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1. Introduction 

(i) In  this paper we give an affirmative answer 'in the large' to the question: Do the 

equations governing the motion of an ideal fluid (that is, of an inviscid fluid with uniform 

density) admit  solutions representing steady vortex rings? By a steady vortex ring we mean 

a figure of revolution ~ tha t  is expected to be homeomorphic to a solid torus in most cases, 

and is associated with a continuous, axi-symmetrie, solenoidal vector field q (the fluid 

velocity) defined, in the case of an unbounded fluid, on the real three-dimensional Eucli- 

dean space R 3 and having the following properties when we take axes fixed in the ring ~. 

(a) Both ~ and q do not vary  with time; (b) the  vorticityto ~ curl q has positive magnitude 

in ~, vanishes in R 3 - ~, and satisfies a non-linear equation of motion which, among other 

things, determines the boundary of ~; (c) q tends to a constant value at  infinity in R a. 

One can also adopt  the following viewpoint, which is perhaps closer to the vortex rings 

tha t  occur in the physical world (for example: smoke rings, ' thermals '  in meteorology, 

and, regrettably, the heads of the 'mushrooms'  created by  big explosions). I f  the constant 

velocity mentioned in (c) is vertically downwards (say), an observer fixed with respect to 

the fluid at  infinity sees a vortex ring tha t  is moving upwards at  constant velocity, with- 

out change of size or shape, through fluid that  is at  rest at  infinity. 

(ii) The mathematical  problem can be formulated in terms of the Stokes stream func- 

tion ~ (which is closely related to the vector potential of the velocity field) as a problem 

for a semi-linear elliptic partial differential equation ((2.1a) below) which takes different 

forms inside and outside the unknown boundary 8~ of the vortex ring. Thus one has a 

non-linear free-boundary problem, and previous t reatments  (outlined in section 2.2) have 

been of a local character in that  only solutions near two particular limiting cases have been 

established. The present global theory results from the following observation, which may  

also find application in other free-boundary problems. 

I f  one considers (initially) only a restricted form of the non-linear term/(~F) in the dif- 

ferential equation, and takes a finite cylinder V, in place of R 3, as the domain of the velo- 

city field q and the stream function uF, then the problem can be reduced to a semi-lincar 

Diriehlet problem ((2.6) below) that is untroubled by the/ree boundary and can be solved by 

modern techniques o/ the calculus o/ variations [28], [2], [3]. The variational principle is 

necessarily of the 'constrained' or 'isoperimetric' type; for, although the known solutions 

are also unconstrained critical points (stationary points) of a certain functional on the 

Hilbert  space appropriate to the problem, they do not maximize or minimize tha t  func- 

tional over the whole Hilbert  space. 

The isoperimetric variational characterization, Steiner symmetrization [23] and the 

generalized maximum principle of Li t tman [17] together imply properties of the solution, 
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and lead to estimates, tha t  allow one to remove the additional restrictions that/irst made the 

problem tractable. Thus limiting procedures yield a solution of the more general problem in 

which (a) the non-linear t e r m / ( ~ )  can be discontinuous, corresponding to a jump in vor- 

ticity at  the boundary ~ of the vortex ring, and (b) the flow field (the domain of q) can 

be the whole of R a. 

In  connection with (b), it is shown tha t  the vortex ring lies within a bounded set that 

can be estimated/rom the data o/ the problem. I t  also turns out tha t  the variational principle 

survives the transition to the more general situation, despite the loss, in the case of the un- 

bounded domain, of the usual compactness theorems characterizing isoperimetric varia- 

tional methods in Hilbert  space. 

(iii) The background of the problem is as follows. In  his celebrated paper of 1858 on 

the general equations of vortex motion, Helmholtz [11] considered rings of very small 

cross-section as one of two examples, and inferred on the basis of plausible approximations 

tha t  such rings move (through fluid at  rest at  infinity) with 'approximately constant and 

very large velocity'. The subject was taken up in a series of papers by  Kelvin [27]. Taking 

for granted the existence of certain steady rings of small cross-section, Kelvin calculated 

an explicit approximation to their propagation speed; stated a variational principle(I); 

conjectured the existence of steady non-axi-symmetric and knotted vortex configurations; 

and proposed a theory of atomic structure based on vortex rings. Hicks [12] and Dyson [5], 

also assuming the existence of steady vortex rings of small cross-section and constant 

o)/r, (where eo is the magnitude of the vorticity and r is distance from the axis of symmetry),  

computed the propagation speed more systematically than Kelvin had; in particular, Dy- 

son calculated expansions for the shape and speed up to the fourth order in a small para- 

meter. At the other extreme of steady rings of large cross-section, Hill [13] discovered in 

1894 an explicit exact solution with constant w/r for which the 'ring' is actually a ball 

in R a. 

Kelvin's  discussion of knotted configurations led Tait  to write pioneering papers ([26], 

pp. 273-347) on topological knot  theory; and the theory of vortex atoms has perhaps a 

less short-lived successor in modern discussions of superfluidity (for example, by  Feyn- 

man [6]); indeed, recent results [8] for steady rings in an ideal fluid have already been ap- 

plied in this field [4]. 

The question of a mathematical  existence proof was first taken up by  Lichtenstein 

[16], again for the case of small cross-section and constant og/r. This work contains a con- 

structive mathematical  technique, but  serious errors in hydrodynamics and arithmetic; 

(1) Kelvin's variational principle for steady vortex flows ([27], pp. 116 and 172) is not restricted 
to axi-symmetric flows, but it is merely stated in physical terms and its analytical basis is obscure. 
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it has been corrected and extended to general vorticity functions / in [18] and [7]. Re- 

cently, Norbury [21] has given a constructive existence proof for steady rings with con- 

s tant  ~o/r tha t  are close to Hill 's vortex but  are homeomorphic to a solid torus; and the 

existence of further steady vortex rings is suggested by  numerical 'solutions' [22] for the 

one-parameter family of steady rings with constant o~/r, extending from those of small 

cross-section to Hill 's vortex. 

(iv) Some virtues of our method have been noted in (ii) above; it must  be added tha t  

the following questions are left open. 

(a) The nature of the functional which our solution maximizes over an energy surface 

in Hilbert  space suggests tha t  the corresponding vortex ring ~ should be homeomorphic 

either to a solid torus (when a certain parameter  k > 0) or to a ball (when k =0). However, 

this conjecture is proved (in Theorem 3G) only for convex and exceptionally smooth vor- 

ticity functions/ .  

(b) The paper contains no uniqueness result of any kind. 

(c) While Hill 's vortex and the steady rings of small cross-section described in section 

2.2 are expected to be particular cases of the solution established here (that is, to have the 

maximizing property just mentioned), such a result has not been proved. However, we 

have in hand a number  of partial results in this direction, and hope to return to the mat-  

ter in a later paper. 

2. Preliminaries 
2.1. The governing equations 

Let X = [X1, X~, X3] = [r cos O, r sin 0, z] denote a point in the three-dimensional real 

Euclidean space R 3, so that  r, 0, z are cylindrical coordinates; we shall use square brackets 

for the components of a vector field (such as the fluid velocity) in the directions Xj in- 

creasing, and round  brackets for its components in the directions r, 0, z increasing. Consider 

the axi-symmetric flow of an inviscid fluid, of uniform density ~, with velocity q and vor- 

ticity to---curl q. The equation of mass conservation, div q = 0, allows us to introduce a 

vector potential ~ = (0,1F/r, 0), where ~F = ~F(r, z) is the Stokes stream function, such that  

q = c u r i o  = ( - ~ z / r ,  0, Wr/r) ,  d i v O  = 0, 

co = - Af]~ = (0, - ( L ~ ) / r ,  0), 

where 
3 8"- 

and L= X7 / 
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The function ~F is constant on each stream surface because q.  grad~F =0; also, 2zt(~Ir~ -~F1) 

is the volumetric flow rate between two stream surfaces ~F(r, z) = const. =~Fj, (?" = 1, 2). 

To write the partial differential equation of the problem we let to =(0, w, 0) and de- 

fine the half-plane I] ={(r, z)lr >0}. The dynamical equations of steady, axi-symmetric 

inviscid flow demand tha t  co/r be constant on each stream surface; accordingly, we set 

o) = ~rl(~F), 

where / is a prescribed (non-dimensional) function that  we call the vorticity/unction, and 

shall specify more precisely later; the positive constant ;t is a vortex-strength parameter, 

which we also regard as prescribed for the moment.  

To formulate the problem of finding a steady vortex ring in R a, with cross-section 

A c II  in a meridional plane (0 = const.), we take axes fixed with respect to the ring and, 

equating the two forms of e0 above, demand tha t  

(1)r+tF~z={-~r~/(~*~) inA ,  (2.1a) 
LIF - r ~F r 0 in II  - ~ ,  

where grad ~F is to be continuous on the (unknown) cross-sectional boundary ~A of the 

ring. In  addition, ~A and the axis of symmetry  r =0  must  be streamlines; we set 

~FIoA=0 and ~ F I r f 0 = - k ~ < 0 ,  (2.1b, c) 

where /c is a prescribed flux constant such tha t  2:rk is the flow rate between the axis of 

symmetry  and the boundary of the vortex ring. Finally, we demand that  the ring move 

relative to the fluid at  infinity with velocity (0, 0, W), where W > 0 is another prescribed 

constant; with axes fixed in the ring, this implies the condition 

~/r-+O and ~ r / r - + - W  as r~+z 2-+oo. (2.1d) 

An equivalent formulation is as follows: since the differential operator L has the fun- 

damental  solution 

rot f ~_ cos 0 dO 
P (r~ z~ r' z)=-4~ ~ ~ - ,  {r~ + ~ -  2rro cos O + (Z- Zo)2} 6' 

we seek 0A and ~F such tha t  

~l~ ~ W r ~  (r~176 (2.2) 

(The function - � 8 9  Wr ~ - k  is the  stream function of a uniform flow with velocity (0, 0, - W), 

and L(�89 Wr~ + Ic) =0,) 

2 - 7 4 2 9 0 8  Acta mathematica 132. Impr im~  le 18 M a r s  1974 
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2.2 K n o w n  solutions: Hill's vortex and rings of small cross-section 

Hill 's solution [13] of the problem (2.1) for the ease/(~F) =-1, k = 0  proceeds as follows. 

Let  R, 0 be spherical coordinates such t h a t  r = R sin 0 and  z = R cos @. I f  one guesses 

t h a t  a sphere R - - a  can serve as the boundary  of a s teady vor tex 'r ing' ,  and (taking / =  1 

and k=O) solves (2.1a) to (2.1d) separately for R ~<a and for R ~>a, one obtains 

1 ) .R  ~ sin 2 0 ( a  2 - -  R 2 ) ,  R ~< a, 

- -  �89 WR 2 sin 2 0 1 - R-~ , R ) a, 

where the exterior solution represents the  classical i rrotat ional  flow past  a sphere. The 

choice 2a2/W=15/2 then makes a~/~R continuous on R=a, and all the conditions of the 

problem are satisfied. Moreover, neighbouring solutions tha t  are genuine rings are now 

known to exist [21] f o r / ( ~ ) - - 1  and sufficiently small values of k. 

A ring of small cross-section m a y  be defined, in terms of a small positive parameter  

e, as one whose cross-section A contains a point  r = l, z = 0 at  which grad ~F = 0, and has area 

7~2/2 + o(e~). One prescribes 1 and  e in place of W and k, (the lat ter  are to be determined as 

par t  of the solution), and makes the vor tex-s t rength parameter  ~t proport ional  to l/~ 2. 

I f  coordinates 8, t are defined by  

r - l = ~/s cos t, z = e/s sin t, 

the fundamenta l  solution of L becomes, for bounded values of 8 and 80, 

P(ro, z0, r, z) = ~ log e ]s - So] -  2 + O(e log e) , 

where Is  - So 12 = + - 2 880 c o s  ( t -  to). 

I t  is essentially this formula which Helmholtz  [11] combined with [2.2] to infer a large 

and nearly constant  propagat ion speed W; Kelvin [27], Hicks [12] and Dyson [5] in effect 

added the condit ion / = c o n s t . ,  and  the assumption tha t  ~A is approximate ly  circular, to  

est imate this speed. 

I n  the rigorous theory  [18], [7] of s teady rings of small cross-section, one sets ~I z = 0  

a t  s = 0  and leaves the constant  ~F]0 ~ free; / is taken to be positive and cont inuously dif- 

ferentiable on ( -  cr 0], with a uniformly bounded derivative. (The posi t ivi ty condit ion 

can be weakened slightly.) I t  is sufficient to solve (2.2) on ~ ,  for (2.2) itself then defines ~F 
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elsewhere, and a formal first approximation g0(s) is obtained by  solving the ordinary 

differential equation 

1 tF _ { -  ~0/(tF), s <  l ,  

tFss + s s -  O, s > l  

which then represents the dominant  terms of (2.1a) and in which ~0 =e22l~ is independent 

of e. This function g0(s) is made the first of a sequence of successive approximations tha t  

converge on .zi for sufficiently small values of e. 

I t  turns out tha t  the flux constant k is large in this case. More precisely, if ztQ~ is the 

kinetic energy of the vortex motion, as in (2.6c) below, then the non-dimensional ratio 

kW1/3~ -21a~ ~{(1/7r) log (8/e)} ~/a to the lowest order. 

2.3. Reformulation of the problem 

The difficulties of the global problem (2.1) are (a) the unbounded domain II,  associ- 

ated with a lack of compactness theorems, and (b) the free boundary ~A, at  which the non- 

linear term in (2.1 a) is to have a simple discontinuity in cases of interest. 

To overcome (a), we consider in the first instance flow in a cylinder V of radius a and 

length 2b, represented in a mcridional plane by  the domain D; here 

V = { X [ X ~  +X~ <a 2, I X a l < b }  

and D={(r,z)lO<r<a, <b}. 

Then II  is replaced by D in (2.1a), and the conditions (2.1 c,d) are replaced by  

'FIo  D = - � 8 9  (2.3) 

(Thus the axial velocity component is - W  at  the 'entry  and exit planes' r <a ,  z = _+ b, 

and the radial velocity component is zero at  the cylinder wall r = a, ]z] ~< b.) The resulting 

problem, illustrated in Figure 1, p. 29, is physically reasonable and of interest in its own 

right. Ultimately, we shall pass from D to YI by  a limiting procedure. 

To overcome the difficulty (b), we first note an implication of the maximum principle 

[24] and conditions (2.1b), (2.3): i f / (q~)>0  in A, then t F > 0  in A, and t F < 0  in D - ~ .  

Accordingly, we consider vorticity functions / defined on the whole real line, such tha t  

/(t) = 0 for t ~< 0 and ](t)> 0 for t > 0, and define 

A ={(r, z)]tF(r, z) > 0}. 

In  the first instance we also take / to be H61der continuous on R; then the equation 

LtF = -Xr2/(tF) in D (2.4) 
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is equivalent to (2.1 a), and the free boundary ~A is no longer a source of difficulty for the 

Dirichlet problem (2.4), (2.3). Ultimately, we shall pass by a limiting procedure to the 

case when/(t)  has a simple discontinuity at t =0. 

I t  is convenient to decompose the total stream function ~I p by writing 

~ ( r ,  z) = yJ(r, z) - ~ Wr  ~ - k, (2.5) 

where y~ is to be the stream function of the velocity field induced by the vortex ring, and 

- � 8 9  represents a uniform stream (as was noted after (2.2)). We add the further 

restriction that  / be non-decreasing, which is believed to include the cases of primary in- 

terest. We also prescribe the kinetic energy of the vortex motion, instead of prescribing 

t ;  this is mathematically convenient and physically at least as natural. In terms of ~p, the 

first form of our problem is then as follows. 

Given the stream velocity W > O, the f lux constant ]c >1 O, the kinetic energy ~ o/ the 

vortex motion (where ~ is the density of the fluid) and a vorticity /unction / as in (2.7) below, 

we seek a vortex s tream/unct ion ~ such that 

L~p-= r (1 yJr) r + yJzz = - tr2/(~F) 

V2[OD = O, 

in D, (2.6a) 

(2.6b) 

where 1I~ and v 2 are related by (2.5), and the vortex-strength parameter I i8 to be such that 

f fD ~ (~ + ~:) r dr dz= ~ >O, (2.6c) 

(7 being prescribed). Note that  this last condition excludes the trivial solution v2=0 of 

(2.6 a, b). 

The vorticity funct ion/ :  R~[0 ,  co) is assumed to be non-decreasing and (in the first 

instance) locally HSlder continuous; more precisely, 

/ ( t )=O" for t<<.O, / ( t )>O for t > 0 ,  (2.7a, b) 

and 0 <~/(t) - / ( s )  <~ �89 +(Mt )m-1} ( t - s )~  for t >~s ~> O, (2.7 c) 

where M > 0 ,  m~>l and #E(0, 1) are give constants, and M has the dimensions of 1/~F, 

that  is, of w1/a~ -u/a. Note also that  doubling / merely halves t in (2.6a). 

Setting s = 0  in (2.7c) and considering the cases M t < . l  and M t > l  separately, one 

easily obtains the crude estimate 

O < / ( t ) < ~ l + ( M t )  m for t>O.  (2.8) 
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The three.dimensional viewpoint. In connection with regularity properties of a solution, 

and for applications of the generalized maximum principle, it will be convenient to con- 

sider, in place of % the vector potential r of the velocity induced by the vortex ring; this 

is defined by 

r  YcosO, O]=[o~,,o~,O], (2.9a) 

so that  ~0(r, z) = X 1 ~ ( X )  - X~ ~z (X). (2.9b) 

In place of (2.6a, b), in which L is singular for r =0, one has the system 

A[a z, o~,, O] = - 2 [ - X ~ ,  X1, 0]/(~)  in V, (2.10a) 

= = 0 .  ( 2 . l O b )  

We shall use the notation r E S to indicate that  a~ and a~ belong to some set or space S. 

2.4. The Hilbert space H(D) 

Let  C~'(D) denote the set of real valued functions with derivatives of every order and 

compact support in D. We define H(D) to be the completion of C~(D) in the norm implied 

by the inner product 

ffo  <u, v> = ~ (u,v. + u~v.), 

the element dv = rdrdz o/measure being implied wherever no other element is written. 

The elements of H(D), which we shall often call functions, are, of course, equivalence 

classes of functions equal almost everywhere in D. The space H(D) is a natural setting 

for the problem (2.6), because functions in H(D) have zero trace on 0D {i.e. vanish in a cer- 

tain generalized sense on ~D), so that  

dJDr  

also, the energy condition (2.6 c) becomes IMI = v. The transformation (2.9)implies that  

fv{[grad ~x[ 2 Igrad ~2J ~} 2~  IlyJl] ~ (2.11) + dX= 

if ~0 EH(D). Let W1. ~(V)denote the completion of the set C~(V) in the norm whose square 

appears on the left of (2111); it follows that  if y~EH(D), then aEVCL~(V ). 

I t  will prove convenient to introduce the notation, for any open subset E of D, 
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(2.121) 

(2.12b) 

When E = D, the label D will be omitted from the norm symbols on the left. The space 

L~(D, ~), where v is the measure defined by dT=rdrdz,  is then the completion of the set 

C~(D)  in the norm II.ll . 

L~MMA 2A. Consider a /unction u E H ( D )  on the rectangles R=(ro-O~ , r0)• (0, 28) 

and R '  = (r o - a, ro) > (0, 8) in D. I / u  has zero trace on OR, then 

][U[[p./~< cl)rl/P+ �89 (20~8)I/P[[U[[R /or every p >~ 1, (2.13) 

where % = 2  - t / o r  1 ~ p < ~ 2  and % =  2 - t p  /or p>~2. 

I / u  has zero trace on a vertical side o / R  (that is, on ~R N {r = r o - o~} or on OR N {r = r0} ) 

then 

,,u,[r.,, <~ 2%r:'~+�89 ( l  + ~ - ~  ][u[,, /or every p>~ l .  (2.14) 
\ z . p /  

Remark.  The following extensions are immediate. The rectangles need not be in D, 

provided tha t  r o >~ a; we extend u by defining u(r, z ) = 0  for (r, z)~ D, r ~> 0. Also, the inter- 

val (0, fl) may  be replaced by  (z0, Zo+fl) , with (0, 2fl) then replaced by  either (Zo, Zo+2fl) 

or (Zo-8, Zo +8). 

2 2 2 Proo/o~ Lemma 2A. Let  ]Vv[ =vr  +vz be integrable on R, and let v have zero trace 

on two non-parallel sides of R. Adapting a well known calculation of Nirenberg ([20], p. 

128), one can easily show tha t  

{f fR[vl" drdz}"<2c~(2aS)i" {f f lvvl~ dr dz}'. (2.15) 

I f  v has zero trace on OR, the factor 2% becomes %. Noting the simple inequalities 

{ ~  Ivy[ ~ dr dz}t<~ {ff. rf [ Vv,' dr dz} �89 =rio [[v[[R, (2.16b) 

we obtain (2.13). 
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Given a funct ion u EH(D) with zero trace on one vertical side of R, we form a funct ion 

v to which (2.15) applies by  defining 

t 1, z</~, v(r,z)=u(r,z)q~(z), where ~(z)= 2 - ~ ,  fl<~z<~2fl, 

0, z~>2fi. 

Then  u = v on R', and on the bigger rectangle R 

U 2 U 2 

for a ny  constant  C > 0. Also, if u has zero trace on 0R fi {r = r0}, then  

( fro 12 r. 

u2(rx'z)= I Jr, urdrf ~ (ro-rx)~ u~dr for (rl, z)ER, 
d r l  

so t h a t  ~u2(r l ,  z)drldz<~ f fRu, drdz, 

and this remains t rue if u has zero trace on OR N (r = r o - ~}. Accordingly, 

f fR'Vv[' drdz<- { l + C + ~ (c§  l) l f fR'Vu'~drdz; 

we choose C=o~/2�89 and use (2.15) and (2.16) to obtain  the result (2.14). 

LEMMA 2B. Sets bounded in H(D) are relatively compact in Lp(D, v) ]or every p>~l. 
o 

Proo]. Let  L~(D) and W1.2(D) denote the completions of the set C~(D) in the norms 

{~lul'drdz}" and { f  fD(U~ +U~z)drdz} �89 

o 

respectively. I t  is a s tandard  result ([25], p. 84; [14], p. 43) t ha t  Wx.2(D ) is embedded 

compact ly  in L~(D) for every p >~ 1; also using (2.16), we have 

o 

H(D)c WI.~(D)c L~(D)c L~(D , ~), 

where the second embedding is compact .  

LEMMA2C.  Let uEH(D), with u(r,z)>~O almost everywhere in D, and let u* be the 
Steiner symmetrization (de/ined in Appendix I) o/u about the line z =0. Then u* EH(D) and 

I1 *11, = lulls, Ilu*ll < IMI. 
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Also, i/g: [0, co) • [0, a ] -~R is continuous and (/or all s>~O, t>~O and rE[0, a]) 

[g(s,r)-g(t,r)[<~ const. (l +sC+F) ls-t[,  (c>~0), 

f foa(u*(r, ),r)drd = f f g(u(r,z),r)drdz. 
Proo/. See Appendix  I. 

2.5. Further notat ion 

Let  ~ be an open set in Rn; let fl = {ill . . . . .  fin} be a multi- index of order I#1= 
#1 + ... +#n, where # 1  . . . . .  #n are non-negat ive integers; and write 8# = ( 8 / ~ X l )  fit . . .  (~/~Xn) fin. 

By C~(~2) we mean  the set of all real-valued functions u such tha t  8Pu, 0<~ [#ll <.l, are con- 

t inuous in ~2. The space CZ(~) is the set of real-valued functions u such t h a t  ~Bu, 0 < [#ll ~< l, 

can be extended to be continuous on ~ ,  with the  norm 

The space Cz+~(C2), where 0 <~ < 1, consists of functions having derivatives of order  l 

t h a t  are uniformly H61der continuous in ~ with exponent  ~; with the nota t ion 

v(x')l (o< tx_xol< 1), 
I x -  x ' [ ,  ' 

Cl+ ' (~)  is t ha t  subset of C~(~) for which 

[[U[[c~+~(5 ) = [[U[[c~,5 ) + max  [OBu]v < co. 
l#l=Z 

We say tha t  u is C z+~ in ~2 if uECZ+'(K) for every compact  subset K of ~ .  

The symbol (.)+ denotes the non-negat ive par t  of a function: 

u+(X) = max {u(X), 0}. 

3. The solution for cont inuous  vorticity and a bounded domain 

3.1. Existence o f  a generalized solution in D 

We adopt  the nota t ion  

x = (r, z) and S(~) ={ueH(D) I [[u[l~ =~}.  
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A generalized solution of the problem (2.6) is an element ~p E S(~) and a constant 2 such tha t  

= 2ffDq~/(~F) for all test  functions q~EH(D). (3.1) 

When v 2 is also in C~(/)), integration by  parts  relates (3.1) and (2.6a, b); also, (3.1) charac- 

terizes a critical point ~ of the restriction to the sphere S(~) of the functional 

fro f: J(u) = F(u(x) - �89 ~ -  k), where F(t) = /(s) ds. (3.2) 

Here the integral over D need be taken only over the set 

A~ ={xiu(x)  > �89 (3.3) 

which becomes the cross-section A v of the vortex ring when u =v2; a similar remark applies 

to (3.1). 

THEOREM 3A. The variational problem maxu~s(~)J(u) ha8 a solution ~p such that J(v2) > 0  

and v2(x ) >~0 almost everywhere in D. With ~ as in (3.7) below, the pair (y), ~t) is a generalized 

solution o/ (2.6), and there exist numbers c, C depending only on the data o/the problem such 

that 0 < c < ~ < C .  

Proo/. (i) First we show that ,  for any set of data, there exist functions uES(~) such 

tha t  J(u) > 0. (This would not be true for analogous problems involving a one-dimensional 

domain D.) I t  is sufficient to observe tha t  functions with small norm in H(D) can have 

large values on a small set. For example, given a point x 0 = (r0, z0) in D, define 

s = I x - -  x0] = { ( r - -  ro) ~ + (z--%)2}1/2, 

[0, s>~& 

s <. ~ <. �89 ~D), 
(3.4) 

where 8, ~ are positive constants and d(.,.) denotes distance. Since v(x)-~oo as s-~0, we 

have J(v)> 0; and since 

Ilvll = 2 ~ g ( r 0 ,  ~), where (r0-~(~) -1 <g(r0, 0) < (r0--~) -1 and (~ < ~r0, 

we can choose to make IIvll* = 7  for any  > 0 .  

(ii) Next,  we prove tha t  the functional J is continuous with respect t o  weak con- 

vergence in H(D), and bounded above on S(~). For any uEH(D),  define U ( x ) = u ( x ) "  
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~Wr ~ - k ,  abbreviate U(x) to U, and note that  J(u) depends only on the non-negative part  

U+ of U because F ( U ) =  F(U+). Then by (2.8) 

'J(u)-J(v)[=[ff ffo{I+(MU+)m+(MV+)m},U+- V+I. (3.5) 

I t  is clear tha t  U + ~<lul and [U +- V+[<lu-v[; hence 

I J(u)- J(v)l < flu- rill + M= (llulIT= + H =)flu- vH, (3.61 

for all u and v in H(D). Now if un~u weakly in H(D), then un~u (strongly) in L~(D, T) 

for each p ~> l, since the embedding operator is compact by Lemma 2B; hence (3.6) shows 

that J(un)~J(u). To obtain an upper bound for J(u) on S(~), we set v =0 in (3.6) and note 

that  J(0) = 0. 

(iii) Write supuEs(,l)J(u) =a >O and let {un} be a sequence in S(~/) such that  J(un)~a 

as n-~ cr Since [[un[12 =~7, this sequence is weakly compact in H(D): there exists a subse- 

quence, say {~}, and an element ~o EH(D) such that  ~on~o weakly in H(D). By (ii), J(~o) = 

lim J(~o,)=a. To prove that  ~oeS(~), we first note that  [[~o[[ ~<lim inf [[~o,][ by a general re- 

sult for weak convergence in a Hflbert space. Hence [[v2]12 ~<~/; also [[~o[[ >0  because J(~o)= 

a > 0 .  If Hv}H2<W, de f ine  ~/)=~71/2~.)/H~I)H, so that  ~ e S ( w ) a n d  ~(x)>v2(x ) wherever yJ(x)>0, 

in particular, on the set A~. But  $'(t) is strictly increasing for t>0;  hence J (~)>J(~a)=a  

and this contradicts the definition of ~. 

(iv) The non-negative part  ~0+ of v 2 belongs to H(D) (of. [14], p. 50); clearly J0p +) = 

J(~o) and n~o+H ~< I[~o[[. If ~p(x) <o  on a set of positive measure, then H~o+[[ < I[VI[ and we ob- 

tain a contradiction as in (iii) by  considering ~x/~o+/H~o+ [[; hence v 2 =~+ almost everywhere 

in D. 

(v) The functional J has a Fr~chet derivative J'(u) defined by 

(u), q~> = f f T / ( u -  �89 Wr ~ - k), <J' 

since (2.7c), the Hhlder inequality and (2.13) imply that  

q~)- J(u)-  f fo /(u- WrY- k)[ < {const. + const. (HuHm-' + [[~0][m-')} H~0H x+u J(u + 

for all u and ~0 in H(D). I t  is then a standard result ([28], p. 96; [2], [3]) that  the maximizer 

~o is a critical point of the restriction of J to S(~/) in the sense that  the vectors ~ and J'(v2) 

are parallel. In other words, there exist constants /h  and / t  2, not both equal to zero, such 

that  



A GLOBAL T H E O R Y  OF S T E A D Y  V O R T E X  RINGS I N  AI~ I D E A L  F L U I D  27 

#: (q~, ~2> = Iz* f fD~](tF) for all q~EH(D). 

Thus (3.1) is satisfied, with 2 =#J#:, provided that/~1 =~ 0. Choose 00 =~; the possibilities 

#1 =0 o r /~  =0 are ruled out by the estimates that  follow, and 

2 = ~ / f f  A ~v/(LF). (3.7) 

First we bound the integral from above; since 0 < ~F(x)< ~v(x) in A~, we have 

ff f f/{1 + < coast. ~�89 + coast. 

where the constants are implied by (2.13). On the other hand, F(t) <~ t](t) because ] is 

non-decreasing, so that  

~YJ/(~F) > ~  ~F/(~F) ~> ~ F ( ~ ) > ~ J ( u ) f o r  any uES(~), (3.8) 

and the functions mentioned in (i) provide a lower bound for the integral and an upper 

bound for 2. 

Remark. The simple function v in (3.4) gives a very crude upper bound for 2 in (3.8); 

one can do better, in general, by using more elaborate functions suggested by the known 

particular solutions for Hill's vortex and for rings of small cross-section. 

COROLLARY 3B. Define D+={xEDlz>O}. With yJ as in Theorem 3A, ~(r , - z )=  

yJ(r, z) almost everywhere in D, and ~z <~0 almost everywhere in D+. 

Proo/. Let yJ* be the Steiner symmetrization of ~ with respect to the line z =0 in D; 

then Lemma 2C, with g(yJ, r)=rF(~), states that  H~*]{~<{{~]I~=~ and J(~*)=J(~). If 

]]~*]l ~ <~, we consider ~:/~v*/lI~v*]] and obtain a contradiction, as in the proof of Theorem 

3A, step (iii). If ll~*ll~=~] but H~* -~v{] =~0, then ~* is a second maximizer of J on S(~), 

and we choose to adopt it, denoting it by yJ henceforth. 

3.2. Regularity of the generalized solution 

The next step is to prove that  the equivalence class ~ has a smooth representative that  

satisfies (2.6 a, b) pointwise; we follow convention in calling this representative ~ also. I t  

is shown in Appendix I I  that  the definition (3.1) of a generalized solution implies the re- 

presentation 
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f 
~ ( X  ~ 2J vF(X~ X) [ - X~, X 1, 0] ](~F(x)) dX (3.9) 

of the vector potential defined by (2.9a); here F is the Green function of the Dirichtet prob- 

lem for the Laplace operator A in the cylinder V. This representation is used (in Appendix 

II) to show that  ~ is a smooth solution of (2.10a, b), and one then returns to ~o by means 

of (2.9b), thus obtaining the behaviour of ~ for r-~0 in a painless way, and proving the 

next  theorem. The edges r = a, z = _+ b of a V cause no difficulty because F is in fact analytic 

if X ~ is at or sufficiently near an edge while X is bounded away from the edge, and be- 

cause the boundary condition of our problem makes u~[r= a <0  and ensures that  the support 

of [(Ui(x)) is indeed bounded away from r = a .  

One can also obtain smoothness properties of ct by transforming (3.1) to the defini- 

tion of a generalized solution of (2.10) and then appealing to general regularity theory 

[1], [14] for elliptic equations; however, such an approach leaves in doubt the differenti- 

ability of ct and ~ at the edges. 

THEOREM 3C. The generalized solution has a representative ~,EC2+~(/)) that satisfies 

the di][erential equation (2.6a) and the boundary condition (2.6b) pointwise; here/~ is She 

H~lder exponent o[ [. Also, ~ = O(r 2) and Y)r =O(r) [or r-~0. (The correspondinff vector poten- 

tial a E C~+ ~( TT ) and satisfies (2.10 a, b) pointugse. ) 

3.3. Properties of the solution and of the associated vortex ring 

Henceforth the symbol ~p refers to the representative in Theorem 3 C; we proceed to 

some descriptive properties of this function and of the cross-section A~ of the vortex ring. 

THEOREM 3D. ~0(r, --z) =~0(r, z) on/~; ~ < 0  in D+; and ~0>0 in D. 

Proo[. Now that  ~EC2+#(])), Corollary 3B implies that  V is even in z on 1), and that  

V ~ 0  on 1)+. We sharpen this latter result to ~z<0  in D+ by means of the generalized 

maximum principle [17]. Consider the function u2 =V cos O/r in the quarter-cylinder 

v'={xevlxl>o, x, >0}; 

clearly ~ < 0  in D+ if and only if a , . , < 0  in V'. We claim that  a,.~ is weakly subharmonic 

in V' in the following sense: 

f vO~. ,A~dX>lO for all (V'). (3.10) non-negative cllEC~' 
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F i g .  1. N o t a t i o n  a n d  e x p e c t e d  s t r e a m l i n e  p a t t e r n  for  a s t e a d y  v o r t e x  r i n g .  

For, multiplying (2.10 a) by ~P~ and integrating by parts, we obtain 

and, upon 'mollifying' or 

such that  

fvot,.z AO dX = l J  v, X1/(tF ) dX = M, 
i "  

say, 

'averaging'  ], we obtain a non-decreasing function/BE C ~ (R) 

I ,=  f v x l /~ ( tF )O ,  dX ~ I as s -~0 ,  

and I~ = - f v x1 f~  (tF) ~oz~P dX >7 O, 

since ]:(tF)>~0 and ~v~<0 on / )+ .  Thus I>~0; therefore a~. z is weakly subharmomc m V', 

and its maximum over 17' is zero. Applied to  the continuous function a.z. z, the generalized 

maximum principle in [17] now states (like its classical counterpart) that  if as. z vanishes 

somewhere in V' then it vanishes everywhere on l?', and this is clearly a contradiction 

because as(X)=0 for z =b. 

Finally, the positivity of ~ i n  D follows from the boundary condition and the previous 

two results of the theorem (or else from the classical maximum principle [24]). 



30 L. E.  F R A E N K E L  AND M. S. B E R G E R  

LwMMA 3E. I / the  flux constant k > 0 ,  then the set Av, is a finite or denumerable union 

o/disjoint simply connected domains 

E~ = { ( r ,  z)lp~ < r  < q ~ ,  - h ( r )  < z  < h(r)},  n = 1, 2, ..., 

where p~>0,  qn<a and hEC2+t,(pn, q~) /or each n. Define h( r )=0  il r~U~(p~,qn); then 

h E C[0, a]. 

I / k  =0, the only change is that the value pn = 0 is possible/or one n, and the existence o/ 

a limiting value h(O + ) t~s not been proved/or that case. 

Proo/. Assume tha t  k > 0 .  Then ~F(0, 0 ) =  - k < 0  and ~F(a, O)= - �89  Hence 

the set A'={ri~F(r, 0)>0},  which is non-empty by  Theorems 3A and 3D, is a finite or 

denumerable union of disjoint open intervals, say (Pn, q~), within (0, a). I f  roEA', there 

exists a unique point (r0, h(ro) ) in D+ at  which ~ = 0 ,  because ~(r0, b ) < 0  and ~z=yJz<O 

in D+, and then h E C2+~ in an open interval containing r0, by  the implicit function theorem. 

We now show tha t  h is also continuous a t  any point pE(0, a) such tha t  ~ ( p ,  0)~<0 

and h(p)=O, and it follows tha t  hEC[0, a] for I t>0.  For any ~>0,  we have ~F(p, e ) < 0  

because ~Fz < 0 in D+. Then there exists a number  (~ > 0 such that  ] r - p  ] <~ implies ~ ( r ,  e) 

<0  and hence h(r)<~; also, h(r)>~0 for all r. 

I f /c  = 0, then u~'(0, z) = 0 for I zl ~ b and we have the uncertainty at  r = 0 tha t  is men- 

tioned in the lemma; there are no changes for r > 0 ,  and hEC(0, a]. 

T H ~ O R ~  3F. II, in addition to satis/ying (2.7), the /unction /(t) is Lipschitz con- 

tinuous at t = 0, then A v has only a/inite number o/components E~. 

Proo/. The new condition implies tha t  (for some constant M > 0) 

o < l ( t )  < Mt{1 + (Mr) m-l} for t/> 0. 

Let  E = En by any component of A~, and let (p, p +(~) = (pn, q~) be its intersection with the 

line z =0; we shall obtain a lower bound for (~. Define a function ~ by: ~(x)=iF(x) in E, 

and ~ (x )=0  elsewhere; then ~ EH(D), and 

(qJ, v 2 -  q~) = w f f q~rdrdz= O, (3.11) 

where the integration could also be over D. Hence (3.1) yields the estimate 
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where M ' =  M {1 + (M II~llc,~,r-1}, 

and where A < C by Theorem 3 A. On the other hand, integration of the estimate 

f fT, ]2 102)[,TOr_lq~2drjp 
= 1J,  'dl  (rX- 

yields ~v2 < g (~2 (210 + 0)' [l~vll 2. (3.13) 

Since 10 +0 <a,  (3.12) and (3.13) show that  (52 >2/CM'a 2 (and a sharper estimate is possible 

for specified values of 10). 

THEOREM 3G. I], in addition to satis]ying (2.7), the ]unction ] is convex and continu- 

ously diHerentiable on R, then A~ is simply connected: A~ = E 1. 

Proof. The new condition implies that  ] ' (0)=0, f ' ( t)>0 for t>0 ,  and 

1(0= f(s)ds<tf(t) for t > 0 .  (3.14) 

Assume that  A v has at least two components E 1 and E2; we obtain a contradiction by con- 

sidering the second variation of J ,  and showing that  J does not have a constrained local 

maximum on the sphere S(~) at ~v. Let  

U(fl) = ~) COS ~ " ~ I / $ v  sin fl/[[vii, 

where (v,~v) =0, vEH(D) N C(.D) and Ilvll >o, 

then u(fl)eS(~) for all fi, and u(0)=~v. Expanding J(u(fl)) for small values of fl, and using 

(3.1) and (3.7), one obtains 

J ( u ( # ) ) -  J(~) = ~ I1,11'/j jo  - -  o(#,), 

where the o-term results from the uniform continuity o f / '  on [0, max u(fl, x)], the maxi- 

mum being over [-re/2, 7t/2] •  We shall have the desired contradiction (for fl suffi- 

ciently small) if the term in curly brackets is positive for some choice of v. 

Define ~vj, ?'=1, 2, by: ~vj(x)=UF(x) in E j, and ~%(x)=0 elsewhere; then, by (3.11) and 

(3.1), 

II ,, 
H 

and <~01, r Now choose v=ct~ t-c2~2, where c I and c 2 are strictly positive constants 

such that  
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<v, v/> = c~<~,,  v/> - c , < ~ , ,  v/> = Clll~lll ~ -  c,  l l~ l l  ~ = o 

Using (3.15) for II~ll~=c~ll~lll~+~ll~ll,, and finaUy applying (3.14), we obtain 

ff/r(r) - IHI r ( { + ' l w ) -  +t(+)} >0  ),,--J=l J Js 

4. The case of  discontinuous vortieity 

Let the vortieity function/(t)  have a simple discontinuity at t=O, corresponding to 

a jump in vortieity at the boundary ~A~ of the cross-section of the vortex ring. The only 

change in (2.7) is that  we weaken the qualification in (2.7e) to t~>s>0; then the limit 

1(0 + ) exists and is positive, and we assume it to be such that  (2.8) still holds. 

We form continuous approximations/ j  to / by introducing a non-decreasing function 

Z EC~176 such that  Z(s)=0 for s ~<0 and Z(s)= 1 for s ~> 1, and by defining 

Is(t) =/(t)z(jMt), j = 1, 2 . . . .  (4.1) 

where M is the constant in (2.8). Then/j( t)  is non-decreasing with respect to both j and t. 

The corresponding solutions are denoted by (V/j, 2j), and we have 0 <c <2j < C with c and 

C independent of J if we use/1 in (3.8). 

L~.MMA 4A. For any rE(O, 1) there exist a /unction V/ECX+'(D), a number ~E[c, C], 

and a subsequence ( (v/Jn' ~sn) } which we relabel ( (v/, , ~n) } such that 

(v/,, ~t,) ~ (% 2) in CI+ ' ( / ) ) •  as n - ~ ;  

also, v/=O(r 2) and v/r=O(r) /or r~O. 

Proo]. One needs no continuity o f / j  to show that  the sequence {~} of vector poten- 

tials is bounded (independently of j) in Cl+"(17) for each zE(0, 1); the bound (2.8) f o r / j  

and the representation of aj in terms of the Green function are sufficient (cf. Appendix 

II: one uses (II.2) and estimates as in (II.7)). Since the sequence {(aj, 2j)} is bounded in 

Cl+~(17) • R for v < u < 1, it is relatively compact in Cl+'(17) • R; we extract a convergent 

subsequenee and use the transformation (2.9b) from ~ to % 

THEOREM 4B. The limit /unction V~ (in Lemma 4A) maximizes the /unctional J(u) 

over the sphere S(U). 

Proof. That  [IV/]I ==~ follows from (2.11)and the proof of Lemma 4A. Denote by Jn 

the functional (3.2) when / is replaced by fin = / -  (in the notation of Lemma 4A) and let 
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sup J=~supuescn)Jn(u). We show t h a t  (a) sup J~-->J(v2), and (b) sup J=-->sup J ,  which 

proves  the  theorem.  

(a) Since/~(t) differs f rom [(t) only for 0 < t  < 1/j~M, we have  

0 <<. F( t ) -Fn( t )  <~ 2/~=M for all tER,  

and  0 <. J ( u ) - J , ( u )  < 21DI/j~M for all ueH(D),  (4.2) 

where I DI  = a2b is the  z-measure  of D. Also the  funct ions F n are equicont inuous on a n y  

compac t  subset  of R. Accordingly 

I g(~p) - sup J .  ] = I J(~p) - J.(~0~) ] ~< I J(y)) - J~(~p) ] + [ Jn(v2) - J.(~o~) ] -~ 0. 

(b) Again using (4.2), we have  

0 ~< sup J - s u p  g~ = sup {(J -gn)  + g . }  - s u p  g .  ~< sup (g - g . )  -~ 0. 

L E ~ M A  4C. y~(r, - z )  =v2(r , z) on/3; y)z<0 in D+; and ~ > 0  in D. 

Proo/. Theorem 3D and L e m m a  4A show t h a t  v 2 is even in z and  t h a t  ~z~<0 on /3+. 

Again we sharpen this la t ter  to y ) :<0  in D+: wi th  V' as in the  proof of Theorem 3D,  

.] v" ~z AO dX = lira Jr. ~ AO dX >~ 0 

for every  non-negat ive  (I)EC~( V'); and  since ao~2/~z is still cont inuous on 17, we can reason 

as before. 

Remark. I t  is easily verified t h a t  a subset  of D had  T-measure zero if and only if i t  

has plane Lebesgue measure  zero; hence 'measure  zero '  can have  ei ther  meaning  in wha t  

follows. 

LEMMA 4D. The set tF-z(0)=  {xe/31tF(x) =0}  has measure zero. 

Proo/. Since L e m m a  4C shows t h a t  tF~ < 0  in D+, we can construct  a funct ion h jus t  

like t h a t  in L e m m a  3E,  except  t h a t  now h is only  C l+v in each open in terval  (p~, qn). For  

k > 0 ,  we have  hEC[0, a] and ~-1(0)  is a proper  subset  of {z= +h(r)};  for k =0 ,  we have  

hEC(0, a] and tF-l(0) is a proper  subset  of {z = +h(r)} 0 {r =0}; in ei ther case, tF-l(0) has  

measure  zero. 

LEMMA 4E.  ]~(tFn(x))--->](tF(x)) almost everywhere on D, as n---> 0% 

Proo/. Let  x 0 be fixed and  such tha t  tF(x0) >0;  there  exists a n u m b e r  1g =N(xo) such 

t ha t  tFn(x0) > 1/i~ M for n > N .  Accordingly,/~(tF~(x0) ) =/(tFn(x0) ) for n > N, and/(tF~(x0)) 

3 -  742908 Acta rnathematica 132. Imprim~ le 18 Mars  1974 
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/(~r(x0) ) because/(t) is continuous for t > 0 and ~n-~J" in CI§ For x 0 such that  ~(x0) <0,  

the argument is similar but simpler. The result now follows from Lemma 4D. 

THEOREM 4F. Let (%),) be as in Lemma 4AI so that ~/)~CI+~(.D) /or any rE(0, 1). 

Then y~ is C2+~ in D-~F-I(0), and, apart /rom /ailing to satis/y the di//erential equation 

(2.6a) on the set ~F-l(O) (o/measure zero), the pair (yJ, 2) is a pointwise solution o/ the problem 

(2.6). 

Proo/. Each approximating vector potential has the representation 

ff'n (xO) = 2nfvF(xO, X) [ - X2, X l ,  0]/n(l~fn (x)) dX. 

We can pass to the limit by using Lemma 4A for the left member and for 2~, and by using 

Lemma 4 E and the Lebesgue dominated convergence theorem for the integral. The result- 

ing representation of r implies the assertions above. 

5. The unbounded flow field 

5.1. Preliminary description of the limiting process 

Henceforth we allow, but  do not insist on, a simple discontinuity of/(t)  at t = 0. Our 

principal task is now to show that,  for large values of the lengths a and b characterizing 

D, the cross-section Av of the vortex ring remains in a certain bounded domain ~ in the 

rz-plane; ~ depends on / ,  W, k and 7, but is independent of a and b. We begin by establish- 

ing certain geometrical restrictions on the set A u defined by (3.3) for any function u in 

H(D) N C(/)); then we use the special properties of v / to  show that  A~ lies between two 

curves z= +_Z(r) such that  Z(r)-->O as r - ~ ;  and we complete the specification of ~ by 

means of the representation formula 

= 2ffoG(Xo, z) = ~(Xo) (5.1) 

Here G is the Green function of the Dirichlet problem for the operator L in D, and is re- 

lated to the corresponding Green function l~(xo, x, 0-00)  of the Laplace operator in V by 

/_ G(xo, x)= P(xo, x)-g(xo,  x)=ror cos flF(Xo, X, fl)dfl, (5.2a) 

where P is the fundamental solution of L, 

ror ~ cos fldfl (5.2b) 
P(x0, x)= ~ j_,,  {r~ + r z - 2ror cos fl + (z 0 - z)Z} �89 
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By an application of the classical maximum principle [24] and known bounds for P 

([21], p. 278; our function P is denoted by G/2~r there), we have 

[ r~ r2 

/~l~-xl" (5.3a) 
O ~ G(xo, x) < P(xo, x) ~ I 

[ ~  sinh -1 (2r~189 (5.3b) 
Ixo-xl '  

where Ix I= (r2+ z2)�89 these two distinct estimates are useful for large and for small values 

of I~o- ~l/(ror)�89 respectively. We also note tha t  

f ro  [~ r~ O<~r~ <~c' P(x o, x) = ~i 4 (5.4) 
< r < c  [ 8 ( ~  , r o ~ C  . 

l~ ={zl(r  , z)EA u for some r}, 

We continue to use the notation (2.12). 

5.2. Est imates  of  A v in large domains  D 

Recalling the definition (3.3) of Au for any uEH(D), we now define Bu to be the set 

of points in D that  are in A~ or to the left of it (when r increases to the right): 

B~=((r,z)I3(~,~)EA u with ~>~r>0 ,  ~=z}.  

Also, [A~[ and I B~[ denote the T-measures of these sets (dT =rdrdz), and [, is the projec- 

tion of Au (or Bu) onto the z-axis: 

II~l = f~udz. 

LEMMA 5A. Let uEH(D) N C(D) and de/ine U (x)=u(x) - �89 Wr2-k. Then 

W~IA~I = ]1~,112-II uIIL (5.5) 

and W 2 IBul + 2w~ IZul = Ilullk- II G i l l  (5.0) 

Proo/. Abbreviate the symbols A~, Bu and lu to A, B and I. To prove (5.5) we again 
o 

use the fact that  the non-negative part  U + of U belongs to the Sobolev space W1.2(D) 

([14], p. 50); then 

and the integral of U~ + is zero because U + vanishes on 0D. 

To prove (5.6) we first assume that  the boundary OB is a finite union of disjoint closed 

curves, each of which is piecewise of class C 1. Then 
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Ilull -IluIl = 2W f f u:d d - W:IBI : 2w fjd - W:IBI, 

and 0B consists of (a) a par t  of the axis r = 0 ,  on which u = 0 ;  (b) straight line segments 

z =const.;  and (c) the set 0B fl ~A, on which u=�89 Hence 

and (5.6) follows. 

To remove the assumption about  0B, we note tha t  the open set A can be approximated 

by a finite union A,  of squares with disjoint interiors and with sides of length 2-" ,  such 

tha t  A . / A  as n - ~  and for all xEOA. the distance d(x, 0A)<2  -"+a. Let  B .  and I. be 

related to A.  as B and 1 are to A. Since u is uniformly continuous o n / ) ,  and d(x, OA)-~O 

uniformly for x E~An, 

sup l u ( x ) -  �89 2- /c  I --+ 0 as n --+ oo, 
xeOAn 

and since ~a~naA I dzl < 2 b, we have 

f f  u:drd:-WlB.I-kl .l-+O n-+ a s  

n 

L~MhiA 5B. The cross-section A~ o/the vortex ring lies in the region between the curves 

z=-~ ~/ r > 0 .  
- W(Wr2+ 4k) '  

Proo/. Let (ro, Zo)E~Av, with ro>0  and zo>0. Then all points (r0, z) with Izl <z  o be- 

long to A~ (because LF:< 0 in D+ and ~F is an even function of z), the open rectangle 

(0, %) • ( - z0, Zo) is a subset of B+, and (5.6) implies the estimate 

W2 r2 zo -~- 4 W k zo < ~l " 

L~,hihiA 5C. Recall that D = ( 0 ,  a) • ( - b, b) and/et  b>~bo>0. Then there exists a num- 

ber r., independent o /a  and b, such that r<r .  i /(r ,  z)EAv. 

Proo/. (i) We adopt the notation A =A~, ro=SUpa r, Xo=(r o, 0) and s= IX-Xo[. The 

supremum r o exists for each finite D, with tF(ro, 0 ) = 0  and tF(r0, z ) < 0  for z:~0. We shall 

use the Green-function representation (5.1) to show that  yJ(x0) cannot equal �89 2 + k if r o 

is sufficiently large. To this end, we parti t ion the set A, to which the integration in (5.1) 

may  be restricted, by defining 

  ={xl =lx-xol <ero), O<e~�89 

Ax = A N {r < �89 A~ = A O {r >~ �89 Be, A3 = A f) Bs, 
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where e will be chosen later. Writing 

%(x0)= ~ ( (  G(xo, x)/(tF), (]= 1, 2, 3), 
j j A  ] 

we now estimate Vx(Xo) by using (5.3a) for G, and ~v~(xo), Vs(xo) by using (5.3b); in estimat- 

ing Va(Xo) we also introduce the inequality sinh -1 t <log 2t + �88 -2 for t > 0. Accordingly, 

W(x~ 2�89 sinh-1 ( -~)  f fA  r~t(qz)' 
zro 

f f A log where V3* (Xo) = ~ ] (xF), a = - - ,  
Er  0 

and where we have combined (5.3 b) with estimates like r �89 <~ 2tr2/r~ o on A~, in order to 

keep the integrand r2/OF). ~'or since V > �89 on A, we have 

, / f fA m) < 2, / w f f / f( , )  (5.7) 

ryK(e) 1 (5.8a) 
Therefore V1 (x0) + V~(x0) + Val (x0) < 7rW r o' 

where K(e)=max[16,2'(log2-~{e+~e~)}, (5.8b) 

the maximum being taken at each fixed e. 

(ii) The next  step is to estimate ~a2(Xo). Choosing a positive number a0, we assl~me that  

a ~> a o (for otherwise r o < a0). Then the upper bound C for 2, established in Theorem 3 A and 

Lemma 4A, can be chosen to be independent of a and b. By the bound (2.8) for / ,  and the 

Schwarz inequality, 

2:r Ill a 2,A, 

where tic+ is the non-negative part  of iF. Now A s lies in the left half of the ball Be, so that  

log <rte2r~ log/y ada==e*r~2-'-~p!, ( p = l ,  2), 
J J A t \  / dO 
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and ug'+ vanishes on r =r0, so tha t  c a n  be est imated in terms of e, r 0 and I1~+ H 

by  means of (2.14), applied to the rectangle R'=(ro -~r  o, ro) • ( - e r  o, ero). Since []tF+]] = 

[]xFH A <~t/~ by  (5.5), we obtain  

~Pa~ (Xo) < ~ Ce2r~ {1 + Mmc~r~o12~'n'2}, (5.9) 

where c~ depends only on m. 

(iii) Now let el(to) be the value of e tha t  makes the r ight -hand member  of (5.9) equal 

to ~]/~Wro, and choose e = ~o (%) = rain {�89 el(r0)}. Then in (5.8) we have K(e) = Ko(ro), say, 

and hence the estimate 

1 ~ ~7 { g 0 ( r o ) + l )  1 ,  (5.10) ~p(ro, O) = ~ Wr~ + k < - -~  

where K o is a known, non-decreasing function defined for r 0 > 0 and such tha t  

Ko(ro) ..~ 21/2(5+�89 r 0 as r0-~ oo. 

(5.10) implies an upper  bound,  say rl, for r o when a ~>a 0, and we define r ,  to  be the greater 

of a o and r 1. 

Remark. The following lemma is necessary because Lemma 5 B  fails to bound z on 

A v if k = 0  and r-~0. 

L~MMA 5D. Let a~ma0>0. Then there exists a number z,, independent o] a, b and o/ 

the flux constant k, such that Iz[ < z .  i / (r ,  z)EA v. 

Proo]. (i) Choosing positive numbers  b o and k0, we m a y  suppose tha t  b ~>b o (for other- 

wise Iz] <b  o on A~) and tha t  k<~k o (for otherwise [zl <~7/4Wko on A~, by  Lemma 5B). 

We also choose a number  Q > 0, and first bound yJ(Xo) independent ly  of Xo, a, b and k for 

r o ~<~. 

Let  R be the square (0, 2Q)• (Zo- Q, zo+e)  and abbreviate  A~ to A. By  (5.3a) and 

(5.7) 

- f f  (x~ /(~F) <" :~e3 J J,~-~ ~We" 

((  
a~~ f fasinh-Z lx~_xl  /(LF), Also, 2 j  j G(x o,x) /(~F) < 

and this can be bounded as y&~(xo) was bounded in the proof of Lemma 5C, since tF+(x) = 0  

on r =0 .  Hence there exists a number  fl ( independent of r 0 <Q, z o, a ~>a o, b/> bo and k ~< ke) 

such tha t  y~(xo) ~<fl, and then 

/(~F(x)) < 1 +(Mfl) m = M ' ( s a y )  for r < e .  (5.11) 
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z ~ curve z=~/WSr s 

ZO "~0 

z 1 ~ ~ z  o 

0 
r 1 

Fig. 2. Notation used in the proof of Lemma 5 D. 

(ii) Now let x o E A, so tha t  % <~/W~r~ by  Lemma 5B, and suppose tha t  z 0/> 2~/W2~ 2. 

Let  x 1 be the point  on the curve z=~?/W2r ~ such tha t  z1~�89 (Figure 2). Es t imat ing  as 

before by  means of (5.3a) and (5.7), we obtain 

a(Xo, x) l(tF) < ~ W  z~" 

With  ~ ~ C (where C is independent  of a >~ ao, b ~> b o and k ~/Co) and with r~ = 2 ~ / W ~ z o ~< pc, 

we have f rom (5.4) and (5.11) 

f f r  ,1 ~ ~ '1 ~ ~ CM'~r~ <*,G(x~ CM ~ro(2rl-r~o)< CM ~rorl- 2 W* z o" 

But  ~O(Xo) > �89 Wr~ because x o E A ; hence 

16, 1 cm' ,  1 

W z~ ~ 2 W  2 z o r o 

and this implies an upper  bound,  say z,, for zo, under  the assumed conditions. Finally, we 

define z. to  be the greatest  of bo, ~l/4Wko, 2~/W*p ~ and z,. 

THEOREM 5E.  I/a>~ao>0 and b>~bo>0 , then A~, is a subset o/ 

~ { ( r , z ) l O < r < r . , , z , < z , , , z , <  W(Wr~+4k }, (5.12) 

where r. is independent o~ a and b, and z. is independent o/a, b and k. 

Proof. The result follows from Lemmas  5 B  to 5D. 
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5.3. The solution for the haft-plane H 

Let II denote the half-plane {x[r >0).  By the problem (2.6, H) we mean the problem 

that  results from 

(i) replacing D by IF[ in (2.6), 

(ii) adding the condition: yJ-~0 and IVVJ[-~0 as r2+z 2-~c~. 

We now solve this problem by considering a sequence {D~}, j = 1, 2 ..... of domains 

such that  (a) ~ 2 c D j c n j +  1 for each j, (b) as-,oo as ?'-+oo and (c) bj/aj is bounded away 

from zero and infinity. The corresponding solutions are denoted by (~pj, ~tj); we have 

c<~,~j<~C with c, C independent of ~ because the integral defining ~t in (3.7) need only 

be taken over ~.  Initially, to retain compactness properties, we restrict attention to the 

bounded domain f2; once we have established a limit function ~p in C1+'(~), we can use 

the limiting form of (5.1) to extend yJ to the whole half-plane. 

L ~ A  5F. (a) For any ~E(O, 1) there exist a /unc t ion  yJECI+'(~), a number ~E[c, C], 

and a subsequence (y~j~, ~s,) which we relabel (v2, , ~ )  such that 

(~n,~)--~(~,~) in CI+ ' (~ ) •  as n - ~ ;  

also, ~fl = O(r 2) and ~p~ = O(r)/or r~O. 

(b) y~(r, -z)=~p(r, z) on ~; y~<0 in ~+ =(xEf2]z>0};  and yJ>0 in f2. 

(e) The set ~F-i(0) has measure zero. 

(d)/(~T'~(x))-~/(tF(x)) almost everywhere on ~ ,  as n-+ oo. 

Proo/. This proceeds just as for Lemmas 4A, 4C, 4D and 4E. I t  is not difficult, a t t h e  

first stage, to bound the Green function F~ of the cylinder Vj, and its derivatives up to 

the second order, independently of ]. 

LEMMA 5G. (a) The l imi t /unct ion y~ in Lemma 5F has the representation 

=  ffoP(xo, (5.13) ~(Xo) 

/or x o E~2; here P is the/undamental  solution (5.2b). 

(b) Extend ~n to ~I (as a piecewise C 1/unction) by defining it to be zero outside Dn" Ex- 

tend v 2 to I] by means o/(5.13). Then v2n-~y) and grad y)~-,grad yJ uni/ormly on rI. 

(e) The properties (b) in i e m m a  5F remain true in I], and u~'<0 in 1]-~2.  

Proof. Let G~ be the Green function of the domain D~, and define it to be zero outside 

Dn • ])n. Let  ~o = (~/~ro)P' (0/aZo) p', where fl is a double index. We can prove both (a) and 

(b) by showing that  
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s u p l , ~ f f  ~oP(xo, X)]CLF): ,~ f f  ~oGn(xo, X)](~.Fn) 4 0  for[fil~<l (5.14) 
XnE~I 

as n-~ co. since the second integral is known to be ~o~O~(Xo), which tends to ~o~(Xo) on ~ .  

Now we know from Lemma 5F that  2n-~2 and that  ](q~n)-~](~F) almost everywhere 

in ~.  To bound P -  Gn and its first derivatives, we note that  

f P(Xo, x) - G n (Xo, x) = r o r cos ~o ~n (x0, x, ~o) deo, (5.15) 

where ~n(x0, x, 0o-0)=yn(X o, X) is the difference between the fundamental solution and 

the Green function of the Laplace operator in the cylinder Vn corresponding to Dn; it may 

be written 7~.o+~n,1 where, for fixed X such that  xE~,  

Aoyn.~=0 for XoEV n and i=O, 1, 

Yn.0- 4~lXo] and Yn.1 for XoE ~Vn. 

Then Yn,o is independent of 0o-0 and does not contribute to the integral in (5.15), while 

for x E ~ we have [yn. 11 ~< eonst./a~ by the maximum principle, for sufficiently large values 

of the radius an of Vn. The estimate (II.3) in Appendix I I  shows that  I Voyn] ~<const./a~ 

for xE~;  thus, for Jill ~<1, 

I~o{P(xo, X)-O.(Xo, X)}l<.eonst./a.~O o n  D . •  as  n ~ o o ,  

and this estimate is easily extended to lq • ~ because Gn = 0 on (I] - Dn) • ~.  Accordingly 

(5.14) follows from Lebesgue's dominated convergence theorem. 

Regarding (e): the three familiar properties are proved as before. Since the sequence 

{v2n } makes xF ~<0 in II - ~  and since LtF =0 there by (5.13), the maximum principle shows 

that  ~F < 0 there. 

THEOREM 5H. The pair (~o, ~t) de]ined by Lemma8 5F and 5G is a loointwise solution 

o] the problem (2.6, F[) in the sense o] Theorem 3C i] ] is continuous, and o I Theorem 4F 

otherwise. 

Proo]. Multiplying (5.13) by - s i n  Oo/r o and cos Oo/ro, and inserting (5.2b) for P, we 

obtain 

and this implies the result by the method of Appendix II,  but more simply. 
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5.4. Variational characterization of the solution for II 

The variational principle has not yet  been considered in connection with the half- 

plane II. Let H(I I ) ,  L~([I, v) and J(u) be defined as in sections 2.4 and 3.1 but  with H 

replacing D. Sets bounded in H(I-[) need not be bounded, let alone compact, in L~([I, v), 

and the methods of Theorem 3A are inadequate for discussion of the functional J on the 

space H(II ) .  Nevertheless, it turns out tha t  the variational characterization of yJ survives 

the limiting process D-~ II.  In  Appendix I I I  we prove 

TH~OR]~ 5 I. The/unctional J is uni/ormly continuous on any bounded subset o/ H ( II ), 

and the solution V established in Theorem 5 H  maximizes g(u) over the sphere {HuH~=~} in 

H(n). 

Finally, we relate J(~0) to the energy x o~] and impulse zQp of the vortex ring; here ~) 

is the fluid density, and the impulse ([15], w167 152, 162) is defined by 

v=ffr,o=affj ,f' ). 
Integrat ion by  parts  shows tha t  

f f j ( ' )  (r~- 2z 'pz)= f fnF'(~r) { (r'~+ Ver')- 2z ~o}= w f f nr2 F'r 
2 '  

subtracting these two, we therefore obtain 

J (V)= ~ F(y~)= - ~ z/(~F) y~z= ~-~A (PW- ~ ~). 

Evidently the variational principle has no obvious physical interpretation. In  particular, 

it cannot be said tha t  V maximizes the impulse for given energy. For, (a) the constant 

is not prescribed, but  determined only after the maximization; (b) if, as the s ta tement  

implies, zQ]]u][ 2 denotes the energy associated with any function u 6H(II) ,  then, no mat-  

ter whether we take - L u / r  or i r / ( u - � 8 9  as the vorticity associated with u, the 

final expression for J holds only/or a solution v 2. 

Appendix I. Steiner symmetrization of functions in H § (D)  

The following is an adaptation, with some extensions, of ideas found in [23] and, for 

example, [10], [19]. We have not seen elsewhere the joint use of symmetrization and weak 

convergence tha t  characterizes Theorem 1 C. 
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(i) Let  lq denote the line {r=~, all z}. Given an open or closed set E c / ) ,  write l~. e = 

E N lQ, denote its one-dimensional Lebesgue measure by ]/E.~], and define 

/*.q = {(r, z ) I r =  ~, - l lZ~.0l< z <  �89 It~.01 }, 

where the symbol ~( means < if E is open, and ~< if E is closed, with the understanding 

that  l~.q is empty when 1E.Q is. The Steiner symmetrization o/the set E (about the line z = 0) 

is then defined to be 
E* (J * = /E,  Q �9 

0~<~<a 

I t  is clear that  E1c  E~ implies E[  c E~, and that  E* has the same plane Lebesgue measure 

(and T-measure) as E; one can also show that  if E is open [closed] then E* is open [closed]. 

(ii) Let  C~(D) be the set of non-negative continuous functions that  have compact 

support in D, and let x=(r,  z). The Steiner symmetrization q~* o/ a /unction ~vEC~(D) is 

defined by 
q~*(x) = c if and only if xE{~0-1[c, co)}* -- {~v-~(c, co)}*. (I.1) 

One proves the following lemma with no great difficulty; item (b) is most easily proved in 

the first instance for step functions (to which (I.1) is readily adapted), and (c) is proved 

for functions of one variable in [9], p. 278. 

LEMMA IA. I/~0EC~(D), then ~0*EC~(D) and 

(a) ~0" is an even/unction o/z ,  non-increasing/or z >~0; 

(b) i /g: [0, oo) • [0, a]-+R is continuous (say), then 

f fDg(q~*(x ' , r 'drdz=f fDg 'cp 'x ' , r 'drdz;  

(e) i / h :  (0, a ) ~  [0, c~) is continuous, and ZEC~(D), then 

ff~*Z*h(r)drdz>~ffjxh(r)drdz. 
(iii) To discuss integrals of Diriehlet type, we introduce the set P~(D)cC~(D)  of 

piecewise linear functions (such a function is linear on each of a finite number of closed 

triangles within D), For this particular class the simplest geometrical arguments in [23] 

are sufficient to prove 

LE~MA IB.  I/~vE P~(D) and h: (0, a)-~[O, ~ )  is continuous, then 

S;o Sfo wz , ( ) <. (cp~ + q~) h(r) dr dz. (qJ~ + ,~*~ h r dr dz 
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(iv) We now extend results of the foregoing kind to the space H+(D), which is the 

completion, in the norm H']I of H(D), of the set of non-negative functions in C~(D). 

THEOR:~M IC. (a) For any uEH+(D), there exists a sequence {gn} o/ /unctions in 

P+(D) such that 9n-~u in H(D) as n ~ .  

(b) The sequence {9*} o/symmetrized/unctions is a Cauchy sequence in L~(D, T), and 

without ambiguity we de/ine u* to be the limit o[ {9"} in L~(D, T). 

(c) It /ollows that u*eH+(D), that 9*-~u* weakly in H+(D), and hence that ]]u*ll~ = 

I[u]lp, (p~>l) and IIn*ll ~< Ilull. 

(d) I/g: [0, r x [0, a]-~R is ~ntinuoua and (/or all s >~O, t ~O and rE[0, a]) 

Ig(s,r)-g(t,r)l<const. {l + s~+t~} ]s-t l ,  (c~O), 

then ffDg(u*(x),r)drdz=ffDg(u(x),r)drdz. 

Proo/. (a) There exists a sequence {Zn} of non-negative functions in C~(D) such that  

I[u-gnH-~0. Taking a sequence of increasingly fine triangulations Tk of D by isosceles 

right-angled triangles, we construct 9n.~EP~(D) by setting 9n.k =X~ at each vertex. Then 

as ]c-~ ~ with n fixed, grad 9~.k->grad Z~ uniformly on D, and so 9,.k-~Zn in H(D), for the 

weighting function 1/r in the norm of H(D) is rendered harmless by the compact support 

of Zn. Choosing 9~ = 9,.kn, where IIZn-9~.k~]] < l/n, we have desired sequence. 

(b) By (b) and (c) of Lemma I A, 

so that  l]9" * "< -9n112  llgm--gnll , and {9~*} is a Cauchy sequence in L2(D, ~). One readily 

verifies that, for given u, different approximating sequences {9-} lead to the same element 

u s o f  L~(D, T). 

(c) Lemma IB ,  with h(r)=l/r, shows that  119"11 ~< 119nil. Thus {9"} is bounded in 

H+(D), and there exists a subsequence {9~*j} and an element v*EH+(D) such that,  as 

j*-> (:X~ * * 9nj->v weakly in H(D) and hence strongly in each L~(D, v), p>~l. Therefore 

v*=u * and u*eH+(D). Because ~*~u* in L~(D, v), we have for any zeC~(D) 
T n  

f fD  * f fD 1 (q~*,X)= - -~  9nLZ ~ - -~  u*LZ=(u*,g),  

and such functions )~ are dense in H(D); accordingly, the whole sequence {9"} converges 
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to u* weakly  in H(D) and s t rongly in each L~(D, 7:). Therefore,  the  result  ][~*11~ = II~n[[p 

remains  t rue  in the  limit; also, 

][u*ll ~< lim inf 1199"1[ ~ l im inf ][~0n][ = Ilu[[, 

since ~0n-~u (strongly) in H(D). 

(d) We  app ly  (b) of L e m m a  I A to ~on* and ~on, and note t h a t  the  conditions on g are 

sufficient to  make  the  integral  cont inuous wi th  respect  to weak convergence in H(D), 

(of. the  proof of Theorem 3 A, step (ii)). 

Appendix II. Regularity theory 

Le t  U= {X[r <a}  be the infinite cylinder corresponding to V; we begin b y  consider- 

ing the  Green funct ions 

1 1 
F v = 4 ~  R yv(X~ and F = 4 - ~ - y ( X ~  (R=[X-X~ 

of the  Dirichlet  problem for the Laplace  opera tor  in U and V respectively;  Fv is re levant  

because of (II.1) below. I n  addi t ion to the  usual  s y m m e t r y  and  posi t iv i ty  propert ies  

(~(X, X ~ = y ( X  ~ X) and  0 < y  < 1/4z~R on V • V), these funct ions have  the  following be- 

haviour.  

(a) Fv depends  only on r, r ~ 0 - 0  ~ and  z - z ~  it  is an even funct ion of 0 - 0  ~ and  z - z  ~ 

and has period 2~ in 0 - 0 %  

(b) Le t  Jo.1 =2 .40  ... denote  the  smallest  posit ive zero of the  Bessel funct ion J0. There  

exists a cons tant  K such tha t  

Fu(X ~ X~ ~ < g e x p  (--)O.l[Z--z~ for [ z - z ~  >~a, 

and  similarly for the modulus  of each der iva t ive  of Fv. 

(c) Le t  V ~ = { X [ r < a - 6 }  and V ~ = { X e V I r < a - 8 } ,  where 8 > 0 .  Then Yv is (real) 

analyt ic  on ~" • Us, and harmonic  in each variable (A~ = A F v = 0  ) the re .  

(d) Wi th  (X ~ X) e 17 • l? and X ~ 4~X, and  with  the same values of X ~ X ~ X1 and X~ 

implied on each side of the  equation,  we have  

F(z ~ z) = Fv(z - z ~ - Fu(Z + z ~ - 2b) + Fv(z - z ~ - 4b) - Fv(z + z ~ - 6b) +. . .  

- F v ( z + z ~ 1 7 6 2 4 7 1 7 6  ..., (II .  1) 

for it is readily verified t ha t  this formula  makes  F = 0 on z = + b. The  series converges ra- 

pidly because of (b). Wi th  the  no ta t ion  X = (r, 0, z), denote  the  p r ima ry  image points  of 

X ~ with respect  to the  planes z = + b b y  
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X (1) = ( r  0, 0 0, 2 b - z  ~ and X (2~ --- (r ~ 0 ~ - 2 b - z ~  

and let R j =  [ X - X ( J )  I . I t  then follows from (c) and (II.1) tha t  

, (1 1 1) 
F ( X ~  R1 R-2 + A ( X ~  (I1.2) 

where A is analyt ic  on 17 • 17~, and harmonic  in each variable there. 

(e) We can also estimate derivatives like @/a t  ~ on V • 17 by  means of the max imum 

principle, wi thout  using (II.1). To this end, we define the pseudo-image points 

X TM = (2a - r  ~ 0 ~ z~ X (4) = ( 2 a - r  ~ 0 ~ 2b - z  ~ and X (5~ = (2a - r  ~ 0 ~ - 2 b  -z~  

One can show tha t  

1 < ~ < .  3 a - r ~  
a+ r ~ 

say, for r ~  all z - z  ~ 

and for r ~ < a, r ~< a, I z - z ~ I ~> 2 a;  

and that ,  for fixed X~ U, the funct ion (BSl4zt)~(llRs)l~r ~ which is a positive harmonic  

funct ion of X E U, dominates  + &yv/ar ~ on ~U and hence (by the max imum principle) on 

U. I n  this way,  one ul t imately obtains the estimate 

[ V ~ 1 7 6  + ~  on V x ~ ,  (II.3) 
j = l  j=B 

where Vj is the gradient  operator  {~/aX~J)}, i = 1, 2, 3, and c is a constant  depending only 

on b/a, with c = 1 for b ~>a. I t  follows immediate ly  {since Rj ~> R on V • 17 and B ~<3) tha t  

1 
IV~176 ~ on V • (II .4)  

where the constant  depends o~rly on b/a. 

o 

L ~ ~ M A I I  A. I/(yJ, ,~) is a generalized solution, the vector potential a E Wl. ~ (V) and has 

the representation 

~(X ~ = 2 f vF(X ~ X) [ - X2, X 1, 0]/(~F) dX, ( ~  = ~ ( x ) ) .  (II.5) 

Proo]. Tha t  eEWl.~(V) was noted after {2.11). To prove {II.5), we shall choose the 

test  funct ion ~ in (3.1) to be a mollified Green funct ion for L in D. Let  # E C~(R) be a non- 

decreasing function such that/~(t) = 0 for t ~< �89 and/~(t) = 1 for t >~ 1, and define 
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1 
F~(X~176176176 ), ( n = l , 2  . . . .  ), (II. 6 a) 

f 
~ 

G~(x ~ x) = r~ cos co F ,  (x ~ x, ~o) deo. (II .6b) 

For the moment we restrict x 0 to that  rectangular subset, say Dn, of D whose distance 

from aD is 2/n. Then l~n=l ~ for d(x, ~D)< 1/n, and one can verify that  ~Gn/ar and ~G,/az 

are 0(r) for r-~0, and that  G~(x ~ .) belongs to H(D). Accordingly, we choose ~0(x) = G,(x ~ x) 

in (3.1) and multiply by - s i n  OO/r ~ and by cos O~ ~ to obtain, after a little manipulation 

fv VPn (X ~ X) .  V[a~, =~, 0] dX = 2 f vP . (X ~ X) [ - X2, X,, 0] l(tF) dX, 

where V = {~/~X~} and X ~ belongs to the figure of revolution Vn generated by Dn. In- 

tegrating by parts on the left-hand side, and introducing the notation, for X ~ E V, 

fvAF=(X~ X) a(X) dX, O~n ( X ~ ) 

. F [ r . ( z ~  
(X~ -z)v[F (XO, X)J [-X*'X,,O]I(tF)dX' 

we see that  ~n(X~ ~ for X~ Vn. I t  is sufficient to prove that  ~ = ~  in L~(V), and 

with I['H2,v denoting the norm of L2(V) for the moment, we have 

Now the kernel - A F n  in the definition of ~n is a mollifying (or 'averaging') kernel: 

(II.6a) implies, since Ay =0, that  - A F ~  vanishes outside the ball {R < 1/n}, and the di- 

vergence theorem shows that  the integral of - AF,  over this ball is 1, while the integral 

of [AF~ I is easily bounded. I t  follows from standard theory that  

[[r and <ll ,ll .v_v-+O a s ~ .  

We easily bound sup~]~.(xo)] and supv [~(X ~ 1 7 6  by means of the Schwarz 

inequality, since I Fn I~< 1/4~R, F = Fn for R >~ 1/n, and/( tF) = ](tF+) is in L2(V) with a norm 

that  depends only on ], V and ~ (cf. the proof of Theorem 3A). Then ]l~nn,.v_v -~0 and 

THEOREM II  B. The vector potential ,*e@~+~(~) and satisfies (2.10a, b) pointwise. 

Proo]. The bound described in Lemma I I  A for supv I~n(X~ I now serves also for 

~(X~ and, since y ) = X l a ~ - X ,  al, the functions v2, tF and ](tF) are also bounded point- 
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wise. I t  is then easy to use the estimate (II.4) to show that  ~ is uniformly Lipschitz con- 

tinuous on V (indeed, this would follow if/(~F) were merely in L~(V), p > 3). For consider 

two points X 0 and X'=XO+h in F, and write R'= IX-X ' I ;  bounding IF(X', X ) -  

F(X ~ X)I for R>~21h I by means of (II.4), we obtain 

{=*'X~176 {J:<=l~. ( R +  ~ ' ) d X +  o (vn<n>=l~l, ~]h{ dX} 

< const. {hi, (i= l, g), (II.7) 

where the constant depends only on the data of the problem. 

This result allows us to extend ~ to 17 as a Lipschitz continuous function, and since 
o 

then belongs to Wl.~ (V) N C(17), it vanishes on ~V. Then ~F is Lipschitz continuous and 

equal to -�89 on r=a, and there exists a number ~>0  such that  for r>~a-~ we 

have ~F ~< 0 and hence/(~F) = 0. Therefore we can restrict X to V$ in (II.5) and use the form 

(II.2) of F. But  this means that  the component ~(X~ say, can be regarded as the sum 

of three Newtonian potentials 

u0 (X ~ = ~ a ~ Xl/(~F) dX, 

 fv x1/( )dX, (?= 1, 2), 

and of a fourth function that  is clearly analytic and harmonic on [7 because the kernel A 

is. Moreover, the density function X1/(~F) of the Newtonian potentials belongs to C~(~),  

by (2.7c) and the Lipschitz continuity of LF, and is zero on ~V$. Under these circumstan- 

ces it is classical that  ujEC~+~(Ra), (j =0, 1, 2), that  u 0 satisfies the second component of 

the differential equation (2.10a), and that  u I and u~ are harmonic functions of X~ 7 

(since X (1) and X (~) are then outside V~). 

THEOREM IIC.  The stream /unction ~flEC~§ and satisfies (2.6a, b)pointwise; 

also, y)=O(r ~) and yJ~=O(r) /or r~O. 

Proo/. Since ~o(x)=Xla2--X20~ 1 and ~EC2+~(17), it is clear that  ~EC~+~(/)) and that  

v2=0 on r = 0 ;  since also g = 0  on aV, y~ vanishes on ~D. To check the differential equa- 

tion (2.6a) we merely transform (2.10a), recalling that  r >0  in D. Finally, 

V~2= - - ~  cos0, - - ~  r ' 

and the condition ~ E Cl(l?) is therefore sufficient to bound ~p/r 2 and ~p~/r uniformly on D. 
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Appendix III. The functional $ on the space H(II) 

In this Appendix we show that  the functional J is continuous on H(I-[), and hence 

that  the solution ~p for the half-plane H maximizes J over the sphere S(~]) in H(II). Here 

H(H),  S(~/) and J(u) are defined as in sections 2.4 and 3.1, but  1] replaces D; the norm 

]].]] is now that  of H(II).  

LEM~tA II IA.  Let O(x)=r189 where cfeC~~ and IIc?ll2<<.~. There exist 

numbers K~= K~(W, k, ~) and K = K (  W, ~7) such that 

(a) f f  p> l, and (b) f f  r (r K (III. l a ,  b) >5 <'% Q-s" 

Proo[. (a) Le t / ( t )  =p(Mt) p-1 for t > 0; let ~o be the corresponding solution of (2.6) for 

a domain D containing the support of ~; and suppose that  H~0H ~ =~]. Then 

M -lff ", 

where t2 is as in (5.12). The last integral is bounded in terms of r., z. and II~c'+]] by (2.13), 

and HIF+[[~<~7 by (5.5). If [1~0[12<~7, define ~ =~11/~0/[1~0[]; then J ( ~ ) < J ( ~ ) a n d  ]]~H~=~. 

(b)  Again we note that  e?EH(D) for som e D, and refer to Lemma hA. Let  lr 

{zl(r, z)eA~}; since the set (0, r)• is a subset of B~ and has y-measure �89 we 

deduce from (5.6) that  

�89 <llvll,. (111.2) 

Now Ir is a countable union of open disjoint intervals I , ,  say, of length I I.I, such that  

(I) + =0 at the end-points of each. By a well known inequality ([9], p. 185] 

a~ J1, ,  

so that  

~,~" ( n J In J 7~ J Iq~, r 

by (III.2). Multiplying b y r  and integrating with respect to r over {r>o}, we obtain 

(IIL1 b), with K =4~a/~zW 4. 

THEORE~ I I IB .  The /unctional J is uni/ormly continuous on any bounded subset o/ 

H(H). 

Proo/. On any bounded set B c g( [ I )  we have [[~[[~ ~ ~ for some ~7, and it suffices to 

prove J uniformly continuous on the set B N C~(H), which is dense in B, Let  ~ and y~ be 

any two functions in B A C~r (in this proof-~p :is not  nee6ssarily a solution); then 

4 - 7 4 2 9 0 8  A c t a  rnathemat ica  132. Imprim5 lo 18 Mars 1974 
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? ?  

Is(v) - g(v/)[ <<. J J n { 1  + (Me+) m + (MaF+) ~} ](I )+ - ~F+[ 

< {IA,  u A~lt + M'(IIr + II~+llrm)} I1r + -' , '11~, (iii.a) 

by the Schwarz inequality. Now ]A, U A~[ <<.2~/W 2 by (5.5), and II(I)+ll~ and II'F+II~ 

are bounded by (III . la) .  Sine. I r 2 4 7  I < I ~ - ~ l  at any point, we a~so have 

l ie § - ~F+II~ < II~-  ~ll~.<,<0> + lie § + II'~ "+ll~.<,>~> 

< 2-*d II~- ~ll § 2K�89 (II1.4) 

where the term in r comes from integrating the estimate 

f r r. 12 l ' .  

~   r:Jo 

while the term in 1/Q comes from (111.Xb), Choose Q=const. II~-WlI-~'~; then (m.3 )  and 

(111.4) show that  

IJ(r  <u]]9-Y~l[ x~a, where u =  u([, W,/c, ~/). 

T H ~ 0 R E ~  IIIC. The solution ~d de/ined by Lemma 5F maximizes J(u) over the sphere 

S(~) in H(H). 

Proo/. As in section 5.3, consider an expanding sequence {Dj} of domains tending to 

rI; let sj(~/)= {u EH(D~)]]Iul[ ~ =~?}; let Y~s be our maximizer of g over S,(~/); and write 

supj J(~0j) = a, supuEs~) J(u) = s. 

The sequence {J(~pj)} is non-decreasing because v/l, extended to be zero outside Dj, belongs 

to S~+1(~); therefore J(yzj)~a as j-~ ~ .  Since vdj~-*v ? in C1+~(~), we know that  J(~os~)-+J(y) ). 

Accordingly, J (v/ )=a and a ~< s because ~0 E S(r/). 

On the other hand, there exists a sequence {an} in SO?) such that  J(un)-~s as n-~ co, 

and because of Theorem I I I  B, we can approximate each u,  by a function ~0n E S(~/) fl C~ (II) 

such that  J(qDn)~s. But each q~ESj(~) for some j=j (n) ;  therefore J(~=)~<a for each n, 

and if a<s ,  then J(q),)+-~s. Hence a=s .  
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