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Abstract. This paper describes applications of a gesture-based user integface d
vice and its integration into application software. It describes the glove ohgut
vice used, the gesture recognition software and the integration of theedetac
application software with the help of a context framework. The systenbéas
used in a number of demonstration applications ranging from desktdgapp
tions to the control of a mobile robot. We present preliminary results freen u
feedback given at a public demonstration of the system.

1 Introduction

User interface research in wearable computing distinggistself from other areas of
human computer interface research by considering theaictien with the computer
to be secondary, i.e., that the user of a wearable compupeiniarily concerned with
a task in the physical world surrounding him and that the alglarcomputer is sup-
porting the user in his primary task. In desktop computingliaptions however, the
primary task of the user is considered to be executed byaictien with the computer,
so the focus of attention for the user lies on the human coenjnterface. For wearable
user interfaces, this has several consequences includifgdt that WIMP (Windows
Icons Menus Pointer) interfaces often cannot be used ajththe typical user is highly
familiar with such user interfaces from previous encounteith the ubiquitous para-
digm of desktop computing. However, familiarity with an usgerface is an important
factor toward user acceptance, so one of the goals of weatabhiputing is to develop
novel user interface mechanisms that, inspite of their iyl give the user an in-
stant familiarity with the user interface concept much like "Desktop™ metaphor
and the ™point and click” mouse interface exploits farailiconcepts of a physical
desk in desktop computing.

In wearable computing, the design of user interface devieetill an important
area of research. Input methods such as chording keyboa}dsojce input, direct
manipulation [2] and tracking of hand motion [3] have beeccsssfully implemented
and used in wearable applications. Seen from an applicpspective, two important
properties of an input method for wearable computing isrtimepact on the primary



task of the user and the social acceptance of their appicef the primary task of the

user involves voice communication, a user interface usimigevcommands impedes
the primary task. In a quiet environment such as a libraeyute of a voice command
interface might have low impact on the primary task but mighsocially unacceptable.
The negligence of these factors in the design of applicatippically leads to low end-

user acceptance [4].

Using keyboard-like input devices is often socially acedf# as their use is typi-
cally quiet and they can be build in a small form factor anégmnated into the normal
clothing of the user[5]. However, they often have a signiftaapact on manual pri-
mary task as they impede the use of the users hands. A draafitpée is the use of
portable wireless keyboards[6] that are typically held ive dhand and typed on with
the other hand which leaves no option to even hold anothecohjhile using the key-
board. In tasks such as aircraft maintenance [7, 8], the isaah an interface may
be acceptable as the input of data typically is performeer difte actual maintenance
task to document changes, but in the general case, thedtiteravith the wearable
computer should not limit the use of the users hands for githgyoses.

Glove-based user interface devices have been used in théopake interaction
with wearable computers. These have the advantage thatng mdustrial applica-
tions, the users are required to wear gloves, so the impaitteoprimary task in non-
interaction situations is small. In the implementationaliged by Boronowsky[2], the
user interface uses a direct manipulation technique forursatection. This has the
drawback that when interacting, the user has to observedad-mounted display to
see what menu entry is currently highlighted and, by turriirsghand, select another
one or confirm the selected entry. This has an effect sintltrd use of a pointer-based
WIMP interface: it becomes unusable when the "feedbackTdogtween the user in-
put device, the screen, the eye of the user and the hand o$éhnéstinterrupted. It also
has an impact on the learnability of the user interface, #& gannot learn a sequence
of actions he can execute "without looking™ like it is paske with sequences of key
presses on a keyboard. This latter feature may not be impgddacasual users but is a
significant limitation for professional users as it limitetinput speed gain achievable
by user training.

Many gesture-based user interfaces have been studiednddsand implemented
before. Examples for gesture input devices in the contewiaifrable computing are are
the GestureWrist [9] and FreeDigiter [10], but similar ingl@vices and systems have
been designed for many other applications, ranging frongdesnvironments[11] to
intelligent spaces[12].

In this paper, we describe an implementation of a glovedassture interface
that represents a first step toward a user interface withdéde gesture sequences that
can be executed without direct feedback through an outputceeThe device can be
used not only for wearable applications, we demonstrateuieeto control desktop
applications and physical real-world artifacts. We présesarchitecture of the system
and a preliminary qualitative evaluation based on userrépee.



2 System Description

The gesture recognition system consists of a wireless idpuice integrated into a
glove. The device is connected to the computer of the usegrava software system
performs signal analysis and gesture identification. Thpudwf this process is made
available to applications via the context interface. Uploa tecognition of a gesture,
the software system generates events that can be routegiairylapplications and to
wearable user interfaces. An overview of the system is givétigure 1.
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Fig. 1. System diagram

2.1 Input Device Hardware

The input device hardware consists of a textile glove witiegnated electronics. De-
sign constraints for the device were wireless operatiorafoextended period of time
and minimal impact on the user's hand manipulation caggbilihe textile glove has
been designed in an iterative process in which several fyrme were manufactured
and tested with users for fit and ease of use. A descriptioheflesign process can
be found in [13,14]. In order to fulfill the design constraing small, lightweight
and energy-efficient sensor platform has been developedsdtcalled SCIPIO plat-
form [15]. Together with its power supply and additional sens, it forms the onboard
electronics of the glove. For gesture recognition, the glbas been equipped with a
3d acceleration sensor device [16] that is used to meastineaboeleration and pose in
relation to the vector of gravity.

2.2 Signal analysis and gesture identification

For our experiments, we have defined a number of simple gesstat are both easy to
detect with simple sensors and are easy to learn from a usgrqutive. We chose sim-
ple gestures that are based on the inclination of the hanidh, p.e., fingers pointing
upwards or downwards, and roll, i.e., hand turned left dntrig



Fig. 2. The textile glove

The gesture detection system used is based on the fact thaiisy to identify the
direction of the vector of gravity by applying a low-passititfilter to the signal of
the sensor. Both simple 6dB per octave exponential avenagid2dB per octave But-
terworth filters have been successfully used for this puepdhe result of the filtering
process gives three components of the gravity vector in tise ppace of the glove de-
vice. Pitch and Roll of the device are then calculated by aging the angle between
the gravity vector and the X and Y axises of the sensor deMoge that this type of
sensor cannot be used to observe yaw, i.e. rotations arberladxis.

Pitch and Roll are then used to detect gestures. For thistargestart position has
been defined, the hand position in which the thumb of the usietpupwards. The
gesture software detects when the hand is in the start positihen the pose of the
hand is tracked for four simple gestures, i.e. reaching florgsholds in pitch and roll
angles. These gestures can also be combined to a sequendarréng left and then
pointing the fingers upwards, so that a total number of fauptt and eight combined
gestures can be detected. Additionally, the two buttonfiemglove device can be used
as gesture modifier keys or individual events.

The use of a gesture start position also makes it possiblerform the gesture de-
tection continuously with few false positive detectiongltd gesture system, provided
that the gesture start position is defined according to tipgirements of the application.

2.3 Context Interface

The previous section described the low level signal prangsasks required to filter the
raw sensor data and how gestures are recognized from thighkias, transitioning from
raw sensor input to contextual information. The authorsgihesl a context collection
and distribution framework allowing providers to easilgrst contextual information in
a central repository and allowing client access througklaprogramming interface.
The context repository is the central place where referet@weontextual informa-
tion are maintained. It allows context providers to registew context sources and
clients to discover context information. The query prooessnslates complex queries
to queries on the context repository and allows clients ggster event notifications
that are triggered when new context information matchirgggbery is available. The



description component manages the interfaces to contextjtimaintains the seman-
tic meaning rather than the data needed to represent a gdieoatextual information.
Context sources are either custom, or use parts of the mo\ddntext toolbox to ap-
ply reasoning algorithms on the data provided by the undeglgensor layer. Context
processing starts with a context provider acting as thegbrid the sensor layer. The
provider maintains the set of recognized sensors and egfagh, its context interpre-
tation, i.e., a semantic meaning of the underlying data amtext representation, i.e.,
the data required to represent an actual contextual vaiuitbeldescribed scenario, the
context provider exposes three acceleration sensors. g&argor represents one axis.
Additionally, a gesture context is exposed that reflectslditest gesture recognized
from the acceleration input. Six gestures are recognizef/Right, Up/Down, and En-
ter/Exit. This data is registered with a context repositwhjch acts as the interface to
client applications. It allows clients to query for datagmide existing contextual data,
and to add additional interpretations for a given contexityerThe later can be used
by a client for example to override the recognized gestuoasges where the automatic
detection failed. A context aware application will then guthe context repository to
discover available contextual information and will suliserchanges to contextual data
found. The client application then can update its behawiogfaphical representation)
based on contextual changes.
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Fig. 3. The context framework

2.4 Legacy Application Interface

A client application that is not context aware and which carre adapted to use con-
textual information natively, can only take advantage fritven contextual information
indirectly, through a context aware client acting as a prtaxyhe legacy application.



The proxy would act as a shim between the user input and tHeagn interpreting
gestures and translating them to mouse clicks, keyboas$eseor other standard win-
dowing events. The application will than act according mwlindowing event received
without any previous knowledge of the alternative inputidewsed. The authors eval-
uated different types of legacy applications with respédteing controllable through
gestures without any modification done on the original aggpion. The goal was to
evaluate their usefulness in the absent of a classic inpiteleThe goal was to nav-
igate through the application only with the help of gestuamad, additionally, pitch
information from the acceleration sensors. Three apptincatwhere chosen for this
test:

1. One Application allowing users to move/zoom/selectgafta map. The entire
map size was bigger than the available screen. Anothercapipln of the same
type was evaluated allowing the user to select a point oféstdrom a map. The
points of interest where distributed randomly on the mage @ifer was only able
to navigate with 4 basic gestures through the set (up/doft/nidéat) and to select
an entry explicitly by "Enter”ering the point (which was npaga to the "enter/exit”
gestures).

2. One Application allowing users to navigate within a preaton in a way compa-
rable to a remote control. There were no constraints in taftismeouts in which
the user would have to make a decision to which element to mexe

3. One Application allowing a user to control a toy robot byming it forward/backward,
and to turn left/right. The application logic was such thaing the same gesture
twice (or more often) increased the action speed while peiftg the counter ges-
ture stopped both engines (and thus stopped the robot) ni¢resting question in
this scenario was how a user performs gestures in a timereantssituation - as
the robot would potentially hit a wall/the floor.

3 Results

Based on the implemented demonstration applications, esept a number of findings
from user feedback. The applications were presented on licpuhibit at the VDE
Kongress 2006 in Aachen. Although they do not represent -aepth survey of user
experience, they indicate important steps toward futuveldpment.

3.1 Controlling a mapping application

While navigating within a large map was possible using theglasers had problems
with the navigation on several levels:

1. Gestures were not accepted as they proved to be unnatuted sense that users
tried "move” parts of the map with their hand rather than ptiog the "move a
single step in one direction” metaphor.

2. Users misinterpreted the term "navigating” the map. Tévgyected that the glove
would enable them to somehow navigate (the application uséuls test is nor-
mally used to calculate navigation routes for cars) and &dtd select a start/end
point for a route - something not possible with the restdagesture set.



3. Because the detection of gestures was not perfect, eseted to navigate too far
in a direction. For the application had no time dependenttianality this did not
result in errors, user were still disappointed when theytbathvigate back.

3.2 Controlling a presentation application

Navigating within a presentation application was accefiigdhe users after a brief
introduction to the gestures.

1. Advancing through the slides was intuitive. One slidevind was achieved by per-
forming a "right” gesture while one slide back was mappedh feft” gesture.
However, starting and ending a presentation took long tseraian unnatural map-
ping to the available gestures (enter/exit).

2. One problem was due to the null-gesture class. It wasvelahard for the users to
avoid unwanted gestures in this scenario mainly becausecdgnmon to gesticu-
late during a presentation with the hands. The used hardiicdureot allow reliable
filtering of unwanted gestures (because the available seu#®b not allow an un-
ambiguous detection of a gesture start event) and as a,resulanted transitions
between slides were common.

Gesture-based control of a mobile robotOne of the demonstration scenarios includes
a physical robot controlled by user gestures. Similarly ke Tslove, the Toy Robot
offers Bluetooth Serial connection with a simple AT commdwaded control protocol.
As the gesture recognition engine is implemented on a pafsmmputer the glove
cannot alone control the robot. Rather, the glove sends cawleration data to the
computer that interprets this as gestures and forwardethted command (set engine
speed) to the robot. The used during the demo was an offlibké-ASURO Robot
Kit[17] with the following characteristics:

Data transfer through Infrared (modified to Bluetooth)

2 light sensors underneath

6 touch sensors in the front

2 independent motors

2 odometers sensors for wheel speed measurements

2 red LEDs on the back

Tricolor status LED

ATmega8L microcontroller (programmable in C)

SDK and software libraries to develop custom code for thet

CoNoTrLNE

The only change we made to the hardware is replacing the Ir8ute with a
serial-line-enabled Bluetooth module to increase rditgband range of the wireless
communication

Controlling a robot was different from the previous apgiica scenario as that it
required the user to control a physically moving object bstgees.

1. The main obstacle here was that a user could not "just waifigure out a ges-
ture because the robot would continue its movement whileitiee performed the
gestures. This was mainly a problem during the initial iragrphase of the user.



2. Users liked the way the robot was controlled and intuiyiweatched the robot in-
stead of looking at the glove. Gestures for left and right ihaostly performed
correct while up/down gestures where often misinterprétethe system (recog-
nized up instead of down). The reason was that users did rattive glove in the
correct way, thus generating different acceleration paste

3. Because of misinterpretations of gestures, usersvelatften had to stop the test
and re-set the robot to free space. As the system would iittermly detect gestures
when this was not intended, the robot started moving arouitd gften.

4 Analysis and Discussion

Concluding from the user feedback, we find that the currestuge input system is
probably least suited for the mapping application, as matgtraction is needed. The
current gesture recognition lacks the necessary robisstmebthe mapping of gestures
is considered unintuitive by the users, a direct manipatatvould probably be better
suited. This was evaluated in a second demonstrator wheedeaation information
was transformed directly into map movements, repeatingritneement until the glove
was moved back to the initial position. Users respondeebttithis type of navigation
but still did not feel comfortable.

The control of a slide presentation application receivedeenpositive feedback by
the users, however, users did move their hands unintefiipleading to false gesture
detections and thus unintended slide changes.

The control of the mobile robot was the most critical applarain respect of false
gesture detections, as physical damage can occur if thegigmmmand is sent to the
robot. However, users liked to use gestures as input andsbefithe gesture con-
trol seemed natural for this purpose. However, gesturegrétion accuracy was not
considered sufficient, i.e., the robot had to be stopped aiBnseveral times to avoid
hardware damages. Concluding, we think that for mobile trabatrol, the robustness
of the gesture detection has to be improved and the mobilet iiiould be equipped
with additional sensors to protect it from hardware damagelting from unintended
gesture commands.

During the tests, we encountered the problem of gesturentaipretation several
times. For example, when the user was performing certaid havements (typing on
the keyboard, walking, waving with hand etc.), these weterpreted as gestures al-
though the user had no intention to perform a gesture at tbatent. The problem is
akin to the Monty Python sketch titled "Biggles Dictates ateg' [18] where it was
not clear whether Biggles was actually dictating or merelgaking to the secretary. In
the sketch, the problem was solved with an external signMdase’s antler on Big-
gles’ head) to switch between dictation mode and speakindem®imilarly we could
define two additional gestures, "Start Gestures” and "Stept@es” to switch gesture
recognition on and off. The "Start Gestures” gesture shdaldinique enough not to
be accidentally performed during everyday movements syt eaough to perform for
cases where switches could be frequent.
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