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ABSTRACT

Recently developed Newton and quasi-Newton methods for
nonlinear programming possess only local convergence properties.
Adopting the concept of the damped Newton method in unconstrained
optimization, we propose.a stepsize procedure to maintain mono-
tone decrease of an exact penalty function. 1In so doing, the

convergence of the method is globalized.
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1. Introduction
Consider the nonlinear programming problem

(1.1) min f(x)
s.t. g(x)

A
o

where f£:R" + R and g:Rn - R" a great deal of attention has
been paid to extending Newton and Newton-like methods for solving
(1.1). With the efforts of many authors, this attempt has recently

achieved some success. One approach on this line is to generate

a sequence {xk} converging to the desired solution by means of

solving iteratively the quadratic programming problem

(1.2) min V£ (x5) T(x-x5) + %(x-xk)THk(x-xk)

X

s.t. g(xk) + Vg(xk)T(x—xk) 20

where the nxn matrix Hk is intended to be an approximation of
the Hessian of the Lagrange L(x,u) = f(x) + uTg(x). Some results
on the convergence and the rate of convergence have been accomplished
[1,2,3]. However, as the Newton method in unconstrained optimi-

zation, all the results are local. In this work we show that

the direction generated by (1.2) turns out to be a descent direction

*rhis research was supported in part by the National Science
Foundation under Grant ENG 75-10486.



- of the exact penalty function, er:Rn + R,

m
(1.3) Br(x) = f(x) +r EZ gi(X)+
i=1

where gi(x)+ = max{o,gi(x)} and r is a positive number.
Consequently, we introduce a procedure by which stepsizes are
determined to maintain monotone decrease of this function. With
this stepsize procedure the method can be shown globally con-
vergent. In this sense our approach extends the concept of

the damped Newton method to the contrained optimization.

For convenience we shall restrict ourselves to problems
with inequality constraints only. The inclusion of equality
constraints causes no difficulties and all the results go through
with minor modification.

We state the method in Section 2 and present global con-
vergence theorems in Section 3. Some comments are in ‘section 4.

It is noted that all vectors are column vectors and a row
vector is denoted by superscript T. The notation ||-|| denotes

a vector norm and also its induced operator norm.

2. Algorithm

Before the statement of the algorithm we first define the.
following quadratic programming problem Q(x,H):

min Vf(x)Tp + %pTHp

p
T
s.t. g(x) + Vg(x)'p <0



which can

H.

Algorithm.
Step

Step

Step

Step

Step

Remarks:

1.

be associated with any x in R" and any nxn matrix

1. Start with a point x0 in R" , an nxn matrix

Ho and a positive number r.
2. Set k=0.
3. Having xk and Hk , find a Kuhn-Tucker point
pk of the quadratic prdgram Q(xk,Hk).
4. Set xk+l = xk + Akpk with Ak satisfying
er(xk+l) = min er(xk+lpk)
0 Aga

where er is defined in (1.3) and o 1is a fixed

number with 0 < o < « .,

5. Update Hk by some scheme, set k = k+1 and go

to Step 3. O

It has been shown [3] that when {Hk} are generated by
some well-known quasi-Newton updates such as the DFP
update, the algorithm without the stepsize procedure

converges locally with a superlinear rate.

The function er is nondifferentiable at some transient
surfaces. Since efficient methods for one dimensional
minimization of such nondifferentiable functions are
available [4], the algorithm is computational implement-

able.



3. From a different viewpoint the algorithm can also be
considered as a descent method for finding a minimum
point of the function er. It is noted that for
minimizing nondifferentiable functions like Gr the .
steepest descent method, even with the exact line-search,
may fail to work. The cause of the failure is that the
generated sequence may jam into a corner. We refer
to [5, pp. 75] for an example. However, in our case,
the direction generated by solving'Q(xk,Hk), though
not the steepest, is adequate enough to avoid the

jamming situation.

3. Global Convergence

For establishing global convergence theorems the concept
of a directional derivative and some of its properties are needed.
Recall that a directional derivative of a real-valued function h

at a point x in the direction p is defined as

h(x + tp) - h(x)
t

Dph(x) = :i?

+

Clearly, if Dph(x) < 0 then we have -h(x + tp) < h(x) for all

sufficiently small but nonzero t. The existence of directional.
derjvatives for the function .er is insured by the following
lemma. We will not give the proof for ﬁhis lemma but refer to

Dem'yanov (5] for a more general and detailed discussion on this

result.



Lemma 3.1: If hi(i=1,...k) are continuously differentiable
functions from R into R and &(x) = max{hi(x)} , then for

i
any direction p the directional derivative Dp¢(x) exists and

D ¢(x) = max (Vh.(x)Tp}
P i€I(x) .

where }(x) = {i: hi(x) =¢(x)}. O

Theorem 3.2: Let £ and 9 (i=1,...m) be continuously differ-
entiable at x and H be a positive definite n*n matrix. If
(p,u) is a Kuhn-Tucker pair of Q(x,H) with p#0 and [|u]]|, < £,

then Dper(x) < 0.

Proof: Let {I = {i:g;(x) > 0}, I-= {izg (x) = 0} and

I-= {i:gi(x) < 0}. By Lemma 3.1 we have that

(3.1 D (0 = VE(x)Tp + r zz Vgi(x)Tp +r jz (Vgi(x)Tp)+.

i€r i€l
Since (p,u) is a Kuhn-Tucker pair of Q(x,H), we have that for

i=1,...m,
(3.2) g,(x) + g, (x)Tp < 0 .
1 1 =

Thus,

EZ(Vgi(x)Tp)+ =0 .
ieI



Hence by taking ui(éi(x) + Vgi(x)Tp) =0 into account we

obtain
m m

_ T T T
Dper(x) = VE(x)'p + Zungi(x) p+ zuigi(x) +r Z Vgi(x) p.
i=1 i=1 i€I .

By the Kuhn-Tucker equality
1 T
VE(x) + Vg(x)u + E(H + H)p=20

and by observing that

z uigi(x)

i€ful

A
(=)

we have

Dper(x) - %pT(H+HT)p + ZZ (uigi(x) + rVgi(x)Tp)
i€1

A

- %PT(H+HT)p + 2 (ui-r)gi(x) (by 3.2)
i€1

(Since H is positive definite
and ||ull_ <) O

Before establishing the global convergence theorems we need
a Lemma concerning the perturbation of quadratic programs. The

proof can be found in [6].

Lemma 3.3: Let x' minimize, q(x) = %xTHx + bTx over

S = {x:Ax < a} and X' minimize q(x) = %xTﬁx + BT over



§ = {x:Ax < a} , where A and A are mxn matrices, H and H
are nxn matrices, a and a are in R™ and b and b are in R®. 1If
H is positive definite and s® = {x: Ax < a} # ¢, then for any

fixed norm ||-|| there exist positive numbers c¢ and € such that

||x = x'|| £ ce whenever € < € and ¢ = max{| |H-H||,||A-A|],

[la-a||.|lb-b]]}. O

Theorem 3.4: If f and 9 (i=1,...m) are continuously differ-

entiable and the following conditions are satisfied

(i) There exist two positive numbers o and B8 .such that
axTx < xTHkx < BxTx for each k and any x in Rn.

(ii) For each k there exists a Kuhn-Tucker point of Q(xk,Hk)

with a Lagrange multiplier vector bounded by r in «-norm.

. Then the sequence {xk} generated by the algorithm either terminates
at a Kuhn-Tucker point of (1.1l) or any accumulation point X with
$°(%) = {p: g(x) + Vg(x)Tp < 0} # ¢ is a Kuhn-Tucker point of
(1.1).

Proof: By assumption (ii) we have (pk,uk) which is a Kuhn-Tucker
pair of Q(xk,Hk) with ||uk||m gr. If pk = 0 then (xk,uk)
satisfies the Kuhn-Tucker conditions of (1.1) and the sequence

terminates at the Kuhn-Tucker point xk of (1.1). Suppose pk #0

for each k, from Theorem 3.2 and the way we choose xk+1 it follows
k+1

that x exists and

k+1 k
(3.3) 8, (x*Th) < 8 (x").

Let X be an accumulation point of {xk} with s°%%) # ¢. Without

loss of generality we can assume xk + x and Hk + H. The



existence of H fcllows from assumptionv(i); furthermore, H
is positive definite. It follows from So(i) # ¢ and the
positive definiteness of H that Q(x,H) has a unique Kuhn-Tucker
point p. If B = 0 then x is a Kuhn-Tucker point of (1.l) and ,
the theorem follows. Suppose 5 # 0. By Lemma 3.3 we have
pk + p. Since {uk} is uniformly bounded, there exists an
accumulation point u of {uk}. From xk + X R pk - E and the
continuity of gradients of f and g , it follows that u
is a Lagrange multiplier vector of Q(x,H) ' and |l|u]]|, < r.
Let X € [0,a] be chosen such that

er(i + Ap) = min er(i + Ap).

0<Aga

By Theorem 3.2 we have
er(x + Ap) < er(x).
Since x* 4 ka + X + Ap , it follows that for sufficiently
large k we have
k k -
(3.4) b (x + Tp) < 6, (x).

However, by the monotone decrease of {er(xk)) and the choice

k+1

of x we have k+1)

er(x) < er(x
k ., =k
S 6. (x7. + 2p7)

which contradicts (3.4). Hence § =0 and x is a Kuhn-Tucker

point of (1.1). O



Assumption (ii) of Theorem 3.4 is not restrictive as it
might appear. In the rest of this section we will give a
sufficient condition which ensures the satisfaction of this

assumption. First we introduce the following lemma.

Lemma 3.5: Let f and 9; (i=1,...m) be continuously differ-

entiable and the following conditions be satisfied

(i) gi's are convex.
(ii) X9 = {x: g(x) < 0} # ¢.

(iii) ayTy < yTHy < ByTy for some positive numbers a and

g and for any y in R".

Then for any compact set UcC Rn there exist r > 0 such that
if u in R® is a Lagrange multiplier vector of quadratic pro-
gram Q(x,H) with x in U then ||u|| < r where |[[|:]] is any

prescribed norm.

Proof: We can assume that H k£ is symmetric. If not, we can
replace it by %(H+HT) without affecting the results.
From assumption (ii) of this Lemma there exists at least.
one point, say x, in X°. Let
(3.5) n:= max{—gi(x)}
i

and

(3.6) £ = max{llx-§||2: x € U}.
x



.10

We further assume that X 1is an upper.bound of ||VE(x)]],

on U and also an upper bound of ||H[|, and IIH_1||2.
From assumptions it follows that a Kuhn-Tucker point p

of Q(x,H) exists and is unique. Let u be a Lagrange multi-.

plier vector of Q(x,H) and p = X-X. By the convexity of gi's

we have that for i=1,...m
T A
(3.7) gi(x) + Vgi(x) p < gi(x) <0 .

Hence p is a feasible point of Q(x,H) and from the Kuhn-Tucker

saddle point theorem [7] it follows that
’ m
(3.8) ve0Tp + JoTip < vEG0 T + 25THE + Dy (g;(x) + Vg, (x) TR
j=1

Thus by (3.8), (3.7) and (3.5) we have
- =T - 1T
(3.9 nllull, § 9EG0"H + 387Hp - V()T - 3P HP .

Now consider the dual problem of Q(x,H)

max - (VE(x) + Vg(x)v)TH Y (VE(x) + Vg(x)v) + vig(x)
ve
s.t. v 2 0.

Since v = 0 is dual feasible, by the Dorn's duality theorem

[7] we have
(3.10  ve(0Tp + 3pTHp 2 - ve) TH e (x) .

From (3.9) and (3.10) it follows that
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Hull, < %(Vf(x)TE + 3pHD + ve(x) THTLvE (%))

A

1 1,.2 1,.2
'ﬁ()\g + 7)\5 + iAE )

A

l%(m:) ,

which by the equivalence of norms implies the desired result. O

We also need the following Lemma on the compactness of

some level sets.

Lemma 3.6: If X = {x: g(x) < 0} is compact and gi‘s are
m

lower semi-continuous and convex, then xc = {x: jz:gi(x)+ < c}
i=1

is cdmpact for any finite real number c.
A m
Proof: Define &(x) = :E:gi(x)+. By the lower semi-continuity
i=1
of gi's , the function ¢ is closed and convex. Since XO =X

is compact, it follows from [8, Lemma 4.1.14, pp. 139} that

X, is compact for any finite c. O

A global convergence theorem is given below.
Theorem 3.7: Let £ and gi (i=1,...m) be continuously

differentiable and the following conditions hold

(1) £ is bounded below
(ii) gi's are convex

(iii) X = {x: g(x) < 0} is compact and X0 = {x: g(x) <0} # ¢
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(iv) There exists positive numbers o and B such that

axTx < xTHkx < BxTx for each k and for any x in

R".

»

Then for any starting point xo there exists a positive number

r such that if r 2 max{r,1} then the sequence {xk} generated
from the algorithm either terminates at a Kuhn-Tucker point of
(1.1) or any accumulation point of this sequence is a Kuhn-Tucker

point of (1.1).

Proof: It is evident that the sequence exists. By (ii) and (iii)

" the set S°(x) = {p:

we also have that for any x in R
g(x) + Vg(x)T p < 0} # ¢. Therefore, we need only to prove that
assumption (ii) of Theorem 3.4 holds.

Let x0 be-a given starting point and f be bounded below

by -a. Define

m
c = f(xo) + Zgi(x0)+ +a .
i=1

A

m
By Lemma 3.6 the set xc = {x: Ezgi(x)+ c} 1is compact. Hence
i=1
it follows from Lemma 3.5 that there exists an r > 0 such that

n

it x € xc and ayTy < yTHy Y ByTy for any y in R then a

Lagrange multiplier vector u of Q(x,H) exists and ||ul], < r.

Therefore it is only necessary to show that :J‘e xc for each k.

0. k k 0
It is clear that 'x" €.X,. . Assume x € X, and 8 .(x7) g 8 (x"),
then we have ||uk1|°° < ¥. Hence by Theorem 3.2 and the choice of

xk+1 in the algorithm we have



13
m m
ety 4 rzgi(xku)+ <ty 4 r}:gi("k)+
i=1 i=1
m
< f(xo) + rzzrgi(xp)+ .
i=1
Thus,
m m
S e o, s ko) - s+ S g a0,
i=1 i=1

m

A

f(xo) + a + Ei(;;i(xo)+

i=1

Therefore xk+le Xc and the proof is completed. O

If we further assume f to be strictly convex, then (1.1)
has an unique Kuhn-Tucker point which is actually its optimal

solution. Therefore, we have the following result.

Corollary 3.8: Let all the assumptions of Theorem 3.7 hold. If,
furthermore, £ is strictly convex then the sequence {xk} generated
by the algorithm exists and converges to the optimal solution of

(1.1). O
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4. Comments:
Some comments are given below.
(1) A different way to generate the direction pk is to solve

the dual problem of Q(xk,Hk) '

min %(Vf(xk) + 795w T H;}(Vf(xk) + 99 (x)w) - g(x)Tu

u'e R®
s.t. u2>0 ’
and, with uk as its solution, set pk =.—H;1(Vf(xk) + Vg(xk)uk).

All the results in this work are also valid in this case.

(2) It has been shown [3] that when the DFP update is used to
generate the matrices and Ak = 1, the method converges locally
with a superlinear rate. For this reason, we suggest that
the stepsize procedure be discarded when the points are close
to the desired solution and the matrices are good approxi-

mation to the Hessian of the Lagrangian.

(3) An approximate line-search is desirable. Since the function
er is nondifferentiable, some well-known line-search procedures
such as Armijo's and Goldstein's no longer work. It is of

practical value to develop a workable one.
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