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tOn{line estimation of the frequen
y of a sinusoidal signal is a 
lassi
al problem in systems theory thathas many pra
ti
al appli
ations. In this paper we provide a solution to the problem of ensuring a globally
onvergent estimation. More spe
i�
ally, we propose a new adaptive not
h �lter whose dynami
 equationsexhibit the following remarkable features: i) all signals are globally bounded and the estimated frequen
yis asymptoti
ally 
orre
t for all initial 
onditions and all frequen
y values; ii) we obtain a simple tuningpro
edure for the estimator design parameters, whi
h trades{o� the adaptation tra
king 
apabilities withnoise sensitivity, ensuring (exponential) stability of the desired orbit; iii) transient performan
e is 
on-siderably enhan
ed, even for small or large frequen
ies, as witnessed by extensive simulations. To revealsome of the stability{instability me
hanisms of the existing algorithms and motivate our modi�
ationswe make appeal to a novel nonlinear (state{dependent) time s
aling. The main advantage of workingin the new time s
ale is that we remove the 
oupling between the parameter update law and the �lteritself, de
omposing the system into a feedba
k form where the required modi�
ations to ensure stabilitybe
ome apparent. Even though we limit our attention here to the simplest 
ase of a single 
onstantfrequen
y without noise the algorithm is able to tra
k time{varying frequen
ies, preserves lo
al stabilityin the presen
e of multiple sinusoids, and is robust with respe
t to noise.Keywords: frequen
y estimation, adaptive not
h �lter, noise 
an
ellation, stability analysis, nonlinearsystems, adaptive signal pro
essing.1 Introdu
tionWe are interested here in the problem of 
ontinuous{time on{line estimation of the frequen
y �� > 0 of apure sinusoidal signal n = k sin(��t)where n is measurable, and its amplitude; k > 0, is also unknown.1 Frequen
y estimation is a fundamentalquestion in systems theory that has many pra
ti
al appli
ations, for instan
e in a
tive noise and vibration
ontrol [4℄ in heli
opters [9℄, disk drives [2℄ and magneti
 bearings [10℄. It is also a 
hallenging theoreti
alproblem (even in the 
ase when noise is absent) sin
e the nonlinear dependen
e on the unknown frequen
ystymies the appli
ation of standard well known te
hniques. For instan
e, if it is expressed using a state{spa
e realization of the sinusoid, we are 
onfronted with a problem of simultaneous estimation of the stateand the parameter, whi
h is a well{known open problem in systems theory. Although in dis
rete{time itis possible to obtain a linear parametrization, hen
e side{stepping the aforementioned obsta
le, the 
riti
al�Author to whom all 
orresponden
e should be addressed.1The estimators 
onsidered here are in fa
t appli
able for the more general 
ase n = ksin(��t + �), where � is a 
onstantbut unkown phase. 1



dependen
e of the estimate on the sampling time (parti
ularly for frequen
ies 
lose to 0 or �) makes thisformulation inadequate in a global 
ontext. Also, it is 
lear that a dire
t o�{line solution is possible, but weare looking here for on{line implementations that attenuate (via averaging) the noise e�e
ts and are able totra
k time{varying frequen
ies.There exists several algorithms to estimate on{line the frequen
y of a sinusoid; for a detailed review seethe 
lassi
al paper [12℄, or the more re
ent work of [8℄. Probably, the �rst adaptive solution was the lineenhan
er of [29℄, later analyzed in [28℄, whi
h amounts to the implementation of an adaptive k{step aheadpredi
tor with a �nite impulse response (all zero) �lter. When suitably tuned, the s
heme 
onverges to apolynomial with zeros on the unit 
ir
le, having angular lo
ations 
orresponding to the signal frequen
ies.An improved formulation of this s
heme was later reported in [21℄ and [22℄. Finite impulse response �ltersproved de�
ient in re
uperating the sinusoid sin
e sharp 
uto� 
hara
teristi
s are needed. This motivatedthe 
onsideration of adaptive in�nite impulse response �lters (with poles and zeros) in [7℄. The 
onstraintsimposed on not
h �lters yield simple relations between the poles and the zeros. Without imposing su
h
onstraints serious problems of numeri
al instability arise. The one{parameter{per{sinusoid not
h model,whi
h advantageously exploited these 
onstraints, was �rst proposed in [19℄, and has sin
e been studied bymany other authors, see the referen
es in [24℄ and [1℄.To the best of our knowledge, in spite of this intensive resear
h, the basi
 problem of designing a globally
onvergent estimator remained open. In this paper we provide a solution to this problem. More spe
i�
allythe main 
ontribution in this paper is the development of a 
ontinuous{time on{line frequen
y estimatorwith the following remarkable features:{ all signals are globally bounded and, for suÆ
iently slow adaptation, the estimated frequen
y is asymp-toti
ally 
orre
t for all initial 
onditions and all frequen
y values;{ we propose a simple tuning pro
edure for the design parameters, whi
h trades{o� the adaptation tra
king
apabilities with noise sensitivity, always ensuring (exponential) stability;{ the estimated frequen
y is restri
ted to take nonegative values, without the introdu
tion of parameterproje
tions;{ transient performan
e is 
onsiderably enhan
ed, even for small and large frequen
ies, as witnessed byextensive simulations.Our frequen
y estimator is an adaptive not
h �lter (ANF), whi
h takes o� from the ANF proposed in[23℄, later adapted for 
ontinuous{time in the interesting paper [2℄. As pointed out in the latter, the dynami
equations that des
ribe ANF's, although of low order, are extremely 
ompli
ated. Their stability analysishas been limited to the appli
ation of lo
al averaging te
hniques under the assumption of slow adaptation.Even though the predi
tions made with this analysis are quite a

urate (at least under slow adaptation and
lose to the equilibrium), our 
on
ern to obtain global stability motivates us to further study the underlyingstability{instability me
hanisms of this ANF. This is done in se
tion 2 of our paper, where we presentRegalia's ANF and, {in the spirit of [25℄{, we prove the existen
e of (a family of) slow adaptation integralmanifolds. In parti
ular, we expli
itely de�ne the frozen parameter integral manifold, whi
h 
ontains thedesired orbit, and prove that the motion on this manifold is stable. More importantly, we show that forsmall frequen
ies adaptation speeds{up triggering instability, while, on the other hand, for large frequen
iesadaptation slows down and performan
e is degraded.To avoid the two latter undesirable phenomena we propose in se
tion 3 the simple, but essential, mod-i�
ation of s
aling the ANF's for
ing term. We also show that s
aling does not a�e
t stability under slowadaptation. It modi�es, though, the shape of the frozen parameter integral manifold. An additional bene�-
ial e�e
t of s
aling is that it ensures the estimate is always positive. (Besides its obvious pra
ti
al appeal,this feature is important in the sequel to insure global existen
e of a nonlinear time{s
aling introdu
ed tode
ouple the �lter from the estimator).The s
aled ANF is, however, not globally stable, solutions may es
ape to in�nity for suÆ
iently largeinitial 
onditions. To further pro
eed with our goal of obtaining a globally 
onvergent s
heme we introdu
e inse
tion 4 a novel nonlinear (state{dependent) time s
aling.2 The main advantage of working in the new time2See [20℄ for an appli
ation of time{s
aling to the analysis of an adaptive system and some illustrative examples.2



s
ale is that we \de
ouple" the parameter update law from the �lter itself, obtaining a representation of theANF as a feedba
k inter
onne
tion of a stable linear time{invariant (LTI) system with a \nonlinear gain".It turns out that this gain 
an be bounded with the introdu
tion of a suitable normalization fa
tor in theestimator, rendering the system amenable for L1 small{gain analysis. In this way we obtain an upperboundon the adaptation gain that ensures the �lter signals are globally bounded. Our main result is presented inse
tion 5 where we establish global asymptoti
 
onvergen
e of the estimated frequen
y, for suÆ
iently slowadaptation speeds, of the proposed s
aled and normalized ANF.ANF's 
ontain two design parameters, the adaptation gain that determines the speed of adaptation,{hen
e its alertness to tra
k frequen
y variations{, and the damping 
oeÆ
ient that determines the \depthof the not
h", and 
onsequently its noise sensitivity. A further 
ontribution of our paper, whi
h is presentedin se
tion 6, is the development of a tuning pro
edure to trade{o� between adaptation alertness and noisesensitivity, preserving (exponential) stability. This is a very deli
ate task be
ause, as we �rst show, the ANFmay exhibit very 
omplex dynami
 behaviour {even 
lose to the steady{state{ if the parameters are notproperly tuned. In parti
ular we show that the tangent approximation of the dynami
s along the desiredorbit is des
ribed by two 
oupled Mathieu's equations. Hen
e the (analyti
al) 
hara
terization in parameterspa
e of the stability{instability boundary is ruled out. Sin
e the frequen
y and the amplitude of the sinusoidare unknown, our tuning pro
edure satis�es the sine qua non 
onditions of being frequen
y{independent androbust to amplitude un
ertainty.We wrap up the paper with some 
on
luding remarks and further resear
h in se
tion 7. In parti
ular,we point out that even though we 
on
entrated our attention here in the simplest 
ase of a single 
onstantfrequen
y without noise, in [5℄ we have shown, {via simulations and some analysis,{ that the algorithm isable to tra
k time{varying frequen
ies, preserves lo
al stability in the fa
e of multiple sinusoids, and is robustvis �a vis noise.Throughout the paper we present simulation results that 
orroborate our 
laims. Extensive simulations,further details on the present work and appli
ations to the noise 
an
elling problem may be found in [5℄.2 The algorithm of Regalia: Stability and instabilityIn this se
tion we present Regalia's ANF, prove that it has a unique periodi
 orbit at the desired frequen
y,and explain, via an approximate frozen parameter analysis, the me
hanism by whi
h it renders this orbitstable for suÆ
iently slow adaptation. This approximate reasoning is later formalized proving, {in the spiritof [25℄{, the existen
e of (a family of) slow adaptation integral manifolds. In parti
ular, we expli
itely de�nethe frozen parameter integral manifold whi
h 
ontains the desired orbit. More importantly, we show that forsmall frequen
ies adaptation speeds up triggering instability, while, on the other hand, for large frequen
iesadaptation slows down and performan
e is degraded.2.1 MotivationOne popular alternative to solve the frequen
y estimation problem is to use an ANF [24℄. A not
h �lter isan LTI system whose magnitude response vanishes at a parti
ular point in the j! axis, whi
h is 
alled thenot
h frequen
y, and whose magnitude response is nearly 
onstant at other points. Ex
ellent approximationsare obtained using se
ond{order �lters, where to insure that the �lter is proper a bandwidth parameter thatdetermines the \not
h depth" is added. In this way, feeding n to the not
h �lterHN (p) = p2 + ��2p2 + 2� ��p+ ��2will provide (up to exponentially de
aying exponentials) a zero output when the not
h is 
entered in ��,i.e. when �� = ��. It is then reasonable to 
ombine a \time{varying" not
h �lter with an estimator thatadjusts the not
h lo
ation using the information from the �lter output. Sin
e the unknown parameterenters nonlinearly, the question is, of 
ourse, how to implement the estimator to guarantee some stabilityproperties? In [23℄ a very interesting pro
edure to 
arry out this task was presented. As opposed to the
lassi
al approa
h of minimizing an output error 
ost fun
tion (whi
h generates lo
al minima [24℄, [1℄) in[23℄ the estimator is designed to a
hieve a stable averaged behaviour [14℄.3



The equations of Regalia's ANF, later transposed to 
ontinuous{time in [2℄, are given as�x+ 2�� _x+ �2x = n (2.1)_� = �
x(n� 2�� _x) (2.2)where � represents the estimated frequen
y, � > 0 is the damping 
oeÆ
ient, and 
 > 0 determines theadaptation speed3. These two design parameters are used to trade-o� between adaptation alertness to tra
kfrequen
y variations and noise sensitivity. As will be
ome 
lear below, the initial 
onditions of the ANF aretypi
ally 
hosen as (x(t0); _x(t0); �(t0)) = ( �k̂2��20 ; 0; �0) 2 R3, where k̂ and �0 are initial guesses for k and ��,respe
tively.4The fa
t below follows inmediately from the ANF's equations.Fa
t 2.1The dynami
al system (2.1), (2.2) has a unique periodi
 orbit with 
onstant (and 
orre
t) estimated fre-quen
y given by5 O 4= 24 �x_�x�� 35 = 24 �k2��2� 
os(��t)k2��� sin(��t)�� 35 (2.3)222To provide some insight into the ANF's operation, let us assume that adaptation has frozen. In that 
ase(2.1) redu
es to x = 1p2 + 2� ��p+ ��2 n (2.4)with �� 
onstant. Then, the signal driving the adaptation law be
omesx(n� 2� �� _x) = x� p2 + ��2p2 + 2� ��p+ ��2 n�It will therefore be zero when �� � ��, whi
h is the desired equilibrium. This is true even if in the updatelaw we in
lude only the se
ond right hand term. However, in
luding x gives the algorithm an additionalstabilization me
hanism that may be unveiled noting that the estimation error 
an be written asx(n� 2�� _x) = x(�x + �2x)Hen
e, 
lose to the equilibrium (2.3), where � = �� and ��x = ��2��x, we havex(n� 2�� _x) � (��2 � �2�)�x2The derivations above show that, whenever we are 
lose to the desired orbit and adaptation is slow, thesear
h in parameter spa
e will go in the right dire
tion (i.e., f� > �� ) _� � 0g, and vi
e versa). This is thekey (lo
al) stabilization me
hanism of Regalia's ANF whi
h is rigourously formalized in the next subse
tion.See also [23℄ for an alternative dis
ussion of the ANF above using Ljung's ODE analysis.2.2 Stability analysisAs in all adaptive systems, when the adaptation gain 
 of the ANF update law is small the estimatedfrequen
y � tends to evolve slowly 
ompared to the �lter states � 4= [x; _x℄T . As shown in the fundamentalpaper [25℄ this 
on
ept of slow adaptation 
an be made pre
ise by proving that it o

urs on an integralmanifold of (2.1), (2.2), i.e., a time{varying 1{dimensional surfa
e M
 � R3 su
h that(�(t0); �(t0)) 2M
 ) (�(t); �(t)) 2M
 ; 8t � t0The proposition below establishes the existen
e of a 
{family of slow manifolds for Regalia's ANF. Thesimplest member of this family is the \frozen parameter" manifold M0, 
orresponding to 
 = 0. Wefurthermore show that in this manifold the update law is stable.3In [2℄ there is an additional �lter gain whi
h 
an be absorbed into k without a�e
ting the subsequent analysis.4Of 
ourse, su
h a 
hoi
e is more meaningful if the phase of the sinusoid is zero at t = t0. See footnote 1 of the introdu
tion.5Here, and throughout the rest of the paper, we use �(�) to denote equilibria (not ne
essarily 
onstant).4



Proposition 2.1 (Integral manifolds of slow adaptation)There exists 
0 su
h that for ea
h 
 2 [0; 
0℄, (2.1), (2.2) has a uniquely de�ned integral manifold M
 =ft; �; � : � = f(t; �)g, whi
h arbitrarily approa
hes the frozen-parameter manifold M0 as 
 ! 0. Thelatter 
an be expli
itely 
hara
terized and expressed in a time-independent form as a 2-dimensionalmanifold in R3 given byM0 = �(x; _x; �) : x2 + 1�2� _x2 = k2(�2 � �2�)2 + 4�2�2�2�� (2.5)Furthermore, on the manifold M
 the update law is asymptoti
ally stable in the sense that � ! �� ast!1.ProofThe proof of existen
e of the manifolds is a dire
t appli
ation of Theorem 3.1 of [25℄, and it boils down toverifying the required assumptions. We refer the reader to that paper and to [5℄ for further details, and to[16℄ for a similar analysis.First, we take a state{spa
e realization of (2.1), (2.2) as_� = � 0 1��2 �2�� ��+ � 01 �n (2.6)_� = �
�1(n� 2���2)Let �0(t; �) be the steady{state response with frozen � of (2.6), whi
h 
an be readily veri�ed to be given by�0(t; �) = a(�) � sin(��t+ �(�))�� 
os(��t+ �(�)) � (2.7)where a(�) 4= kD(�) ; �(�) 4= ar
tan �2�����2 � �2� (2.8)and D2(�) 4= (�2 � �2�)2 + 4�2�2�2� > 0 (2.9)Noti
e that �(�) and a(�) are 
ontinuous fun
tions of �.The proof that the frozen parameter manifold is 
ontained in the set (2.5) follows from dire
t substitutionof (2.7).Now, introdu
ing the deviation of � from �0(t; �) as a new state variabley = �� �0(t; �)we rewrite the ANF equations as_y = � 0 1��2 �2�� � y + 
�0�(t; �)F (t; �; y)_� = �
[�01(t; �) + y1℄fn� 2��[�02(t; �) + y2℄g 4= �
F (t; �; y)where �0�(t; �) is the sensitivity matrix. We 
an now show that the 
onditions of theorem 3.1 of [25℄ hold,namely:� (Assumption 2.1) The frozen parameter unfor
ed system_y = � 0 1��2 �2�� � yis exponentially stable 8� > 0;� (Assumption 2.2) �0(t; �); �0�(t; �) are bounded and the latter is Lips
hitzian in �;5



� (Assumption 3.1) F (t; �; y) is 
ontinuous, hen
e bounded in 
ompa
ts, and Lips
hitzian in � and y.Invoking theorem 3.1 of [25℄ this proves the existen
e of a 
{family of slow manifolds M
 for suÆ
ientlysmall 
.The stability of the update law 
an be shown as an appli
ation of Theorem 4.1 of [25℄ and Theorem 4.4.3of [27℄. Note that when y = 0 the update law redu
es to_� = F (t; �; 0) = �01(t; �)[n� 2���02(t; �)℄ = (�2 � �2�)[�01(t; �)℄2 (2.10)and its averaged form is _�a = �
(�2a � �2�)a(�a)=2 4= 
fa(�a)where fa(�a) has an isolated zero at �a = �� and [dfa=d�a℄�a=�� < 0. 222Remark 2.1One 
an further prove the attra
tivity of the integral manifold M
 (Theorem 5.1 of [25℄). The existen
eand stability results established thus far are only lo
al. However, the slow manifold approa
h was dis
ussedabove in some detail be
ause it sets a 
onvenient framework also for the global analysis that we pursue.2.3 Simulations: Instability and performan
e degradationIn this subse
tion we present some simulations6 that illustrate the result of proposition 2.1, and reveal twopotential problems for Regalia's ANF that appear for small and large frequen
ies, respe
tively. This twophenomena motivate our �rst modi�
ation, s
aling, whi
h is presented in se
tion 3.The existen
e of the slow adaptation manifold is depi
ted in Figs. 1, 2 and 3, where the latter 
learlyshows the vertex{up 
one form of the frozen{parameter manifold (2.5). The fast 
onvergen
e of the traje
torytowards the slow manifold, and the subsequent drift along it towards the desired orbit (t > 5), is bestappre
iated in the plot of � � t of Fig. 2. The initial 
onditions (IC) in this simulation are [x1; x2; x3℄ =[1; 1; 10℄, and the remaining parameters 
 = 0:1, � = 0:1, �� = 5, k = 10. Note the periodi
 orbit at � = ��with amplitude k2��2� = 2 for x1.
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Figure 3: 3D state-spa
e plotSin
e the amplitude of the periodi
 orbit (2.3) grows unboundedly with �� ! 0 and de
reases to zeroas �� ! 1, two problems may arise. If �� is large, the amplitude may be so small that the 
onvergen
ebe
omes very slow. This is shown in Figs. 4, 5 and 6, where the ICs are taken as [1; 1; 10℄, 
 = 0:5, � = 0:4,�� = 100 and k = 10. We have let the simulation run up to 10000 to verify that parameter 
onvergen
e wasnot yet a
hieved.6In all simulations we denote (x1; x2; x3) = (x; _x; �). 6
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Figure 6: 3D state-spa
e plotOn the other hand, with small ��, large os
illations may provoke unpredi
table behavior and triggerinstability. This 
an be seen in Figs. 7, 8, 9 where we have taken �� = 0:1, keeping the remaining 
onditionsand parameters as in the previous 
ase.
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Figure 9: 3D state-spa
e plotRegalia's ANF is only lo
ally stable, it may go unstable for large ICs. For instan
e, it 
an be shown bysimulation that for 
 = 0:7, � = 0:3, �� = 5, k = 1 and IC [1; 1; 10℄, the system has stable behaviour and
onvergen
e to the 
orre
t frequen
y is observed. However, it is shown in [5℄ that with IC [10; 1; 10℄, thetraje
tory blows away.Remark 2.2It is 
lear from the simulations (e.g., Fig. 8 above or Fig. 2 of [2℄) that nothing prevents the estimate � fromtaking negative values during the transient. As shown above this triggers instability. Even though, a simpleproje
tion 
ould be added to avoid this to happen, there's no guarantee that an a
ummulation point of thealgorithm o

urs 
lose to zero when
e the proje
tion will be turning on and o� inde�nitely. This is a verydeli
ate well known problem in adaptive systems that we want to avoid in our global (fully deterministi
)analysis.3 S
aled adaptive not
h �lterMotivated by the dis
ussions above, we propose in this se
tion our �rst modi�
ation to Regalia's ANF:{ S
aling of the for
ing signal to obtain a \unitary gain" in steady{state and avoid the undesirable 
rossingthrough zero of the estimated frequen
y (remark 2.2).7



After presenting the modi�ed s
heme, whi
h we 
alled s
aled{ANF, we prove the positivity of the estimateand verify, via simulation, how the instability problems mentioned above are avoided.3.1 Proposed modi�
ation and positivity of the estimateWe propose to modify Regalia's ANF (2.1), (2.2) by s
aling the for
ing term n with a fa
tor �2 to get�x+ 2�� _x+ �2x = �2n (3.1)_� = �
(�2n� 2�� _x)x (3.2)Using the same reasoning as in subse
tion 2.1 it is easy to see that, under ideal 
onditions, the amplitudeof x will 
onverge to k=2�, instead of k=2��2� as in Regalia's algorithm, thus avoiding the instability and theslow 
onvergen
e that appear for low and high frequen
ies, respe
tively.Another ni
e feature of the new algorithm is that the frequen
y sear
h is restri
ted to non-negative values.That is, along the solutions of (3.1), (3.2) the following impli
ation holds�(t0) > 0) �(t) > 0; t 2 [t0;1)This is, of 
ourse, a dire
t 
onsequen
e of the invarian
e of the set f� � 0g.Besides its obvious pra
ti
al interest this property will be important in the next se
tion where, to de
ouplethe �lter and the estimator dynami
s, we will introdu
e a time s
ale 
hange that involves a division by �.Remark 3.1Pro
eeding as done in proposition 2.1 it is possible to show the existen
e of the slow manifolds for the s
aledANF. In this 
ase the steady{state response with frozen � is given by (2.7) but with a(�) = k�2=D(�) insteadof (2.8). Hen
e the frozen parameter manifold looks likeM0 = �(x; _x; �) : x2 + 1�2� _x2 = k2�2(�2 � �2�)2 + 4�2�2�2��It is interesting to note that the 
one is now inverted. It is easy to see, also, that the fundamental relationship(2.10) still holds true. We will 
ome ba
k to this in se
tion 5 where we will analyse the s
aled and normalizedANF.3.2 SimulationsThe improved performan
e of the new s
aled ANF, for large ��, 
an be seen in Figs.10{12. We used the samedata of Figs. 4{6, for whi
h Regalia's ANF exhibited very poor 
onvergen
e properties. We 
an see that theos
illations reasonably soon a
hieve large enough values, thus resulting in mu
h faster transient response.
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Figure 12: 3D state-spa
e plot8



For small ��, the s
aled system also exhibits good behaviour mainly be
ause the os
illation amplitudesare not so large as in the original ANF. Thus, a fast and ni
e 
onvergen
e is observed. See Figs. 13{15,whi
h should be 
ompared with Figs. 7{9. Again, the same data are used to produ
e both simulations.
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Figure 15: 3D state-spa
e plotEven though s
aling has removed two important drawba
ks of Regalia's ANF it is veri�ed in [5℄ that thenew estimator is still only lo
ally stable.4 Time s
ale 
hange and normalizationTo guide ourselves in the modi�
ation to the ANF required to a
hieve globality we propose in this se
tiona nonlinear time s
ale 
hange that de
ouples the dynami
s of the estimator and the �lter. More pre
isely,in this time s
ale we 
an represent the ANF as a feedba
k inter
onne
tion of a stable LTI system witha \nonlinear gain", whi
h 
an be bounded with the introdu
tion of a suitable normalization fa
tor in theestimator. In this way we 
an prove that, for the normalized and s
aled ANF, the �lter signals are globallybounded. The proof of asymptoti
 
onvergen
e of the estimate, being more te
hni
ally involved, is left tose
tion 5. Even though it may be argued that normalization is a standard modi�
ation to a
hieve globality,it will be
ome 
lear below that the required form of the normalization is far from obvious, and be
omes only
lear in the new time s
ale.4.1 Notation and preliminariesTime s
aling, whose importan
e in the study of dynami
al systems is re
ognized already in Lyapunov'soriginal work [15℄, plays a fundamental role in the theory developed here and is used in the remaining of thepaper. Some simplifying notations will be introdu
ed as follows. Consider a system given bydx(t)dt = f(x(t); t); x(t0) = x0 2 Rn (4.1)Then, de�ne the time-s
ale transformationd�dt = g(x(t); t); �(t0) = t0where, � is the new time variable, x(t) is a solution of (4.1), and g(x(t); t) > 0; 8t 2 IM = [t0; tM ), witht0 being an initial time and tM the upper limit of the maximal interval of de�nition of x(t) as a fun
tionof t. This de�nes (under the usual assumptions of existen
e and uniqueness of solutions) a homeomorphismR ! R relating the time variables as � = �(t); t = t(�)In terms of the new time variable, the original system is transformed intodx� (�)d� = fg�1(x� (�); t)9



n{ -n(�) -6- x0(�)H(p) ���(�)
Figure 16:The notational simpli�
ations we adopt in this paper are: x� (�) is simply repla
ed by x(�). Also, we use_(:) 4= d(:)dt and (:)0 4= d(:)d� . When 
lear from the 
ontext we will use the symbol p to denote di�erentiation withrespe
t to either t or � . To 
learly distinguish between the time s
ales we will expli
itly write the argument(�) whenever the signal is expressed in that time s
ale.Note that, if x(t) is a solution of the original system (4.1), then x� (�) = x(t(�)) is a solution of thetransformed system above. Sin
e we will study the stability of (4.1) using its �{s
ale representationx0(�) = fg�1(x(�); t(�))we must prove that the new time variable � = �(t) is de�ned 8t, nonde
reasing and satis�es� !1, t!1 (4.2)Establishing this fa
t is a diÆ
ult te
hni
al hurdle of our analysis that will, unfortunately, translate intosome additional 
omplexity in the algorithm.4.2 Estimator and �lter de
ouplingProposition 4.1Let us de�ne a (state{dependent) time s
ale 
hange asd�(t)dt = �(t); �(t0) = �0 (4.3)with �(t0) > 0. Then, in the � time s
ale and 8� � �0, the dynami
s of the s
aled ANF (3.1), (3.2) aredes
ribed by the following 4{dimensional autonomous systemx00(�) + 2�x0(�) + [1 + 2
�(x0(�))2℄x(�) = [1 + 
x(�)x0(�)℄n(t(�)) (4.4)�0(�) = 
[2�x0(�) � n(t(�))℄x(�)�(�) (4.5)t0(�) = 1�(�) (4.6)with initial 
onditions7 (x(�0); x0(�0); �(�0); t(�0)) = (x(t0); _x(t0)�(t0) ; �(t0); t0).In parti
ular, the �lter equations (4.4) 
an be represented as the feedba
k inter
onne
tion of Fig. 16where H(p) 4= pp2 + 2�p+ 1 (4.7)and �(�) 4= 
x(�)[2�x0(�) � n(t(�))℄ (4.8)2227Noti
e that, even though x and x(�) denote the same fun
tion in di�erent time s
ales, this is not so for _x and x0(�), hen
ethe di�eren
e in initial 
onditions. 10



ProofThe proof is a straightforward appli
ation of the 
hain rule(�)0(�) = _(�) 1�(�)and the in
orporation of t(�) as a state variable. Appli
ation of the time s
ale 
hange to (3.1) yieldsx00(�) + [2� + �0(�)�(�) ℄x0(�) + x(�) = n(t(�))while (3.2) be
omes (4.5). The proof is 
ompleted repla
ing (4.5) in the expression above and rearrangingthe terms in (4.4) to obtain the feedba
k system of Fig. 16. 222Remark 4.1It is useful to rewrite (4.4) asx00(�) + x(�) + [1 + 
x0(�)x(�)℄[2�x0(�) � n(t(�))℄ = 0From simple inspe
tion of the equation above and (4.5) we see that, in the � time s
ale, the unique solutionwhi
h ensures the estimator equation is in steady{state is2664 �x(�)�x0(�)���t(�) 3775 = 2664 �k2� 
os(�)k2� sin(�)��1�� � 3775 (4.9)4.3 Normalization and global boundednessFrom Fig. 16, and provided the time s
aling is well de�ned, we see that if the gain �(�) is bounded {whi
h 
an be a
hieved with a suitable sele
tion of 
{ we 
an use a simple L1 small{gain argument to proveboundedness of the feedba
k loop. This reasoning motivates the introdu
tion in this subse
tion of our se
ondmodi�
ation: normalization of the update law. This allows us to a
hieve global boundedness of the �ltersignals. The proof of boundedness and 
onvergen
e of � is, unfortunately, more te
hni
al and requires theassumption of slow adaptation. Therefore, it is postponed to se
tion 5.Proposition 4.2Consider the s
aled normalized ANF �x+ 2�� _x+ �2x = �2n (4.10)_� = 
(2� _x� �n)x� (4.11)
 = �f1 +N [x2 + ( _x� )2℄gf1 + �j�j�g (4.12)where, �;N; � > 0 and � � 1. We propose the following state realization8 for (4.10){(4.12)_z1 = �z2 (4.13)_z2 = �[�z1 � 2�z2 + n� 
z1z2(2�z2 � n)℄ (4.14)_� = 
(2�z2 � n)z1�2 (4.15)
 = �(1 +N�2z)(1 + �j�j�) (4.16)where z1 = x, z2 = x0 and �2z 4= z21 + z22 .8Noti
e that, in 
ontrast to (2.6), this is not a 
anoni
al state{spa
e realization sin
e x2 is not the derivative of x1. Thisparti
ular form will be needed for the subsequent analysis. 11



Assume known an upperbound kM of the sinusoidal noise amplitude, i.e., k � kM , �x � > 0, and
hoose �; N su
h that � < 2NkMN1=2 + 4� khk1 (4.17)where h is the impulse response of the transfer fun
tion (4.7) and k � k1 4= R10 j � jdt is its L1 norm.Under these 
onditions,i) The time s
ale 
hange (4.3) is globally de�ned, i.e., (4.2) holds;ii) z1 and z2 are globally bounded. 222ProofPositivity of the estimate, stated in fa
t 3.1, shows that � is a stri
tly in
reasing fun
tion, thus to prove i),we need only to rule out the possibilities of � going to in�nity in �nite time or that � 
onverges to a �nite
onstant as t ! 1. These s
enarios 
orrespond to the 
ases when � es
apes to in�nity in �nite time and� � �0 = R tt0 �(s)ds ! 
 < 1 as t ! 1, respe
tively. To prove that � does not es
ape to in�nity in �nitetime, let us rewrite (4.11) as _� = �1� (4.18)where we have de�ned �1 4= 
x(2� _x� �n) (4.19)Some simple 
al
ulations with (4.19) yieldj�1j � �1M 4= �2N (kMN1=2 + 4�)��1=�
�where ��1=�
�(�) 4= sup� j�j(1+�j�j�) = ��1=�(1 � 1=�)(� � 1)�1=� < 1. Integrating (4.18) and using thebound above we get � � e��1M t�(0)whi
h proves that � does not es
ape to in�nity in �nite time.We will now prove that9 limt!1� =1. We will pro
eed by 
ontradi
tion, thus assume that limt!1� =�M <1. Then, noti
e that the developments 
arried out for the time s
aling in proposition 4.1 remain validfor time{varying 
. Hen
eforth, (4.10), (4.11) be
ome (4.4){(4.6), with
(�) = �[1 +N�2z(�)℄(1 + �j�(�)j�)In parti
ular, in the � time s
ale, the estimator (4.11) is des
ribed by �0(�) = �(�)�(�). Some simple
al
ulations with (4.8) show that �(�) satis�es the boundj�(�)j < �2N (kMN1=2 + 4�) (4.20)We draw two important 
on
lusions here. First, from (4.20) we see that �0 is linearly bounded and thus�(�) 
annot de
rease to zero faster than exponentially and thus � = 0 
annot be rea
hed in �nite time. Thisimplies that the open set � > 0 is invariant. Note that system (4.4)-(4.6) is singular for � = 0, however, forthe open set � > 0 the system is lo
ally 
ontinuously di�erentiable, whi
h guarantees (lo
al) existen
e anduniqueness of solutions within the invariant set. Se
ond, again as �(t), �(�) 
an grow at most exponentially.The latter implies that �(�) and �0(�), are bounded for � 2 [0; �M ). This in turn implies that �(t) and_�(t) are bounded 8t � 0. Hen
e, �(t) is uniformly 
ontinuous. Integrating (4.3) from 0 to 1 and invokingBarbalat's lemma [27℄, one 
on
ludes that �(�) ! 0 as � ! �M .This situation 
annot happen be
ause, as already pointed out, �(�) 
an de
rease to zero at most expo-nentially, and 
onsequently, �(�) remains bounded away from zero (or is identi
ally equal to zero) for any9Re
all that �(t), being stri
tly in
reasing in t, either is unbounded or tends to a �nite 
onstant.12



�nite interval [0; �M ). The 
ontradi
tion is therefore established thus proving the global de�nition of thetime s
ale 
hange.To prove the global boundedness result ii), (in the � time s
ale), we refer to the feedba
k system ofFig. 16. Re
alling that the L1 gain of an LTI operator is the L1 norm of its impulse response [6℄, and
ombining (4.17), (4.20) we establish boundedness of x0(�) as a straightforward appli
ation of the L1 small{gain theorem. Also, noti
e that z1(�) = x(�) is the output of an asymptoti
ally stable linear time invariantsystem with bounded input n(�)� �(�)x0(�), hen
e is also bounded. The proof is 
ompleted observing thatz2 = _x� = x0(�), whose boundedness we just established. 222Remark 4.2Normalization was originally motivated by our 
on
ern to bound the gain �(�) in Fig. 16 and prove globalboundedness. It is 
lear from (4.8) that to a
hieve this end it suÆ
es to in
lude the �rst two terms in bra
ketsin (4.12). The remaining term is needed, as shown in the proof, to avoid �nite es
ape time phenomena.Observe, however, that � may be taken arbitrarily small.5 Global 
onvergen
e of the estimateIn this se
tion we prove the main result of the paper:Proposition 5.1There exists �� > 0 satisfying the bound10 �� < 2NkMN1=2 + 4� khk1su
h that for all � � �� all signals of the new ANF (4.13){(4.16) are globally bounded for arbitrary initial
onditions. Furthermore, the estimated frequen
y is asymptoti
ally 
orre
t, that is limt!1 � = ��.222To 
arry out the proof we will pro
eed along the following steps (for ea
h one of whi
h a subse
tion is devotedbelow):1. As done in se
tion 2.2 (slow manifold approa
h), we evaluate the quasi{stati
 solution of the new ANF,(i.e., its steady{state response with frozen �), and de�ne as error signals the deviation of the a
tualANF signals with respe
t to this quasi{stati
 solution. The error system will be of the following formy0(�) = Ay(�) + �h(�; y; �) (5.1)�0(�) = �f(�; y; �) (5.2)whi
h is in the standard separated time s
ales form of averaging theory [27℄.2. We prove that the error subsystem (5.1) may be regarded as an exponentially stable LTI systemperturbed by small (order �) parametri
 and external disturban
es. Hen
e, under suÆ
iently slowadaptation, the a
tual signals z1(�) and z2(�) of the s
aled and normalized ANF get arbitrarily 
loseto the quasi{stati
 solutions. This means that, after some �nite time, y(�) will be 
onstrained to besmall.3. We de
ompose the estimator equation into a nominal system and a perturbation asf(�; y; �) = f0(�; y; �) + f1(�; y; �)with �� an asymptoti
ally stable equilibrium point for the nominal system and the perturbing termis order �ky(�)k. Hen
eforth, on
e y(�) is small, one 
an prove that �(�) will have to rea
h an �-neighbourhood of the ideal value ��.1110See proposition 4.2 for the de�nition of the right hand terms.11Unfortunately, the la
k of exponential stability of the nominal system hampers us from invoking standard perturbationresults to establish this result, hen
e an additional te
hni
al lemma is required.13



4. We show that the periodi
 orbit is lo
ally exponentially stable with a domain of stability D, whi
h isvalid for all suÆ
iently small � (via standard averaging theory). This implies that the 
omplete errorve
tor will eventually enter D, and then exponential 
onvergen
e of the error ve
tor to zero follows.5.1 Error equationsAs pointed out in remark 3.1 the quasi{stati
 solution of the new ANF di�ers from the one of Regalia's ANFonly on a fa
tor �2. Hen
e, for the state spa
e realization (4.13){(4.15) we get� z01(�; t)z02(�; t) � = a(�)�2 � sin(��t+ �(�))��� 
os(��t+ �(�)) � (5.3)where a(�); �(�) are given by (2.8). Noti
e that, in this state realization12z02 = 1� �z01�t (5.4)whi
h explains the presen
e of 1=� in the se
ond 
omponent.We unders
ore at this point that the lo
al stabilization me
hanism dis
ussed in se
tion 2.2, whi
h ensuresthe stable behaviour of the estimator in the frozen parameter manifold, is also present in the new ANF. Thisis 
lear from the identity (2�z02 � n)z01 = �[1� (��� )2℄(z01)2 (5.5)We denote again the error ve
tor y = [y1 y2℄T 4= [z1 � z01 z2 � z02 ℄T . Our motivation to study thebehaviour of y be
omes 
lear if we rewrite the estimator equation (4.11) in a form that exhibits expli
itelythe stabilization me
hanism 
aptured by (5.5). Towards this end, we de
ompose it as_� = 
(2�z2 � n)z1�2= 
[(2�z2 � n)y1 + 2�z01y2 + (2�z02 � n)z01 ℄�2= �(g0 + gT y)�2 (5.6)where we have de�ned �g0 4= �
(z01)2[1� (��� )2℄ (5.7)�g 4= � � g1g2 � = 
 � 2�z2 � n2�z01 �In appendix A we show that g is bounded. Consequently, if we 
an prove that the ANF signals get 
loseto the quasi{stati
 solutions, i.e., that kyk be
omes small, then the estimator dynami
s will be dominatedby the term _� = �g0�2. In the proof of proposition 2.1 we established that this equation is asymptoti
allystable.From (4.13){(4.15), and using the properties of the quasi-stati
 solution we obtain the error equations_y1 = �y2 � �z01�� _�_y2 = �(�y1 � 2�y2)� 
�z1z2(2�z2 � n)� �z02�� _�We 
an transform this system using the time s
ale � , (4.8) and the de�nition of y2(�) to obtainy01(�) = y2(�) � �z01(�)�� �0(�)y02(�) = �y1(�) � 2�y2(�) � �(�)[y2(�) + z02(�)℄� �z02(�)�� �0(�)12For the sake of brevity in the sequel we will omit the arguments (�; t) of the quasi{stati
 solution.14



Finally, we express the error equations in the 
ompa
t formy0(�) = [A0 + �A1(�)℄y(�) + �b1(�)g0(�) (5.8)where A0 4= � 0 1�1 �2� � ; A1(�) 4= � 0 00 � 1��(�) �+ b1(�)gT (�)with b1(�) 4= " ��(�)�z01(�)���z02(�) � �(�)�z02 (�)�� #5.2 Stability of the error equationsThe lemma below establishes the desired properties for the error signals.Lemma 5.1There exists a �nite time �r � 0, su
h that the error signals of the s
aled and normalized ANF (4.13){(4.16)satisfy the bound ky(�)k � � ; 8� � �r (5.9)for arbitrary initial 
onditions provided � is suÆ
iently small. Moreover, there exists positive
onstants13 
 and � su
h that ky(�)k � �[e��� � jg0(�)j + 
e��� ℄ (5.10)where � denotes the 
onvolution operator.ProofIn the appendi
es A and B we show that, similarly to �(�), g0(�) and the ve
tor b1(�) are bounded. Therefore,the subsystem (5.8) 
an be regarded as an exponentially stable linear time-invariant system perturbed bysmall parametri
 and external disturban
es. The proof is then standard and based on the quadrati
 Lyapunovfun
tion V (�) = yT (�)Py(�), with AT0 P + PAT0 = �Q; P;Q > 0The derivative of this Lyapunov fun
tion givesV 0(�) = �yT (�)Qy(�) + yT (�)(AT1 P + PA1)y(�) + �bT1 (�)Py(�)g0(�)� �(�0 � �)ky(�)k2 + �ky(�)k jg0(�)jfrom this inequality and the boundedness of g0(�) (5.9) follows immediately. To establish (5.10) we invokethe 
omparison method (see, e.g., se
tion 5.4 of [13℄). 2225.3 Behaviour of the estimateOn
e we have shown that the �lter signals z1; z2 get arbitrarily 
lose to the quasi{stati
 solutions, remaining
lose after some �nite time �r (or tr), we will next analyze the behavior of the estimated frequen
y �. Wewill show that, no matter its initial 
ondition at time �r, the estimate will ne
essarily approa
h arbitrarily
lose the 
orre
t value �� at some �nite future time.13To avoid the proliferation of 
onstants we will use 
 as a generi
 notation for a positive 
onstant and eventually let � absorba 
onstant fa
tor 
, i.e., use simply � instead of 
�. 15



Lemma 5.2The estimated frequen
y � of the s
aled and normalized ANF (4.13){(4.16) is bounded for arbitrary initial
onditions provided � is suÆ
iently small. Further, for any arbitrarily small positive number �, 9�
 � �rsu
h that j�(�
)� ��j � �.14ProofWe know, from lemma 5.1, that 9�r su
h that ky(�)k � �; 8� � �r. First, assume that �(�r) > ��. We willshow that �(�) 
annot remain bounded away from ��, for all in
reasing � . Assume that this is not the 
ase,i.e., 9� > 0 su
h that, �(�) > � + ��; 8� > �r. In this 
ase, g0(�) � 0;8� > �r.Now, the estimator equation in the � time s
ale reads like�0(�) = �[g0(�) + gT (�)y(�)℄�(�) (5.11)We 
an integrate this equation, use the sign property of g0(�) above and invoke the bound (5.10) to getln[ �(�)�(�r) ℄ � Z ��r �[g0 � � (e��s � g0)℄ds+ 
�2 (5.12)4= h� � g0 + 
�2 (5.13)where h� is the impulse response 
orresponding to the transfer fun
tionH� 4= �(s+ �� �)s(s+ �)Remark that, for � suÆ
iently small, the impulse response h�(�) is positive. This together with the non-positivity of g0(�) readily implies that �(�) is bounded above by a 
onstant. Thus, all state variables areuniformly bounded. This in turn implies that they are uniformly 
ontinuous in � sin
e their derivatives withrespe
t to � are uniformly bounded, a

ording to the error equations (5.8). This also implies that g0(�) isuniformly 
ontinuous.Now (5.12) 
an also be rewritten ashÆ � Z ��r g0(s)ds � ln[ �(�)�(�r) ℄� 
�2 � �
where hÆ is the impulse response of HÆ(s) 4= � (s+���)(s+�) , and we have used the property of boundedness of�(�) to establish the se
ond inequality.Assume � > �, so that HÆ(s) is minimum-phase. Sin
e g0(�) � 0, the integral R g0 is nonin
reasingand, from the minimum-phase assumption, it must be bounded below by a 
onstant.15 Sin
e the integrandis uniformly 
ontinuous and the integral is nonin
reasing, the integrand must tend to zero, by Barbalat'slemma. In turn, this implies that lim�!1 g0(�) = 0. We will now prove that this leads to a 
ontradi
tion.From the de�nition of g0(�) (5.7) we see that the above limit is possible only if lim�!1 z01(�) = 0.However, one has z01(�) = a(�)�2sin[��t(�) + �(�(�))℄Sin
e we have assumed � > ��, then a(�)�2(�) � 
 > 0; 0 > �(�(�)) > ��; 8� . Then, the zero limit ofz01(�) implies lim�!1 sin[��t(�) + �(�(�))℄ = 0Thus, an absurd results and therefore � must arbitrarily approa
h �� for some large enough �
 > �r.14This does not mean that �(�) will 
onverge, or even remain 
lose to �� for all � > �
. The former will be implied be
ausethe state traje
tory will then be \trapped" in the domain of exponential stability D.15Indeed, de�ning v 4= hÆ � R ��r g0, we also have R ��r g0 = �hÆ � v, where L�hÆ = (s+ �)=(s + �� �). Thus, if v � �
 for some
onstant 
 > 0, the same holds for R g0, provided �� � > 0. 16



The 
ase �(�r) < �� is analyzed in analogous way. We �rst 
on
lude that �(�) is bounded below by apositive 
onstant (whi
h may depend on the initial 
onditions). The remainder follows exa
tly as in thepre
eding 
ase. Note that the relevant property of g0(�) in this 
ase is 0 < �(�) < �� ) g0(�) > 0. 2225.4 Convergen
e and exponential stabilityFrom Proposition 5.2, all traje
tories enter a small 
ompa
t set D0 = f(y; �) : kyk � �; j�� ��j � �g at some�nite time t
 = t(�
), provided � is suÆ
iently small.Now note that system (5.8), (5.11) is in the separated time s
ales standard form of averaging theory ([27℄,Se
tion 4.4.1) (5.1{5.2). The latter is shown lo
. 
it. to be redu
ible to the 
onventional standard form ofaveraging theory _x = �f(t; x). One 
an show that the averaged system is exponentially stable around theperiodi
 orbit as in [2℄. The same holds for the original system and the domain of exponential stability Daround the equilibrium point (y; �) = (0; ��) is independent of �, for � suÆ
iently small ([13℄, Theorem 7.5).Thus one 
an 
hoose � so that D0 2 D. This implies that the traje
tories in the error spa
e will eventuallyenter the domain D and exponential 
onvergen
e will ensue.6 Tuning of the �lter parametersThe ANF 
ontains two design parameters, the adaptation gain that determines the speed of adaptation,{hen
e its alertness to tra
k frequen
y variations{, and the damping 
oeÆ
ient that determines the \depthof the not
h", and 
onsequently its noise sensitivity. A further 
ontribution of our paper, whi
h is presentedin this se
tion is the development of a tuning pro
edure to trade{o� between adaptation alertness and noisesensitivity, preserving (exponential) stability. Of 
ourse, the pro
edure will be pra
ti
ally useful only if it isindependent of the unknown �� and robust vis �a vis k.To unders
ore the importan
e of suitable tuning we �rst show that, even 
lose to the equlibria, theANF (both Regalia's and the one proposed here) 
an exhibit very 
omplex dynami
 behaviour if the tuningparameters are not well 
hosen. This will be done by proving that around the desired orbit the ANF isdes
ribed by two 
oupled Hill's equations, one of them being a Mathieu equation, whose 
omplexity ofthe stability{instability domains is well known [18℄. A 
orollary of this study is the de�nition of a simple
ondition for the parameters whi
h is \almost ne
essary" to avoid instability.6.1 Complex dynami
sWe are now only interested in the lo
al behavior around the periodi
 orbit with � = �� > 0. As will beseen in se
tion 6.3, the normalization fa
tor only 
hanges gain 
 by a 
onstant fa
tor in su
h lo
al analysis.Hen
e, we start our analysis without taking into a

ount the normalization. Further, to reveal the 
omplexdynami
s we will work in the � time-s
ale, whi
h lo
ally is always well de�ned.From proposition 4.1 we know that the dynami
s of the s
aled ANF (3.1), (3.2), in the � time s
ale, isdes
ribed by (4.4){(4.6). We are interested in the behaviour of this system 
lose to the traje
tory (4.9). We�nd 
onvenient to introdu
e a 
hange of 
oordinates x3(�) = log(�(�)). Taking the Ja
obian of (the staterealization of) (4.4){(4.6) and evaluating it along the traje
tory above gives the tangent approximation_e(�) = 26664 0 1 0 0�1 �2� + k2
2� sin(�) 
os(�) 0 	(�)0 �k
 
os(�) 0 k2
��2� 
os2(�)0 0 �1�� 0 37775 e(�) (6.1)where 	(�) 4= ��k 
os(�)� 
��k34�2 
os2(�) sin(�)17



We will now write this system as two 
oupled Hill's equations. The �rst two equations of (6.1) 
an beequivalently rewritten as e001(�) + [2� � k2
2� sin(�) 
os(�)℄e01(�) + e1(�) = 	(�)e4Also, di�erentiating one more time the last equation of (6.1) and repla
ing the third one we gete004(�) + k2
2� 
os2(�)e4(�) = k
�� e01(�) (6.2)What we want to stress here is that the unfor
ed part of (6.2) is a Mathieu equation of the formw00(�)� k2
4� (1 + 
os(2�))w(�) = 0It is well known that the stability{instability boundaries of this equation are very 
omplex, see e.g. [18℄. Inparti
ular, it is known that the neighborhood around k2
4� = 1 is unstable. Therefore, an \almost" ne
essary
ondition for stability of our ANF is k2
4� < 1 (6.3)The sharpness of the above stability 
ondition was tested by simulation as follows. We simulated both, thefull s
aled ANF (3.1), (3.2) and its tangent approximation (in the � time s
ale) (6.1). In all simulations weset k = 1, and for ea
h � > 0, the adaptation gain 
 was in
reased until the stability limit was rea
hed. Theresulting stability boundaries, whi
h may be found in [5℄, are surprisingly 
lose.Remark 6.1It is of 
ourse possible, though highly improbable, that the 
ouplings between the Hill's equations have astabilizing e�e
t. This is indeed 
ontradi
ted by the simulations presented above.Remark 6.2The same analysis applied to Regalia's ANF (2.1), (2.2) leads to similar 
on
lusions. In parti
ular, it 
an beshown that e4(�) satis�es a damped Mathieu equation of the forme004(�) � k2
2��2� sin(2�)e04(�) + k2
2��4� 
os2(�)e4 = k
�3� e01(�)whose behaviour is even more 
ompli
ated than the undamped one.6.2 A tuning pro
edure for exponential stabilityWe will show in this subse
tion that an important advantage of introdu
ing the s
aling is that, for ea
hgiven noise amplitude k, there is a simple pro
edure to tune the algorithm gains � and 
. We will see in thenext subse
tion how normalization 
an further relax the requirement of knowledge of k. The analysis in thissubse
tion is done in the t time s
ale.Before presenting this result we note that the periodi
 orbit for the s
aled ANF (3.1), (3.2) is24 �x_�x�� 35 = 24 �k2� 
os(��t)k��2� sin(��t)�� 35 (6.4)Proposition 6.1Consider the linear periodi
ally time-varying three dimensional system_z = 264 0 1 0�1 �2� sin t+ 1� 
os t0 �k2
 
os t k2
2� 
os t sin t 375 z (6.5)If the trivial equilibrium of (6.5) is exponentially stable, then (6.4) is an exponentially stable periodi
orbit of the proposed s
aled ANF (3.1), (3.2). 18



n{ - -6 G(p) ��(t)
Figure 17:ProofThe proof is based on Lyapunov's �rst method as applied to the linearization, along the orbit (6.4), of (3.1),(3.2). This pro
edure yields the linear periodi
ally time{varying tangent approximation_e = 264 0 1 0��2� �2��� k��[sin ��t+ 1� 
os ��t℄0 �k
�� 
os ��t k2
��2� 
os ��t sin ��t 375 ewhere e is the deviation of the state with respe
t to the desired orbit. The proof is 
ompleted introdu
ingthe 
hange of 
oordinates z = 24 1 0 00 1�� 00 0 k�� 35 eand the time s
ale 
hange dsdt = ��, whi
h yields (6.5). 222Even though a simple numeri
al study of (6.5) would provide us with some simple tuning rules, it is of
ourse interesting to devise a more sistemati
 pro
edure to 
he
k stability of the s
aled ANF. The study ofthe stability of linear periodi
ally time{varying systems like (6.5) has a very long history, see e.g., [30℄, [26℄and referen
es therein. We present below an \absolute stability{like" suÆ
ient 
ondition where the sear
hof the multipliers 
an be formulated as a 
onvex optimization problem involving linear matrix inequalities �ala [17℄. For the sake of brevity we only re
ast the system of proposition 6.1 into this framework. An expli
itstability 
ondition, in terms of the tuning parameters 
 and �, will be reported elsewhere.Corollary 6.1Consider the feedba
k system of Fig. 17 where G(s) is a 2� 3 transfer matrix with state spa
e realizationA 4= 2664 0 1 0 0�1 �2� 1� 10 �k2
2 0 �10 0 1 0 3775 ; B 4= 2664 0 00 01 00 1 3775 ; C 4= 24 0 2� 0 00 0 1 00 0 0 1 35whi
h is asymptoti
ally stable for all 
; �; k > 0, and �(t) is a periodi
ally time{varying matrix�(t) 4= k2
4� � � 
os 2t sin 2t 0� sin 2t 0 sin 2t �If this system is L2 stable, then (6.4) is an exponentially stable periodi
 orbit of the proposed s
aledANF (3.1), (3.2). 19



ProofFirst, we rewritte the linearized dynami
s (6.5) as_za = Aa(t)za 4= 26664 0 1 0 0�1 �2� 1� 10 �k2
 
os2 t k2
2� 
os t sin t �10 �k2
 
os t sin t 1 k2
2� 
os t sin t 37775 za (6.6)where we have de�ned za 4= [z1; z2; z3 
os t; z3 sin t℄T . The interest of this \system inmersion" is that theaveraged system yields 1� Z �0 Aa(t)dt � ATo prove that A is exponentially stable for all 
; �; k > 0 we 
an do a root{lo
us analysis of the 
hara
teristi
polynomial, whi
h is given by 1 + k2
2� s(s+ �)(s2 + 2�s+ 1)(s2 + 1) = 0The proof is 
ompleted 
he
king that we 
an write these equations in the perturbation form_za = [A�B�(t)C℄za 222Remark 6.3The importan
e of proposition 6.1 (and its 
orresponding 
orollary) stems from the fa
t that the system(6.5) is independent of ��, hen
e for a given noise amplitude k, we 
an tune the gains 
 and � o�{line. Weshould unders
ore that the reasoning above 
an not be used to derive a similar tuning pro
edure for thebasi
 Regalia's ANF. This may be seen as follows. The Ja
obian matrix of (the state realization [x; _x; x3℄of) (2.1), (2.2) evaluated along the orbit (2.3) yieldsF (��; ��t) 4= 264 0 1 0��2� �2��� k�� [� sin(��t) + 1� 
os(��t)℄0 �k
�� 
os(��t) k2
2��3� 
os(��t) sin(��t) 375We look now for a (linear) 
hange of 
oordinates that transforms this matrix into a form ��E(��t), wherethe dependen
e of E on �� is only through the sin and 
os fun
tions. If we 
an �nd su
h a matrix, the times
ale 
hange d�dt = �� will �nally yield a linear system independent of ��, as done in the proof of proposition6.1. But the existen
e of su
h a transformation implies the existen
e of a matrix T (m) su
h thatT (m)24 0 1 0
1m2 
2m2 
3m0 
4m 
5m3 35T�1(m) = mE0with E0 a matrix independent of m and 
i some 
onstants. Sin
e the tra
e is invariant under similaritytransformation this woud imply the existen
e of another 
onstant 
6 (= tra
e(E0)) su
h that 
6m =
2m2 + 
5m3 , whi
h 
learly is not possible for all m.6.3 Robust tuning pro
edureWe will show in this subse
tion that for the s
aled normalized ANF we 
an obtain a tuning pro
edure whi
h,besides being independent of the unknown frequen
y �� as the tuning pro
edure above, is robust with respe
tto the noise amplitude k.To this end, 
onsider the linearized system (6.5) and noti
e the fa
tor �0 4= k2
. It is possible to regardthis fa
tor as a single design parameter. By dire
t appli
ation of averaging theory, one 
an assert that,for suÆ
iently small �0, the linearized system is exponentially stable. Thus, there exists for ea
h damping20



fa
tor � a positive s
alar �01(�), su
h that the linearized system, and thus the periodi
 orbit, is (lo
ally)exponentially stable 8�0 2 (0; �01(�)).However, sin
e we are dealing with external disturban
es, the noise amplitude 
an 
hange. Then, itwould be eventually ne
essary to adjust 
 in order to keep the performan
e (or the stability) of the adaptive�lter. Normalization 
ir
umvents this problem as follows. It 
an be easily veri�ed that the in
lusion ofthe normalization (4.12) does not a�e
t neither the main orbit nor the linearized system around this orbit,ex
ept that �0 = k2
 must be repla
ed by�0nor 4= k2�(1 + Nk24�2 )(1 + �j��j�) (6.7)The expression above follows from the fa
t that on the orbit (6.4), one has�x2 + ( _�x�� )2 = k24�2 (6.8)We see that the e�e
tive gain is now bounded 8k sin
e �0nor < 4�2�N .Lo
al stability is therefore guaranteed for arbitrary noise amplitude if�N � �01(�)4�2An approximate expli
it lo
al stability 
ondition 
an be obtained from (6.3), whi
h gives �01(�) ' 4�. Thus,the 
ondition is simply �N � 1�Remark 6.4The above approximate expression for lo
al stability shows that higher gain � is allowed for smaller �.This was 
on�rmed by extensive simulations performed with the linearized system (6.5) modi�ed with thenormalized steady state gain a

ording to (4.12), (6.7), see [5℄.6.4 SimulationsThe unstable behavior of Regalia's ANF due to inadequate tuning is shown in Fig. 18 and Fig. 19, wherewe repeated the simulations of Figs. 1{3, but with 
 = 4 and � = 5, respe
tively.Next, we illustrate the in
uen
e of the noise amplitude. The s
aled but non-normalized ANF systemwith � = 1:35, � = 0:4, �� = 5, k = 1, IC : [1; 1; 10℄, results in fast and smooth response. However, withk = 10 the system blows away. This means that the s
aled ANF should be retuned a

ording to the noiseamplitude. Of 
ourse this is undesirable in pra
ti
e. In 
ontrast, normalization makes the ANF stabilityimmune to noise amplitude 
hanges. With � = 0:5; � = 2; N = 1 and k = 1000 we have obtained Figs.20{22. Stable behavior was observed for k ranging from 1 to 1000.As observed in Remark 6.4 normalization allows us to trade{o� a higher gain � with a smaller �. Toillustrate this point the simulations above (with k = 10) were repeated for the normalized and s
aled ANFand it was observed that stability was preserved for � as high as 200. However, when the normalization wasremoved, � had to be smaller than 0:012 to preserve stability. See [5℄.7 Con
lusionsWe have solved in this paper the problem of global frequen
y estimation. The proposed algorithm is a s
aledand normalized ANF inspired from the one reported in [23℄. The new ANF was analyzed in terms of itsstability, 
onvergen
e and tuning. Despite a quite formidable 
omplexity of its dynami
al behavior, some
on
lusive results were established. A simple, yet sharp, rule for guaranteeing lo
al stability was determined.The following fundamental and useful properties were established: (a) the new �lter is shown to preserve21
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Figure 22: 3D state-spa
e plotlo
al exponential stability under arbitrary frequen
y 
hanges of the sinusoidal noise, thanks to s
aling; (b)normalization also allows lo
al stability preservation for arbitrary 
hanges of the noise amplitude; (
) thenew �lter 
an be made globally asymptoti
ally stable under suÆ
iently small adaptation gain. Neither ofthe latter mentioned properties are en
ountered in the original version of the ANF.Even though we 
on
entrated our attention here in the simplest 
ase of a single 
onstant frequen
ywithout noise, in [5℄ we have shown, {via simulations and some analysis,{ that the algorithm is able to tra
ktime{varying frequen
ies, preserves lo
al stability in the presen
e of multiple sinusoids, and is robust vis �avis noise.Some preliminary results about the integration of the new adaptive not
h �lter in noise 
an
ellationsystems, in the spirit of [2℄, are reported in [5℄. Also, 
urrent resear
h is under way to modify the �lter toestimate multiple frequen
ies. The out
ome of this resear
h will be reported elsewhere.A
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e in linear systems, Izd. Nauka, Mow., 1987.(In russian).A Boundedness of g0; g1; g2 and �Consider the expressions for g0, g1, g2 given in (5.7) and the expressions for 
 and z01 given by (4.16) and(5.3). Note also that x0 = _x��1 = z2 and �2z = z21 + z22 � z22 . Then, we easily 
on
lude that 9
 > 0 su
h thatg0 � k2
; g1 � 
; g2 � k
As for �, it follows from (4.8) that j�j < 2��2z1 +N�2z + k�z1 +N�2z � 
(1 + k) (A.1)where, �z := kzk. The existen
e of a 
onstant 
 follows from the fa
t that both fra
tions in (A.1) are analyti
8�z 2 < and have �nite limits for �! 0 or1. In fa
t, the evaluation of the maximum value of these fra
tionsresults in the bound (4.20).B Boundedness of b1For �xed k, N and �, we have the following bounds:j�(�z01=��)j � k
 (B.1)j[z02 + �(�z02=��)℄j � k
 (B.2)For 
onvenien
e we denote by Pi(�r; t) a generi
 i-th order polynomial of �r 4= �=�� with time dependent
oeÆ
ients. In our parti
ular problem, the 
oeÆ
ients are periodi
 in time. If the polynomial has 
onstant
oeÆ
ients, then we denote it by Pi(�r).The bound (B.1) is obtained as follows. LetF1 4= �(�z01=��) (B.3)It follows from (5.3) that z01 = k�2rP2(�r; t)=P4(�r) (B.4)Then, we have �z01=�� = k�rP6(�r; t)=P8(�r) (B.5)24



�(�z01=��) = k�2rP6(�r; t)=P8(�r) (B.6)Sin
e P8 in the above expression is given by P8 = [(�2r � 1)2 + 4�2�2r ℄2, whi
h does not have real roots, itfollows that F1 is analyti
 8� 2 <. As before, the limits for �r ! 0 or 1 are bounded. Consequently, F1 isuniformly bounded by a 
onstant and thus (B.1) is obtained.Finally, the bound (B.2) is obtained in similar way, using the following relationships derived from (5.4)z02 = ��1 �z01�t (B.7)F2 := �(�z02=��) = � ��� (��1�z01=�t) (B.8)We 
an also write F2 = [���1 �z01�t + ��t �z01�� ℄ (B.9)Then, from (B.5)(B.6), one has z02 = k�rP2(�r; t)=P4(�r) (B.10)F2 = k�r[P2(�r; t)=P4(�r) + P6(�r; t)=P8(�r)℄ (B.11)Sin
e the fun
tions F2 and z02 are analyti
 8�r as before, and their limits for �r ! 0 or1 are bounded, thenthese fun
tions are also uniformly bounded by 
onstants. Thus, the bound (B.2) results.
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