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A GLOBALLY UNIFORMLY CONVERGENT
FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED

ELLIPTIC PROBLEM IN TWO DIMENSIONS

EUGENE O'RIORDAN AND MARTIN STYNES

Abstract. We analyze a new Galerkin finite element method for numerically
solving a linear convection-dominated convection-diffusion problem in two di-
mensions. The method is shown to be convergent, uniformly in the perturbation

i iiparameter, of order h '    in a global energy norm which is stronger than the
L   norm. This order is optimal in this norm for our choice of trial functions.

1. Introduction

In this paper, we will examine a finite element method for the numerical
solution of the singularly perturbed linear elliptic boundary value problem

(Lia)        Lu = -eAu + a ■ Vu + aQu = f   on ß = (0, 1) x (0, 1),
(1.1b) u = g   ondß,
(1.1c) a = (ax,a2)> (0,0),       aQ>0   onß,

where e is a small positive parameter. This problem is often viewed as a basic
model of a steady-state convection-diffusion process. For small values of e, the
solution u will in general vary rapidly in a layer region of width 0(eln(l/e))
at the outflow boundary {(x, y) e ß| x = X or y = 1} .

When solving (1.1) numerically, the dual nature of the solution causes serious
difficulties. When e is small, this elliptic problem is essentially hyperbolic in
its behavior outside the layer region; however, in the numerical approximation
of elliptic and hyperbolic problems, different approaches are normally adopted.

For small values of e , it is well known that classical numerical methods for
(1.1) produce wild oscillations throughout the whole domain. Various upwind
methods have been proposed to eliminate these oscillations and produce a stable
numerical solution. The literature on numerical methods for problem (1.1) is
extensive, and we will not attempt to give a comprehensive survey here.
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48 EUGENE O'RIORDAN AND MARTIN STYNES

In the context of finite elements, the best-known approach is the streamline-
diffusion method, which essentially upwinds along the streamlines. Mathe-
matical analyses of different versions of the streamline-diffusion method have
been performed by Johnson et al. [8, 9] and Niijima [11] for various classes
of convection-diffusion problems. These results confirm the accuracy of the
streamline-diffusion method in smooth regions (i.e., away from the layers).
However, they do not yield good error estimates for the behavior of the method
on the entire domain ß ; the global bounds obtained depend on Sobolev norms
of the solution u, which are large when e is small.

We are interested in globally uniformly convergent (GUC) numerical meth-
ods. These are methods which converge, uniformly in e, throughout all of ß.
More precisely, we mean that if u is the solution of (1.1) and u is an ap-
proximation obtained using a GUC method, then we have an inequality of the
form

(1.2) \\u-uh\\'<Chp,
where C > 0 and p > 0 are independent of e and of the mesh width h,
and || • ||' is some appropriate norm, which measures the behavior on all of
ß. Examples of such norms are the discrete and continuous LP(Q) norms and
the energy norm defined in (3.3) below. The estimates mentioned above for the
streamline-diffusion method do not prove it to be a GUC method, as they are
uniform in e only outside layer regions. It is desirable to have GUC methods,
because for a given mesh, their accuracy is retained throughout ß irrespective
of the value of e .

In evaluating the performance of GUC methods, the choice of norm to use
is not universally agreed. From an examination of one-dimensional difference
schemes, one concludes that the L norm is too weak for problems such as
(1.1), as it does not adequately measure behavior in layers (see Hegarty et al.
[6] for details). Thus, a stronger norm is desirable, and we will obtain our
error estimates in an energy norm (defined in (3.3) below) and in the discrete
L2(ß) norm. Roos [14] has given necessary conditions for a numerical method
to be GUC, measured in the discrete 7.°° norm, when applied to (1.1). The
streamline-diffusion schemes do not satisfy these conditions, but the method
examined in this paper does.

Most GUC methods have been obtained for singularly perturbed ordinary
differential equations (see, e.g., Doolan, Miller, and Schilders [1], O'Riordan
and Stynes [12], and Gartland [3]). The error analyses of these one-dimensional
methods required detailed information about the local behavior of the exact so-
lution. In two dimensions, this behavior can be considerably more complicated
(see, e.g., Shih and Kellogg [15]).

Finite difference schemes for problem (1.1) which are GUC have been exam-
ined by Emel'janov [2], Hegarty [5], and others. These schemes are, in general,
variations on Il'in's scheme [7], which is essentially 0(hi/2) in the discrete
L°°(ß) norm.  However, theoretical finite difference convergence results have
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been obtained only for schemes which satisfy a discrete maximum principle. In
the present paper, a difference scheme is analyzed by finite element techniques
and is not required to satisfy a discrete maximum principle. Numerically, our
method appears to be only a slight improvement on Il'in's scheme (see Hegarty
et al. [6]). However, by employing the same finite element framework as de-
scribed in this paper, a family of difference schemes have been derived, of which
some are significantly more accurate in numerical tests (see Hegarty et al. [6])
than Il'in's scheme.

A conventional Lax-Milgram approach requires the bilinear form to be both
coercive and continuous. Although it is easy to obtain coercivity uniformly in
e (see Theorem 3.1), it does not seem possible to organize the relevant norms
in such a way as to obtain a satisfactory upper bound for the bilinear form.
Consequently, our analysis is considerably different from that of the standard
finite element approach. A preliminary version of this analysis, which proved a
weaker result, was given in [16].

Our finite element method is shown to be globally uniformly convergent, in
an energy norm, when the coefficients a in (1.1) are assumed to be bounded
away from zero. To get sharp bounds on the solution u of (1.1) and on its
derivatives, we also assume that the data is sufficiently smooth and satisfies cer-
tain compatibility conditions (see §2). This effectively eliminates the possibility
of interior layers, but boundary layers may still appear at the outflow boundary.
We believe that the insight gained in the analysis of (1.1) will be helpful in
the study of elliptic problems whose solutions exhibit more complex behavior.
We know of no other method for problem (1.1) which has been proven to be
globally uniformly convergent in an energy norm.

2. The continuous problem

We begin with a definition of the set C 'a(ß).

Definition. For each integer k > 0, a function w(x, y) is in the set C 'a(U),
where U c 9t2 , if w(x, y) 6 C (U) and if on U all the derivatives of w (up
to and including order k) satisfy a Holder condition of order a € (0, 1), viz.,

\Dßw(x,y)-Dßw(x',y')\ ^max sup        ■-—-f4-, ,   ,,    < M
l/>l<* (*,,),(*',/)€£/   ((x - x')2 + (y - y')2)a'2

for some constant M, where Dß is the usual multi-index notation for deriva-
tives.

In order to guarantee that the solution of problem ( L1 ) is sufficiently smooth
for our purposes, we impose the following conditions on the data:

(2.1) al,a2,a0,feC°'a(U)nC2'a(Ci),

(2.2a) g = 0,
(2.2b) /(0,0) = /(l,0) = /(0, !) = /(!, 1) = 0.
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50 EUGENE O'RIORDAN AND MARTIN STYNES

Ladyzhenskaya and Ural'tseva [10, p. Ill] show that the problem
Lu = f   on D,        u = g   on dD

(where D is a region possessing a smooth boundary dD), has a solution in
Ck'a(D) if the Poisson equation

Au = f   onD,        u = g   on dD,
is solvable in C '"(D). Volkov [17] gives necessary and sufficient conditions
for the solution of

Au = f   onß,        u = g   on<9ß,
to lie in C 'a(ß). Combining Ladyzhenskaya's continuation argument with
Volkov's result, we obtain
Theorem 2.1. If the data in (1.1) satisfies (2.1), (2.2a), and (2.2b), then there
exists a unique solution u(x, y) to (1.1), and

ueC2'a(ß)nC4'Q(ß).

Remark 2.2. There is no loss of generality in imposing homogeneous boundary
conditions, since the general inhomogeneous case is easily reduced to this (see,
e.g., Ladyzhenskaya and Ural'tseva [10, p. 111]). However, to do this, we need
g to be C 'a on the four sides of ß; furthermore, at the four corners, the
compatibility conditions (2.2b) will involve g and some of its derivatives (see
Volkov [17] for details).

The problem satisfies a weak maximum principle:

Lemma 2.3 (Gilbarg and Trudinger [4, Theorem 3.1]). For all functions w(x, y)
e C2(ß) n C°(ß) ,ifw>0 on 9ß and Lw>0 on ß, then w > 0 on ß.

For the sake of clarity, we will restrict our attention in this paper to the case
where
(2.3) a is constant on ß.
The case of variable a has been outlined in [13].
Note. Throughout this paper, we shall use C (sometimes subscripted) to denote
a generic positive constant independent of e and of the mesh. We also assume
that conditions (2.1), (2.2), and (2.3) are satisfied. We shall use u(-, •) to
denote the solution of (1.1).
Lemma 2.4. The following estimates hold:

(a) \u(x,y)\<C(X-e~^(X~x)lt) on ß,
(b) \u(x, y)\ <Cx on ß.

Proof, (a) Use the barrier function <f>(x,y) = C(X- e~2a'{l~x)/e) :
L(4> ± u)(x, y) = 2a2Ce-le-2a^-x)/e + Ca0(X - e"2"'^^) ± /

> 0   for C sufficiently large.
Thus, \u\ < (j) by Lemma 2.3.

(b) Use the barrier function <j>(x, y) = Cx .   D
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Note that this lemma implies that ||m||    < C.

Corollary 2.5. We have
(a) \ux(X, y)\ < Ce~l for 0 < y < X,
(b) \ux(0,y)\<C forO<y<X.

Proof, (a) Use

u(x, y) - u(X, y)K(Uy)\ = lim
X—1~ X-X

<   lim
X-tl"

C{l_e-2a¡{l-x)/e) ^ _i
X-x ~Ce

(b) Similarly,

K(0,y)\ = lim
x—0

u(x, y) - u(0, y) <C.

Lemma 2.6. The following estimates hold:
(a) \ux(x, y)\ < C(X + e~le-"l{l~x)/e) on ß,
(b) \uy(x,y)\<C(X+e-le~ai{i-y)/£) on ß.

Proof, (a) We have L(ux) = fx - (a0)xu, since a is constant.  Consider the
barrier function <f>(x ,y) = C(X + e~le~a[{1~x)/e) ; then

L(<p ± ux)(x, y) = CaQ(X + «TV1^7*) ± (fx - (aQ)xu) > 0

for C sufficiently large. Since u = 0 on dCl, ux(x, 0) = ux(x, X) = 0 for
0 < x < X. Using Corollary 2.5, we obtain (<j> ± ux)(x, y) > 0 on 9ß. Now
apply Lemma 2.3 to obtain |wj < <f> on ß.

(b) follows similarly.   D

Lemma 2.7. There holds
(a) | - euxx + axux\ <C on ß,
(b) | - euyy + a2uy\ < C on ß.

Proof, (a) Let w = -euxx + axux. On the two sides y = 0 and y = X of ß,
w = 0. On the other sides x = 0 and x = X of ß, u = uy = u = 0. Thus
from Lu = f and Theorem 2.1, we get w = f on this pair of sides. Hence
|til | < C on öß. From Theorem 2.1, w e C°'a(ß)nC2,a(ß), so we can apply
Lemma 2.3 to w . We have

Lw = - eAw + axwx + a2wy + a0w

=   - <Lu\x + ai(Lu)x + £(ao)xxU + 2£(a0)xUx - aiK)xM

= - efxx + axfx + e[(a0)xxu + 2(a0)xux] - ax (a0)xu.

Hence, \Lw\ < C, using Lemma 2.6 and |w| < C. Use the barrier function
4> = C to finish (note that a0 > 0).
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(b) We have -£uyy + a2u  = f + £uxx - axux. Using (a), we are done.   □

Remark 2.8. For our main convergence result, Theorem 3.2, the only bounds
we need from this section are

L
I

\\u\L<c,
u (x,y)\dx <C   for ally,

o
i

\u (x,y)\dy <C   for all x,y
- &uxx + axux\ <C   in ß,
- euyy + a2uy\ < C   inß.

Thus, our arguments above may assume more differentiability of u(x, y) on
ß than is necessary in practice. Further evidence of this has been supplied by
numerical experiments; see Remark 3.3.

3. Discretization of the continuous problem

A weak formulation of problem (1.1), with homogeneous boundary condi-
tions, is :

Find u £ 770'(ß) such that
77(m, v) = (eu , v ) + (eu , v ) + (a-Vu + a0u, v)

(3.1) x= (f,v)   for all ve Hx0 (ß),

where (•,•) denotes the usual L2(ß) inner product.
We will discretize this weak form by means of a finite element method. Let

N and M be two positive integers. Let h = X/(N+1), and set x{ = i h for /' =
0,X,... , N+X.Let k= X/(M+ X), and set yj = jk for j = 0, X, ... , M+X.
We define a set of trial functions {</>' 'j(x, y) : i = X, ... , N; j = 1, ... , M} .
The trial (test) space is the linear span of these trial (test) functions and will be
denoted by S  (T). Let

h, .      v^   h« (■*»y) = 5IMi./Ê,"'Cx'JO

be our finite element approximation to u(x ,y).
The nodal values {u¡   } are determined from

(3.2) B(uh,y/) = (f,v)   foraXXw&T,
where

TV    M
B(v, w) = e(Vv -Vw, X) + (â{vx + â2vy, w) + hkj^ YÀaovw)i.i

i=l ;=I

and a,, d2, and / are piecewise constant approximations to ax, a2, and /,
respectively. Since we are interested in the case of constant a, we simply have
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a, = ax and ä~2 = a2. We will use the notation z(j = z(xi, y.), for various
functions z(-, •).

We define the energy norm ||| • ||| by

(3.3)      \\\v\\\2 = e(vx,vx) + e(vy,vy) + hkYlVij   ^ e T^ß) n C0(ß).

Theorem 3.1. For all v e 770'(ß) n C0(ß), we have B(v, v) > Cx\\\v\\\2.

Proof. Since a is constant, (axvx, v) = (ax, (v /2)x) = 0. Thus, B(v, v) =
e(vx, vx)+e(vy, vy)+hk £,- j(a0v2)i }, and the result follows from a0 > 0.   D

Non-self-adjoint singularly perturbed problems such as (1.1) are usually
solved using Petrov-Galerkin methods (i.e., one chooses S ^ T). However,
in this paper, we will examine a Galerkin method (i.e., S = T), where the trial
(and test) functions are the tensor product of one-dimensional exponential trial
functions. That is, for i = X, ... , N and j = X, ... , M,

(3.4a) <pi'J(x,y) = <j>i(x)<i>j(y),

where each <¡>l(x) satisfies

(3.4b)      -e(<l>i)xx + ax(4>i)x = Q   on (0, X)\{xx,..., xN}, <pi(xj) = ôiJ,
and each (j>j(y) satisfies

(3.4c)      -e(<t>j)yy + a2(<i>j)y = 0   on (0, X)\{yx, ... , yM}, éj(yt)'S,,j.

Note that ffa4>''Jdxdy = hk for each (i, j).
Our Galerkin finite element approximation u   satisfies

(3.5) B(u , tj>iJ) = (J, <t>iJ)   for all <j>iJ eS,
where / is chosen so that \f - f\ < C(h + k) in ß. From Theorem 3.1, it
follows that uh is defined uniquely by (3.5).

Remark. A possible choice for / is obtained by taking (/, <f>'}) = hkf   . The
finite difference scheme (3.5) for this choice of / is written out explicitly in
Hegarty et al. [6]. Various choices for the piecewise constant functions dx, d2
(in the case of variable a), and / are also examined in [6]. When these piece-
wise constant functions are specified, all the integrals in (3.5) can be evaluated
exactly, so effectively we are specifying a quadrature rule.

Let Uj = J2i ju(x(, yj)4>''J(x, y) be the function in S which interpolates
to u at the nodes. From Theorem 3.1,

(3.6) Cx\\\u-u \\\2 <B(u-u , u-u ) = B(u-u ,u-u¡)-\-B(u-u ,u¡-u).

In the next two sections we will show (Propositions 4.2 and 5.6) that

(3.7) B(u -u ,u,- u) < (Cxhk/2) £(h - u))j + C(h + k)
i,j
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and

(3 B(u-uh,u- Uj) <Ch + (Cx/4)\\\u - uh\\\2
provided that C2 < k/h < C3.

Combining (3.6), (3.7), and (3.8) shows that the Galerkin method described
above is uniformly convergent in e in the energy norm ||| • |||. More precisely,
we have

Theorem 3.2. Let uh be as in (3.5). If C2 < k/h < C3,then |||w-wA||| < Chl/2.

Remark 3.3. Combining Lemma 5.4 below with Theorem 3.2 shows that
h i l'yH u - u ||L2(iî) < Ch ' . We have observed this rate of convergence in sev-

eral numerical experiments. See Hegarty et al. [6] for details. This indicates
that the above error estimate is sharp. The same rate of convergence has also
been observed in many problems which do not satisfy condition (2.2b).

Remark 3.4. Consider the one-dimensional problem -eu" + au = f on [0, 1],
where the functions a and / are constant and u(0) = u(X) = 0. Using the
exponential elements (3.4b), it can be shown that, for the analogue of (3.5)
applied to this problem, |||u - Uj\\\' = (f/a)el/ (pcothp - X)l/ , where ||| • |||'
is the one-dimensional analogue of ||| • ||| and p = ah/(2e). This implies
that, uniformly in e, \\\u-u¡\\\ is 0(hi/2) but not 0(ha) for any a > 1/2.
Hence, the optimal order of accuracy attainable using the trial functions (3.4a)
is achieved in Theorem 3.2.

4. Quadrature error

In this section we will derive (3.7). We have

B(u -u , u¡ - u ) = B(u, Uj - u ) - B(u ,u¡-u )

= B(u, u, - u ) - B(u, Uj - u ) + (f - f, Uj - u )
(from Lu = f and (3.5))

hs= hk^2(a0u(u, - u ))ij-(a0u, u,-u)
i.j

+ (f-f,Uj-U  ).

Since {u)(j = (Uj)¡j, we get

"H/ h h,B(u - u , Uj - u )

(4 1) N   M h -     ■ ■= ED"- u hjWMij - K". *''') + (/-/. <J>''J)}.
¡=1 ;=1

The bounding of (4.1 ) is organized into the following two results.
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Lemma 4.1. For each i and j,

\hk(a0u)ij-(a0u,(f>iJ) + (f-f,<t>iJ)\

<Chff    \ux\ + Ck It    \uy\ + Chk(h + k),

where ß; ; = (x,_,, xM) x ty_,, yj+x).

Proof. Since \f-f\ < C(h + k), we have

\(f-7,<t>iJ)\<c(h + k)(x,<t>i'i) = chk(h + k).
To bound the remaining terms, we will simply use integration by parts appro-
priately. Let w(x, y) = (a0u)¡ j - (a0u)(x, y). Note that wi j = 0. Now,

hk(a0u)i j - (a0u, <pl'}) = (w, <¡>'J)   (since (1, (j>''J) = hk)

= r>+' I p w(f>i'jdx+ iX'+,wcpiJdx\dy

= tyj+llw(Xi,y) r+!  <t>iJ(t,y)dt
Jyj-,  { 7,=*,._,

/•X, ÇX .     .
- wx(x,y) <t>''J(t,y)dtdx

Jx=xi_x 7(=x;_1

+ / '+> wx(x,y) i ,+' 4>''J(t,y)dtdx\ dy,
7x=x, 7í=x J

using integration by parts. The first term in the above right-hand side is

r+1   { r     w(X¡, y)<t>l'J(t, y)dy + f "' w(xi,y)<Pi'J(t,y)dy\ dt
7(=x,_, \Jy=y,-x Jy=yj J

= r"   (- P     wy(Xj,y) f     <piJ(t, s)dsdy
7i=x,_, (    Jy=yJ-, Js=y,-x

+ t/+l wJx,,j) IJ+l <j>',J(t, s)dsdy \ dt,
Jy=yj Js=y J

using iu(. , = 0. Now \(¡)l'}\ < 1. Hence,

|Afc(aoM)/>;. - (a0w, <j>iJ)\ < Chjj    \wx\ + Ck j j    \wy\

= Chjja   \(a0u)x\ + Ckj^   \(a0u)y\

<Chk(h + k) + Ch if    \ux\ + Ckff    \uy\.   D
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Proposition 4.2. We have
N    M

\B(u -u ,Uj- u)\ < (Cxhk/2) £ J^ \u - uh\2j + C(h + k),
i=l 7=1

where Cx is the constant appearing in Theorem 3.1.
Proof. For each fixed y , let dx(y) = f*i+1 \ux(x, y)\ dx . Then

N -i

^Ö-(y)<2        \ux(x,y)\dx<C,
,=1 Jx=°

from Lemma 2.6. Analogously define 6y(x). From (4.1) and Lemma 4.1, we
have

\B(u -u ,Uj-u)\

<CY^\u-uh\t j\h P     ex(y)dy + k P      6yj(x)dx
¡j I  Jy=yJ-l Jx=x,_]

+ Chk(h + k) I .

Using the arithmetic-geometric mean inequality,

< (Cxk/6) J> - u\] j + C/T1 ¿2 ( r+l ö>)dy)
ij i,j  \JyJ-< )

<(Cxk/6)y£\u-uh\2J
i,j

¡j \Jy=yJ-[ J \Jy=yJ-t J
M     ry. ¡   N

<(Clk/6)¿2\u-uh\2J + C'E     '   J»))2^-
.     .- :_,   JV      ,      ;_,i,j j=l    yJ->   1=1

Since 6x(y) > 0, we have ¿I^OO)2 < (EÍi Öx(y))2 <C. Thus,

*£l"-"*lij(/        0*(y)dy) <(Cxhk/6)¿2\u-uh\2 j + Ch.
u ' \Jy=yj-i J u

Dealing similarly with the other terms yields

\B(u -u ,Uj- u)\ < (Cxhk/2) ^ \u - u\]j + C(h + k).   D
i.j
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Remark 4.3. The only properties of the trial functions needed to attain the
bounds in this section are

<pi'i(x,y) = <pi(x)<t>j(y),

W(x)\<X,      l^(y)|<i,
fxi+\     i fyj+t/        <p dx = h   and     /        <frjdy = k.

7x=x,_, Jyyj-i

5. Interpolation error
In this section we will derive (3.8). We initially bound the error u-ul.

Lemma 5.1. If the trial functions are chosen as in (3.4), then
(a) \(u - Uj)(x, yj)\ < C(x - x;_,)(l - e~U]{XrX)/e) on each line segment

[*,_,, x,]x {>>.},
(b) \(u - Uj)(x¡,y)\ < C(y - J>;_,)(1 ~ e~"2{yJ~yye) on each line segment

(c) maxïï|(M - u,)(x, y)\ <Ch(X- e'^1*) + Ck(X- e~a^klt).

Proof. Fix i and j.
(a) We will confine ourselves to the line segment [xt_x, x¡]x {v.} . Set Mxz =

-ezxx + axzx . Then Mx satisfies a maximum principle on [xi_x, x¡] x {v } .
On (xi_x,xi)x{yj},

Mx(u - Uj) = -euxx + axux <C   by Lemma 2.7.

Use the barrier function <j)(x) = C(x - xt_x)(X - e~a,{x<'x)/e). Then

Mx4> = Cax(X+ e~ai(Xi~x)le) > \Mx(u - u,)\

for C sufficiently large. Hence, \u - u¡\ < 4> on [jc¿_, , x(] x {v.} .
(b) is proven similarly.
(c) We work on the square Q¡    = [x¡_x, x¡] x \y¡_x, y¡]. On the open square

ÖI.7«
\L(u-u[)\ = \f-a0uI\ <C.

We employ the barrier function

^(x,y) = Cx(x-xl_x)(X-e-a^-x)^ + C2(y-yj_x)(X-e'a^-^

where Cx  and C2 are chosen sufficiently large.  By (a) and (b) above, <¡> >
\u - u,\ on dQi j. We also have

Lcb = a04> + Cxax(X + e~a^-x)le) + C2a2(X + e^r»")

>\L(u-Uj)\.

Since L satisfies a maximum principle, \u - u¡\ < <p on Q¡: ..   D
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Theorem 5.2. If the trial functions are chosen as in (3.4), and C2 < k/h < C3,
then \\\u-u¡\\\ < Ch1/2.
Proof. From Theorem 3.1,

C1|||m-m/|||  <B(u-Uj,u-Uj)
= e(V(u - Uj) • V(w -Uj), X) + (a • V(w - u¡), u - uf).

Integrating by parts,

CjHI«- w7|||  < (-eA(u -Uj) + a- V(m-ui),u- u,)
r\       N

+e    Y.^-U^xi^)3rxiiui)x)iy)dy
Jy=0 /=1

ri     M
+ e /    £(w-«,)(*, y,-).^.«"/)y)(x)dx,

Jx=0~\ >

since u e C2(ß), where ~ denotes that integration is over \Ji . Qi . (defined
in the proof of Lemma 5.1) and

Fxftu)(y) = w(x+ , y) - w(x~ , y),

yy(w)(x) = w(x, y+j) - w(x ,y~).

By our choice of trial functions,

|(-eA(w -uff + a- V(w -u¡),u- ufT\
= \(f -a0u,u- u¡)~\ < C\\u - UjW^
< Ch   (by Lemma 5.1, using C2 < k/h < C3).

For (x,y)e (x¡_x, x¡) x (0, 1) and all v eS,

vx = (v(xt, y) - v(xt_x, y))(f>'x(x).

Now, setting px = axh/e ,

^xi(ui)x)(y)\ = e|(«/(*/+i. y) - Uj{x,,y))4f*\x*)

- («/(*,. JO - u,(xl_l, y))<j>'x(x~)\

= al(X-e-pri\(uI(xi+x,y)-ul(xi,y))e-p>
-(u,(xi,y)-uI(xi_{,y))\,

since etpix\x¡) = axe~p,/(l -e~p') and e<px(x~) = ax/(X - e~p'), as can be
computed from the definition of <j>(x). Hence,

^.(("/UOOI * ax(X-e-p>)-l(\u,(xi+x, y) - «,(*,, y)|
+ \uI(xi,y)-u,(xl_x,y)\).
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Note also that for y e (yj-x ,y.),

Uj(xt, y) = uI(xi, yj)<t>j(y) + uI(xi, yj_x)<t>j_x(y)

= uiij<t>j(y) + uij_x<t>j_x(y).
Thus, using |0| < 1 for all ;',

f  ¿(W-W/)(x;.,^((u7)J^
7v=o£í

N+l

< C\\u - UjW^X - e~p>)"' max]T \utJ - ut_Xj\
1=1

= C(X-e Pt)    \\u - w,|l   maxY^V / II / 11OO ■ /    J ,)dxJ '   UxiX^j
Jxl_i

-1 fl
<C(X-e Pl)    \\u - UjW^max /   \u (x, y¡)\dx

i   Jo
<C(X- e~Pl)~l\\u - wj^   (by Lemma 2.6)
< Ch   (by Lemma 5.1, since C2 < k/h < C3).

It follows that C^Wu-UjlW2 <Ch.   O
Remark 5.3. In the classical case e = 1, an inspection of the above proof shows
that by writing

(W/(*/+i. y) - W/(*<. y))e~Pl - (uI(xi, y) - u^x^ , y))

= -(u,(xl+x, y) - Uj(Xi ,y))(X- e-p>) + 0(h2)

we can improve the above result to
2 2

|||w-m;|||  < C||w - «/||00 < Ch .

We also require suitable bounds for u (x, y) and its first derivatives. First

2 2|w||  = (v , v)   for all v e L (ß),
N    M

we define the continuous and discrete L   norms

(5.1a)

(5.1b) Wv\\d = hkJ2J2vlj   for alive 5.
i=i j=i

A useful relationship between these norms is given by

Lemma 5.4. We have \\v\\ < C\\v\\d for all v e S.
Proof. Let v e S. Then v = VJ- ,v¡ M'1, so

N+lM+l    rx.      .y

-1 hj-,

N+l M+l   rX      rv

,_i    ,_i •>x,_, Jy-_.

+vi^x4>'1 ' +v¡ j<b''J]2dxdy.
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Note that 0 < 4>l'J < 1 for all i and ; and (a+b)2 < 2(a2+b2). Consequently,

||t;||2<16M^t;2jy = 16||t;|¿.   G
ij

The next lemma relates the L1 and L2 norms of the derivatives of our trial
functions.

Lemma 5.5. If the trial functions are chosen as in (3.4), then
fl    rl
/    /   \vx\dxdy <Ch'i/2(X -e~p,)l/2el/2\\vx\\   forallveS,
Jo Jo

where px = axh/e.
Proof. For (x, y) e (x¡_x, x¡) x (0, 1) and v e S,

(5.2) vx(x, y) = (v(x¿, y) - v(x¡_x, y))<t>x(x).

We then have

/   /  \vx\dxdy= £ly     \<!>x\dx\ (y_ \v(xi,y)-v(xi_x,y)\dy\

= £(/_ \v(xi>y)-v(xi-i>y)\dy)

s(|'i)   (g (/>(w>-»<*,-, rti*)
(using the discrete Cauchy-Schwarz inequality)

(N+l    -i \'/2
^ h~l/1 [£ y 0 w*<> >o - »(*/-!. ^)i2^ j

= /z-1/2(2é/a1)1/2(l-^)1/2(l+^r1/2

x £ /   (^x) ¿* /   M*,■> y) - v(xi-i > y)\ dy
\i=iJ*,-i Jy=° I

since for each i,

ep (<plx)1dx = (ax/2)(
Jx,-x

The result follows, using (5.2).   D

We are now ready to derive (3.8).

Proposition 5.6. If the trial and test functions are chosen as in (3.4), and C2 <
k/h < C3, then

B(u-u ,u- u,) <Ch + (C1/4)|||M - u\\\2.
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Proof. We have
_ L L U
B(u -u ,u-u¡) = (eV(u - u ) • V(w - uf¡, X) + (a • V(w - u ),u-u¡).

We will bound these two terms separately:

(eV(u - uh) - V(« - «,), 1) < (el/2\\V(u - MA)||)(e1/2||V(M - M/)||)

< C/z1/2(e1/2||V(« - uh)\\)   (by Theorem 5.2)

< Ch + (Cx/X2)e\\V(u - uh)\\2.
Also,

h h
\(ax(u-u )x, u-Uj)\ = \(ax(u-Uj)x, u-uf)+ (ax(u¡-u )x, u-u,)\

= \(ax(Uj-u )x, u-Uj)\

<C||"-M/UI(M/-M*)Jli' (fl)

(by Lemmas 5.1 and 5.5)
< Ch    (X -e ^) ' e    \\V(u, -u

<Chl/2el/2\\V(Uj-uh)\\

< CÄ1/2e1/2(|[V(M - M/)|| H- ||V(w - ma)||)

<Ch + (Cx/X2)e\\V(u-uh)\\2,
using Theorem 5.2 and the arithmetic-geometric mean inequality.

L

The term (a2(u -u )y,u-u,) is bounded in a similar manner.   D

This completes the proof of Theorem 3.2
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