) depending on xt. Their gradients must converge to zero
in the same sense, according to the local estimates (4.20) and (4.33). Suppose Afc
from the pair (Afc,tUfc) converges to A < Ad as k —► oo. In Lemma 5.2 an estimate
was made of the "tail" of tu; that is, the restriction of tu to Tm = [m, oo) x J. There
a bound for w in H¿(T) was used to show that the C°'x(Tm) norm of w went to
zero with m, yielding the estimate (5.6). Since the functions Wk under discussion
have their norms in C°'x(Tm) converging to zero with increasing m, uniformly in
k, the estimate (5.6) can be seen to hold for w = uik with the constant K in
(5.6) depending only on A and on the 8 which serves for all k. A bound for Wk
in Hx([—m,m\ x I) follows easily from the estimates in §4, and thus the Wk are
uniformly bounded in H0X(T), contradicting the initial hypothesis that lu^l/jitr) ~~*
oo as k —> oo.

In the case that A^ —* X — Xd as k —► oo a similar situation prevails as regards
the behavior of it; and Viu for large Xf. It suffices in the proofs of Theorem 5.6 and
5.7 to have the norm of it; in C°'x(Tm) approach zero asm^oo, and this we have
for w = Wk, uniformly in k. A consequence of those theorems is that tú = 0 and
that tUfc converges to w — 0 in H0X(T), again contradicting the initial assumptions.
Consequently tûoo and tû are both positive. We summarize what has been proven
in

THEOREM 8.1.   Suppose that (Xk,Wk) G S, k = 1,2,..., satisfy
(a) IVtUfcl^oo/r) < K, for all k and
(b) Afc —> A and [w^h1^) ~* °° as k ^> oo.

Then Wk converges to w(xf,x2) in C(B)PiCx(BnTzil) for each bounded set B. The
function w is positive on T, nonincreasing for xi > 0, real-analytic in T— {x2 = 0},
and satisfies

(8.4) lim    w(xi,-) = w00
II-»±oo

in C(I) n C°'1(/±), where tûoo is positive on I, linear on I+ and I~, and satisfies
(8.2). Bothw and Wo,, satisfy (2.36), (2.37), and (2.39).

Note that tûoo is a solution of the flow equations (just enumerated) which is
independent of x. Using the nomenclature of Benjamin [9] we shall call tûoo a
conjugate flow. According to Theorem 8.1 the function tûoo must have the form

T8 5Ï w    (m) - JA^2 + h)> *2G/-,
(8-5) W°°[X2> - \ B(x2 - 1 + h),     x2G/+,

for some value of A where, by continuity Ah = B( — l + h). Equation (8.2) gives
A = A.(A), where

(8.6)       A(A) =-r-±-{p--p+)ZAh P+   1
(1 + A)2J     H+\       (1 + B)2

1
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Since dw00/dx2 = B > -1 on J+, we have 0 < A < (1 - h)/h in (8.6). The
amplitude A and the speed
(8.7) c = cA = (g/A(A))x/2

are as yet unknown. To determine A we show that as a consequence of Theorem
8.1 there is a flow in the strip which connects a trivial flow to a conjugate flow.
That is, there is a solution of (2.36), (2.37), and (2.39) which has the following
asymptotic behavior. As x —> —oo it approaches a flow with velocity vector (ca,0)
in a fluid which has density p- for — h < y < 0 and density p+ for 0 < y < 1 — h.
As x —> +00 the conditions approached are

f (fhcA,0) for - h <y< Ah,
(8.8) velocity = <   >    ,,   .,   '      N

l (tt^kj^.O)     iorAh<y<l-h,
according to the relations (2.43).

THEOREM 8.2. Suppose the hypotheses of Theorem 8.1 are satisfied. Then
there is a solution (X,j(xf,x2)) of (2.36), (2.37), and (2.39) with the following
properties:

(a) j is real analytic in T — {x2 = 0} and is in Cx'a(T±) D C°'X(T) for some
a > 0.

(b) dj/dxi > 0 in T.
The element j(xf,-) ofC0,x(I) satisfies

(c) limXl^_oo|j(x1,.)|c,0,1(7) =0, and

(d) limXl^+oo \j(xi, ■) - tUoo|Co.i(7) = 0,

where Woo is a conjugate flow corresponding to some value of A > 0 and X = A(A).

PROOF. It can be readily verified that
"\he(8.9) A(A) = Ad -       àne      A + 0(A2)

¿\P- - P+)
for A near zero, where Ad and e are defined by (2.40) and (2.41), respectively.
Since e > 0, by assumption, A(A) < Ad for small positive A. Since A(A) —> +oo
as A —» (1 — h)/h, it is clear that A(A) is not one-to-one on the preimage of the
interval [0, Ad], the set of interest to us. Let the conjugate flow tûoo in Theorem 8.1
correspond to a value A > 0 in (8.5). From the form of A(A) it is clear that there
is a smallest positive value A for which A(A) = A(A). Let tUoo in the statement of
the theorem correspond to this smallest value.

Return now to the sequence tUfc from Theorem 8.1. The functions tu/t converge
in C°'x on bounded sets to tû, and tu(xi,0) approaches Ah > 0 as xi —> oo. For
each k there is a value £& < 0 (precisely one since dwk/dxf > 0 for xi < 0) for
which

(8.10) u>fc(£fc,0) = \Ah < \Ah.
Define jk, k = 1,2,..., by

(8.11) jk(Xl,X2)=Wk(Xf + £k,X2)-

As with the functions tu^ one finds that a subsequence of the jk, denoted by the same
symbols, converges in C°'X(B), for each bounded B C T, to a function j(xf,x2)
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in (^'"(Ti) n C°'X(T). Since for each fixed xi, tufc(xi,0) converges to tû(x,,0) >
^00(0) = Ah, the points £& at which (8.10) holds must approach — 00 as k —► 00.
Again fix a value of Xf. For all sufficiently large k, xi + £fc < 0 and so djk/xf > 0
at that Xf for all x2 G I. Thus dj/dxf(xf,x2) > 0 for all (xi,x2) G T. Since j is
monotone, bounded, and in Cx'a(T±) n C0'1^), the limits

(8.12) i±(x2) =    lim    j'(xi,x2)
Xl—»- + 00

exist. As in the proof of Theorem 8.1 one shows that the limits can be taken in the
C0,1(7) topology and that j± are conjugate flows satisfying (8.2) for A = A(A) =
A(Â).

Since j+(0) > j(0,0) = ^Ah > 0, the function j+ is a nontrivial conjugate flow.
Since j-(0) < j(0,0) = \Ah and since Ah is the smallest height at x2 — 0 for a
nontrivial conjugate flow with A = A = A(A), j_ must be zero. As claimed the
function j then represents an internal "hydraulic jump" connecting a trivial flow
at x = —00 with speed c given by (8.7) to a conjugate flow at x = +00 with the
structure (8.8). The remaining regularity in (i) and the positivity in (ii) are shown
as in Theorem 8.1.    Q.E.D.

Implicit in the form of the conjugage flow (8.5) is the conservation of mass in the
lower fluid, connecting a flow of height (1 + A)h and speed c^/(l +■ A) at x = +00
with a flow at —00 of height h and speed ca- A similar situation prevails in the
upper fluid. This same conservation can be obtained starting with

(8.13) div(pq) = 0
from §2 (cf. (2.9)-(2.10)) since streamlines are integral curves for the field q.

Another conserved quantity can be derived from the momentum equation (2.8).
It can be expressed by the exactness of the form

(8.14) px/2Udip + pdy,
assuming now that we are working with a smooth density p. To see the exactness,
express (8.14) as

px/2U^ dx + pxl2Ud$- dy + pdy= -pUV dx + (pU2 + p) dy.
dx dy

By using div q = 0 and Vp • q = 0, one may show that

(-pUV)y   -   (PU2   +  P)X    =    -P(UXU   +   UyV)    - Px   =  0,
using the horizontal component of the momentum equation (2.8).

Now iß and y are constant on the "walls" at y — -h and y — 1 - h, and if (8.14)
is integrated around the boundary of the rectangle [0,6] x [—h, 1 — h] there results

(8,5) />^+,)| *=/:v*§h| y,x=a x=0

That is, each integral appearing in (8.15) is independent of the x coordinate (cf.
[8]). If the expression (2.15) for the total head H is used to replace p in (8.15) and
the relation (2.14) is used, the x-invariant quantity in (8.15) can be expressed as

•l-h r 1
gpy  dy.(8.16) j h l\^+l-(iß2y-iP2x)
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Given the regularity and the convergence properties of the flows considered up to
this point, it is easy to verify that the expression (8.16) will be invariant for the
flow associated with j(xi,x2). By equating the values of (8.16) at xi = —oo and
Xf = +oo, one obtains another condition on A in the conjugate flow j+, from which
A can be determined.

Normalize the pressure so that it is 0 at xi = -oo, x2 = 0.  Then H has the
values

(8.17) H± = p±c2/2

in the upper and lower fluids, respectively. As xi = x —> ±oo, ipx —► 0 for the flow
corresponding to j, and the term iß2 is merely the density times the square of the
horizontal velocity. At x = -co the expression (8.16) is

(8.18) \p-c2h+\p-c2h + gp-h2/2+\p+c2(l-h) + \p+c2(l-h)-gp+(l-h)2/2,

where c = ca in (8.7). The value of (8.16) at x = +oo is computed using the
velocities and heights in (8.8). The result is

i      2,,      ml     i       <?h             (A2h2-h2)
\p-c2(l + A)h + \p- ^-j - gp- K--'-

c2(l-h)2 \(l-h)2-A2h2]+ ip+c2(l-h-Ah) + y+T^ Ah 9P+

Considering the expression (8.19) as a power series in A, there is a constant term
which is, of course, (8.18). The linear term in A vanishes and what remains is

1       2,   A2 A2h2      1      2    1 A2h2 A2h2
(8.20)    îP-chTTJ-gp-— + 2p+C—h(l-Ah/(l-h))+gp+:  2

which must be zero. If an A2 is cancelled and g/c2 set equal to A, the result is

(p_ -p+) \h(l + A)     1-h-Ah
If this is equated to the expression (8.6) and terms of zeroth order in A are elimi-
nated, the result is

(R 99Ï P-A_P+Ah - n
V      ' 2h(l + A)2     2(1- h- Ah)2
If an A is cancelled and the result solved, one finds
(8.23)

A_ (l-h) (yfpZ JP+-\_ (l-h)
^ + s/J+\ h      l-h)    (^fpz + jpy:)   (y/pi/h + ^:/(i-h)y

where e is the parameter defined in (2.41).
If the expression for A in (8.23) is used in (8.21), the result is

(ypT+VpT)2(8.24) A = P- -P+
This last expression is strictly less than Ad when e j¿0 and is equal to Ad when
e = 0.
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Next we give the
8.2.  PROOF OF LEMMA 6.4. For a smooth density p approximating pd and a

solution (A, tu) of (2.36)-(2.38), the equation (2.36) can be written

-P(X2) (ir^+Vx^        *      ,) - 7y3~pf2(Vw) = -Xp'w.Vl+tuX2 l dif (1 + wX2)J     dx2

For each x2, iu(xi,x2) has its maximum at xi = 0 and hence it;Xl(0,x2) = 0 and
wXlXi(0,x2) < 0. If the last equation is restricted to the line {xf = 0}, then

(8.25) -(d/dx2)p(x2)/2(0,u;X2(0,x2)) < -Xp'(x2)w(0,x2)

results. If (8.25) is multiplied by <?(x2) = it;(0, x2) and the result integrated over /,
it yields

(8.26) I¡pf2(0,g')g,<-X^p'g2.

Consider now a pair (A, tû) G Gs,r- There is a sequence (A„,ti;„) G Fn¿,R with
An —> A and tt;n —> tû in C0,x([-l, 1] x I£) as n —► oo and (8.26) holds with p = pn,
9 = 9n = wn(0, x2), and A = An. If F = F(p) is any real function defined for
p > — 1 satisfying

(8.27) F(p) < f2(0,p)p
ïor —1 + 8 < p < 8~x, then it follows that

(8.28) Xs = inf JiPdF(g')
g€H¡(I) (p- - P+)g2(0)

-l + 6<g'<6-1
0<g(0)<l-h

is a lower bound for A. Note that ¡7(0) = tu(0,0) > 0 for any nontrivial element of
Gs.r for the maximum principle applied in T+ and in T~ shows tu has its maximum
at (0,0).

The function F(p) = f(0,p) is easily seen to satisfy (8.27) and moreover, is
convex for p > -1, having a second derivative equal to (1 + p)~3. Let fs(p) be
strictly convex for all p G R, coincide with /(0,p) for — 1 + 8 < p < 8~x, and
have quadratic growth near p = ±oo. One can, for example, extend f22(0,p)
continuously outside of [ — 1 + 8, 8 ~x} to be constant for p < —1 + 8 and for p > 8 ~x.
Two integrations will then yield a suitable fs- The infimum in (8.28) will be
unaffected by replacing F(g') = f(0,g') by fs(g')- After replacement the infimum
can only be made lower by removing the condition on g'. Thus

(8.29) Xs=        inf SlPdffL
g&Hi(I)     (p--p+)g2(0)

0<g(0)<l-h

is a lower bound for A.
For each constant 7 > 0 the set

Q={tjGJ/01(/)|i7(0)=7}

is an affine subspace of Hq(I), and the convex functional

J(g) = jPdfö(g')
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is therefore weakly lower semicontinuous on Q. Since J is nonnegative, there is a
go G Q at which J assumes its minimum. For r) G Co°(/-), ao + tr¡ G Q and a
standard variational argument shows

^/wa<7o>/=o.
From the classical theorem of DuBois-Reymond it follows that g'0 is constant on
l~. Likewise it is constant on l+. Thus g0 has the form (8.5) of a conjugate flow
with go(0) — Ah < (1 — h). For such a function the quotient in (8.29) takes the
form

\p-A2h/(l + A) + y+A2h2/(l -h-Ah)
(8'30) (p.-p+)A2h2 '
which is precisely half the expression in (8.21). At a minimum A satisfies (8.22),
and the corresponding minimum value is half of that in (8.24), giving the bound
(6.12).    Q.E.D.

A better lower bound for A could be found. The function

(8.31) /a(o,p)p=j^

is convex on — 1 + 6 < p < 2 for each 8 G (0,1) and can be extended outside
that range, as before, to a globally defined convex function fs(p) which grows
quadratically at oo. One can now use an argument like that just given. The
expression in (8.31) can be used for F(p) in (8.28) with the restriction — 1 + 8 <
g' < 2. In (8.29) one replaces fs by fs and finds a piecewise linear minimizer g
having a derivative

(8-32) g(X2>-\-Ah/(l-h),    x2>0.
Note that A G (0, (1 - h)/h) since g' > -1. If h > 1/3, so that (1 - h)/h < 2,
then g' lies in the range for which the integrand in (8.29) is the expression in (8.31).
Corresponding to (8.30) one obtains an expression to minimize for A G (0, (l—h)/h).
Unfortunately, the minimizing value of A satisfies a fourth-order equation. Without
giving the details we merely note that if p_ = 2, p+ = 1, and h = 1/2, so that
(1 — h)/h < 2, the following numerical values are obtained. The bifurcation point
is Ad = 6, and Lemma 6.4 gives the lower bound 2.91, whence 2.91 < A < 6. The
minimization using (8.31) yields the better estimate: 5.81 < A < 6.
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