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A GLOBALLY CONVERGENT BFGS METHOD
FOR NONLINEAR MONOTONE EQUATIONS

WITHOUT ANY MERIT FUNCTIONS

WEI-JUN ZHOU AND DONG-HUI LI

Abstract. Since 1965, there has been significant progress in the theoretical
study on quasi-Newton methods for solving nonlinear equations, especially in
the local convergence analysis. However, the study on global convergence of
quasi-Newton methods is relatively fewer, especially for the BFGS method.
To ensure global convergence, some merit function such as the squared norm
merit function is typically used. In this paper, we propose an algorithm for
solving nonlinear monotone equations, which combines the BFGS method and
the hyperplane projection method. We also prove that the proposed BFGS
method converges globally if the equation is monotone and Lipschitz contin-
uous without differentiability requirement on the equation, which makes it
possible to solve some nonsmooth equations. An attractive property of the
proposed method is that its global convergence is independent of any merit

function.We also report some numerical results to show efficiency of the pro-
posed method.

1. Introduction

In this paper, we consider the problem of finding a solution of the nonlinear
equation

(1.1) F (x) = 0,

where F : Rn → Rn is continuous and monotone. By monotone, we mean

〈F (x) − F (y), x − y〉 ≥ 0, ∀x, y ∈ Rn.

Nonlinear monotone equations have many practical uses such as ballistic trajectory
computation and vibration systems [20, 25], the first-order necessary condition of
the unconstrained convex optimization problem and the subproblems in the general-
ized proximal algorithms with Bregman distances [13]. Some monotone variational
inequality problems can also be converted into nonlinear monotone equations by
means of fixed point maps or normal maps if the underlying function satisfies some
coercive conditions [27].

Among numerous algorithms for solving (1.1), quasi-Newton methods are re-
garded as one of the most efficient classes of methods. Since the first quasi-Newton
method for solving nonlinear equations was proposed by Broyden [1], there has been
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significant progress in the theoretical study on quasi-Newton methods, especially
in local convergence analysis [2, 6, 7]. Moreover, much effort has been made to
establish global convergence of quasi-Newton methods for unconstrained optimiza-
tion problems, for example [2, 3, 4, 5, 7, 8, 9, 11, 14, 18, 20, 19, 21, 22, 24, 26].
However, the study of globally convergent quasi-Newton methods for solving non-
linear equations is relatively fewer. The major difficulty is the lack of practical line
search strategy. To the authors’ knowledge, the earliest global convergence result
is due to Griewank [10], where a derivative-free line search is proposed. But Li and
Fukushima [15] constructed an example to show that the line search in [10] has a
certain difficulty in some special cases. By using a nonmonotone line search pro-
cess, Li and Fukushima [15, 16] proposed a Broyden’s method for solving nonlinear
equations and a Gauss-Newton-based BFGS method for solving symmetric nonlin-
ear equations and prove that these methods converge globally. Quite recently, Gu
et al. [12] introduced a norm descent line search technique and proposed a norm
descent Gauss-Newton-based BFGS method for solving symmetric equations with
global convergence.

However, to ensure global convergence of the above mentioned quasi-Newton
methods, some merit function such as squared norm merit function is often used.
Generally, the quasi-Newton direction is not a descent direction for the merit func-
tion, which makes it difficult to globalize the method. In this paper, based on the
hyperplane projection method [23], we propose a BFGS method for solving non-
linear monotone equations and prove its global convergence property without use
of merit functions. The differentiability of the equation is also not assumed. Com-
pared with the Gauss-Newton-based BFGS method in [16], our method is more
natural and simpler, which makes our method more implementable in practice.

The paper is organized as follows. We present a BFGS method for solving
monotone nonlinear equations in the next section. In Section 3, we establish the
global convergence of the proposed method. In Section 4, we report some numerical
results to show the efficiency of the proposed method.

2. Algorithm

In this section, we describe the proposed method in detail. First we recall the
hyperplane projection method [23] for solving nonlinear monotone equations (1.1).
By the monotonicity of F , we have

〈F (zk), x̄ − zk〉 ≤ 0

for all x̄ such that F (x̄) = 0. Suppose that we have obtained a direction dk.
By performing some kind of line search procedure along the direction dk, a point
zk = xk + αkdk can be computed such that

〈F (zk), xk − zk〉 > 0.

Thus the hyperplane

Hk = {x ∈ Rn|〈F (zk), x − zk〉 = 0}

strictly separates the current iterate xk from zeros of the equation (1.1). Once the
separating hyperplane is obtained, the next iterate xk+1 is computed by projecting
xk onto the hyperplane.

Now we state our algorithm as follows.
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Algorithm 1 (BFGS method)

Step 0. Given initial point x0 ∈ Rn and constants β ∈ (0, 1), σ ∈ (0, 1),
h > 0, r ≥ 0. Choose B0 = I (the identity matrix). Let k := 0.
Step 1. Compute dk by

(2.1) Bkdk = −F (xk).

Stop if dk = 0.
Step 2. Determine steplength αk = βmk such that mk is the smallest
nonnegative integer m satisfying

(2.2) −〈F (xk + βmdk), dk〉 ≥ σβm‖F (xk + βmdk)‖‖dk‖2.

Let zk = xk + αkdk.
Stop if ‖F (zk)‖ = 0.

Step 3. Compute

(2.3) xk+1 = xk − 〈F (zk), xk − zk〉
‖F (zk)‖2

F (zk).

Step 4. Compute Bk+1 by the following BFGS update process:

(2.4) Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

,

where

(2.5) sk = zk − xk, yk = F (zk) − F (xk) + h‖F (xk)‖rsk.

Set k := k + 1. Go to Step 1.

Remarks. (i) In the update formula (2.4), we used the modified update rule
proposed by Li and Fukushima [18] for nonconvex unconstrained optimiza-
tion problems, which can also be regarded as a regularized BFGS method
in the sense that Bk is positive definite and symmetric for all k.

(ii) If we suppose that F is Lipschitz continuous, i.e., there exists a constant
L > 0 such that

(2.6) ‖F (x) − F (y)‖ ≤ L‖x − y‖, ∀x, y ∈ Rn,

then it follows from the monotonicity and Lipschitz continuous property of
F that

(2.7) h‖F (xk)‖rsT
k sk ≤ yT

k sk ≤ (L + h‖F (xk)‖r)sT
k sk,

where T stands for transpose.
(iii) The update formula (2.4) is very different from the Gauss-Newton-based

BFGS method proposed by Li and Fukushima [16]. Our method is more
natural and simpler.

(iv) The line search (2.2) is a little different from that of [23]. It is not difficult
to see from (i) that Algorithm 1 is well defined.
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3. Convergence property

In this section, we prove global convergence of Algorithm 1. To this end, we
introduce some useful lemmas. The following lemma comes from [3].

Lemma 3.1. Let Bk be updated by the BFGS formula (2.4). Suppose B0 is sym-
metric and positive definite. If there are positive constants m ≤ M such that for
all k ≥ 0, yk and sk satisfy

(3.1)
yT

k sk

‖sk‖2
≥ m,

‖yk‖2

yT
k sk

≤ M,

then for any κ ∈ (0, 1), there exist positive constants β1, β2, β3 and β4 such that
inequalities

(3.2) β1‖sk‖ ≤ ‖Bksk‖ ≤ β2‖sk‖, β3‖sk‖2 ≤ sT
k Bksk ≤ β4‖sk‖2

hold for at least 	κk
 many j ≤ k.

We define index sets Kk for each k, and K by

(3.3) Kt = {k ≤ t | (3.2) hold}, K =
∞⋃

t=0

Kt.

Since sk = αkdk, it is clear that inequalities (3.2) hold true if sk is replaced by dk.
Moreover, it follows from (2.1) that

(3.4) β1‖dk‖ ≤ ‖F (xk)‖ ≤ β2‖dk‖, ∀k ∈ K.

The following lemma comes from [23].

Lemma 3.2. Let F be monotone and x, y ∈ Rn satisfy 〈F (y), x − y〉 > 0. Let

x+ = x − 〈F (y), x − y〉
‖F (y)‖2

F (y).

Then for any x̄ ∈ Rn such that F (x̄) = 0, it holds that

‖x+ − x̄‖2 ≤ ‖x − x̄‖2 − ‖x+ − x‖2.

Now we establish a convergence theorem for Algorithm 1.

Theorem 3.3. Let {xk} be generated by Algorithm 1. Suppose that F is monotone
and Lipschitz continuous and that the solution set of (1.1) is not empty. Then we
have for any x̄ satisfying F (x̄) = 0,

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 − ‖xk+1 − xk‖2.

In particular, {xk} is bounded. Furthermore, it holds that either {xk} is finite and
the last iterate is a solution, or the sequence is infinite and lim

k→∞
‖xk+1 − xk‖ = 0.

Moreover, {xk} converges to some solution of (1.1).

Proof. We first note that if the algorithm terminates at some iteration k, then
dk = 0 or ‖F (zk)‖ = 0. By the positive definiteness of Bk, we have F (xk) = 0 if
dk = 0. This means that xk or zk is a solution of (1.1).

Suppose that dk �= 0 and ‖F (zk)‖ �= 0 for all k. Then an infinite sequence {xk}
is generated. It follows from (2.2) that

(3.5) 〈F (zk), xk − zk〉 = −αk〈F (zk), dk〉 ≥ σ‖F (zk)‖α2
k‖dk‖2 > 0.
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Let x̄ be an arbitrary solution of (1.1). By (2.3), (3.5) and Lemma 3.2, we obtain

(3.6) ‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 − ‖xk+1 − xk‖2.

In particular, the sequence {‖xk − x̄‖} is decreasing and hence convergent. Also,
the sequence {xk} is bounded, and

(3.7) lim
k→∞

‖xk+1 − xk‖ = 0.

We obtain from (2.3) and (3.5) that

‖xk+1 − xk‖ =
〈F (zk), xk − zk〉

‖F (zk)‖ ≥ σα2
k‖dk‖2.

From the last inequality and (3.7), we get

(3.8) lim
k→∞

αk‖dk‖ = 0, lim
k∈K, k→∞

αk‖dk‖ = 0.

Now we consider the following two possible cases:
(i) lim infk→∞ ‖F (xk)‖ = 0.
(ii) lim infk→∞ ‖F (xk)‖ = ε > 0.

If (i) holds, then by the continuity of F and the boundedness of {xk}, it is clear
that the sequence {xk} has some accumulation point x̂ such that F (x̂) = 0. We also
have from (3.6) that the sequence {‖xk − x̂‖} converges. Therefore, {xk} converges
to x̂.

If (ii) holds, then from the boundedness of {xk} and the continuity of F , there
exists a positive constant C such that

(3.9) ε ≤ ‖F (xk)‖ ≤ C, ∀k.

From (2.7) and (3.9), we have

yT
k sk

‖sk‖2
≥ hεr,

‖yk‖2

yT
k sk

≤ (L + hCr)2

hεr
.

It then follows from Lemma 3.1 that inequalities (3.2), (3.4) and (3.9) hold for all
k ∈ K. So we get from (3.4) and (3.8) that

lim
k∈K, k→∞

αk = 0.

By the line search rule, we have for all k ∈ K sufficiently large, mk − 1 will not
satisfy (2.2). This means

(3.10) −〈F (xk + βmk−1dk), dk〉 < σβmk−1‖F (xk + βmk−1dk)‖‖dk‖2, ∀k ∈ K.

Since {xk}K is bounded, it follows from (3.4) and (3.9) that {dk}K is bounded
too. We can choose a subsequences of {xk}K and {dk}K converging to x̂ and d̂,
respectively. Taking the limit in (3.10) for the subsequence, we obtain

−〈F (x̂), d̂〉 ≤ 0.

However, it is not difficult to deduce from (2.1) and (3.2) (by further taking subse-
quence if necessary) that

−〈F (x̂), d̂〉 > 0.

This yields a contradiction. Consequently, lim infk→∞ ‖F (xk)‖ > 0 is not possible.
The proof is then complete. �
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4. Numerical results

In this section, we report some numerical results with the proposed method. We
test the performance of Algorithm 1 on the following three problems with various
sizes and different initial points.

Problem 1. The elements of function F are given by

Fi(x) = xi − sin(xi), i = 1, 2, · · · , n.

Problem 2. The function F is given by

F (x) = Ax + g(x)

where g(x) = (ex1 − 1, ex2 − 1, · · · , exn − 1)T and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . . . . . . . .
. . . . . . −1

−1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Problem 3. An application to the two-point boundary value problem:

(4.1) u′′(t) = f(t, u(t), u′(t)), 0 ≤ t ≤ 1, u(0) = α, u(1) = β.

The problem (4.1) is often involved in ballistic trajectory computation and vibration
systems et al. [20, 25]. In order to solve (4.1) approximately, we consider its discrete
version. Suppose that

tj = jh, h =
1

n + 1
, j = 0, · · · , n + 1

is a uniform division of [0,1]. We approximate u′′(tj) and u′(tj) by

u′′(tj) ≈ 1
h2

[u(tj+1) − 2u(tj) + u(tj−1)],(4.2)

u′(tj) ≈ 1
2h

[u(tj+1) − u(tj−1)], j = 1, · · · , n.(4.3)

If we denote xi = u(ti), i = 1, 2, · · · , n., then xi satisfy the following equations:

xi+1−2xi+xi−1 = h2f(ti, xi,
1
2h

(xi+1−xi−1)), x0 = α, xn+1 = β, i = 1, 2, · · · , n.

We consider the following function f (E1.1-1 (d) in [20])),

(4.4) f =
1
2
u3(t) + 3u′(t) − 3

2 − t
+

1
2
.

Let α = 0 and β = 1 in (4.1). It is easy to see that

u(t) =
t

2 − t

is the analytic solution of the problem.
The discrete form of the problem can be written as

F (x) = Bx + h(x) = 0,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A GLOBALLY CONVERGENT BFGS METHOD 2237

where x = (x1, · · · , xn)T = (u1, · · · , un)T and

h(x) = (h1(x), · · · , hn(x))T ,

hi(x) = h2
(1

2
x3

i −
3

2 − ih
+

1
2

)
, i = 1, · · · , n − 1,

hn(x) = h2
(1

2
x3

n − 3
2 − nh

+
1
2

)
− 1,

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 + 3
2h

−1 − 3
2h 2 −1 + 3

2h
. . . . . . . . .

. . . . . . −1 + 3
2h

−1 − 3
2h 2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We will test the problem with different divisions, that is, h = 1
10 , 1

20 , 1
30 .

We note that Problems 1 and 2 are symmetric while Problem 3 is nonsymmetric.
We compare the performance of Algorithm 1 (BFGS) with the Gauss-Newton-

based BFGS method (GNBFGS) in [16] and the Inexact Newton Method (INM)
in [23] on Problems 1–3 with different initial points. The algorithms were coded in
MATLAB and run on a personal computer with a 3.0GHZ CPU processor.

The results are listed in Tables 1–3 where x1 = (0.1, · · · , 0.1)T , x2 = (1, · · · , 1)T ,
x3 = (1, 1/2, · · · , 1/n)T , x4 = (−10, · · · ,−10)T , x5 = (−0.1, · · · ,−0.1)T , x6 =
(−1, · · · ,−1)T . The parameters are specified as follows. For Algorithm 1, we set
β = 0.6, σ = 10−5, r = 0, h = 10−4. For GNBFGS method in [16], we set r = 0.1,
ρ = 0.9, σ1 = σ2 = 10−5, λ−1 = 0.01, εk = 1/k2 and B0 = I. For INM method
in [23], we set µk = ‖F (xk)‖, ρk = 0, β = 0.6, λ = 0.01. We stop the iteration if
‖F (xk)‖ ≤ 10−5 or the number of iterations exceeds 104.

The meanings of the columns in Tables 1–3 are stated as follows:
“n”: the dimension of the problem;
“ip”: the initial point;
“iter”: the total number of iterations;
“time”: the CPU time in seconds;
“average”: the average number of iterations or the average CPU time.

The numerical results indicates that Algorithm 1 and the INM method termi-
nated successfully for all initial points while the GNBFGS method failed to solve
the nonsymmetric Problem 3 with initial point x6 and dimension n = 29. We also
see from the tables that the GNBFGS method seems more sensitive to the initial
points. In addition, in most cases the INM method performed best. It is interesting
to note that Algorithm 1 performed much better than the GNBFGS method did
on Problem 3. This might show an advantage of Algorithm 1 on nonsymmetric
problems, compared to the GNBFGS method.

5. Final remark

We have proposed a projection BFGS method for solving nonlinear monotone
equations. We have established a global convergence theorem for the method.
Numerical results show that the proposed method performed better than the
“GNBFGS” method did. It is interesting to note that the symmetry of the Ja-
cobian of the equation is not assumed in the global convergence theorem.
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Table 1. Test results for BFGS, GNBFGS and INM methods on
Problem 1.

BFGS GNBFGS INM

ip n iter time iter time iter time

x1 10 6 0.03 7 0.01 5 0.02
x2 10 14 0 18 0.01 14 0
x3 10 18 0.01 382 0.14 11 0.01
x4 10 24 0.02 18 0 46 0.01
x5 10 6 0 7 0 5 0
x6 10 14 0 18 0.01 14 0

average 10 13.6667 0.01 75 0.028333 15.8333 0.0066667

x1 100 8 0.05 9 0.03 7 0.02
x2 100 16 0.07 20 0.09 22 0.02
x3 100 23 0.09 592 1.873 11 0.01
x4 100 27 0.13 20 0.07 116 0.091
x5 100 8 0.03 9 0.03 7 0
x6 100 16 0.06 20 0.08 22 0.01

average 100 16.3333 0.071667 111.6667 0.36217 30.8333 0.025167

x1 200 8 0.161 10 0.18 7 0.02
x2 200 16 0.3 21 0.391 26 0.05
x3 200 23 0.421 1112 22.282 11 0.02
x4 200 28 0.52 20 0.401 158 0.3
x5 200 8 0.151 10 0.19 7 0.02
x6 200 16 0.3 21 0.391 26 0.05

average 200 16.5 0.30883 199 3.9725 39.1667 0.076667

Table 2. Test results for BFGS, GNBFGS and INM methods on
Problem 2

BFGS GNBFGS INM

ip n iter time iter time iter time

x1 50 50 0.08 36 0.06 29 0.02
x2 50 95 0.11 50 0.071 36 0.02
x3 50 57 0.08 44 0.06 24 0.02
x4 50 110 0.15 145 0.19 104 0.06
x5 50 49 0.071 36 0.05 27 0.02
x6 50 58 0.08 48 0.07 34 0.02

average 50 69.8333 0.095167 59.8333 0.0835 42.3333 0.026667

x1 100 50 0.21 35 0.141 28 0.03
x2 100 97 0.38 58 0.261 37 0.04
x3 100 57 0.21 44 0.18 25 0.03
x4 100 111 0.441 278 1.242 130 0.12
x5 100 57 0.25 35 0.15 27 0.031
x6 100 65 0.28 45 0.19 36 0.04

average 100 72.8333 0.29517 82.5 0.36067 47.1667 0.0485

x1 200 51 0.981 36 0.711 28 0.08
x2 200 148 2.844 221 4.427 42 0.12
x3 200 56 1.102 44 0.861 25 0.09
x4 200 262 5.017 478 9.964 171 0.481
x5 200 50 0.911 36 0.691 27 0.081
x6 200 64 1.201 45 0.872 41 0.11

average 200 105.1667 2.0093 143.3333 2.921 55.6667 0.16033
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Table 3. Test results for BFGS, GNBFGS and INM methods on
Problem 3

BFGS GNBFGS INM

ip n iter time iter time iter time

x1 9 93 0.04 19 0.011 73 0.02
x2 9 100 0.04 229 0.1 77 0.01
x3 9 64 0.02 24 0.01 143 0.04
x4 9 122 0.06 142 0.07 134 0.03
x5 9 93 0.04 52 0.01 98 0.02
x6 9 103 0.04 652 0.231 112 0.02

average 9 95.8333 0.04 186.3333 0.072 106.1667 0.023333

x1 19 228 0.1 44 0.03 108 0.03
x2 19 270 0.11 207 0.111 134 0.03
x3 19 197 0.09 68 0.04 79 0.01
x4 19 319 0.13 2867 1.392 189 0.04
x5 19 238 0.12 51 0.02 109 0.031
x6 19 253 0.11 8266 4.326 131 0.03

average 19 250.8333 0.11 1917.1667 0.9865 125 0.0285

x1 29 424 0.261 74 0.05 37 0.02
x2 29 448 0.24 453 0.32 44 0.02
x3 29 341 0.181 242 0.17 43 0.01
x4 29 529 0.28 7168 4.627 117 0.04
x5 29 384 0.22 90 0.071 43 0.01
x6 29 491 0.27 10000(Fail) 6.599 56 0.01

average 29 436.1667 0.242 3004.5 1.9728 56.6667 0.018333
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[7] J.E. Dennis and Jr. J.J. Moré, Quasi-Newton method, motivation and theory, SIAM Rev.,
19 (1977), 46-89. MR0445812 (56:4146)

[8] J.E. Dennis and R.B. Schnabel, Numerical methods for unconstrained optimization and non-
linear equations, Prentice-Hall, Englewood Cliffs, N.F., 1983. MR702023 (85j:65001)

[9] L.C.W. Dixon, Variable metric algorithms: necessary and sufficient conditions for identical
behavior on nonquadratic functions, J. Optim. Theory Appl., 10 (1972) 34-40. MR0309305
(46:8415)

[10] A. Griewank, The “global” convergence of Broyden-like methods with a suitable line search,
J. Austral. Math. Soc., Ser. B, 28 (1986), 75-92. MR846784 (87k:65064)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0198670
http://www.ams.org/mathscinet-getitem?mr=0198670
http://www.ams.org/mathscinet-getitem?mr=0341853
http://www.ams.org/mathscinet-getitem?mr=0341853
http://www.ams.org/mathscinet-getitem?mr=997665
http://www.ams.org/mathscinet-getitem?mr=997665
http://www.ams.org/mathscinet-getitem?mr=909072
http://www.ams.org/mathscinet-getitem?mr=909072
http://www.ams.org/mathscinet-getitem?mr=1972211
http://www.ams.org/mathscinet-getitem?mr=1972211
http://www.ams.org/mathscinet-getitem?mr=0343581
http://www.ams.org/mathscinet-getitem?mr=0343581
http://www.ams.org/mathscinet-getitem?mr=0445812
http://www.ams.org/mathscinet-getitem?mr=0445812
http://www.ams.org/mathscinet-getitem?mr=702023
http://www.ams.org/mathscinet-getitem?mr=702023
http://www.ams.org/mathscinet-getitem?mr=0309305
http://www.ams.org/mathscinet-getitem?mr=0309305
http://www.ams.org/mathscinet-getitem?mr=846784
http://www.ams.org/mathscinet-getitem?mr=846784


2240 WEI-JUN ZHOU AND DONG-HUI LI

[11] A. Griewank, The global convergence of partitioned BFGS on problems with convex de-
compositions and Lipschitzian gradients, Math. Program., 50 (1991), 141-175. MR1103931
(92d:90079)

[12] G.Z. Gu, D.H. Li, L. Qi and S.Z. Zhou, Descent directions of quasi-Newton method for
symmetric nonlinear equations, SIAM J. Numer. Anal., 40 (2002), 1763-1774. MR1950621
(2003m:65082)

[13] A.N. Iusem and M.V. Solodov, Newton-type methods with generalized distances for con-

strained optimization, Optimization, 41 (1997), 257-278. MR1473401 (98h:90078)
[14] T.G. Kolda, D.P. O’Leary and L. Nazareth, BFGS with update skipping and varying memory,

SIAM J. Optim., 8 (1998), 1060-1083. MR1646119 (99e:90092)
[15] D.H. Li and M. Fukushima, A derivative-free line search and global convergence of Broyden-

like method for nonlinear equations, Optim. Methods and Softw., 13 (2000), 181-201.
MR1785195 (2001e:90146)

[16] D.H. Li and M. Fukushima, A globally and superlinearly convergent Gauss-Newton-based
BFGS method for symmetric nonlinear equations, SIAM J. Numer. Anal., 37 (1999), 152-
172. MR1742754 (2000k:65100)

[17] D.H. Li and M. Fukushima, On the global convergence of the BFGS method for nonconvex
unconstrained optimization problems, SIAM J. Optim., 11 (2001), 1054-1064. MR1855221
(2002f:90168)

[18] D.H. Li and M. Fukushima, A modified BFGS method and its global convergence in noncon-
vex minimization, J. Comput. Appl. Math., 129 (2001), 15-35. MR1823208 (2002b:90130)

[19] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput., 35 (1980),
773-782. MR572855 (81g:65077)

[20] J.M. Ortega and W.C. Rheinboldt, Iterative solution of nonlinear equations in several vari-
ables, Academic Press, 1970. MR0273810 (42:8686)

[21] M.J.D. Powell, On the convergence of the variable metric algorithm, J. Inst. Math. Appl., 7
(1971), 21-36. MR0279977 (43:5698)

[22] M.J.D. Powell, Some global convergence properties of a variable metric algorithm for min-
imization without exact line searches, in: R.W. Cottle, C.E. Lemke (Eds.), Nonlinear
Programming, SIAM-AMS Proceedings, Vol. IX, SIAM, Philadelphia, PA, (1976) 53-72.

MR0426428 (54:14371)
[23] M.V. Solodov and B.F. Svaiter, A globally convergent inexact Newton method for systems of

monotone equations, in: M. Fukushima, L. Qi (Eds.), Reformulation: Nonsmooth, Piecewise
smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers, (1998) 355-369.
MR1682755 (2000d:65089)

[24] Ph.L. Toint, Global convergence of the partitioned BFGS algorithm for convex partially
separable optimization, Math. Program., 36 (1986), 290-306. MR866412 (88a:90160)

[25] E. Zeidler, Nonlinear functional analysis and its applications, II/B: Nonlinear monotone
operators, Springer-Verlag, 1990. MR1033498 (91b:47002)

[26] Y. Zhang and R.P. Tewarson, Quasi-Newton algorithm with updates from the preconvex part
of Broyden’s family, IMA J. Numer. Anal., 8 (1988), 487-509. MR975609 (90f:65098)

[27] Y.B. Zhao and D. Li, Monotonicity of fixed point and normal mapping associated with
variational inequality and its application, SIAM J. Optim., 4 (2001), 962-973. MR1855216
(2003a:90070)

College of Mathematics and Computational Science, Changsha University of Science

and Technology, Changsha 410076, China

E-mail address: weijunzhou@126.com

College of Mathematics and Econometrics, Hunan University, Changsha 410082,

China

E-mail address: dhli@hnu.cn

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1103931
http://www.ams.org/mathscinet-getitem?mr=1103931
http://www.ams.org/mathscinet-getitem?mr=1950621
http://www.ams.org/mathscinet-getitem?mr=1950621
http://www.ams.org/mathscinet-getitem?mr=1473401
http://www.ams.org/mathscinet-getitem?mr=1473401
http://www.ams.org/mathscinet-getitem?mr=1646119
http://www.ams.org/mathscinet-getitem?mr=1646119
http://www.ams.org/mathscinet-getitem?mr=1785195
http://www.ams.org/mathscinet-getitem?mr=1785195
http://www.ams.org/mathscinet-getitem?mr=1742754
http://www.ams.org/mathscinet-getitem?mr=1742754
http://www.ams.org/mathscinet-getitem?mr=1855221
http://www.ams.org/mathscinet-getitem?mr=1855221
http://www.ams.org/mathscinet-getitem?mr=1823208
http://www.ams.org/mathscinet-getitem?mr=1823208
http://www.ams.org/mathscinet-getitem?mr=572855
http://www.ams.org/mathscinet-getitem?mr=572855
http://www.ams.org/mathscinet-getitem?mr=0273810
http://www.ams.org/mathscinet-getitem?mr=0273810
http://www.ams.org/mathscinet-getitem?mr=0279977
http://www.ams.org/mathscinet-getitem?mr=0279977
http://www.ams.org/mathscinet-getitem?mr=0426428
http://www.ams.org/mathscinet-getitem?mr=0426428
http://www.ams.org/mathscinet-getitem?mr=1682755
http://www.ams.org/mathscinet-getitem?mr=1682755
http://www.ams.org/mathscinet-getitem?mr=866412
http://www.ams.org/mathscinet-getitem?mr=866412
http://www.ams.org/mathscinet-getitem?mr=1033498
http://www.ams.org/mathscinet-getitem?mr=1033498
http://www.ams.org/mathscinet-getitem?mr=975609
http://www.ams.org/mathscinet-getitem?mr=975609
http://www.ams.org/mathscinet-getitem?mr=1855216
http://www.ams.org/mathscinet-getitem?mr=1855216

	1. Introduction
	2. Algorithm
	3. Convergence property
	4. Numerical results
	5. Final remark
	Acknowledgments
	References

