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Abstract— Enumerative search is a technique to solve multi-
objective optimization problems based on evaluating each pos-
sible solution from a given finite set. The technique is simple
and computationally expensive, but it is the only way at present
to compute exact Pareto fronts in multi-objective problems. In
this context, Grid computing systems offer a potentially large
amount of computing power that can be used to overcome the
mentioned drawback to some extent. In this paper, we analyze
several practical and technical issues concerning the use of the
Globus Toolkit, a de facto standard system for Grid computing,
to implement a distributed enumerative search algorithm. We
have solved a benchmark of multi-objective problems in a cluster
of computers and we have analyzed issues such as the parallel
efficiency, mean CPU use, and network bandwidth utilization.
Furthermore, we also use Globus to develop a new technique
named grid-µGA, an extension of the micro-GA algorithm. The
results indicate that using Globus is a promising choice to solve
multi-objective problems in Grid computing systems.

I. INTRODUCTION

One important goal of multi-objective optimization is to
find the Pareto front of a problem. The techniques that can
be used to obtain a Pareto front can be classified into three
categories: enumerative, deterministic, and stochastic [1]. In
recent years, stochastic methods have been widely studied; in
particular, evolutionary algorithms have been investigated by
many authors [2], [3], [4]. These methods do not guarantee
to obtain the optimal solution, but they provide appropriate
solutions to a wide range of optimization problems which
other deterministic methods find difficult. On the contrary,
enumerative search, which is a non heuristic (deterministic)
technique, is a conceptually simple search strategy based on
evaluating each possible solution in a finite search space.

The drawback of this technique resides in its inability to
scale as the search space becomes larger. Despite of this
inconvenience, the results that can be obtained by using
enumeration are of great interest to the multi-objective op-
timization research community, because the resulting Pareto
fronts can be used to be compared against those obtained
by using stochastic algorithms. In consequence, the quality
of the solutions produced by these stochastic algorithms can
be measured in a non-subjective way by researchers.

In this context, the increasing impact in last years of Grid
computing [5], [6] appears as an alternative that allows to

apply techniques and algorithms that are impractical for typical
distributed systems such as clusters of computers. Grids enable
applications to handle thousands of distributed heterogeneous
computing resources as a single virtual machine; thus, enume-
rative methods can be viable to obtain optimal solutions of a
number of problems where heuristics are not able of ensuring
the computation of the optimum Pareto Front.

Grids can be considered as systems that coordinate elements
that are not subject to centralized control, integrating resources
and users from different domains. They use standard, open,
general-purpose protocols and interfaces that address such
fundamental issues as authentication, authorization, resource
discovery, and resource access. Besides, a Grid allows its
constituent resources to be used in a coordinated fashion to
deliver various qualities of service, relating for example to
response time, throughput, availability, security, and/or co-
allocation of multiple resource types. Thus, complex user
demands can be satisfied.

Much of the Grid technology relies on the Globus
Toolkit [7] (http://www.globus.org). Globus has
emerged as the de facto standard for Grid computing
so that various large-scale Grid deployments being un-
dertaken within the scientific community utilize the soft-
ware services it provides. Examples are the EU DataGrid
(http://www.eu-datagrid.org) and the NASA’s Infor-
mation Power Grid (http://www.ipg.nasa.gov).

In this paper, we analyze the Globus Toolkit in order
to parallelize a distributed enumerative search algorithm for
solving multi-objective optimization problems. We have built
our test Grid in the context of a cluster of computers, with
the goal of obtaining experiences which lead us to consider
in the future the development of more complex algorithms in
true computational grids. An additional contribution of this
work is the use of Globus to develop a new technique named
grid-µGA, an extension of the micro-GA algorithm [8].

The paper is organized as follows. In Section II, we
discuss related work concerning multi-objective optimization
and parallel computing. Then, Section III reviews the major
components of the Globus Toolkit. It is followed by the
description of the enumerative search algorithm for multi-
objective optimization in Section IV. The next section (V)



presents the results obtained. Section VI details the use of
Globus to introduce the new grid-µGA algorithm. Finally,
we outline the conclusions and future research lines in Sec-
tion VII.

II. RELATED WORK

Parallel computers have been widely used in the field of
mono-objective optimization [9], [10]. In the case of de-
terministic techniques, the idea is, in general, to solve the
problems more rapidly, or to solve more complex problems.
In the context of stochastic methods, parallelism is not only
used for solving problems more rapidly, but for developing
more efficient models of search, because a parallel stochastic
algorithm can be more effective than a sequential one, even
when run in a single processor [11].

However, in the context of multi-objective optimization few
efforts have been devoted to parallel implementations, as stated
in [1]. Some works concerning evolutionary techniques and
distributed systems are [12], [13], but, to the best of our
knowledge, there is not any related work concerning multi-
objective optimization and Grid computing.

A parallel enumerative search algorithm for multi-objective
optimization is described in [14], but it is intended to be used
in clusters and computers such as the IBM SP-2. Our work is a
further step in the sense of taking advantage of the power that
Grid systems offers in order to use hundreds and thousands of
computers to solve a given problem.

III. GLOBUS

The Globus project seeks to enable the construction of
computational Grids. In this context, a Grid is a hardware and
software infrastructure that provides dependable, consistent,
and pervasive access to high-end computational capabilities,
despite the geographical distribution of both resources and
users. A central element of Globus is the Globus Toolkit, a
community-based, open-architecture, open-source set of ser-
vices and software libraries that supports Grids and Grid
applications.

Computational Grids intend to support a wide variety of ap-
plications and programming paradigms. Consequently, rather
than providing a uniform programming model, such as the
object-oriented model, the Globus Toolkit provides a bag of
services that developers of specific tools or applications can
use to meet their own particular needs.

Globus is constructed as a layered architecture, as illustrated
in Fig. 1, in which high-level global services are built upon es-
sential low-level core local services. It provides three elements
necessary for computing in a Grid environment: Resource
Management, Information Services, and Data Management.
They are built on top of the underlying Grid Security Infras-
tructure (GSI).

A. Grid Security Infrastructure (GSI)

GSI provides elements for secure authentication and com-
munication. The infrastructure is based on the TLS protocol
(Transport Layer Security), public key encryption, and X.509
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Fig. 1. Globus layered architecture.

certificates. It provides single sign-on authentication, com-
munication protection, and some initial support for restricted
delegation. In brief, single sign-on allows a user to authenticate
once and thus creates a proxy credential that a program can use
to authenticate with any remote service on the user’s behalf.
Delegation allows for the creation and communication to a
remote service of delegated proxy credentials that the remote
service can use to act on the user’s behalf.

B. Resource Management

The resource management provides support for resource
allocation, job submission (remotely running executable files
and receiving results), and managing job status and progress.
Its primary components are the Grid Resource Allocation
Manager (GRAM) and the Global Access to Secondary Stor-
age (GASS).

GRAM is the module that provides remote execution of
tasks and status management of the execution. When a job is
submitted by a client, the request is sent to the remote host
and handled by a daemon located in the remote host. Then
this daemon creates a job manager to start and monitor the
job. When the job is finished, the job manager sends the status
information back to the client and terminates.

RSL (Resource Specification Language) is the language
used by the clients to submit a job. Any job submission request
is described in RSL, including the executable file and the
conditions under which it must be executed. For example, we
can specify the amount of memory needed to execute a job
in a remote machine. GRAM uses GASS for providing the
mechanism to transfer the output files from server to clients.
Some application programming interfaces (APIs) are provided
under GSI to furnish secure transfers.

C. Information Services

The information services provide support for collecting
information in the Grid and for querying this information.
Based on the Lightweight Directory Access Protocol (LDAP),
the Grid Resource Information Service (GRIS) and the Grid
Index Information Service (GIIS) can be configured in a
hierarchy to collect and distribute the information. These two
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services are called the Monitoring and Discovery Service
(MDS).

The information collected can be static information about
the machines as well as dynamic information showing the
current CPU usage or disk activity. A rich set of information
providers is included with the Toolkit, but it can extended
by the Globus users. While GRIS is the repository of local
resource information derived from information providers, GIIS
is the repository that contains indexes of resource information
registered by the GRIS and other GIIS (it can be seen as a
Grid wide information server). The LDAP query language is
used to retrieve the desired information.

D. Data management

The data management provides support for transfer files
among machines in the Grid and for the management of these
transfers. The key component for this service is GridFTP. The
word GridFTP can refer to a protocol or a service.

As a protocol, GridFTP intends to be used in all data
transfers on the Grid. It is based on FTP, but extends the
standard protocol with facilities such as multistreamed transfer,
auto-tuning, and Globus based security. This protocol is still
in draft level, so Globus does not support the entire set of
features currently especified.

On the other hand, Globus Toolkit provides the GridFTP
server and GridFTP client. They support two types of file
transfer: standard and third-party. The standard file transfer is
used when a client sends the local file to the remote machine,
which runs the FTP server. Third-party transfer occurs when
there is a large file in remote storage and the client wants to
copy it to another remote server.

IV. ENUMERATIVE SEARCH ALGORITHM

In this section, we describe the sequential enumerative
search algorithm we have developed, as well as their paral-
lelization using Globus.

A. Sequential Algorithm

The sequential algorithm we have used is similar to the
approach for finding non-dominated sets described in [15]
(pp. 36-38). The decision variables, assumed continuous, are
discretized with a certain granularity, and for each combination
of values of the variables the objective functions are evaluated;
the resulting vectors are compared among them by using a
Pareto dominance test, and the set of non-dominated solutions
are obtained. Obviously, the finer the granularity the better the
precision of the results, and the larger the computational effort.
Thus, granularity and effort are tradeoff factors. If constraints
are to be considered, then a feasibility test is performed just
before evaluation and dominance check. An outline of the
algorithm is shown in Fig. 2.

The number of iterations carried out by the algorithm
depends on the number of decision variables N and the desired
granularity G. However, the complexity of the algorithm
can be strongly influenced by the constraint test and the
evaluation of the objective functions. Clearly, the time required

F[M] = {F1, F2, ..., FM} // Objective functions
R[C] = {R1, R2, ..., RC} // Constraints
x[N] = {x1, x2, ..., xN} // Decision vars.
f[M] = {f1, f2, ..., fM} // Function values
P = ∅ // Set of non-dominated solutions

Fix the granularity G of the decision variables
For each vector x[i]
If x[i] satisfies the constraints R[C]

f[j] = evaluation of x[i] by F[M]
Compare f[j] with members of P for dominance
If f[j] is a non-dominated solution

Add f[j] to P
Remove the solutions dominated by f[j] from P

Fig. 2. Pseudo-code of the sequential enumerative algorithm.

to compute each iteration is related to the number of objective
functions and their complexity. In addition, the evaluation
step is only performed if the constraint test is passed, so
the more restrictive the constraints the smaller the number
of evaluations. Furthermore, the constraint test can also take a
significant amount of time. We analyze these issues in greater
detail in Section V-C.

This algorithm has been implemented in C++, what ensures
portability and efficiency. It has been designed to simplify the
incorporation of the problems to solve, what is achieved by us-
ing the inheritance mechanism. The code is available for down-
load in http://neo.lcc.uma.es/Software/ESaM/.

B. Globus-Based Distributed Enumerative Search

The distributed algorithm we have developed is based on
the execution of several processes, each of them executing
the sequential algorithm but exploring a different part of the
search space. We name this program ParetoGenerate.
When each process finishes, it writes in secondary memory
the results it obtains. Once all these processes have finished, a
new process, called ParetoMerge, reads all the secondary
memory and gathers the results to obtain the Pareto optimal
solutions and the Pareto front by means of applying the
dominance test. This parallel algorithm is simple, because
inter-process communication is not necessary, and there is only
a synchronization point at the end.

To implement this distributed algorithm in Globus, the idea
is, given a number of subdivisions of the search space, to
launch an instance of ParetoGenerate on each available
machine of the Grid that we have configured. As the compu-
tation of each instance finishes, the result files are retrieved
and a new instance is sent to explore a new part of the search
space. If the number of machines is smaller than the number
of tasks (what it is a usual scenario), we need a job scheduler
that can initiate and manage jobs.

To build a distributed system based on Globus, we need to
configure the following services:

• Resource management. GRAM and GASS are used to
remotely execute the instances of ParetoGenerate
and to stage in the executable file and stage out their two
output result files, respectively.
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&(executable = gassServerURL/globus/ParetoGenerate)
(arguments = 15 128 1)
(stdout = gassServerURL/globus/trace.txt)
(directory = /globus/)
(file stage out =

(/globus/Fonseca-MOP1.15-128.var gassServerURL/globus/Fonseca-MOP1.15-128.var)
(/globus/Fonseca-MOP1.15-128.fun gassServerURL/globus/Fonseca-MOP1.15-128.fun))

Fig. 3. Example of an RSL specification.

• Information services. MDS is used to search for the
available machines in the Grid.

• Security infrastructure. We must obtain X.509 certificates
for authenticating and authorizing users and hosts, as well
as the LDAP services running.

Once the system has been built and these services are
operative, we must program a job scheduler because Globus
does not include such feature. We have used the C API
provided by the toolkit that allows to integrate our application
with the various components and services provided by the
Globus framework. Briefly, our application firstly checks if the
user credentials are valid. Next, it performs an LDAP query to
the information service (MDS) looking for available machines
and it starts a GASS server for file transfers. On each machine,
an instance of ParetoGenerate is executed using an RSL
specification, as it is depicted in Fig. 3.
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Fig. 4. Example of CPU usage and network traffic during a computation.

This RSL string is composed of several RSL attributes
which provide (in the order they appear in the figure): the name
of the executable, the command line arguments for the exe-
cutable, the name of the remote file to store the standard output
from the job, the path of the directory for the requested job,
and a list of filename pairs that indicate files to be staged out
from the execution host to the local host. This RSL example
executes specifically the 15th instance of ParetoGenerate

for the problem named Fonseca (its problem identifier is 1),
where the search space has been partitioned into 128 regions;
the standard output is stored in a file called trace.txt and
the output result files are retrieved from the remote directory
/globus/ to the same local directory and with the same
name. The gassServerURL is used to enable the GASS
file transfers, so the executable file, the stdout file, and the
output results files are transferred automatically by the GASS
server started previously.

For each submitted job, we use a thread that waits for
job completion. When the job finishes, its thread synchro-
nizes with the application’s main thread, which creates an
RSL specification for another ParetoGenerate instance.
Then, another thread is created in order to wait for this job
completion, and so on. The process continues until no more
search space regions are left to explore. When they all have
finished, the ParetoMerge program builds the exact Pareto
front. A typical example of a node computation with this
application appears in Fig. 4, where we show the CPU usage
of a node and the network traffic it produces. Note that, for
each task computed by the node, there exists a transmission
of information through the network. As it can be seen in the
figure, the execution time of the different tasks is not uniform
(we will explain this fact later, in Subsection V-C).

V. COMPUTATIONAL RESULTS

This section is devoted to evaluate both the sequential
and the distributed enumerative search algorithm. First, we
detail the multi-objective problems selected as benchmark
and the Pareto fronts produced when solving them with the
sequential algorithm (C++ plain program). Next, we carry out
a further analysis of the sequential and distributed enumerative
algorithms in order to explain the results obtained when we
use Globus.

We have installed Globus Toolkit 2.2.4 in a cluster of 16
PCs, each one with a Pentium 4 processor at 2.4 GHz, 512 MB
of RAM, and running SuSE Linux 8.1. The interconnection
network is a Fast-Ethernet at 100 Mbps. The programs have
been compiled with GCC v.2.95 using the option -O3.

A. Benchmark of Multi-objective Problems

We have selected four multi-objective problems from the
specialized literature. In concrete, we have chosen problems
from the book of Coello et at. [1]. The problems are named
according to the terminology used in that book: Fonseca,
Kursawe, and Osyczka2. Additionally, we have included in our
study Golinski’s speed reducer problem [16]. The definition
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TABLE I

FORMULATION OF THE MULTI-OBJECTIVE PROBLEMS USED.

Problem Definition Constraints

Fonseca

Min F = (f1(~x), f2(~x))

f1(~x) = 1− e
−
∑n

i=1
(xi−

1√
n

)2

f2(~x) = 1− e
−
∑n

i=1
(xi+

1√
n

)2

−4 ≤ xi ≤ 4; i = 1, 2, 3

Kursawe

Min F = (f1(~x), f2(~x))

f1(~x) =
∑n−1

i=1
(−10e

(−0.2∗
√

x2
i
+x2

i+1
)
)

f2(~x) =
∑n

i=1
(|xi|

a + 5 sin (xi)
b)

−5 ≤ xi ≤ 5
i = 1, 2, 3
a = 0.8,
b = 3

Osyczka2

Min F = (f1(~x), f2(~x))
f1(~x) = −(25(x1 − 2)2 + (x2 − 2)2

+(x3 − 1)2(x4 − 4)2 + (x5 − 1)2)
f2(~x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

0 ≤ x1 + x2 − 2
0 ≤ 6− x1 − x2

0 ≤ 2− x2 + x1

0 ≤ 2− x1 + 3x2

0 ≤ 4− (x3 − 3)2 − x4

0 ≤ (x5 − 3)3 + x6 − 4
0 ≤ x1, x2, x6 ≤ 10
1 ≤ x3, x5 ≤ 5
0 ≤ x4 ≤ 6

Golinski

Min F = (f1(~x), f2(~x))

f1(~x) = 0.7854x1x2
2(10x2

3/3 + 14.933x3 − 43.0934)
−1.508x1(x

2
6 + x2

7) + 7.477(x3
6 + x3

7)
+0.7854(x4x2

6 + x5x2
7)

f2(~x) =

√

(745.0x4/x2x3)2+1.69∗107

0.1x3
6

1.0

x1x2
2

x3
− 1.0

27.0 ≤ 0 ; 1.0

x1x2
2

x3
− 1.0

27.0 ≤ 0

x3
4

x2x2
3

x4
6

− 1.0
1.93 ≤ 0 ;

x3
5

x2x3x4
7

− 1.0
1.93 ≤ 0

x2x3 − 40 ≤ 0 ; x1/x2 − 12 ≤ 0
5− x1/x2 ≤ 0 ; 1.9− x4 + 1.5x6 ≤ 0
1.9− x5 + 1.1x7 ≤ 0 ; f2(x) ≤ 1300
√

(745.0x5/x2x3)2+1.575∗108

0.1x3
7

≤ 1100

2.6 ≤ x1 ≤ 3.6 ; 0.7 ≤ x2 ≤ 0.8
17.0 ≤ x3 ≤ 28.0 ; 7.3 ≤ x4 ≤ 8.3
7.3 ≤ x5 ≤ 8.3 ; 2.9 ≤ x6 ≤ 3.9
5.0 ≤ x7 ≤ 5.5
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Fig. 5. Pareto fronts of roblems (the values between parenthesis indicate the granularity) with the sequential algorithm.

of these problems appears in Table I, accounting for both
unconstrained and constrained problems.

B. Results of the Sequential Program

We have solved the four problems included in the bench-
mark with the sequential problem using the granularity indi-
cated in Table II. This table also shows the times required to
solve each problem.

If we analyze the Pareto fronts obtained (Fig. 5), we observe
that they show a good quality, which should be enough to serve

as a reference to be compared against the results produced by
heuristics techniques (see Section VI).

The times reported in Table II indicate that 1.8 and 2.33
hours of computing time are required to solve the problems
Osyczka2 and Golinski with a granularity of 40 and 30,
respectively. We have estimated that several months would be
required to solve them if a granularity of 100 is desired, what
justify the need of using a Grid computing system in order to
obtain the Pareto fronts in a reasonable amount of time.
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TABLE II

GRANULARITY USED AND SEQUENTIAL EXECUTION TIMES (SECONDS) OF

THE MULTI-OBJECTIVE PROBLEMS.

Problem Fonseca Kursawe Osyczka2 Golinski

Granularity 500 500 40 30
t1 CPU 3782 5377 6379 8382

C. Analysis of the Sequential Program

In this subsection, we present a quantitative analysis of the
sequential program by studying the solution of the problems
Kursawe and Golinski, with 300 and 20 partitions per decision
variable, respectively.

To perform the analysis, we have divided the search space
into five parts, and each of them has been solved separately
by the sequential program. We have used the GNU’s gprof
tool to obtain profile information of the execution of the
five subtasks. We show the results obtained in Table III. For
each subtask, we include the total running time (in seconds),
the time consumed in evaluating the constraints, the time
dedicated for evaluating the functions and carrying out the
dominance tests, and, finally, the number of points of the
resulting sub-Pareto front found.

For the problem Kursawe, the whole time is spent in
evaluating the functions and performing dominance tests, since
it is an unconstrained problem. Note that the execution time of
a subtask is directly proportional to the number of points found
since more points induce the computation of more dominance
tests.

When analyzing the problem Golinski, we observe that the
first four subtasks do not locate any point of the Pareto front,
since the constraints are not fulfilled by any vector of variables
(the time consumed in the evaluation and domination tests is
spent in updating local variables). Thus, in these situations

TABLE III

RESULTS OF THE EXECUTION (IN SECONDS) OF THE KURSAWE AND

GOLINSKI PROBLEMS.

Subtask Kursawe Golinski

1

Total Time 43.53 35.45
Constraints – 34.73

Eval. & Dom. 43.53 3.72
Points 88 0

2

Total Time 52.94 40.10
Constraints – 35.84

Eval. & Dom. 52.94 4.26
Points 137 0

3

Total Time 64.05 40.79
Constraints – 37.08

Eval. & Dom. 64.05 3.74
Points 153 0

4

Total Time 49.60 41.03
Constraints – 37.14

Eval. & Dom. 49.60 3.89
Points 102 0

5

Total Time 41.77 108.12
Constraints – 48.03

Eval. & Dom. 41.77 60.09
Points 89 70

(subtasks 1 to 4), the 90% of the time is spent in checking
the constraints. However, the last subtask produces a front
composed of 70 points, which correspond to the true Pareto
front of the problem. Consequently, there is an increment in
the total execution time, and the 65% of it is consumed in
the function evaluations and the dominance tests. In fact, the
results reported by gprof show that most of this time is spent
in the dominance tests.

We then conclude that the efficiency of the enumerative
search algorithm is heavily problem-dependent. Maybe this
also holds for some heuristic techniques. In this example,
Golinski’s problem has 11 constraints and two objective func-
tions, being one of the functions part of a constraint (see the
formulation of the problem in Table I). In problems without
any constraints, as the Kursawe’s one, a significant amount of
time is spent in the dominance tests, while the time required
to perform the function evaluation will depend on the number
and/or complexity of the functions.

D. Parallel Executions with Globus

To evaluate the performance of the Globus-based distributed
enumerative search program, we have performed, for each
of the problems, four different tests that divide the search
space into 16, 32, 64, and 128 regions, respectively. There-
fore, each test executes 16, 32, 64, and 128 instances of
ParetoGenerate. The results are shown in Table IV. In
this table we include, for each test, the parallel execution
time (t16 CPUs), the parallel efficiency (η), the mean and
standard deviation of the CPU usage of each machine during
the computation (x̄ and σn, respectively), the total amount
of information transmitted (in MBytes) through the network
(TIT ), and the network bandwidth used in MBytes/second
(BW ). The parallel efficiency can be defined as

η =
sN

N
=

t1 CP U

tN CP Us

N

where N is the number of processors (N = 16 in this case)
and sN is the speedup (sN = t1 CPU/tN CPUs). A graphical
comparison of these results are shown in Fig. 6. We thoroughly
discuss the results next.

First, we must notice that the parallel efficiency measures
the advantage of using more processors for running the dis-
tributed enumerative algorithm. With 16 tasks, a process per
processor is assigned, and only the problems Fonseca and
Kursawe yield an efficiency above the 60%. The problems
Osyczka2 and Golinski suffer of an unbalanced workload, for
the reasons analyzed in Subsection V-C, which is also the
cause of their poor mean CPU usage (30.78% and 10.67%,
respectively). This unbalanced workload is also characterized
by the high standard deviation values of the CPU usage (σn).

An increment in the number of tasks implies two facts.
First, the Grid software must create, manage, and schedule
more tasks, and a higher network bandwidth is needed. As
a consequence, the efficiency actually drops for 64 and 128
tasks. However, a higher number of tasks with a finer granu-
larity could enhance the load balance, but this only happens
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TABLE IV

STATISTICS OF RUNNING 16, 32, 64, AND 128 TASKS.

Tasks Fonseca Kursawe Osyczka2 Golinski

16

t16 CPUs 318 556 1010 2094
η 74.33% 60.44% 39.47% 25.91%
x̄ 66.28% 44.96% 30.78% 10.67%
σn 3.87% 12.94% 34.51% 22.45%
TIT 68.76 68.60 68.80 70.28
BW 0.216 0.123 0.068 0.034

32

t16 CPUs 364 420 500 1452
η 64.69% 80.01% 79.74% 37.37%
x̄ 54.33% 55.49% 50.52% 24.94%
σn 3.46% 5.01% 19.03% 19.43%
TIT 136.27 136.39 135.52 135.95
BW 0.374 0.324 0.271 0.094

64

t16 CPUs 408 445 718 2256
η 57.93% 75.52% 55.53% 24.05%
x̄ 44.62% 56.14% 70.42% 32.25%
σn 3.17% 4.53% 7.29% 21.82%
TIT 272.78 271.72 271.95 274.06
BW 0.669 0.611 0.379 0.121

128

t16 CPUs 554 582 1381 3053
η 42.67% 57.74% 28.87% 17.77%
x̄ 31.01% 30.38% 69.86% 58.09%
σn 1.77% 2.35% 2.33% 12.20%
TIT 544.57 544.74 543.22 542.24
BW 0.983 0.936 0.393 0.178

when we execute 32 tasks; thus, the efficiency of the problems
Kursawe and Osyczka2 improve from 60.44% to 80.01% and
from 39.47% to 79.74%, respectively.

An analysis of the times with 64 and 128 tasks reveals that
the times required to solve the problems Fonseca and Kursawe
are similar, while the solution of the problem Golinski is
about 5 times higher. Thus, the same amount of data (see
the TIT rows in Table IV) must be transmitted in less time,
what is the reason of the increment in the network traffic
and the decrement in the CPU usage in the case of th e two
unconstrained problems. If these two problems were more time
consuming, better speedups should be expected.

Finally, the presence of constraints in the problems Osy-
czka2 and Golinski and their influence in the obtained results
lead us to consider that our simple parallelization scheme
could be enhanced to include a dynamic load balancing
strategy (maybe a search for variable regions of factibility).

VI. GLOBUS AND HEURISTIC TECHNIQUES FOR

MULTI-OBJECTIVE OPTIMIZATION

We now turn to apply the optimum Pareto fronts to eval-
uate a heuristic evolutionary algorithm on a Grid. The new
grid-µGA runs N micro-GAs [8] on Globus with a final merg-
ing step of the resulting Pareto fronts. This simple scenario
allows to obtain a Pareto front, but it is also useful when
reduce the time required to execute a number of instances of
an algorithm in order to gather statistical information.

We have used Globus to launch 16, 32, 64, and 128 instances
of the micro-GA. As a example, Fig. 7 shows the Pareto front
of the problem Osyczka2 calculated with the enumerative al-
gorithm and the front obtained when merging 128 replications
of the micro-GA. We have compared the fronts obtained by
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Fig. 6. Comparison of efficiency, CPU usage, and network bandwidth.

replication with the true Pareto fronts obtained by enumeration
using the metric M∗

1 [17]:

M∗
1 =

1

|Y ′|

∑

d′∈Y ′

min{‖d′ − d̄‖∗; d̄ ∈ Ȳ }

where: Y ′, Ȳ ⊆ Y are the sets of objective vectors that cor-
responds to a set of pairwise nondominating decision vectors
X ′, X̄ ⊆ X , respectively, and X corresponds to the decision
variables of the problem. M∗

1 gives the average distance to the
Pareto optimal set (see [17] for further details).

In Table V we show the number of points obtained when
we replicate the micro-GA and the M ∗

1 metric. It can be
observed that the number of points found for all the problems
is increased as a higher number of replicas is used, especially
for the unconstrained problems Fonseca and Kursawe. This is
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TABLE V

RESULTS OF THE GRID-µGA.

Tasks Fonseca Kursawe Osyczka2 Golinski

16
Points 1385 427 24 36
M∗

1
6.6905e-6 6.5451e-4 7.3307e+1 3.7707e+2

32
Points 1970 677 37 37
M∗

1
6.8230e-6 5.4077e-4 5.7351e+1 4.2092e+2

64
Points 2671 886 37 76
M∗

1
5.9709e-6 5.1671e-4 6.2918e+1 4.2723e+2

128
Points 4109 1328 60 74
M∗

1
5.6334e-6 5.9456e-4 4.5089e+1 2.6136e+2
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Fig. 7. Pareto fronts of the problem Osyczka2 generated by the enumerative
algorithm and the grid-µGA.

an expected result since we have carried out a more thorough
exploration of the search space (we have merged a larger
number of fronts).

If we focus on the M∗
1 metric, the results show that the

Pareto front obtained by replication of the unconstrained
problems (Fonseca and Kursawe) are very close to the op-
timum Pareto front resulting from the enumerative search.
Such accuracy does not exist for Osyczka2 and Golinski, since
the grid-µGA does not converge to the optimum Pareto front
(see the high values of the metric), indicating that the micro-
GA approach for constraint handling is not appropriate as its
authors suggest [8].

VII. CONCLUSIONS AND FUTURE WORK

Enumerative search is a technique for solving multi-
objective optimization problems based on evaluating each pos-
sible solution from a given finite search space. The technique
allows to obtain the optimum Pareto front, but it does not
scale as the search space becomes larger. In this context,
Grid computing systems offer a strategic opportunity with a
potentially large amount of computing power that can be used
to overcome the drawbacks to some extent.

We have used the Globus Toolkit, a de facto standard
system for Grid computing, to develop a distributed enu-
merative search algorithm, and we have used it to solve a
benchmark composed of both constrained and unconstrained
problems. We have analyzed the parallel efficiency, mean
CPU usage, and network bandwidth when partitioning the
search space into 16, 32, 64, and 128 regions in the context

of a workstation cluster of 16 nodes. The results show that
promising results are expected when solving unconstrained
problems if they are computationally expensive; in the case
of constrained problems, a more elaborated parallelization
scheme is required, what constitutes a matter of future work.
On the other hand, we have presented an approximation of
using Globus to numerically improve a evolutionary algorithm.

Future research is in the line of using Globus in a Grid
composed of hundred of computers as we did in [18], [19].
We also intend to apply the experiences obtained in this work
to face the parallelization in the context of Grid computing of
heuristic techniques for multi-objective optimization.
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