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A globally and quadratically convergent primal–dual
augmented Lagrangian algorithm for equality constrained

optimization
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We present a primal–dual augmented Lagrangian method to solve an equality constrained minimization
problem. This is a Newton-like method applied to a perturbation of the optimality system that follows from
a reformulation of the initial problem by introducing an augmented Lagrangian function. An important
aspect of this approach is that, by a choice of suitable updating rules of parameters, the algorithm reduces
to a regularized Newton method applied to a sequence of optimality systems. The global convergence
is proved under mild assumptions. An asymptotic analysis is also presented and quadratic convergence
is proved under standard regularity assumptions. Some numerical results show that the method is very
efficient and robust.

Keywords: equality constrained minimization; primal–dual algorithm; augmented Lagrangian method;
quadratic convergence

AMS Subject Classification: 90C26; 90C30

1. Introduction

Consider the following optimization problem with equality constraints:

minimize
x∈Rn

f (x) subject to c(x) = 0, (1)

where f : R
n → R and c : R

n → R
m are smooth. In this paper, we describe an algorithm that is

globally and locally quadratically convergent under standard assumptions on the functions f and
c. The algorithm is based on an augmented Lagrangian method in which primal–dual iterates are
generated.

Let us define the augmented Lagrangian function by

Lσ (x, λ) = f (x) + λ�c(x) + 1

2σ
‖c(x)‖2,

where λ ∈ R
m is the vector of Lagrange multipliers associated with the constraints of (1) and

σ > 0 is a penalty parameter. It is well known that, under some regularity assumptions, if x∗

is a local minimum of (1) and λ∗ is the corresponding Lagrange multiplier, then x∗ is a strict
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2 P. Armand and R. Omheni

local minimum of x �→ Lσ (·, λ∗) for all σ sufficiently small, see, e.g. [20, Theorem 17.5]. The
first-order optimality condition for the minimization of the augmented Lagrangian is

g + A

(
λ + 1

σ
c

)
= 0,

where g is the gradient of f and A is the transpose of the Jacobian matrix of the constraints. To
simplify the notation, the dependencies with respect to x are removed. Introducing the variable
y = λ + (1/σ)c, the above equation can be rewritten under the form

g + Ay = 0 and c + σ(λ − y) = 0.

The basic idea behind our algorithm is to apply a Newtonian method to the solution of this
system, while updating the parameters λ and σ in a manner that guarantees strong convergence
properties. The linear system to solve at each iteration is of the form

(
H A
A� −σ I

)(
dx

dy

)
= −

(
g + Ay

c + σ(λ − y)

)
, (2)

where H is equal to the Hessian of the Lagrangian, or an approximation to it. If at some iter-
ation we choose λ = y, this linear system appears as a regularized Newton method applied to
the first-order optimality conditions of (1). This means first that it is not necessary that the Jaco-
bian of constraints to be of full rank to get a nonsingular system. In addition, this also means
that a quadratic rate of convergence can be expected by an appropriate updating strategy of the
parameters σ and λ.

Augmented Lagrangian methods have been fully studied in the past, see, e.g. [5,10]. Some effi-
cient software like LANCELOT-A [8,9] and ALGENCAN [1,2,6] have been developed. There
is a recent revival of algorithms based on an augmented Lagrangian formulation in the context of
primal–dual methods [16,18] or sequential quadratic programming methods [19]. An interesting
feature of an augmented Lagrangian method is its regularization property and this leads to the
formulation of stabilized SQP methods, see, e.g. [14] and the numerous references given within
[19]. Note that, in the context of primal–dual algorithms, this regularization property is not spe-
cific to an augmented Lagrangian method, but also can be derived by introducing a quadratic
penalty, see [4,7,17,26]. In these algorithms, the linear system to solve at each iteration looks
like the above linear system but without the parameter λ. This means that the equality con-
straints c = 0 are perturbed and so transformed into an equation of the form c = σy. The method
can then be viewed as a path-following algorithm and a superlinear convergence property can
be proved [4,26]. In addition, we have observed in [4] that this is particularly efficient for solv-
ing a problem with a rank deficient Jacobian of constraints, which is due to the regularization
property just mentioned. The inconvenience of this approach is that it is scale dependent of the
constraints and is particularly sensitive when the set of multipliers is unbounded. In our new
approach, this inconvenience disappears, because each time the multiplier is updated according
to λ = y, the constraints are unchanged in the right-hand side of the linear system. As a con-
sequence, the notion of trajectory parameterized by σ no longer holds, which greatly simplifies
the asymptotic analysis. The quadratic convergence can be proved on condition that the penalty
parameter satisfies σ = �(‖(g + Ay, c)‖). Note that the local quadratic convergence of a primal–
dual augmented Lagrangian method has been already proved in [21], but the analysis is carried
out without a globalization strategy as we propose in the present paper.

To compare with a traditional augmented Lagrangian algorithm, like ALGENCAN or
LANCELOT-A, and also with the algorithm implemented in [4], the main features of our new
algorithm are summarized as follows.
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Optimization Methods & Software 3

• Our algorithm is structured like a primal–dual method, like in [4], but unlike traditional aug-
mented Lagrangian algorithms. The control of the iterates is done in both primal and dual
spaces during the whole minimization process.

• Under mild assumptions, our new method is asymptotically reduced to a sequence of regu-
larized Newton steps applied to the original optimality system, leading to a quadratic rate of
convergence. While in [4] the method is asymptotically reduced to a sequence of regularized
Newton steps applied to a perturbed optimality system, leading only to a superlinear rate of
convergence.

• The updates of the multiplier estimate and of the penalty parameter, depend on the reduction of
the constraint violation, as in classical augmented Lagrangian methods. However, our update
condition is different from those already proposed in the literature. Our choice is motivated by
the fact that the update λ = y must be executed as often as possible before the solution of (2).

• The update formula of the Lagrange multiplier estimate is done by using the value of the dual
variable, while in a classical augmented Lagrangian algorithm, the update formula is of the
form λ+ = λ + (1/σ)c.

• The update of the penalty parameter is dynamic, in the sense that the value of σ depends on
the norm of the residual of the original optimality system, while in [4] the update formula of
σ depends only on its current value.

• The penalty parameter is allowed to increase during the inner iterations, like in [4]. This leads
to an improvement of the numerical performances of our method.

The paper is organized as follows. The next section is devoted to the description of the
algorithm. Its global and asymptotic convergence properties are studied, respectively, in Sec-
tions 3 and 4. We give in Section 5 the implementation details of the proposed method. Section 6
reports our numerical experiments to show efficiency of the proposed method. It includes a com-
parison between the new method and the one proposed in [4] and other augmented Lagrangian
based codes, namely ALGENCAN and LANCELOT-A.

1.1 Notation

For two real vectors x and y of the same length, the Euclidean scalar product is denoted by x�y.
The associated norm is ‖x‖ = (x�x)1/2. The infinity norm of x is ‖x‖∞ = maxi |xi|. The open ball
of radius δ and center x is denoted by B(x, δ). For a rectangular matrix M, the induced matrix
norm is defined by ‖M‖ = max{‖Mx‖ : ‖x‖ ≤ 1}. The inertia of a real symmetric matrix M is the
integer triple In(M ) = (ι+, ι−, ι0) giving the number of positive, negative and null eigenvalues.
The matrices Mk ∈ R

n×n are said to be uniformly positive definite for k ∈ N, if there exists ε > 0
such that for all x ∈ R

n and all k ∈ N, x�Mkx ≥ ε‖x‖2.
The positive part of a real number t is the function defined by t+ = max{t, 0}. Let {ak} and

{bk} be two nonnegative scalar sequences. We write ak = O(bk) if there exists a constant C > 0
such that ak ≤ Cbk for k ∈ N large enough. In this case, we also write bk = �(ak). If we have
both ak = O(bk) and ak = �(bk), we write ak = �(bk). We will also use the notation ak = o(bk)

to mean that there exists a sequence {εk} converging to zero such that ak = εkbk for k ∈ N large
enough.

Let x ∈ R
n. We denote by g(x) ∈ R

n the gradient of f at x and by A(x) ∈ R
n×m the transpose

of the Jacobian matrix of c at x. Let y ∈ R
m and w = (x, y). By defining

F(w) =
(

g(x) + A(x)y
c(x)

)
,

the first-order optimality conditions of problem (1) are F(w) = 0.
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4 P. Armand and R. Omheni

For an iterate wk = (xk , yk) ∈ R
n+m, k ∈ N, we use the notation fk = f (xk), ck = c(xk), gk =

g(xk), Ak = A(xk), Fk = F(wk) and Lk = ∇2
xxL(wk), where L is the Lagrangian function L(w) =

f (x) + y�c(x). When we use a superscript to denote an iterate, say wi = (xi, yi), we will also
denote Ai = A(xi) and so on. In the same manner, we will denote A∗ = A(x∗), ḡ = g(x̄), etc.

2. Algorithm

As we said in the introduction, the optimality condition of the augmented Lagrangian can be
formulated as 	(w, λ, σ) = 0, for w = (x, y) ∈ R

n+m, λ ∈ R
m, σ > 0, where

	(w, λ, σ) =
(

g(x) + A(x)y
c(x) + σ(λ − y)

)
.

Our algorithm is based on the solution of this system with a Newton-like method, while updating
the parameters λ and σ in order that at the limit we recover a solution of F = 0. As usual with
primal–dual methods, our algorithm uses two kinds of iterations. At an outer iteration, the two
parameters are updated to new values, a linear system like (2) is solved and a full Newton step
is performed. If the residual ‖	‖ is deemed sufficiently small, then the iteration is completed,
otherwise a sequence of inner iterations is performed to reduce this residual sufficiently. The
inner iterations are carried out with a backtracking line-search algorithm applied to the merit
function

ϕλ,σ ,ν(w) = Lσ (x, λ) + ν

2σ
‖c(x) + σ(λ − y)‖2.

This merit function depends on the primal–dual variable w, the Lagrange multiplier estimate
λ which is fixed during the inner iterations, the penalty parameter σ > 0 which is allowed to
increase by means of a procedure of Armand et al. [4], and on the scaling parameter ν > 0
whose value is determined at the beginning of the inner iterations. This merit function, introduced
by Robinson [22] and Gill and Robinson [18], is called generalized primal–dual augmented
Lagrangian. It is easy to see that w is a stationary point of ϕλ,σ ,ν if and only if 	(w, λ, σ) = 0.
An interesting property, proved in [18, Theorem 3.1], is that if (x∗, y∗) is a stationary point of (1)
at which the second-order sufficient conditions hold, then (x∗, y∗) is an isolated unconstrained
minimizer of ϕλ,σ ,ν for λ = y∗, ν > 0 and a sufficiently small σ > 0. The following property
gives a sufficient condition to guarantee that the solution of (2) is a descent direction for the
merit function.

Lemma 2.1 Let λ ∈ R
m, ν > 0, σ > 0 and w ∈ R

n+m. Let d = (dx, dy) ∈ R
n+m be a solution of

the linear system (2), then

∇ϕλ,σ ,ν(w)�d = −dx
�

(
H + 1

σ
AA�

)
dx − ν

σ
‖A�dx − σdy‖2.

If H + (1/σ)AA� is positive definite and 	(w, λ, σ) is nonzero, then d is a descent direction of
the merit function ϕλ,σ ,ν at w, that is ∇ϕλ,σ ,ν(w)�d < 0.

Proof Equation (2) gives g = −Hdx − A(y + dy) and c + σ(λ − y) = −A�dx + σdy. The for-
mula of the directional derivative is obtained by substituting these expressions into the following
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Optimization Methods & Software 5

one:

∇ϕλ,σ ,ν(w)�d = g�dx + 1

σ
(c + σλ)�A�dx + ν

σ
(c + σ(λ − y))�(A�dx − σdy).

The positive definiteness assumption implies that ∇ϕλ,σν(w)�d ≤ 0. This scalar product is
equal to zero if and only if dx = 0 and A�dx − σdy = 0, and thus d = 0, which implies that
	(w, λ, σ) = 0. �

It is well known that the inertia of the matrix of the linear system (2) is equal to (n, m, 0) if and
only if the matrix H + (1/σ)AA� is positive definite (see, e.g. [15, Lemma 4.1]). An important
feature of our algorithm is that this inertia is controlled not only at an inner iteration to guarantee
the descent property, but also at an outer iteration to avoid convergence to stationary point that
would not be a minimum.

2.1 Outer iteration

We now present the outer iteration of our algorithm. The algorithm is initialized with a starting
point w0 := (x0, y0) ∈ R

n+m, the Lagrange multiplier estimate λ0 = y0, a penalty parameter σ0 >

0, three constants a ∈ (0, 1), � ∈ N and τ ∈ (0, 1). The iteration counter is set to k = 0 and an
index ik is initially set to 0. The iteration is described as Algorithm 1.

Algorithm 1 (kth outer iteration)

(1) Choose ζk ≥ 0, rk > 0 such that {ζk}→0 and {rk}→0. Set ηk = ‖ck‖ + ζk . If

‖ck‖ ≤ a max
{
ηij : (k − �)+ ≤ j ≤ k

}
, (3)

then go to Step 2. Otherwise, go to Step 3.
(2) Choose σ+

k ≤ σk . Set sk = max{σ+
k , rk}, λk+1 = yk , ik+1 = k and go to Step 4.

(3) Choose σ+
k ≤ min{τσk , rk}. Set sk = rk , λk+1 = λk and ik+1 = ik .

(4) Choose a symmetric matrix Hk such that In(Jk) = (n, m, 0), where

Jk =
(

Hk Ak

A�
k −σ+

k I

)
.

Compute w+
k by solving the linear system

Jk(w
+
k − wk) = −	(wk , λk+1, σ+

k ).

(5) Choose εk > 0 such that {εk}→0. If

‖	(w+
k , λk+1, σ+

k )‖ ≤ εk , (4)

then set wk+1 = w+
k and σk+1 = σ+

k . Otherwise, apply a sequence of inner iterations to
find wk+1 and σk+1 ∈ [σ+

k , sk] such that

‖	(wk+1, λk+1, σk+1)‖ ≤ εk . (5)

As in a classical augmented Lagrangian algorithm, see, e.g. [10, Algorithm 14.1.1], the param-
eter update of the augmented Lagrangian depends on the constraint violation. If inequality (3) is
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6 P. Armand and R. Omheni

satisfied, the progress towards the feasibility is sufficient and the multiplier estimate is updated
according to λk+1 = yk . In particular, this implies that the right-hand side of the linear system
solved at Step 4 is reduced to Fk , the iteration is then based on a regularized Newton step on the
original optimality system. This behaviour is expected to get a quadratic convergence. To this
aim, an appropriate choice of the relaxation parameter ζk must be used. This choice is given in the
statements of Theorem 4.5. If (3) is not satisfied, then the multiplier estimate is unchanged. For
k ≥ 1, ik is the index of the last iteration prior to k at which the Lagrange multiplier estimate has
been updated at Step 2. We then have λk = yik for all index k. For the penalty parameter σk , two
strategies are implicitly included in the description of our algorithm. The first one is to reduce
the penalty parameter at each iteration so that the sequence {σk} converges to zero, a condition to
get a quadratic convergence. Since the penalty parameter is allowed to increase during the inner
iterations, the sequences {rk} and {sk} are used to force {σk} to converge to zero. The second
strategy keeps the penalty parameter constant at Step 2, as in a typical augmented Lagrangian
algorithm. Note that if σ+

k = σk at Step 2 and if Step 3 is executed only finitely many times,
then for all k large enough we have sk = σ+

k , so that σk can remain constant for these iterations.
This is the reason of the formula for the choice of sk at Step 2. Note also that in that case, only
a linear rate of convergence can be expected. Whatever the strategy for choosing σk , the global
convergence of the overall algorithm is guaranteed, see Theorem 3.3. The following lemma will
be useful to prove it.

Lemma 2.2 If Step 3 of Algorithm 1 is executed infinitely often, then the sequence {σk}
converges to zero.

Proof Let K = {k0, k1, . . .} be the infinite set of indices of the outer iterations in which Step 3
is executed. Let j ∈ N. By the choices of sk at Step 3 and σk+1 at Step 5, we have σkj+1 ≤ rkj . By
the choices of sk at Step 2, σk+1 at Step 5 and the fact that σ+

k ≤ σk , for all 1 ≤ l ≤ kj+1 − kj − 1
we have

σkj+l+1 ≤ max{σkj+l, rkj+l}
≤ max{σkj+1, rkj+1, . . . , rkj+l}
≤ max{rkj , rkj+1, . . . , rkj+l}.

It follows that

max{σk+1 : kj ≤ k < kj+1} ≤ max{rk : kj ≤ k < kj+1}.
The convergence to zero of {rk} implies that the right-hand side of this inequality goes to zero,
therefore the whole sequence {σk} goes to zero. �

The choice of the tolerance εk at Step 5 is critical for the efficiency of the algorithm. This has
been already discussed in detail in [4]. We analyse in Section 4 the case for which {σk} tends
to zero and give a condition on εk to obtain a quadratic convergence, see Theorem 4.5. For the
numerical experiments, the choice of this tolerance is described in Section 6.

2.2 Inner iteration

An important feature of the algorithm developed in [4] is it can increase the penalty parameter
during inner iterations while guaranteeing its global convergence. This allows to alleviate the bad
effect of ill-conditioning when the penalty parameter becomes very small. The same procedure
can be extended to our framework. If the current value σ is smaller than σ̂ = ‖c‖/‖λ − y‖, that
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Optimization Methods & Software 7

is, the minimum point of the convex function σ �→ 1/σ ||c + σ(λ − y)||2, then σ can be increased
up to σ̂ .

Let k ∈ N be the current value of the outer iteration counter and we consider its inner iterations
at Step 5 of Algorithm 1. We simplify the notation by dropping the outer iteration counter. The
inner algorithm is initialized with a starting point w, a scaling parameter ν > 0 and a Lagrange
multiplier estimate λ which is fixed during the iterations. We also choose σ and s such that
σ+

k ≤ σ ≤ s ≤ sk and a constant ω ∈ (0, 1).

Algorithm 2 (one inner iteration)

(1) Choose a symmetric matrix H such that the inertia of the coefficient matrix of the linear
system (2) equals (n, m, 0) and solve (2) to compute the direction d.

(2) Starting from α = 1, employ a backtracking line-search to find α ∈ (0, 1] such that

ϕλ,σ ,ν(w + αd) ≤ ϕλ,σ ,ν(w) + αω∇ϕλ,σ ,ν(w)�d,

then set w = w + αd .
(3) If λ − y �= 0, then set σ̂ = ‖c‖/‖λ − y‖, else set σ̂ = +∞. If σ̂ ≤ s, then set σ =

max{σ̂ , σ }, else leave σ unchanged.

The choice of the matrix H at Step 1 ensures that the matrix H + (1/σ)AA� is positive definite.
Thanks to Lemma 2.1, the solution d of (2) is a descent direction of the merit function. The
computation of the step-length at Step 2 is done by using the so-called backtracking line search,
see, e.g. [20, Algorithm 3.1], which guarantees that the number of backtracking steps is finite.

Theorem 2.3 Suppose that infinite sequences {wi} and {σ i} are generated by Algorithm 2.
Assume that the sequences {Ai} and {Hi} are bounded and that the matrices Hi + (1/σ i)AiAi�

are uniformly positive definite for i ∈ N. Then, either the function value f i goes to −∞ or a
subsequence of {	(wi, λ, σ i)} goes to zero.

Proof The proof relies on the proof of Armand et al. [4, Theorem 1]. For the parts of the proof
which are the same, the reader is referred to [4].

The proof is based on contradiction, by supposing that {f i} is bounded below and that
lim inf ‖	(wi, λ, σ i)‖ > 0. The boundedness of {Ai} and {Hi}, the fact that {σ i} is upper-bounded
by s, imply that there exists ε > 0 such that the directions generated by Algorithm 2 satisfy
‖di‖ ≥ ε for all i ∈ N. Let us denote by ϕi the merit function ϕλ,σ i,ν . The proof is divided into
three parts.

Part 1. Thanks to the uniform positive definiteness of the matrices Hi + (1/σ i)AiAi�, the
boundedness of the sequence {Ai} and the formula of the directional derivative of the merit
function given by Lemma 2.1, it is first proved that there exists θ > 0 such that for all i ∈ N,
−∇ϕi(wi)�di ≥ θ‖di‖2. See Armand et al. [4].

Part 2. This part proves that {wi} converges to some w̄ and that {αi} tends to zero. Let i ∈ N.
The choice of the penalty parameter at Step 3 implies that

1

σ i+1
‖ci+1 + σ i+1(λi+1 − yi+1)‖2 ≤ 1

σ i
‖ci+1 + σ i(λi+1 − yi+1)‖2.

We then have ϕi+1(wi+1) ≤ ϕi(wi+1). Combining this with the Armijo inequality of Step 2 yields
εθω‖wi+1 − wi‖ ≤ ϕi(wi) − ϕi+1(wi+1). By adding the last inequality over i from 0 to p − 1 for
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8 P. Armand and R. Omheni

p ∈ N, we obtain

εθω

p−1∑
i=0

‖wi+1 − wi‖ ≤ ϕ0(w
0) − ϕp(w

p).

By noting that ϕp(wp) = f p + 1/2σ p‖cp + σ pλ‖2 − σ p/2‖λ‖2 + ν/2σ p‖cp + σ p(λ − yp)‖2 ≥
f p − s/2‖λ‖2, where s is used at Step 3 as an upper bound on σ i and by using the assump-
tion that {f i} is bounded below, we deduce that the above series is absolutely convergent. This
shows that {wi} converges to a point w̄ and since {di} is bounded away from zero, the sequence
of backtracking step-lengths {αi} goes to zero.

Part 3. As in [4], by using again the Armijo inequality, the fact that {αi} goes to zero and
the mean value theorem, we show that there exists a sequence {w̃i} converging to w̄, such that
for all i large enough ∇ϕi(w̃i)�di − ∇ϕi(wi)�di ≥ −(1 − ω)∇ϕi(wi)�di. Applying the Cauchy–
Schwarz inequality and using the inequality proved in the first part, we obtain for i large
enough ‖∇ϕi(w̃i) − ∇ϕi(wi)‖ ≥ (1 − ω)θ‖di‖. We then define the functions h1 = f + ((1 +
ν)λ − νy)�c, h2 = ν/2‖λ − y‖2 and h3 = (1 + ν)/2‖c‖2, such that ϕi = h1 + σ ih2 + (1/σ i)h3.
The latter inequality implies that for i large enough(

1 + s + 1

σ 0

)
max{‖∇hk(w̃

i) − ∇hk(w
i)‖ : k = 1 . . . 3} > (1 − ω)θ‖di‖.

By taking the limit, we deduce that the sequence {di} converges to zero, a contradiction which
concludes the proof. �

3. Global convergence analysis

For the analysis of the global convergence of Algorithm 1, we consider the following technical
lemma. The proof is given in the appendix .

Lemma 3.1 Let {ζk} be a sequence of nonnegative real numbers converging to zero, a ∈ (0, 1),
� ∈ N and K be an increasing sequence of nonnegative integers. Suppose that {βk} is a sequence
of positive real numbers such that

βk+1 ≤ a max{βi : (k − �)+ ≤ i ≤ k} + ζk for all k ∈ K, (6)

βk+1 = βk for all k ∈ N\K. (7)

Then the sequence {βk} converges to zero.

The following lemma will also be used to prove the global convergence properties of
Algorithm 1. It shows that if the update condition of the multiplier estimate is satisfied infinitely
many times, then a subsequence of primal iterates becomes asymptotically feasible.

Lemma 3.2 Let K be an increasing sequence of nonnegative integers. If (3) is satisfied for all
k ∈ K, then the subsequence {ck}k∈K converges to zero.

Proof By adding ζk on both sides of inequality (3), recalling that ηk = ‖ck‖ + ζk and that ik+1 =
k whenever k ∈ K, for all k ∈ K we have

ηik+1 ≤ a max{ηij : (k − �)+ ≤ j ≤ k} + ζk .

Knowing that ik+1 = ik for k /∈ K and setting βk = ηik for k ∈ N, Lemma 3.1 can be applied and
thus {ηk}k∈K tends to zero. �
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Optimization Methods & Software 9

The following theorem analyses the possible outcomes when Algorithm 1 generates an infinite
sequence {wk}. We assume that Algorithm 2 successfully terminates, so that the stopping test (5)
is satisfied.

Theorem 3.3 Suppose that Algorithm 2 successfully terminates and let {wk} be the sequence
generated by Algorithm 1. Assume that the sequence {(gk , Ak)} is bounded. Then the iterates
approach dual feasibility, more precisely {gk + Akyk} tends to zero. Furthermore, either the pri-
mal iterates approach feasibility in the sense that zero is a limit point of {ck}, or they approach
stationarity of the measure of infeasibility, {Akck} tends to zero. In addition, one of the following
outcomes occurs.

(i) The sequence {yk} is unbounded. In this case, the sequence of penalty parameter {σk} con-
verges to zero and the primal iterates approach failure of the linear independence constraint
qualification, in other words, the sequence {Ak} has an accumulation point Ā which is rank
deficient.

(ii) The sequence {yk} is bounded. In this case, the sequence of primal iterates is asymptotically
feasible, {ck} tends to zero.

Proof The convergence to zero of the sequences {gk + Akyk} follows directly from Step 5 of
Algorithm 1. To prove the second part of the first assertion, we distinguish two cases.

Case 1 Step 2 is executed infinitely often. In this situation, the inequality (3) is satisfied an
infinitely many times and Lemma 3.2 implies that the subsequence of {ck} converges to zero.

Case 2 Step 2 is executed finitely often. In that case, there exists k0 ∈ N such that Step 3
is executed at every iteration k ≥ k0. This implies that λk = λk0 for all k ≥ k0 and Lemma 2.2
implies that the sequence {σk} converges to zero. Let k ≥ k0. We have

Akck = σk(gk + Akyk) − σkgk + Ak(ck + σk(λk0 − yk)) − σkAkλk0 .

By taking the norm on both sides and by using the stopping conditions (4) and (5) of Step 5, we
have

‖Akck‖ ≤ (σk + ‖Ak‖)εk + σk‖gk‖ + σk‖Ak‖‖λk0‖.

According to the boundedness assumption of {(gk , Ak)} and lim εk = 0, we obtain
lim ‖Akck‖ = 0.

Let us prove outcome (i). Suppose that there exists K ⊂ N such that the subsequence
{‖yk‖}k∈K goes to infinity. For k ∈ K, define uk = yk/‖yk‖. For all k ∈ K, we have

‖Akuk‖ ≤ (‖gk + Akyk‖ + ‖gk‖)
‖yk‖ .

The sequence {gk + Akyk} converges to zero and {gk} is bounded, therefore the subsequence
{Akuk}k∈K converges to zero. Since {Ak} and {uk} are bounded, they have limit points Ā and ū
such that Āū = 0.

To prove outcome (ii), we distinguish two cases.
Case 1 Step 3 is executed infinitely often. In that case, Lemma 2.2 implies that the sequence

{σk} converges to zero. For all k ∈ N, we have

‖ck‖ ≤ ‖ck + σk(λk − yk)‖ + σk(‖λk‖ + ‖yk‖).

Since {ck + σk(λk − yk)} converges to zero, {yk} is bounded and λk+1 = yk or λk+1 = λk for all
k ∈ N, we deduce that lim ‖ck‖ = 0.
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10 P. Armand and R. Omheni

Case 2 Step 3 is executed finitely often. In this case, inequality (3) is satisfied for all k
sufficiently large and Lemma 3.2 implies that the sequence {ck} converges to zero. �

We conclude this section by a convergence analysis of the complete sequence generated by
our algorithm, including both the outer and the inner iterates. Depending on whether or not there
are inner iterations, at the kth outer iteration the sequence is of the form

. . . , wk , w0
k , . . . , wk+1 = wik

k , . . . , or . . . , wk , wk+1 = w+
k , . . .

where ik is the number of inner iterations (when it is finite), w0
k and wik

k are, respectively, the
starting and end points of Algorithm 2. To simplify the notation, we denote by {wk} this sequence
and define the set O ⊂ N such that {wk}k∈O represents the sequence of outer iterates. We assume
that the whole sequence of primal iterates remains in a compact set, a usual assumption for such
analysis, see, e.g. [7,19,26].

Theorem 3.4 Let {wk} be the complete sequence generated by Algorithm 1, including the inner
iterates generated by Algorithm 2. Suppose that the following assumptions hold:

H1 The sequence {xk} is contained in a compact set.
H2 The sequence {Hk} is bounded and the matrices Hk + (1/σk)AkA�

k are uniformly positive
definite for k ∈ N.

Then, for all outer iteration, the number of inner iterations at Step 5 is finite and the following
situations occur:

(i) If the problem (1) is infeasible, then any limit point x̄ of the sequence {xk}k∈O is a stationary
point of the measure of infeasibility, that is Āc̄ = 0, {yk} is unbounded and {σk} goes to zero.

(ii) If the problem (1) is feasible, then either {yk}k∈O is unbounded and {xk}k∈O has a limit point
x̄ such that Ā is rank deficient, or {yk}k∈O is bounded and any limit point of {wk}k∈O satisfies
the first-order optimality conditions of problem (1).

Proof Assumption H1 involves that the sequence {Ak} is bounded. Therefore, with Assumption
H2, Theorem 2.3 can be applied to show that, each time Algorithm 2 is executed at Step 5, the
inequality (5) is satisfied after a finite number of inner iterations.

To prove assertion (i), suppose that the problem (1) is infeasible. Let x̄ be a limit point of
{xk}k∈O. Theorem 3.3 implies that Āc̄ = 0. Moreover, the sequence {yk}k∈O cannot be bounded,
otherwise Theorem 3.3(ii) would imply that c̄ = 0, in contradiction with the infeasibility assump-
tion. Therefore, {yk}k∈O is unbounded and {σk}k∈O tends to zero, which in particular imply that
{yk} is unbounded and, by the choice of sk in Algorithm 1, {sk}k∈O tends to zero, so that the whole
sequence {σk} tends to zero.

To prove assertion (ii), suppose that the problem (1) is feasible. If {yk}k∈O is unbounded, then
Theorem 3.3(i) implies that at least one limit point x̄ of {xk}k∈O leads to a rank deficient matrix
Ā. If {yk}k∈O is bounded, then Theorem 3.3 implies that {Fk}k∈O tends to zero, thus F(w̄) = 0 for
any limit point w̄ of {wk}k∈O. �

4. Asymptotic behaviour

The asymptotic analysis is carried out by assuming that Algorithm 1 generates a convergent
sequence {wk} to a primal–dual solution w∗ = (x∗, y∗) of (1) at which some regularity assump-
tions are met. In order to get a rapid convergence of the iterates, we also assume that the update
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Optimization Methods & Software 11

rule of the penalty parameter in Algorithm 1 guarantees that the sequence {σk} converges to zero
and that the matrix Hk is sufficiently near the Hessian of the Lagrangian at the solution. All these
requirements are stated below.

A1 The functions f and c are twice continuously differentiable and their second derivatives are
Lipschitz continuous over an open neighbourhood of x∗.

A2 The matrix A∗ is of full column rank.
A3 The second-order sufficient conditions for the optimality are satisfied at w∗

A4 The sequence {wk} converges to w∗.
A5 The sequence {σk} converges to zero.
A6 There exists b > 0 such that for all k ∈ N, ‖Lk − Hk‖ ≤ bσ+

k .

Assumption A2 implies that the Lagrange multiplier y∗ is unique and with Assumption A3, the
Jacobian F ′(w∗) is nonsingular, see Lemma 4.1. Assumption A4 is standard for an asymptotic
analysis. Assumption A5 is necessary to get a rapid rate of convergence. Indeed, in the situation
where {σk} is not forced to go to zero, for example if σ+

k = σk at Step 2 of Algorithm 1, then
the rate of convergence cannot be faster than linear, see Lemma 4.3. Assumption A6 is also
necessary to get a quadratic rate of convergence. Note that when Hk = Lk + δI, where δ ≥ 0 is
chosen so that In(Jk) = (n, m, 0), in view of Assumptions A2–A4, δ = 0 for k large enough, so
Assumption A6 trivially holds.

The following properties are direct consequences of the regularity assumptions.

Lemma 4.1 Assume that Assumptions A1–A3 hold. There exist δ > 0, β > 0, γ > 0 and 0 <

a1 ≤ a2 such that for all w, w′ ∈ B(w∗, δ) we have

(i) ‖F ′(w)−1‖ ≤ β.
(ii) ‖F ′(w) − F ′(w′)‖ ≤ γ ‖w − w′‖,

(iii) a1‖w − w′‖ ≤ ‖F(w) − F(w′)‖ ≤ a2‖w − w′‖,

Proof By Assumptions A2 and A3, the matrix F ′(w∗) is nonsingular, see, e.g. [20,
Lemma 16.1]. Property (i) then follows from the inverse function theorem. The Lips-
chitzian property (ii) follows directly from A1. The last property (iii) follows from [11,
Lemma 4.1.16]. �

As a consequence of Assumptions A1–A6, the following properties hold.

Lemma 4.2 Assume that Assumptions A1–A6 hold.

(i) There exists k0 ∈ N such that for all k ≥ k0, ‖J−1
k ‖ ≤ 2β, where β is from Lemma 4.1.

(ii) The sequence {λk} converges to y∗.

Proof By virtue of Lemma 4.1(i), for k large enough we have ‖(F ′
k)

−1‖ ≤ β. Assumption A6
yields ‖F′

k − Jk‖ = O(σ+
k ). Since for all k ∈ N, σ+

k ≤ σk , {σ+
k } tends to zero from Assump-

tion A5, therefore ‖(F ′
k)

−1(F ′
k − Jk)‖ ≤ 1

2 for k large enough. It follows from [11, Theorem 3.1.4]
that ‖J−1

k ‖ ≤ 2β for k large enough, which proves (i).
To prove (ii), recall that if (3) is satisfied we have λk+1 = yk , otherwise λk+1 = λk . Assump-

tion A4 makes {yk} → y∗, so it suffices to show that (3) occurs infinitely often. Otherwise,
suppose that there exists an index k0 ∈ N such that (3) is satisfied for k = k0 and never more
satisfied for k > k0. Therefore, ik+1 = k0 for all k ≥ k0 and thus for all k > k0 + �, we have
‖ck‖ > aηk0 , which is a contradiction with the convergence of {ck} to zero. �
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12 P. Armand and R. Omheni

The following lemma gives an estimate of the distance of the Newton iterate w+
k to the

solution w∗.

Lemma 4.3 Under Assumptions A1–A6, the sequence of Newton iterates generated by
Algorithm 1 satisfies

‖w+
k − w∗‖ = O(‖wk − w∗‖2) + O(σ+

k ‖wk − w∗‖) + O(σ+
k ‖λk+1 − yk‖).

Proof Let k ∈ N. From the linear system solved at Step 4 of Algorithm 1, we have

w+
k − w∗ = wk − w∗ − J−1

k 	(wk , λk+1, σ+
k )

= J−1
k (F ′

k(wk − w∗) − Fk + Fk − 	(wk , λk+1, σ+
k ) + (Jk − F ′

k)(wk − w∗)).

Using F∗ = 0 and taking the norm on both sides, we obtain

‖w+
k − w∗‖ ≤ ‖J−1

k ‖(‖F ′
k(wk − w∗) − Fk + F∗‖ + ‖Fk − 	(wk , λk+1, σ+

k )‖
+ ‖Jk − F ′

k‖‖wk − w∗‖).

From [11, Lemma 4.1.12], for k large enough, we have

‖F ′
k(wk − w∗) − Fk + F∗‖ ≤ γ

2
‖wk − w∗‖2,

where γ is the Lipschitz constant in Lemma 4.1(ii). Successively using Lemma 4.2(i), the last
inequality, the definition of 	 and Assumption A6, for k large enough, we have

‖w+
k − w∗‖ ≤ βγ ‖wk − w∗‖2 + 2βσ+

k (‖λk+1 − yk‖ + max{b, 1}‖wk − w∗‖),

from which the conclusion follows. �

The following result shows that under appropriate choices of the penalty parameter σ+
k and of

the upper bounds rk in Algorithm 1, the rate of convergence of {wk} to w∗ is q-superlinear.

Theorem 4.4 Under Assumptions A1–A6, if the parameters of Algorithm 1 are chosen so that
rk = O(‖Fk‖) and σ+

k = O(‖Fk‖), then the sequence of iterates {wk} satisfies ‖wk+1 − w∗‖ =
o(‖wk − w∗‖).

Proof We first note that the assumption on the choice of σ+
k and the Lipschitz property of F

from Lemma 4.1(iii) imply that

σ+
k = O(‖wk − w∗‖). (8)

In particular, by virtue of Assumption A4, Lemma 4.2(ii) and Lemma 4.3, we deduce that

‖w+
k − w∗‖ = o(‖wk − w∗‖). (9)

In a similar manner, the assumption on the choice of rk , the definition of sk at Step 2 and Step 3
of Algorithm 1, and the choice of σk+1 at Step 5, imply that

σk+1 = O(‖wk − w∗‖). (10)

To prove the q-superlinear convergence property, we first consider the case when there is
no inner iteration, in other words (4) is satisfied at Step 5 of iteration k. In this case, we have
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Optimization Methods & Software 13

wk+1 = w+
k and the result will follow directly from (9). The second case is when wk+1 is com-

puted by applying a sequence of inner iterations. Since (4) is not satisfied at iteration k, we have
‖	(w+

k , λk+1, σ+
k )‖ > εk . Using the latter, Lemma 4.1(iii), Lemma 4.2(ii) and (9), we deduce

that for k large enough

a1‖wk+1 − w∗‖ ≤ ‖Fk+1 − F∗‖
= ‖Fk+1‖
≤ ‖	(wk+1, λk+1, σk+1)‖ + σk+1‖λk+1 − yk+1‖
≤ εk + σk+1‖λk+1 − yk+1‖
< ‖	(w+

k , λk+1, σ+
k )‖ + σk+1‖λk+1 − yk+1‖

≤ ‖F(w+
k ) − F∗‖ + σ+

k ‖λk+1 − y+
k ‖ + σk+1‖λk+1 − yk+1‖

≤ a2‖w+
k − w∗‖ + o(σ+

k ) + o(σk+1).

The results then follows from (9), (8) and (10). �

The last theorem gives the conditions on the choice of the parameters in Algorithm 1 to get
a quadratic convergence rate. The idea is to show that, asymptotically, Algorithm 1 no longer
needs inner iterations, the multiplier is updated at each iteration and therefore one outer iteration
is reduced to one regularized Newton step on F = 0, with a regularization parameter of the same
size as ‖F‖, leading to a quadratic rate of convergence. Note that, in contrast to Theorem 4.4, no
assumption is made on the choice of the parameter rk , while the assumption on σ+

k is stronger.

Theorem 4.5 Under Assumptions A1–A6, if the parameters of Algorithm 1 are chosen so
that ζk = �(σk), σ+

k = �(‖Fk‖) and εk = �(σ+
k ), then for k ∈ N large enough, wk+1 = w+

k ,
σk+1 = σ+

k , λk+1 = yk and ‖wk+1 − w∗‖ = O(‖wk − w∗‖2).

Proof The assumption on the choice of σ+
k and Lemma 4.1(iii) imply that

σ+
k = �(‖wk − w∗‖). (11)

As in the proof of Theorem 4.1, this implies that the property (9) holds.
By using Lemma 4.1(iii), Lemma 4.2(ii), the properties (9) and (11), then the assumptions on

the choice of εk , for k large enough, we deduce that

‖	(w+
k , λk+1, σ+

k )‖ ≤ ‖F(w+
k )‖ + σ+

k ‖λk+1 − y+
k ‖

= O(‖w+
k − w∗‖) + o(σ+

k )

= o(‖wk − w∗‖) + o(σ+
k )

= o(σ+
k )

≤ εk ,

which proves that wk+1 = w+
k and σk+1 = σ+

k . In particular, we then deduce from (9) that the
sequence {wk} converges q-superlinearly, that is, ‖wk+1 − w∗‖ = o(‖wk − w∗‖).

Let us show that for k large enough λk+1 = yk . It suffices to show that ‖ck‖ ≤ aηik , which
implies that the condition (3) at Step 1 is satisfied and Step 2 is executed. Using c∗ = 0,
Lemma 4.1(iii), the q-superlinear convergence of {wk} and the property (8), for k sufficiently
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14 P. Armand and R. Omheni

large, we have

‖ck‖ = ‖ck − c∗‖
≤ ‖Fk − F∗‖
= O(‖wk − w∗‖)
= o(‖wk−1 − w∗‖)
= o(σ+

k−1).

As we proved in the first part of the proof, for all k large enough, σk = σ+
k−1 ≤ σk−1. It follows

that ‖ck‖ = o(σk). Moreover, since ik ≤ k − 1 and {σk} tends to zero, we deduce that for all k
large enough, σk−1 ≤ σik . Recalling that ηk = ‖ck‖ + ζk and that ζk = �(σk), there exists b > 0
such that for all k ∈ N, ηk ≥ bσk . Then, for k large enough we have ‖ck‖ ≤ abσik ≤ aηik .

Since we just proved that λk+1 = yk for k large enough, then Lemma 4.3 and (11) imply that
‖wk+1 − w∗‖ = O(‖wk − w∗‖2). �

5. Implementation

As mentioned in Section 2, the outer algorithm includes implicitly two strategies for updat-
ing the penalty parameter, and both of them guarantee the global convergence, as shown in
Theorem 3.1. The first strategy reduces the penalty parameter at each iteration in order to obtain
a high rate of convergence. It is proved in Section 4 to be quadratic. This algorithmic option is
referred as strongly primal–dual optimization-augmented Lagrangian (SPDOPT-AL). The sec-
ond strategy consists of keeping the penalty parameter constant when the current iterate realized
a sufficient progress towards the primal feasibility. The asymptotic behaviour of this variant has
not been investigated, but a linear rate of convergence could be expected. This algorithmic option
is referred as SPDOPT-AL-LIN. The codes are in C. We describe hereafter the implementation
details of SPDOPT-AL.

The initialization procedure is similar to the one used in [4]. SPDOPT-AL offers the ability
to solve a convex quadratic problem in only one iteration. A starting point w̄ = (x̄, ȳ) is defined,
where x̄ is user defined and ȳ = (1, . . . , 1)�. A linear system of the form (2) with σ = 0, is first
solved, giving a direction d. If ‖F(w̄ + d)‖∞ ≤ ‖F(w̄)‖∞, then we set w0 = w̄ + d, otherwise
w0 = w̄. If the algorithm does not stop, then we set σ0 = min{0.1, ‖F0‖∞} and λ0 = y0. The
overall stopping test is ‖Fk‖ ≤ 10−8.

At Step 1 of Algorithm 1, we set a = 0.9 and � = 2. For all k, we set ζk = 10σk/a and rk =
min{1/(k + 1), 104‖Fk‖∞}. The norm used in inequality (3) is the infinity norm.

The updating strategy of the penalty parameter follows the requirements of the asymptotic
analysis to get a quadratic rate of convergence. We set σ+

k = min{τσk , τ ′‖Fk‖∞, rk}, for some
τ ∈ (0, 1) and τ ′ > 0. These choices imply that the sequences {σk} and {ζk} converge to zero
and σ+

k = �(‖Fk‖). Indeed, this update formula implies that σ+
k = O(‖Fk‖). Since we have

also rk = O(‖Fk‖), Theorem 4.4 implies that the sequence {wk} is q-superlinear convergent.
Furthermore σ+

k = �(‖Fk‖), hence a quadratic convergence by Theorem 4.5. From preliminary
numerical experiments, we found that a good choice was to choose τ = τ ′ = 0.2 at Step 2 and
τ = τ ′ = 0.1 at Step 3.

The symmetric matrix at Step 4 is of the form Hk = Lk + δI, where δ ≥ 0 is a regularization
parameter chosen to get a matrix of correct inertia. The choice of the regularization parameter δ

is described in [4]. The factorization of Jk is done by means of the routine MA57 [13].
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Optimization Methods & Software 15

The stopping tolerance at Step 5 is defined by the formula

εk = 0.9 max{‖	(wi, λi, σi)‖∞ : (k − 4)+ ≤ i ≤ k} + 10σk ,

This choice has been successfully used in [4]. The convergence of the sequence {εk} to zero
follows directly from Lemma 3.1. Furthermore, this choice guarantees that εk = �(σ+

k ), one of
the assumptions stated in Theorem 4.5 to ensure a rapid convergence.

Whenever the Newton iterate w+
k does not satisfy condition (4), Algorithm 2 is called. The

starting point of inner iterations is w+
k , the scaling parameter ν is σk and the parameters λ, σ

and s are set to the current values λk+1, σ+
k and sk . The constant used in the Armijo inequality

is set to ω = 0.01. The choice of the matrix H is the same as the one done in Algorithm 1. The
backtracking line search uses quadratic and cubic interpolations to compute the step-length. At
the end of the inner iterations, the current value of the penalty parameter is returned to the outer
iteration and it stands for σk+1.

The implementation of SPDOPT-AL-LIN differs little from that of SPDOPT-AL. At Step 1
of Algorithm 1, we set a = 0.9, � = 0 and rk = ζk = 1/(k + 1) for all k. The penalty parameter
was updated by setting σ+

k = σk at Step 3 and τ = 0.1 at Step 3. At Step 5, we set ε0 = 0.5 and
for all k ≥ 1, εk = max{σkεk−1, rk}.

6. Numerical results

In order to assess the performances of our algorithm, the comparisons have been carried out
against an initial version of the code which is called SPDOPT-QP (Quadratic Penalty) [4] and
also against two well-known optimization softwares based on an augmented Lagrangian formula-
tion: ALGENCAN [1,2,6] (version 2.4.0) and LANCELOT-A [9]. Tests were run on a MacBook
Pro 2.3 GHz with an intel Core i5 and 4 GB of memory. The set of equality constrained prob-
lems consists of 108 problems listed in [4]. We excluded the problem aug2d from the initial list
because LANCELOT-A terminated with the failure message: ran out of memory. This first list
of problems is called standard. A second list of problems, called degenerate, is built by adding
the constraint c1 = c2

1 to each model. In this manner, each problem has a degenerate Jacobian of
constraints at each iteration, because the first two columns are linearly dependent.

To avoid comparisons of runs when the solvers converge to different local solutions, we
exclude problems for which at least two solvers find different final values of the objective func-
tion. We used the same criterion proposed by Wächter and Biegler [24, p. 49]. A summary of the
results, when the local solutions differ, is given in two tables.

6.1 Comparison with SPDOPT-QP

We first examine the performances of SPDOPT-AL against SPDOPT-QP. This latter was applied
by using the following update rule for the penalty parameter

σ+
k = max{min{κ1σk , σκ2

k }, σ min
k },

where κ1 ∈ (0, 1), κ2 ≥ 0 and σ min
k is a lower bound on σ+

k , whose value is described in [4]. In
order to highlight the benefits of the quadratic rate of convergence of SPDOPT-AL, we consid-
ered two choices of parameters κ1 and κ2. The first choice is κ1 = 0.1 and κ2 = 1.8 and will be
called SPDOPT-QP-1. This choice has been used in numerical results of Armand et al. [4]. The
second is κ1 = 0.2 and κ2 = 1.5 and will be referred as SPDOPT-QP-2. Note that κ2 corresponds
to the superlinear rate of convergence of SPDOPT-QP.
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16 P. Armand and R. Omheni

Figure 1. Comparing number of function evaluations for SPDOPT-AL, SPDOPT-QP-1 and SPDOPT-QP-2 on standard
and degenerate problems.

Figure 1 summarizes the numerical results of SPDOPT-AL, SPDOPT-QP-1 and SPDOPT-QP-
2 on the set of standard and degenerate problems by the performance profiles of Dolan and Moré
[12] on the number of function evaluations. For τ ≥ 0, ρs(τ ) is the fraction of problems for which
the performance of a given solver is within a factor 2τ of the best one. These performance profiles
allow to compare objectively the different methods with respect to robustness and efficiency.
We say that a given solver is robust for solving a given problem if it succeeds in finding an
optimal solution and we say that it is efficient if it requires fewer function evaluations (gradient
evaluations, iterations, etc. ) for this computation, see, e.g. [23]. Efficiency and robustness rates
are readable on the left and right vertical axes of a graph.

From Figure 1, SPDOPT-AL appears to be more efficient than both versions of SPDOPT-QP.
In fact, for standard problems, efficiency of SPDOPT-AL (measured as in the left performance
profiles plot) is 75% however that of SPDOPT-QP-1 and SPDOPT-QP-2 are 69% and 61%,
respectively. This efficiency gain is due to the fact that for SPDOPT-AL the rate of convergence
is quadratic, whereas for SPDOPT-QP it is at most superlinear. In term of robustness, the left
plot in Figure 1 shows that SPDOPT-AL is slightly more robust than SPDOPT-QP-2 and less
robust than SPDOPT-QP-1. This latter solves all standard problems; however, SPDOPT-AL and
SPDOPT-QP-2 solve 99% and 98%, respectively. The only failure for SPDOPT-AL concerns
problem dixchlng. This is due to a poor estimation of the Lagrange multiplier. The infinity norm
of this latter exceeds 109. If we re-execute SPDOPT-AL, while allowing a scaling procedure,
the problem is solved with 10 iterations and 12 function evaluations. For degenerate problems,
SPDOPT-AL and SPDOPT-QP-2 have the same robustness. Both codes solve 96% of degenerate
problems, while SPDOPT-QP-1 solves 91% of the degenerate problems.

SPDOPT-AL solves 107 standard problems after 1658 iterations, of which 1197 are outer
iterations. For 77% of the outer iterations, the condition (3) is satisfied and consequently the
update λk+1 = yk is applied. For degenerate problems, SPDOPT-AL successfully terminates for
104 problems after 5686 iterations, 1665 are outer iterations. Step 2 is executed in 69% of these
outer iterations.

Based on the performance profiles shown in Figure 1, we can conclude that the performances
of SPDOPT-QP are significantly affected by the choice of parameters κ1 and κ2. In fact, SPDOPT-
QP-1 is more efficient and robust than SPDOPT-QP-2 when solving standard problems. This
situation is reversed for the degenerate problems. In this case, a more conservative decrease of
the penalty parameter seems better. Figure 1 confirms that the manner with which the penalty
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Optimization Methods & Software 17

parameter and the Lagrange estimate are updated in SPDOPT-AL is well suited for solving both
standard and degenerate problems unlike SPDOPT-QP.

6.2 Comparison with other augmented Lagrangian codes

All the runs were done without any scaling strategy and an accuracy requirement set to
‖Fk‖ ≤ 10−8. The maximum number of iterations is set to 3000. The linear solver MA57 has
also been used for ALGENCAN, while LANCELOT-A was applied with a preconditioned con-
jugate gradient method. For completeness, we give the specification files of ALGENCAN and
LANCELOT-A:

# ALGENCAN # LANCELOT-A

OBJECTIVE-AND-CONSTRAINTS-SCALING-AVOIDED maxit 3000
ACC-FEASIBILITY-THRESHOLD 1.0d + 20 ctol 1e-8
ACC-OPTIMALITY-THRESHOLD 1.0d + 20 gtol 1e-8

Figure 2 shows the performances of SPDOPT-AL, SPDOPT-AL-LIN, ALGENCAN and
LANCELOT-A on the number of function evaluations and CPU times on the set of standard
problems. Regarding the number of function evaluations, six problems were excluded because
at least two methods found different local solutions. Table 1 details these differences. Figure 2
indicates that the efficiency of SPDOPT-AL is very significant compared with ALGENCAN and
LANCELOT-A. In particular, the efficiency of these two does not exceed 12% in terms of num-
ber of function evaluations. This efficiency gain is more significant when we compare the CPU
times. It should be noticed that this profile is obtained by considering only 34 problems for which
the time needed by the fastest method is greater or equal than 0.05 s in order to ensure a fair
comparison between all the solvers. This efficiency gain is likely to be due to the choice of the
requirement accuracy when solving the approximate subproblem. For SPDOPT-AL, the choice
of the tolerance εk allows to avoid unnecessary calls of the inner iterations and also shortens the
length of inner iteration sequences. Contrary to SPDOPT-AL, ALGENCAN and LANCELOT-A
solve an approximate subproblem with a small accuracy requirement at each iteration, including

Figure 2. Performance profiles of SPDOPT-AL, SPDOPT-AL-LIN, ALGENCAN and LANCELOT-A on the collec-
tion of standard problems.
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18 P. Armand and R. Omheni

Table 1. Standard problems for which at least two solvers, among SPDOPT-AL,
SPDOPT-AL-LIN, ALGENCAN and LANCELOT-A, found different local solutions.

Problem Best solution Best solution found by

bt07 3.06e + 02 LANCELOT-A, SPDOPT-AL-LIN
eigenb2 1.08e − 21 ALGENCAN, LANCELOT-A, SPDOPT-AL-LIN
hs079 7.88e − 02 ALGENCAN, LANCELOT-A
lukvle04 3.50e + 03 SPDOPT-AL, SPDOPT-AL-LIN
robot 5.46e + 00 ALGENCAN, LANCELOT-A
s338 − 1.10e + 01 ALGENCAN

Figure 3. Performance profiles of SPDOPT-AL, SPDOPT-AL-LIN, ALGENCAN and LANCELOT-A on the collec-
tion of degenerate problems.

the first iteration. In term of robustness, ALGENCAN is the most robust since it is able to solve
all the problems. However, SPDOPT-AL solves all problems except one and LANCELOT-A
solves only 94 problems of the considered collection.

Figure 2 also shows the performance of both versions of Algorithm 1. From these profiles,
it is clear that the quadratic version outperforms the linear one. Using the number of function
evaluations as a performance measurement, we can see that the efficiencies of SPDOPT-AL and
SPDOPT-AL-LIN are 90% and 26%, respectively. This remarkable efficiency is not followed by
a loss of robustness. In fact, both versions of Algorithm 1 solve all considered standard problems
expect one. Note here that the only failure of SPDOPT-AL-LIN is caused by exceeding the
maximum number of iterations. Figure 2 also shows that the behaviour of SPDOPT-AL-LIN is
similar to one of the classical augmented Lagrangian methods, but it is slightly more efficient
regarding the number of function evaluations.

Although our theoretical analysis is established for regular problems, we think that it is inter-
esting to observe the behaviour of both versions of Algorithm 1 on the solution of degenerate
problems. This is motivated by the fact that SPDOPT-AL and SPDOPT-AL-LIN, as SPDOPT-
QP, introduce a natural regularization of the linear system when the Jacobian of constraints is
rank deficient. Figure 3 shows the performances of all codes on the set of degenerate prob-
lems. The plot on the left is obtained by considering only 101 problems. The details on the
seven remaining problems are given in Table 2. For the CPU times plot, we have consid-
ered 41 problems for which the CPU time for the fastest solver is greater than 0.05 s. From
Figure 3, SPDOPT-AL-LIN appears to be slightly more robust than SPDOPT-AL for this class
of problems, but still much less efficient in both measures.
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Optimization Methods & Software 19

Table 2. Degenerate problems for which at least two solvers, among SPDOPT-AL,
SPDOPT-AL-LIN, ALGENCAN and LANCELOT-A, found different local minimizers.

Problem Best solution Best solution found by

bt07 3.06e + 02 LANCELOT-A, SPDOPT-AL, SPDOPT-AL-LIN
dixchlng 1.40e − 14 LANCELOT-A, SPDOPT-AL-LIN
eigenb2 3.09e − 23 ALGENCAN, LANCELOT-A, SPDOPT-AL-LIN
lukvle04 1.05e + 03 ALGENCAN
lukvle11 1.66e − 18 LANCELOT-A, SPDOPT-AL-LIN
lukvle15 1.99e − 25 ALGENCAN, LANCELOT-A, SPDOPT-AL-LIN
s338 − 1.10e + 01 ALGENCAN

Comparing to ALGENCAN and LANCELOT-A, SPDOPT-AL appears to be again the most
efficient. Regarding these profiles, the only difference from Figure 2 is that LANCELOT-A is
now more efficient than ALGENCAN in about 12% of degenerate problems in terms of number
of function evaluations. For the robustness, ALGENCAN appears again to be the most robust
since it is able to solve all degenerate problems. However, SPDOPT-AL solved all but four of
them.

7. Conclusion

We have proposed an augmented Lagrangian method embedded into a primal–dual framework
for the solution of an equality constrained problem. The global convergence properties, the
asymptotic behaviour and the numerical results show that this method is reliable for solving
a nonlinear optimization problem. The comparison with well-established augmented Lagrangian
methods emphasizes the efficiency and robustness of this approach.

For the numerical solution of degenerate problems, we have not identified any empirical evi-
dence of a loss of the rapid rate of convergence of the sequence of iterates, which still seems to
be superlinear or quadratic. It would be interesting to analyse the asymptotic behaviour of this
algorithm without the linear independence constraint qualification, since it is already known that
under suitable choice of the regularization parameter, a regularized Newton method is locally
quadratically convergent, as stated in [25, Theorem 4.2].

A natural question is an extension of this approach to the solution of a problem with inequal-
ities. Suppose that the problem (1) includes bound constraints of the form x ≥ 0. To handle
these bounds, one possibility is to add a log-barrier term to the augmented Lagrangian, leading
to a penalty function of the form Lσ (x, λ) − μ

∑n
i=1 log xi, with μ > 0. The first-order condi-

tions of the minimization of this function are then reformulated under the form g + Ay − z =
0, c + σ(λ − y) = 0 and x · z = μe, where z is the vector of multipliers associated with the
bounds, · denotes the Hadamard product and e is the all-ones vector. The resulting algorithm has
to deal with the updates of two different penalty parameters and also with the strict feasibility
with respect to the bounds. The global and asymptotic convergence analysis of the outer itera-
tions are much trickier because of the existence of the barrier trajectory, but could be carried out
following the tools developed in [3]. A superlinear rate of convergence is expected. We plan to
do it in a near future.
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Appendix. Proof of Lemma 3.1

Proof We first consider the case K = N. Suppose that (6) holds for all k ∈ N. The proof follows the one of [4, Proposi-
tion 1]. Define the constants ζ̄ = sup{ζk : k ∈ N} and β = max{β0, ζ̄ /(1 − a)}. We will show by induction on k ∈ N that
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βk ≤ β. The base case is clearly true. Suppose that for k ∈ N, βi ≤ β for all 0 ≤ i ≤ k. By (6) and the choice of β, we
have βk+1 ≤ aβ + ζ̄ ≤ β. As a result, the sequence {βk} is bounded. Taking the limit superior in inequality (6), we get
lim sup βk ≤ a lim sup βk , from which we deduce that lim sup βk = 0. Because {βk} is positive, we then have lim βk = 0.

Now consider the case where K is a proper subsequence of N. Let K = {ki}i∈N. Let us prove that for all i ∈ N,

βki+1 ≤ a max{βkj : (i − �)+ ≤ j ≤ i} + ζki . (A1)

Fix i ∈ N. By definition of K, the inequality (6) holds for k = ki. We have two cases: either ki+1 = ki + 1 or ki+1 >

ki + 1. By virtue of (7), in both cases we have

βki+1 = βki+1 ≤ a max{βj : (ki − �)+ ≤ j ≤ ki} + ζki . (A2)

Let us show that
max{βj : (ki − �)+ ≤ j ≤ ki} ≤ max{βj : k(i−�)+ ≤ j ≤ ki}. (A3)

If � ≤ i, then (i − �)+ = i − � and since i ≤ ki, we also have (ki − �)+ = ki − �. In that case, inequality (11) follows
from ki−� ≤ ki − �. In the other case, we have � > i, which implies that k(i−�)+ = k0. By the definition of K, βk = βk0
for all 0 ≤ k < k0. It follows that

max{βj : (ki − �)+ ≤ j ≤ ki} ≤ max{βj : 0 ≤ j ≤ ki} = max{βj : k0 ≤ j ≤ ki},
therefore (A3) follows. Having proved that (A3) holds, it suffices to note that βk = βkj for all j ≥ 1 and kj−1 < k ≤ kj,
to obtain

max{βj : k(i−�)+ ≤ j ≤ ki} = max{βkj : (i − �)+ ≤ j ≤ i}.
By using (A2), (A3) and this equality, we deduce that (A1) is satisfied.

Using the first part of the proof, (A1) implies that the sequence {βki } converges to zero. Finally, by virtue of (7), the
whole sequence {βk} converges to zero. �
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