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A GLUING CONSTRUCTION OF COLLAPSING CALABI–YAU

METRICS ON K3 FIBRED 3-FOLDS

Yang Li

Abstract. We use the gluing method to give a refined description of the collapsing
Calabi–Yau metrics on Calabi–Yau 3-folds admitting a Lefschetz K3 fibration.

1 Introduction and Background

Let X be a compact Calabi–Yau 3-fold with a Lefschetz K3 fibration π : X →
Y = P1. Given a reference Kähler metric ωX on X and ωY on Y , we aim to
describe the collapsing family of Calabi–Yau metrics ω̃t representing the Kähler
class [ωX + 1

t π
∗ωY ] where 0 < t ≪ 1. Without loss of generality, we impose the vol-

ume normalisation
∫

Xy
ω2

X = 1 where Xy is any fibre of π, and
∫

Y ωY = 1. Denote S
as the finite set of critical values of π. For simplicity, we assume each singular fibre
contains only one nodal point.

Collapsing Calabi–Yau metrics for general fibrations have been studied from the
viewpoint of a priori estimates, focusing mostly on the behaviour of ω̃t away from
the singular fibres π−1(S) (cf. e.g. [Tos10]). The basic picture (i.e. the ‘semi-Ricci-
flat’ description) is that the collapsing metric involves two scales. If we scale down
the family of metrics to tω̃t whose diameter scale ∼ 1, then away from S as t → 0
these CY metrics collapse down to a limiting metric ω̃Y on the base Y called the
generalised Kähler-Einstein metric, satisfying

Ric(ω̃Y ) = Weil Petersson metric. (1)

This ω̃Y for a general fibration has some singularity along S. If we keep the fibres
normalised to volume 1, then away from the singular fibres, the fibrewise restrictions
ω̃t|Xy

will converge smoothly to the Calabi–Yau metric on Xy in the class [ωX |Xy
],

and a tubular neighbourhood of Xy will look like the metric product of Xy with a
flat Euclidean space.

More formally, one can introduce the semi-Ricci-flat metric ωSRF . We solve the
Monge–Ampère equation on the fibres Xy to find a function ψy, such that ωX |Xy

+√
−1∂∂̄ψy is the Calabi–Yau metric on Xy. Set ψ = ψy as a global function on X,

then we can write

ωSRF = ωX +
√

−1∂∂̄ψ +
1

t
π∗ω̃Y . (2)
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Its defining feature is that its restriction to fibres are Ricci-flat, and as such cap-
tures key features of the collapsing metrics ω̃t. However, its definition involves the
ambiguity of a form pulled back from the base, is not necessarily positive definite,
and can be quite singular near π−1(S).

As we approach the nodal points of the fibration, then at a third length scale of
order ∼ t1/6 (the ‘quantisation scale’), much smaller than the diameter scale of the
fibres ∼ 1, one observes that the semi-Ricci-flat description must break down [Li17].
This motivates the construction of a model CY metric ωC3 on C3, whose asymptotic
behaviour at infinity is designed to match up approximately with the semi-Ricci-flat
metric [Li17, CR17, Szé17]. It was further predicted that this model metric should
arise as a scaling limit of ω̃t near the nodal points, describing the geometry at the
quantisation scale [Li17].

The a priori estimate method is difficult to detect the geometry at extremely
small length scales. On the other hand, the gluing method has been used to some
effect in collapsing problems, such as Joel Fine’s construction of cscK metrics on
fibred complex surfaces [Fin04], and Gross and Wilson’s construction of CY metrics
on elliptic K3 surfaces [GW00]. These works tend to rely on very favourable gluing
models, such that the gluing error is already extremely small before the perturbation
step.

The main result of this paper is to carry out the gluing construction for ω̃t (cf.
Theorem 4.1). As an immediate consequence,

Theorem 1.1. As t → 0, the family of CY metrics ω̃t based at the nodal point
converges in the Gromov-Hausdorff sense to the metric product X0 × C, where the
nodal K3 fibre X0 is equipped with the orbifold CY metric ωSRF |X0

, and the C factor
has the Euclidean metric.

Remark 1. This result has been obtained in [Li17] by means of nonlinear estimates
assuming a conjecture in pluripotential theory.

Morever, we verify that ωC3 arises as a blow up limit of the collapsing metrics ω̃t

near the node.

Theorem 1.2. There exists a 1-parameter family of holomorphic embedding maps
Ft from large Euclidean balls in C3 to a neighbourhood of the node inside X, and a
fixed number A0 depending on the geometry of π : X → Y , such that as t → 0, the
scaled CY metrics (2A0

t )1/3F ∗
t ω̃t converge in C0

loc(C
3) to the model CY metric ωC3.

Roughly speaking, the metric ansatz is constructed by gluing the model metric
ωC3 to the semi-Ricci-flat metric. One issue is that the semi-Ricci-flat metric istelf is
expected to be singular on the singular fibre, and thus needs to be regularised first.
The resulting metric ansatz suffers from rather large gluing errors, and one needs to
work with rather coarse function spaces to perturb this into the actual CY metric
ω̃t.
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The key issue is to understand the harmonic analysis of the Laplace operator for
the metric ansatz. The difficulty is the simultaneous presence of several scales with
very different characteristic behaviours, an issue inherent in any collapsing problem
and made more acute by the presence of singular fibres. The technique is largely
drawn from the work of Székelyhidi [Szé17]. It involves analysing mapping proper-
ties of weighted Hölder spaces for every model geometry at each scale, decomposing
the functions into pieces each sensitive only to one particular scale, inverting the
Laplacian approximately on individual pieces using the various model Green opera-
tors, and patching the pieces to an approximate global solution. The main advantage
of this method, aside from giving a fairly explict description of the Green operator,
is that it allows us to derive a t-independent bound on a suitable operator norm,
and in this sense this linear theory is optimal.

It is worth pointing out that following the recent works [CR17, Szé17], many
other new examples of complete CY metrics on Cn are now known, which are strong
candidates for modelling collapsing fibrations with higher dimensional fibres. Such
examples are likely to provide a vast generalisation of the main result of the present
paper.

Remark 2. All constants are uniform for sufficiently small t unless stated otherwise.

2 Construction of Metric Ansatz

2.1 The generalised Kähler Einstein metric ω̃Y . As mentioned in the
introduction, the generalised Kähler Einstein metric ω̃Y on the base Y models the
collapsing limit of the scaled family of CY metrics tω̃t. Since the base Y is complex
one-dimensional, we can write down ω̃Y rather more explicitly (cf. [Tos10, Li17]). Let
Ω be the holomorphic volume form on X, normalised to

∫

X

√
−1Ω ∧ Ω = 1. Under

our normalisation convention
∫

Y ωY =
∫

Y ω̃Y = 1, this ω̃Y is just the pushforward
of the volume form

ω̃Y = π∗(
√

−1Ω ∧ Ω). (3)

If we pick holomorphic local coordinate y on Y , then we can write Ω = dy ∧ Ωy,
where by adjunction Ωy is the holomorphic volume form on the fibre Xy, and when
y varies it gives a holomorphic section of the relative canonical bundle. The formula
(3) boils down to

ω̃Y =
√

−1dy ∧ dȳ

∫

Xy

Ωy ∧ Ωy = Ay

√
−1dy ∧ dȳ. (4)

In our situation the only singularity in the fibration π are assumed to be nodal.
Then

Lemma 2.1. The function Ay =
∫

Xy
Ωy ∧ Ωy is Lipschitz in y.
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Proof. We focus on the fibration π : X → Dy over a small disc around the nodal fibre
X0, and take the square root fibration X ′ → D√

y. After taking a small resolution

X̃ ′ → X ′, the fibration X̃ ′ → D√
y becomes a submersion. Since Ωy still defines

a holomorphic section of the relative canonical bundle for the new fibration, the
submersion property shows that Ay is a smooth function over the square root base,
namely Ay is a smooth function of

√
y. But Ay is an even function of

√
y, hence

Lipschitz in y.
We take a closer examination at the singularity of Ay, which is not needed for the

proof. Notice that Ωy is a closed 2-form on Xy, and so is Ωy. This means the fibrewise
integral Ay only depends on the cohomology class of Ωy, which is the same data as
the period integrals. Let Σ ∈ H2(Xy) be the class of a vanishing cycle. If a 2-cycle
α ∈ H2(Xy) is monodromy invariant, or equivalently it is orthogonal to Σ under
the intersection product, then the period integral

∫

α Ωy is smooth in y, because we
can make the representing cycles avoid the nodal point. To understand

∫

Σ Ωy, we

again pass to the family X̃ ′ → D√
y. This vanishing cycle class Σ becomes the class

of the exceptional P1 when we take the small resolution. Again
∫

Σ Ωy is smooth in√
y. Furthermore, Picard-Lefschetz formula implies that

∫

Σ Ωy is an odd function of√
y, and the nature of period integrals implies this function is holomorphic in

√
y,

so
∫

Σ
Ωy = g(y)

√
y,

where g is a holomorphic function in y. The Lefschetz fibration imposes a further
nondegeneracy condition on the deformation of the nodal fibre, which being trans-
lated into period integrals means g(0) �= 0. Combining these discussions, the class
[Ωy] ∈ H2(Xy) is the sum of a smooth monodromy invariant part and an orthogonal
part (g(y)

√
y)Σ. This implies

Ay =

∫

Xy

[Ωy] ∧ [Ωy] = smooth term − 2|g(y)|2|y|.

The factor −2 comes from Σ ·Σ = −2. Notice |g(y)|2 is smooth in y, but the modulus
function |y| is not C1 in y, despite being smooth in

√
y. From the nondegeneracy

condition g(0) �= 0, we see the Lipschitz regularity is the sharp statement. ⊓⊔

Remark 3. This failure of smoothness constrains the regularity of the metric ansatz
we can produce.

Clearly Ay ≥ C > 0, so ω̃Y is uniformly equivalent to ωY on Y . We will later
abuse notation to regard ωY and ω̃Y also as forms on X.

2.2 CY metrics on smoothings of the nodal K3 fibre. We now describe
the CY metrics on the K3 fibres which are small deformations of any chosen nodal
fibre. The basic picture is that these are obtained by gluing scaled versions of the
Eguchi–Hanson metric to the CY metric on the nodal K3 fibre. This section will
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be brief since there are many gluing constructions of very similar nature in the
literature, e.g. [Don10, Spo14], but we want to give enough details to keep track of
the key estimates for later use.

On the nodal central fibre X0, we write the orbifold CY metric as ωSRF |X0
=

ωX |X0
+

√
−1∂∂̄ψ0, solving the Monge–Ampère equation

(ωX |X0
+

√
−1∂∂̄ψ0)

2 =
1

A0
Ω0 ∧ Ω0,

∫

X0

ψ0ω
2
X = 0, A0 = Ay|y=0, Ω0 = Ωy|y=0.

At the nodal point P , the fibration π induces (up to scale) a complex symmetric
bilinear form on the tangent space TP X, or equivalently an SO(3, C) ≃ SL(2, C)/Z2

structure. The orbifold CY metric singles out a Hermitian metric on C2/Z2, or
equivalently an SU(2)/Z2 = SO(3, R) structure, so we have a preferred Hermitian
structure | · | on TP X. We can then choose local coordinates z1, z2, z3 on an open
neighbourhood U1 ⊂ X and a local coordinate y on Y , where the fibration π is
represented by y = z

2
1 + z

2
2 + z

2
3, and ψ0 = c0 + r2 + O(r4) with r = (|z1|2 + |z2|2 +

|z3|2)1/4. Here the innocuous constant c0 is a matter of normalisation, which appears
because we impose

∫

X0
ψ0ω

2
X = 0. Using the compatibility condition dy ∧ Ωy = Ω

at y = 0, one calculates the normalisation on the holomorphic volume form at the
nodal point to be
√

−1Ω ∧ Ω|z=0 = Ω0 ∧ Ω0 ∧
√

−1dy ∧ dȳ|z=0 =
√

−1A0(
√

−1∂∂̄r2)2 ∧ dy ∧ dȳ|z=0

= A0

∏

i

√
−1dzidz̄i,

so up to a constant in U(1), the holomorphic volume form is locally given in U1 by
Ω =

√
A0dz1dz2dz3(1 + O(z)).

We focus on the fibres over the small local base {|y| < ǫ1} with ǫ1 ≪ 1. For
convenience, we extend the function r on Xy ∩ U1 smoothly to the whole Xy, such
that outside the coordinate neighbourhood r is of order 1. In Xy ∩ U1, one has the

scaled Eguchi–Hanson metric EHy given by
√

−1∂∂̄
√

r4 + |y|. Then the function r
can be thought as a smoothed out version of the distance to the vanishing cycle.
This allows us to define the weighted Hölder spaces Ck,α

β (Xy) on Xy. The weighted
Hölder norm of a function f on Xy can be defined by

‖f‖Ck,α
β

= ‖f‖Ck,α(Xy\{r>c}),ωX) +
∑

j≤k

sup
Xy∩U1

r−β+j |∇j
EHy

f |

+ sup
dEHy (x,x′)≪r(x),x,x′∈Xy∩U1

r(x)−β+α+k
|∇k

EHy
f(x) − ∇k

EHy
f(x′)|

dEHy
(x, x′)α

,

where the difference of two tensors at nearby points are compared by parallel trans-
port along the unique minimal geodesic joining them. The constant c is meant to
be small enough to make {r < c} contained in the coordinate neighbourhood U1.
Similarly, one can define the Ck

β(Xy) norm by setting α to zero, and it is easy to
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extend these definition to tensors. A useful feature of Hölder norms, which will be
used repeatedly later, is that they are local, namely if the manifold is covered by
several regions with some overlap, then it suffices to estimate the Hölder norms on
each individual region.

Let 1 ≪ Λ1 ≪ ǫ
−1/4
1 be a large number. Then for any y with |y| < ǫ1, we can

find a diffeomorphism G0,y between Xy \ {r < Λ1|y|1/4} (namely the complement of
a neighbourhood of the vanishing cycle) and an open subset of X0 \{r < 1

2Λ1|y|1/4}.
We can demand these diffeomorphisms to depend smoothly on y, namely they fit
into a fibration preserving diffeomorphism

G0 : {x ∈ X : |y| < ǫ} \ {r < Λ1|y|1/4} → U ′ ⊂ X0 × {|y| < ǫ1}. (5)

(This can be defined, for instance, by flowing along the vector fields orthogonal to
the fibres under the ωX metric. Or one can prescribe the diffeomorphism explic-
itly in the coordinate neighbourhood U1 and try to extend it outside U1, simi-
lar to [Spo14]. Many reasonable constructions will satisfy the desired estimates.)
The diffeomorphism G0,y is approximately holomorphic: we can arrange so that on
Xy \ {r < Λ1|y|1/4} where G0,y is defined,

|Ωy − G∗
0,yΩ0|ωX

≤ C|y|
|z|2 |Ωy|ωX

=
C|y|
r4

|Ωy|ωX
.

That is, the variation of complex structure causes an error of order O( |y|
r4 ). Further-

more, we can compare potentials, holomorphic volume forms and the background
metric ωX on X0 and Xy to higher order. For instance,

∥

∥G∗
0,yr

2 − r2
∥

∥

Ck
−2((U1∩Xy)\{r<Λ1|y|1/4})

≤ C|y|,
∥

∥G∗
0,yΩ0 − Ωy

∥

∥

Ck
−4(Xy\{r<Λ1|y|1/4})

≤ C|y|,
∥

∥G∗
0,y(ωX |X0

) − ωX |Xy

∥

∥

Ck
−2(Xy\{r<Λ1|y|1/4})

≤ C|y|.
(6)

The various power law behaviours can be seen quite easily from dimensional analysis.
It’s enough to examine what happens inside the coordinate neighbourhood U1 ⊂ C3.
The point is that to the leading order, expressions like r2, Ωy and ωX have some
homogeneity behaviour under the scaling z → λz, and the diffeomorphism G0,y would
approximately respect this homogeneity, so the problem reduces by scaling to the
case with |z| ∼ 1, |y| ≪ 1, where estimates of the above type are clear. This type
of arguments will be tacitly used many times later when we assert good properties
about diffeomorphisms.

One can now construct an approximate CY metric ω′
y, essentially by gluing the

Eguchi–Hanson metric EHy to G∗
0,y(ωSRF |X0

) at scale r ∼ |y|1/6. The gluing region
is then contained in the coordinate neighbourhood U1 because ǫ1 ≪ 1, and avoids
the vicinity of the vanishing sphere {r < Λ1|y|1/4}.
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Let γ1(s) be a cutoff function,

γ1(s) =

{

1 if s > 2,

0 if s < 1.

and let γ2 = 1 − γ1. We define

ω′
y = ωX |Xy

+
√

−1∂∂̄

{

γ1

(

r

|y|1/6

)

G∗
0,y(ψ0 − c0) + γ2

(

r

|y|1/6

)

√

r4 + |y|
}

. (7)

The diffeomorphism is well defined on the support of γ1, so this expression makes
sense. We remark that there can be many minor variants to the gluing ansatz.

Lemma 2.2. If ǫ1 ≪ 1, then ω′
y is positive definite, namely a Kähler metric, and for

−2 ≤ β < 0 satisfies

ω′2
y =

1

Ay
(1 + f ′

y)Ωy ∧ Ωy,
∥

∥f ′
y

∥

∥

Ck,α
β−2(Xy)

≤ C(k, α)|y|− 1

6
β+ 2

3 .

Here the constants are independent of y as long as |y| < ǫ1.

Remark 4. In particular |f ′
y|L∞ = O(|y| 1

12
(β+2)) ≪ 1, meaning that the nonlinear

effect is weak.

Proof. When r > 2|y|1/6, this ω′
y is just ωX |Xy

+
√

−1∂∂̄G∗
0,yψ0, which we would like

to compare to G∗
0,y(ωX |X0

+
√

−1∂∂̄ψ0). To control their difference, we examine

r2|∂∂̄G∗
0,y(ψ0 − r2 − c0) − G∗

0,y∂∂̄(ψ0 − r2 − c0)|EHy

≤ C|y|
r4

2
∑

j=1

|rj∇j(ψ0 − r2 − c0)| ≤ C|y|.

The first inequality uses the general observation that the relative error caused by

variation of complex structure is of order O( |y|
r4 ), and the second uses that |∇k(ψ −

c0 − r2)| = O(r4−k) on the orbifold X0. This can be contrasted with

r2|∂∂̄G∗
0,yr

2 − G∗
0,y∂∂̄r2|EHy

≤ C|y|
r2

,

which is the dominant error term for small r. The higher order estimates proceed in
the same fashion, and one evantually gets

∥

∥ωX |Xy
+

√
−1∂∂̄G∗

0,yψ0 − G∗
0,y(ωX |X0

+
√

−1∂∂̄ψ0)
∥

∥

Ck
−4(Xy∩{r>2|y|1/6})

≤ C|y|.

This easily implies the positive definiteness of ω′
y in this region. Morever,

∥

∥ω′2
y − G∗

0,yωSRF |2X0

∥

∥

Ck
−4(Xy∩{r>2|y|1/6})

≤ C|y|.
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But we know

ωSRF |2X0
= A−1

0 Ω0 ∧ Ω0, |A0 − Ay| ≤ C|y|,
∥

∥Ωy − G∗
0,yΩ0

∥

∥

Ck
−4(Xy∩{r>2|y|1/6})

≤ C|y|,

so we can assemble the facts to see
∥

∥ω′2
y − A−1

y Ωy ∧ Ωy

∥

∥

Ck
−4(Xy∩{r>2|y|1/6})

≤ C|y|. (8)

Now we analyse the region {|y|1/6 < r < 2|y|1/6}, where the cutoff error is
supported. The term ωX |Xy

is of order O(r2) small compared to the Eguchi–Hanson
metric EHy. To understand the deviation of ω′

y from EHy, it suffices to examine√
−1∂∂̄{γ1(

r
|y|1/6 )(G

∗
0,y(ψ0 − c0) −

√

r4 + |y|)}. We have

∥

∥

∥
r2 −

√

r4 + |y|
∥

∥

∥

Ck
−2(Xy∩U1)

≤ C|y|,
∥

∥G∗
0,yr

2 − r2
∥

∥

Ck
−2((U1∩Xy)\{r<Λ1|y|1/4})

≤ C|y|,
∥

∥G∗
0,y(ψ0 − c0 − r2)

∥

∥

Ck
−2(U1∩Xy)\{r<Λ1|y|1/4})

≤ Cr2r4 ≤ C|y|,

so
∥

∥

∥
G∗

0,y(ψ0 − c0) −
√

r4 + |y|
∥

∥

∥

Ck
−2({|y|1/6<r<2|y|1/6})

≤ C|y|. Using also
∥

∥

∥
γ1(

r
|y|1/6 )

∥

∥

∥

Ck
0 (Xy)

≤ C, we see

∥

∥

∥

∥

∂∂̄

{

γ1

(

r

|y|1/6

)

(

G∗
0,y(ψ0 − c0) −

√

r4 + |y|
)

}∥

∥

∥

∥

Ck
−4({|y|1/6<r<2|y|1/6})

≤ C|y|.

In particular, there is a pointwise estimate

|∂∂̄{γ1(
r

|y|1/6
)(G∗

0,y(ψ0 − c0) −
√

r4 + |y|)}|EHy
≤ C|y||y|−4/6 = O(|y|1/3) = O(r2).

We observe r ∼ |y|1/6 is precisely the scale where various error sources are of compa-
rable strength. We can now easily see the positive definiteness of ωy in this region.

There is yet another source of error coming from the holomorphic volume form.
Since Ω =

√
A0(1 + O(z))dz1dz2dz3 where O(z) is a holomorphic function, and Ω =

Ωy ∧ dy, we can check from the explicit volume form of the Eguchi–Hanson metric,
that

|∇k
EHy

{(
√

−1∂∂̄
√

r4 + |y|)2 − A−1
y Ωy ∧ Ωy}|EHy

= O(r2−k).

Combining these discussions,
∥

∥ω′2
y − A−1

y Ωy ∧ Ωy

∥

∥

Ck
−4(Xy∩{|y|1/6<r<2|y|1/6})

≤ C|y|. (9)

Finally, when r < |y|1/6, the error to the volume form is of order O(r2) with
good higher order estimates. These combined with (8), (9) imply the claim. ⊓⊔
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To perturb the approximate metric ω′
y into the actual CY metric ωSRF |Xy

on
Xy, we need the crucial mapping property of the Laplacian on the weighted Hölder
spaces.

Lemma 2.3 (Compare [Spo14] Proposition 3.2). If −2 < β < 0 and |y| < ǫ1, then

the Laplacian ∆ω′

y
: Ck+2,α

β (Xy) → Ck,α
β−2(Xy) restricted to the subspaces of functions

with
∫

Xy
fω′2

y = 0 is an isomorphism, and the inverse satisfies a uniform estimate
in f and y

∥

∥

∥
∆−1

ω′

y
f
∥

∥

∥

Ck+2,α
β (Xy)

≤ C(k, α, β) ‖f‖Ck,α
β−2(Xy) . (10)

Remark 5. This can be proved using the weighted Schauder estimates

‖u‖Ck+2,α
β (Xy) ≤ C ‖∆u‖Ck,α

β−2(Xy) + C
∥

∥

∥
r−βu

∥

∥

∥

L∞

and a standard blow up argument.

The implicit function theorem then implies in a standard fashion that

Proposition 2.4 (CY metrics on the smoothing of the nodal K3 fibre). Let −2 <
β < 0, and |y| < ǫ1 ≪ 1. There is a unique potential function ψ′

y with
∫

Xy
ψ′

yω
′2
y = 0,

such that

ωSRF |Xy
= ω′

y +
√

−1∂∂̄ψ′
y, (ωSRF |Xy

)2 = A−1
y Ωy ∧ Ωy,

with the uniform estimate in y,
∥

∥ψ′
y

∥

∥

Ck+2,α
β

≤ C(k, α, β)|y|− 1

6
β+ 2

3 . (11)

Remark 6. In particular |ψ′
y| ≤ C|y| 2

3
− 1

6
βrβ , so |

∫

Xy
ψ′

yω
2
X | = O(|y| 2

3
− 1

6
β). There is

a different normalisation convention for the potential,

ωSRF |Xy
= ωX +

√
−1∂∂̄ψy,

∫

Xy

ψyω
2
X = 0. (12)

The advantage of (12) is that it makes sense also for fibres outside {|y| < ǫ1}, so
is more useful for the global construction of the semi-Ricci-flat metric. We have
ψy = ψ′

y + γ1(
r

|y|1/6 )G
∗
0,y(ψ0 − c0) + γ2(

r
|y|1/6 )

√

r4 + |y| + c0 + c′
0(y), where c′

0(y) is a

constant on Xy with |c′
0(y)| ≤ C(β)|y| 2

3
− 1

6
β , for any −2 < β < 0 and |y| < ǫ1.

We take the opportunity to consider deformation of the CY metrics ωSRF |Xy

as the complex structure varies with y. When |y| ≥ ǫ1 so Xy is bounded away
from the singular fibre, then it is a standard fact that the potential ψy solving
(12) deforms smoothly with y. In particular we can take a trivialisation Gy′ for the
fibration around a given fibre Xy′ , which induce diffeomorphisms Gy′,y identifying
sufficiently nearby fibres Xy with Xy′ , and then the potentials are compared as
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|ψy −ψy′ | ≤ C|y −y′|. We would like to extend this kind of Lipschitz bound to fibres
with |y′| < ǫ1.

Given a fibre Xy′ with |y′| < ǫ1, we can take a fibration preserving trivialisation
Gy′ over the disc {y : |y − y′| ≤ ǫ2|y′|},

Gy′ : {x ∈ X : |y′ − π(x)| ≤ ǫ2|y′|} → Xy′ × {|y − y′| ≤ ǫ2|y′|} ⊂ Xy′ × C. (13)

This can be defined, for example, by flowing along the vector field obtained by the
orthogonal horizontal lift of tangent vector fields on Y , using an ambient metric
ωX . For |y − y′| ≤ ǫ2|y′|, this induces the diffeomorphisms Gy′,y from Xy to Xy′ ,
depending smoothly on y. We can demand

|Ωy − G∗
y′,yΩy′ |ωX

≤ C|y − y′|
|z|2 |Ωy|ωX

=
C|y − y′|

r4
|Ωy|ωX

,

namely the variation of complex structure causes errors of order O( |y−y′|
r4 ). The

analogue of (6) is
∥

∥G∗
y′,yΩy′ − Ωy

∥

∥

Ck
−4(Xy)

≤ C|y − y′|,
∥

∥G∗
y′,y(ωX |Xy′

) − ωX |Xy

∥

∥

Ck
−2(Xy)

≤ C|y − y′|.

We put an approximate CY metric on Xy as

ω′′
y = ωX |Xy

+
√

−1∂∂̄G∗
y′,yψy′ .

This can be compared to G∗
y′,y(ωSRF |Xy′

) = G∗
y′,y(ωX |Xy′

+
√

−1∂∂̄ψy′). To estimate

their difference, the main issue is to control the norm of G∗
y′,y(∂∂̄ψy′) − ∂∂̄G∗

y′,yψy′ .
We first examine the pointwise bound measured against ωSRF |Xy

.

r2|G∗
y′,y(∂∂̄ψy′) − ∂∂̄G∗

y′,yψy′ | ≤ C|y − y′|
r4

2
∑

j=1

|rj∇jψy′ | ≤ C|y − y′|
r2

.

The first inequality uses that the relative error caused by the variation of complex

structure is of order O( |y−y′|
r4 ), and the second inequality makes use of Proposition 2.4

and its ensuing Remark to control ψy′ . This estimate can easily be improved to higher
orders, to give

∥

∥ω′′
y − G∗

y′,y(ωSRF |Xy′
)
∥

∥

Ck
−4(Xy)

≤ C|y − y′|.

One can assemble the facts to show for −2 ≤ β < 0,
∥

∥(ω′′
y )2 − A−1

y Ωy ∧ Ωy

∥

∥

Ck,α
β−2(Xy)

≤ C|y − y′||y′|− 1

4
(β+2).

In particular the volume error is O( |y−y′|
r4 ) small in L∞ norm, which for |y − y′| ≤

ǫ2|y′| ≤ Cǫ2r
4 ≪ r4 is small in absolute norm. This signifies that nonlinear effect is

weak. Then one can use Lemma 2.3 and the implicit function theorem to solve

(ω′′
y +

√
−1∂∂̄ψ′′

y )2 = A−1
y Ωy ∧ Ωy,
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with estimate
∥

∥ψ′′
y

∥

∥

Ck+2,α
β (Xy)

≤ C(k, α, β)|y − y′||y′|− 1

4
(β+2) for −2 < β < 0. Com-

paring this with (12), and installing the suitable integral normalisation condition,
we get

Lemma 2.5. The function ψy defined by (12) satisfies the Lipschitz type estimate:
for −2 < β < 0,

∥

∥G∗
y′,yψy′ − ψy

∥

∥

Ck+2,α
β (Xy)

≤ C(k, α, β)|y − y′||y′|− 1

4
(β+2)

uniformly for |y′| < ǫ1, |y − y′| ≤ ǫ2|y′|.

Remark 7. As mentioned before, for |y′| ≥ ǫ1, |y − y′| ≤ ǫ2|y′|, we have the easier
analogue: for −2 < β < 0,

∥

∥G∗
y′,yψy′ − ψy

∥

∥

Ck+2,α(Xy)
≤ C(k, α, β)|y − y′|.

Here we can use the usual Hölder norm, and it is understood that y, y′ ∈ Y do not
come close to other critical values in S. When y, y′ go beyond the coordinate neigh-
bourhood, then |y − y′| is replaced by the qualitatively similar expression dωY

(y, y′).

Remark 8. Comparing Proposition 2.4 and Lemma 2.5, if we consider |y−y′| ∼ t1/2,

then ψ′
y and G∗

y′,yψy′ − ψy have comparable norm estimates when |y| ∼ t
6

14+β .

2.3 Geometry of the model metric ωC3. We give a quick review of the
model CY metric ωC3 on C3, based on [Li17, Szé17]. Let C3 be equipped with the
standard coordinates z1, z2, z3 and a Hermitian structure | · |. Define the functions

⎧

⎪

⎪

⎨

⎪

⎪

⎩

R = (|z1|2 + |z2|2 + |z3|2)1/4,

ỹ = z2
1 + z2

2 + z2
3 ,

ρ =
√

|ỹ|2 +
√

R4 + 1.

Here ỹ gives the structure of the standard Lefschetz fibration on C3 over Cỹ. Then
there exists a CY metric ωC3 =

√
−1∂∂̄φC3 on C3, with volume normalisation

ω3
C3 =

3

2

3
∏

i=1

√
−1dzi ∧ dz̄i,

and the leading order asymptote at infinity is given by

φ∞ =
1

2
|ỹ|2 +

√

R4 + ρ, φC3 = φ∞ + φ′
C3 . (14)

Outside {|z| < 1} the function ρ is uniformly equivalent to the ωC3-distance to the
origin. The distance to the vanishing cycles {R4 = |ỹ|} is controlled by the function
R away from a large compact set, and the sizes of the vanishing cycles grow as
O(|ỹ|1/4).
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One can understand the asymptotic metric
√

−1∂∂̄φ∞ as follows. The term 1
2 |ỹ|2

pulls back the potential of the Euclidean metric on Cỹ. This contribution is the
dominant term for the horizontal component of the metric. When restricted to the
fibres of the Lefschetz fibration, there is the term

√

R4 + ρ. This is an approximation
to the potential of the Eguchi–Hanson metric on the fibre, which is

√

R4 + |ỹ|. Thus√
−1∂∂̄φ∞ can be viewed as a regularised version of a semi-Ricci-flat metric.

The metric ωC3 exhibits 3 different characteristic behaviours. It is a complete
Ricci flat metric with singular tangent cone at infinity C2/Z2 × C. The singular line
{0} × C of the tangent cone corresponds roughly to the vicinity of the vanishing
cycles. However, if we place a sequence of points on the vanishing cycles, scale down
ωC3 by a factor of |ỹ|1/4, and let ỹ move to infinity, then the pointed Gromov-
Hausdorff limit is EH1 × C, where EH1 is the standard Eguchi–Hanson metric. On
the other hand, inside the ball {|z| < 1} the metric ωC3 is uniformly equivalent to
the Euclidean metric

√
−1

∑

dzi ∧ dz̄i.

We now follow [Szé17] to define the double weighted Hölder space Ck,α
δ,τ (C3, ωC3)

taylored to this mixture of behaviours. Let κ be a fixed small positive number, and
K be a fixed large number. We define a weight function w by

w =

⎧

⎪

⎨

⎪

⎩

1 if R ≥ κρ,
R
κρ if R ∈ (κ−1ρ1/4, κρ),

κ−2ρ−3/4 if R ≤ κ−1ρ1/4.

The Hölder seminorm of a tensor T is given by

[T ]0,α = sup
ρ(z)>K

ρ(z)αw(z)α sup
z �=z′,z′∈B(z,cR(z))

|T (z) − T (z′)|
d(z, z′)α

.

Here c > 0 is such that the metric balls B(z, cR(z)) have bounded geometry and
are geodesically convex, so we can compare T (z) with T (z′) using parallel transport
along a geodesic. The weighted norm of a function f is then defined by

‖f‖Ck,α
δ,τ

= ‖f‖Ck,α(ρ<2K) +

k
∑

j=0

sup
ρ(z)>K

ρ−δ+jw−τ+j |∇jf | + [ρ−δ+kw−τ+k∇kf ]0,α.

Then the deviation φ′
C3 of φC3 from its asymptotic expression φ∞ is (cf. Proposition

6.9 [Li17] for a more refined version, which extracts the leading term in φ′
C3)

∥

∥φ′
C3

∥

∥

Ck,α
δ,0

≤ C(k, α, δ), ∀δ > −1. (15)

Remark 9. It is an essential prerequisite for our main gluing construction that the
model metric ωC3 is unique in its asymptotic class; more precisely, if φ′

C3,1 and φ′
C3,2

both satisfy the bound (15) for some δ < 0, and φC3,i = φ∞ + φ′
C3,i for i = 1, 2
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both have the same Calabi–Yau volume form, then φC3,1 = φC3,2. To see this, set
u = φ′

C3,1 − φ′
C3,2, then standard integration by part argument shows

∫

C3

|∇|u|p|2ω3
C3 = 0, p ≫ 1.

Here we crucially need the decay property of u at infinity to drop boundary terms.
It remains an interesting question what is the most general class of potentials for
which one can prove uniqueness.

We next describe (heuristically) how this model metric on C3 fits into X. From
Section 2.4, we see that in U1 ∩{|y| < ǫ1}, the Calabi–Yau metrics on fibres ωSRF |Xy

are approximately the Eguchi–Hanson metrics. From Section 2.1 the generalised KE
metric is ω̃Y = Ay

√
−1dy ∧dȳ. Thus the semi-Ricci-flat metric is approximately (cf.

(2))

ωSRF ∼
√

−1∂∂̄
√

r4 + |y| +
1

t
ω̃Y ∼

√
−1∂∂̄

(

√

r4 + |y| +
1

t
A0|y|2

)

.

Remark 10. This expression is discontinuous for y = 0, namely on the nodal fibre,
due to the non-differentiability of |y| with respect to y. We shall deal with this
problem later in Section 2.5 by regularisation of the metric.

Now we perform the coordinate change

zi =

(

t

2A0

)1/3

zi, r =

(

t

2A0

)1/6

R, y =

(

t

2A0

)2/3

ỹ, (16)

so that

√

r4 + |y| +
1

t
A0|y|2 =

(

t

2A0

)1/3 {

√

R4 + |ỹ| +
1

2
|ỹ|2

}

∼
(

t

2A0

)1/3

φ∞,

where in the last step we are viewing φ∞ as a regularised version of the non-smooth
expression

√

R4 + |ỹ|+ 1
2 |ỹ|2. We see that when we simultaneously scale the coordi-

nates and the metric, then the leading asymptote of φC3 in some sense matches up
with the local behaviour of the semi-Ricci-flat metric.

More formally, we can view (16) as defining an explicit embedding map of a large
open Euclidean ball {|z| � t−1/3} ⊂ C3 complex isomorphically onto U1 ∩ {|y| <
ǫ1} ⊂ X:

Ft : F−1
t (U1 ∩ {|y| < ǫ1}) ⊂ C

3 → U1 ∩ {|y| < ǫ1} ⊂ X. (17)

The expected behaviour is that the scaled model metric ( t
2A0

)1/3ωC3 describes the
Calabi–Yau metric ω̃t on U1∩{|y| < ǫ1} up to small error. Notice due to the prescrip-
tions on scaling behaviours, the Euclidean ball {|z| < 1} ⊂ C3 would correspond to
a region in X of length scale ∼ t1/6, which is the ‘quantisation scale’ we referred to
in the introduction.
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2.4 Weighted Hölder spaces on X. In Section 2.5 we shall construct an
approximate CY metric ωt on X, and estimate the error of its volume form. Since
the actual construction is rather complicated, it is helpful to keep in mind the
following rather crude picture:

• In the region U1 ∩ {|y| < ǫ1} ≃ F−1
t (U1 ∩ {|y| < ǫ1}), the metric ωt is approxi-

mately ( t
2A0

)1/3ωC3 .
• For |y| < ǫ1, but staying suitably away from the vanishing cycles in the Xy

fibres, the region can be identified via the diffeomorphism G0 with a subset of
the product space X0 ×{|y| < ǫ1} (cf. (5)), and the metric ωt is approximately
the product metric ωSRF |X0

+ A0

t

√
−1dy ∧ dȳ.

• For |y| > 1
2ǫ1, the metric ωt is essentially the semi-Ricci-flat metric ωSRF .

Since we are staying away from singular fibres ωSRF is uniformly equivalent to
ωX + 1

t ω̃Y .

We comment that on the overlap of the first two regions the common behaviour
is described by ( t

2A0
)1/3

√
−1∂∂̄φ∞. Similarly, there is some transition behaviour

between the first two regions and the third region.
The purpose of this section is to introduce the weighted Hölder spaces on X,

adapted to these local geometries.
We first set up the weighted Hölder spaces Ck,α

δ,τ (X0 × C) on X0 × C equipped

with the product metric ωSRF |X0
+ 1

t A0

√
−1dy ∧ dȳ. It is convenient to substitute

the variable ζ = ( t
2A0

)−1/2y, so the metric becomes ωSRF |X0
+ 1

2

√
−1dζ ∧ dζ̄. Recall

on X0 we have a function r, uniformly equivalent to the distance to the node. Now
place the origin at ζ = 0 on the nodal line of X0 × C. Define ρ′ =

√

r2 + |ζ|2, and

w′ =

{

1 if r > κρ′,
r

κρ′
if r ≤ κρ′.

We define the weighted Hölder norm on X0 × C by

‖f‖Ck,α
δ,τ (X0×C) =

k
∑

j=0

sup ρ′−δ+jw′−τ+j |∇jf | + [ρ′−δ+kw′−τ+k∇kf ]0,α, (18)

where for any tensor T ,

[T ]0,α = sup
d(x,x′)≪r(x)

ρ′(x)αw′(x)α |T (x) − T (x′)|
d(x, x′)α

.

These weighted norms are adapted to viewing X0 × C as having a local conical
singularity at the origin with singular link, and are designed to resemble the weighted
Hölder spaces for (C3, ωC3).

Define the set U2 = {|y| < ǫ1, r > Λ1|y|1/4, r > t1/6} ⊂ X, which can be identified
via the diffeomorphism G0 with an open subset G0(U2) ⊂ X0 × C. This allows one
to compute the weighted Hölder norm on U2 ≃ G0(U2). Similarly one can compute
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the weighted Hölder norm on U1 by viewing it as F−1
t (U1) ⊂ C3, using the metric

ωC3 . Let U3 = {x ∈ X : |y| > ǫ1
2 } ⊂ X be the subset of X staying away from all

singular fibres. On U3 it makes sense to compute the usual Ck,α norm using the
metric ωX + 1

t ωY .

Now we can define the weighted Hölder spaces Ck,α
δ,τ,t(X). The weighted norm is

‖f‖Ck,α
δ,τ,t(X) = t−

δ

6 ‖f‖Ck,α
δ,τ (U1,ωC3 ) + ‖f‖Ck,α

δ,τ (U2)
+ t

1

2
(δ−τ) ‖f‖Ck,α(U3)

. (19)

Similarly, one can define the Ck
δ,τ,t norm, namely by setting α to zero. The definitions

also extend to tensors, with a subtle twist to the powers of t to maintain compatibility
with differentiation. For instance, for a 2-form θ

‖θ‖Ck,α
δ−2,τ−2,t(X) = t−

δ

6 ‖θ‖Ck,α
δ−2,τ−2(U1,ωC3 ) + ‖θ‖Ck,α

δ−2,τ−2(U2)
+ t

1

2
(δ−τ) ‖θ‖Ck,α(U3)

.

To see (19) is a reasonable definition, we can check that on the mutual overlap
of U1, U2 and U3, the different definition of norms are equivalent up to a bounded
factor independent of t. On U1∩U2, the metric t1/3ωC3 ∼ t1/3

√
−1∂∂̄φ∞ is uniformly

equivalent to the metric G∗
0(ωSRF |X0

+ 1
t A0

√
−1dy ∧ dȳ). The weight functions are

related on U1 ∩ U2, up to bounded factors, by

ρ′ ∼ t1/6ρ, r ∼ t1/6R, w′ ∼ w.

This is enough to conclude the equivalence of t−δ/6 ‖·‖C1
δ,τ (U1,ωC3 ) with ‖·‖C1

δ,τ (U2)

on U1 ∩ U2. The higher order equivalence is similar. On U2 ∩ U3, the weight factor
ρ′δw′τ ∼ ρ′δ−τ ∼ t(τ−δ)/2 while the ambient metrics are uniformly equivalent, so
‖·‖C1(U3)

and ‖·‖C1
δ,τ (U2)

t(τ−δ)/2 are uniformly equivalent on U2 ∩ U3. Likewise with

U1 ∩ U3.

Remark 11. If we focus on a normal neighbourhood region close to a given fibre
Xy′ with |y′| � t1/2 (so that ρ is predominantly |ỹ|), we can take a nice trivialisation
around Xy′ , use the product metric ωSRF |Xy′

+ 1
t Ay′

√
−1dy ∧ dȳ on Xy′ × C to

measure the magnitudes of higher derivatives, and then turn on suitable weights
ρ′δw′τ ∼ ρ′δ−τrτ ∼ (t−1/2|y|)δ−τrτ . This would give an equivalent definition of the
weighted Hölder norm in this region up to a bounded factor independent of t.

2.5 Regularising the semi-Ricci-flat metric. The aim of this section is to
produce an approximate CY metric ωt on X. The heuristic idea, as explained in
section 2.3, is to glue a scaled copy of ωC3 to the semi-Ricci-flat metric ωSRF . This is
complicated by the need to regularise ωSRF , pointed out in Remark 10. The rough
idea of this regularisation is to replace ωSRF by local product metrics when we are
far from the vanishing cycles, and utilise the construction of the model metric on
C3 when we are close to the vanishing cycles.

To save writing, we will pretend there is only one nodal fibre for π, although
the presence of many nodal fibres causes no extra difficulty. We define a partition of

unity {χi}N
i=0 on the base Y , such that χ0 = 1 on {|y| ≤ t

6

14+τ } and the support of χ0
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is contained in {|y| ≤ 2t
6

14+τ }. For 1 ≤ i ≤ N , the supports of χi are contained in the

complement of {|y| ≤ t
6

14+τ } for some fixed number −2 < τ < 0, each having length
scale t1/2 in the ωY metric, containing a point yi which we think of as the centre of
that support. We can demand that 0 ≤ χi ≤ 1, and all these χi have uniform Ck

bounds with respect to the metric 1
t ωY for any given positive integer k. Morever, at

each point in Y the number of non-vanishing χi is bounded independent of t, even
though N ∼ O(1

t ).

We can now write down the metric ansatz ωt as

ωt =ωX +
1

t
ω̃Y

+
√

−1∂∂̄

{

N
∑

i=1

χiG
∗
yi

ψyi
+ χ0

(

c0 + γ1

(

r

t1/10 + t
1

12 ρ′1/6

)

G∗
0(ψ0 − c0)

+γ2

(

r

t1/10 + t
1

12 ρ′1/6

)(

t

2A0

)1/3
(

φ′
C3 +

√

R4 + ρ
)

)}

.

(20)

Remark 12. We explain the meaning of this construction, in the order of decreasing
length scales, before carrying out the error estimates. The fact that ωt is indeed a
Kähler metric, namely it is positive definite, will be clear in the course of these
estimates. As a caveat ωt is not smooth, due to the non-smoothness of ω̃Y (cf.
Section 2.1).

• When |y| ≥ 2t
6

14+τ , including in particular |y| ≥ ǫ1, we are far from the singular
fibre, and the construction is ωt = ωX + 1

t ω̃Y +
√

−1∂∂̄
∑N

i=1 χiG
∗
yi

ψyi
. We

recall from (12) that ψyi
is the potential of the Calabi–Yau metric on Xyi

,
which we can graft to its nearby fibres using the diffeomorphism Gyi

(here Gyi

is well defined over the support of χi, and only a small number of χi actually
contribute around a given fibre Xy). The resulting ωt is very close to the semi-

Ricci-flat metric. Remark 8 explains the special choice of power t
6

14+τ .

• When t
6

14+τ ≤ |y| ≤ 2t
6

14+τ , the metric ωt starts to receive contribution from
the nodal fibre X0 (here the diffeomorphism G0 is well defined on the support
of the cutoff functions and is used to graft the potential on X0 to Xy), but the
fluctuation effect of ωC3 is not yet significant. The expression inside χ0 plays
the same role as the potential of the approximate metric ωy on Xy as in (7).

• When |y| < t
6

14+τ but r > (t1/10 + t1/12ρ′1/6), the metric ωt is essentially

ωt ∼ ωX +
1

t
ω̃Y +

√
−1∂∂̄G∗

0ψ0,

which is approximately the product metric on U2 ⊂ X0×C. We now summarize
the basic numerical properties of the cutoff scales. For |y| � t3/5, namely |ỹ| �

t−1/15, the term t1/12ρ′1/6 ≥ |y|1/6 dominates the term t1/10, so the cutoff scale
of γ1(

r
t1/10+t1/12ρ′1/6 ) is comparable to the cutoff scale of γ1(

r
|y|1/6 ) in agreement
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with the gluing scale for ωy in (7), explaining our choices of exponents in
the cutoff functions. For |y| < t3/5, the cutoff scale of γ1(

r
t1/10+t1/12ρ′1/6 ) is

comparable to the cutoff scale of γ1(
r

t1/10 ), deviating from the gluing scale of ωy.

The transition between these two behaviours happens at |y| ∼ t3/5, for which
the cutoff scale is r ∼ t1/10, ρ′ ∼ t1/10, and in terms of the coordinates on C3

this means ρ ∼ R ∼ t−1/15. The fact that ρ is comparable to R indicates that
the effect of regularisation on the semi-Ricci-flat metric becomes appreciable.

• When |y| < t
6

14+τ , and r < t1/10 + t1/12ρ′1/6, the metric is

ωt = ωX +
1

t
ω̃Y +

√
−1∂∂̄

(

t

2A0

)1/3
(

φ′
C3 +

√

R4 + ρ
)

.

We remark that this region is contained in U1, so we can freely use the coordi-
nates on F−1

t (U1) ⊂ C3. If we replace 1
t ω̃Y by its leading term

1

t
A0

√
−1dy ∧ dȳ =

(

t

2A0

)1/3 √
−1

2
dỹ ∧ d¯̃y =

(

t

2A0

)1/3 √
−1∂∂̄

(

1

2
|ỹ|2

)

,

then we can recognise that

ωt ∼ ωX +

(

t

2A0

)

1/3 √
−1∂∂̄

{

√

R4 + ρ +
1

2
|ỹ|2 + φ

′

C3

}

= ωX +

(

t

2A0

)

1/3

ωC3 .

But ωX is in fact far smaller than ( t
2A0

)1/3ωC3 , so we are left with ωt ∼
( t
2A0

)1/3ωC3 . As explained in Section 2.3, this region contains the subset

{r � t1/6, R � 1, |ỹ| � 1, |y| � t2/3} at the ‘quantisation scale’, where the
semi-Ricci-flat approximation breaks down completely.

We now turn to the error estimates, and start with the regions where the semi-
Ricci-flat behaviour is dominant. We first calculate how much the metric ωt restricted
in the fibre direction deviates from the Calabi–Yau metric on the fibres. This is
a familiar problem given the work in Section 2.4, so we will only indicate main
modifications.

Lemma 2.6. Fix −2 < τ < 0. When |y| ≥ t
6

14+τ , the deviation of ωt|Xy
from the CY

metric ωSRF |Xy
is estimated by

∥

∥ωt|Xy
− ωSRF |Xy

∥

∥

Ck,α
τ−2(Xy)

≤ C(k, α, τ)t1/2|y|− 1

4
(τ+2). (21)

When |y| < t
6

14+τ , but r � t1/10 + t1/12ρ′1/6, the deviation of ωt|Xy
from

G∗
0,y(ωSRF |X0

) is estimated by

∥

∥ωt|Xy
− G∗

0,y(ωSRF |X0
)
∥

∥

Ck,α
−4 (Xy∩{r�t1/10+t1/12ρ′1/6})

≤ C(k, α, ǫ, τ) max (|y|, t3/5−ǫ)

(22)

where ǫ > 0 can be made arbitrarily small.
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Proof. When |y| ≥ 2t
6

14+τ , since the support of χi has ωY -length scale ∼ t1/2, we
use Lemma 2.5 and the ensuing Remark to see that

∥

∥ψy − G∗
yi,yψyi

∥

∥

Ck+2,α
τ (Xy)

≤
Ct1/2|y|− 1

4
(τ+2) whenever χi �= 0 at y. Since at any y the number of non-vanishing

χi is bounded independent of t, these errors cannot accumulate, so adding up χi(ψy−
G∗

yi,yψyi
) and applying

√
−1∂∂̄ in the fibre direction, we see (21).

When |y| ∼ t
6

14+τ , we can make a few simplifications to (20) with negligible effects.
The cutoff function γ1(

r
t1/10+t1/12ρ′1/6 ) is practically replaceable by γ1(

r
|y|1/6 ), and

likewise with γ2. We can also replace
√

R4 + ρ with
√

R4 + |ỹ|, and use the estimate
(15) to drop the φ′

C3 term in (20). Then the potential term in (20) proportional to
χ0 is reduced to

c0 + γ1

(

r

|y|1/6

)

G∗
0,y(ψ0 − c0) + γ2

(

r

|y|1/6

)

√

r4 + |y|,

which by Proposition 2.4 and its ensuing Remark, deviates from ψy by ψ′
y + c′

0(y),
with estimate

∥

∥ψ′
y + c′

0(y)
∥

∥

Ck,α
τ (Xy)

≤ C|y|− 1

6
τ+ 2

3 ∼ Ct1/2|y|− 1

4
(τ+2).

This contribution is comparable in strength to
∥

∥ψy − G∗
yi,yψyi

∥

∥

Ck+2,α
τ (Xy)

, so we have

(21) as in the previous case.

When |y| < t
6

14+τ , but r > 2(t1/10 + t1/12ρ′1/6), we have ωt = ωX + 1
t ω̃Y +√

−1∂∂̄G∗
0ψ0. Restricted to the fibres, this situation is identical with what we saw

in Lemma 2.2, and
∥

∥ωt|Xy
− G∗

0,y(ωSRF |X0
)
∥

∥

Ck,α
−4 (Xy∩{r>2(t1/10+t1/12ρ′1/6)})

≤ C|y|.

When |y| < t
6

14+τ , and r ∼ t1/10 + t1/12ρ′1/6, we have contributions from the
cutoff region. As mentioned in Remark 12 there are two subcases. When |y| � t3/5,
the cutoff function γ1(

r
t1/10+t1/12ρ′1/6 ) can be practically replaced by γ1(

r
|y|1/6 ), and

likewise with γ2. We are in a situation similar to Lemma 2.2, and the main correction
term is t1/3φ′

C3 , which by (15) is of order O(t1/3ρ−1+ǫ). (In fact there is another

error term caused by the deviation of t1/3
√

R4 + ρ from t1/3
√

R4 + |ỹ|, which has
to do with regularisation. This error is of order O(t1/3ρ−1), which is a little less
significant than t1/3φ′

C3 .) The correction effect of t1/3φ′
C3 to the metric is of order

O(t1/3ρ−1+ǫr−2). The relative strength of this new error source compared to the
error already present in the previous case, is or order

O

(

t1/3ρ−1+ǫr−2

|y|r−4

)

= O

(

t
1

2
− 1

6
ǫr2

ρ′1−ǫ|y|

)

= O

(

t
1

2
− 1

6
ǫ

ρ′1−ǫ|y|2/3

)

= O

(

t1− 2

3
ǫ

|y|5/3−ǫ

)

.

When we come near |y| ∼ t3/5, this new error source t1/3φ′
C3 overwhelms by a relative

factor O(t−
1

15
ǫ) = O(t−ǫ), while for |y| ≫ t3/5, this new error is not significant. Thus
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in this new region {t3/5 � |y| < t
6

14+τ , r ∼ t1/10 + t1/12ρ′1/6}, the previous estimate
is changed to

∥

∥ωt|Xy
− G∗

0,y(ωSRF |X0
)
∥

∥

Ck,α
−4 (Xy∩{r∼t1/12ρ′1/6})

≤ C max (|y|, t3/5−ǫ).

On the other hand, if |y| < t3/5, then γ1(
r

t1/10+t1/12ρ′1/6 ) can be practically replaced

by γ1(
r

t1/10 ), and likewise with γ2. The main errors are caused by the variation of
complex structures, the deviation of the nodal K3 metric from the flat orbifold metric
on C2/Z2, and the presence of t1/3φ′

C3 . Since we are working at the scale r ∼ t1/10,
the various sources of error for the potential are of order

O

( |y|
r2

)

= O
(

t2/5
)

, O
(

r4
)

= O
(

t2/5
)

, O
(

t1/3ρ−1+ǫ
)

= O
(

t
2

5
−ǫ

)

.

The error for the metric comes at order O( t
2
5

−ǫ

r2 ) = O(t1/5−ǫ). The higher order

derivative estimate involves no extra difficulty. From this we see that when |y| < t3/5

and r ∼ t1/10,

∥

∥ωt|Xy
− G∗

0,y(ωSRF |X0
)
∥

∥

Ck,α
−4 (Xy∩{r∼t1/10})

≤ Ct
3

5
−ǫ.

A more uniform way to present these estimate is that for |y| < t
6

14+τ , and r �

t1/10 + t1/12ρ′1/6, there is the estimate (22) where the exponent ǫ > 0 can be made
arbitrarily small. ⊓⊔

Staying still in this region, we wish to estimate how much the volume form of ωt

fails to be Calabi–Yau. The defining condition of the Calabi–Yau metric ω̃t is

ω̃3
t = at

√
−1Ω ∧ Ω, at =

∫

X

(

1

t
[ωY ] + [ωX ]

)3

=
3

t
+

∫

X
ω3

X ,

where we used the normalisation
∫ √

−1Ω∧Ω = 1,
∫

Y [ωY ] = 1,
∫

Xy
ω2

X = 1. Writing

ω3
t = at(1 + ft)

√
−1Ω ∧ Ω, (23)

the task is to estimate the error ft in the weighted Hölder norm introduced in
Section 2.4.

Lemma 2.7. Let −2 < τ < 0 and δ > 3
4τ − 1

2 , δ < 2
3 + 5τ

6 , then in the region

{|y| � t
6

14+τ } and the region {|y| < t
6

14+τ , r � t1/10 + t1/12ρ′1/6}, we have the volume
error estimate

‖ft‖C0,α
δ−2,τ−2,t

≤ C(α, δ, τ)tδ
′

,

where we denote δ′ = −1
2τ + 1

2δ + 6
14+τ (2

3 + 5τ
6 − δ).
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Proof. The dominant term of ω3
t is 3

t ωSRF |2Xy
ω̃Y = 3

t

√
−1Ω ∧ Ω. The deviation

comes from two sources: the fibrewise deviation of ω2
t |Xy

from ω2
SRF |Xy

, and also
(ωt − 1

t ω̃Y )3, which involves understanding the horizontal component of ωt − 1
t ω̃Y

and can be thought as fluctuation of the generalised KE metric ω̃Y .

Consider first the region with |y| ≥ 2t
6

14+τ . Fibrewise deviation from Calabi–Yau

metric causes an error f ′
t =

ωt|2Xy
∧ω̃Y√

−1Ω∧Ω
− 1 =

ωt|2Xy

ωSRF |2Xy

− 1, whose pointwise magnitude

is controlled by

|f ′
t | ≤ C

∥

∥ωt|Xy
− ωSRF |Xy

∥

∥

C0
τ−2(Xy)

rτ−2 ≤ Ct1/2|y|− 1

4
(τ+2)rτ−2

≤ Ct1/2(t1/2ρ′)− 1

4
(τ+2)ρ′τ−δrτ−2ρ′δ−τ

≤ Ct
6

14+τ
( 3

4
τ−δ− 1

2
)t

1

2
(1+δ−τ)rτ−2ρ′δ−τ

≤ Ct
6

14+τ
( 3

4
τ−δ− 1

2
)+ 1

2
(1+δ−τ)w′τ−2ρ′δ−2 = Ctδ

′

w′τ−2ρ′δ−2,

where we used (21) and δ > 3
4τ − 1

2 . This is the first step towards estimating f ′
t

in the C0,α
δ−2,τ−2,t(X ∩ {|y| > 2t

6

14+τ }) norm in this region. Estimating the vertical

derviatives of f ′
t poses no further difficulty.

We now make some general comments about horizontal differentiation. Near a
given fibre Xy′ , there is a trivialisation around a small normal neighbourhood, for
example induced by the diffeomorphism Gyi

where |yi −y′| ≤ ǫ2|y′|. This will induce
some horizontal distribution, which allows us to lift the vector fields on the base Y
to X. In the coordinate neighourhood U1 with coordinates z1, z2, z3, a particular lift
of ∂

∂y is given by
∑

z̄i

2|z|2
∂

∂zi
, which is orthogonal to the fibres with respect to the

standard Euclidean metric in these coordinates. Now if the trivialisation is chosen
well, its induced horizontal lift of ∂

∂y will differ from
∑

z̄i

2|z|2
∂

∂zi
by some vertical vector

field whose ωX -magnitude is O( 1
|z|) = O(r−2), or equivalently its magnitude with

respect to the Eguchi–Hanson metric EHy is O(r−3). This measures the deviation
between horizontal lifts for any two different good choices of trivialisations, such as
Gyi

and Gyj
where |yi − yj | ≤ ǫ2|yi|.

In particular, given a function f ∈ C1,α
τ (Xyi

) on a very nearby fibre Xyi
, then

G∗
yi

f defines a function near Xy′ . To estimate the magnitude of its gradient in the
horizontal direction, we can fix a good auxiliary trivialisation around Xy′ , equip the
normal neighbourhood with an ambient metric comparable to the product metric
ωSRF |Xy′

+ 1
t

√
−1Ay′dy ∧ dȳ, find the horizontal lift v of

√
t ∂
∂y under the good

trivialisation, make v act on G∗
yi

f , and then compute the maginitude of the derivative
(cf. Remark 11). (The normalisation on v is to make sure it is roughly of unit length
in our ambient metric.) But Gyi

also provides a good trivialisation, hence another
lift v′ of

√
t ∂
∂y , with |v − v′|EHy

= O(t1/2r−3). Tautologically v′(G∗
yi

f) = 0, so

|v(G∗
yi

f)| = |(v − v′)(G∗
yi

f)| ≤ Ct1/2r−3|∇Xyi
f |EHyi

≤ Ct1/2r−3rτ−1 ‖f‖C1,α
τ (Xyi

) .
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We may think of v(G∗
yi

f) suggestively as the horizontal derivative of G∗
yi

f , and write

it schematically as
√

t
∂G∗

yi
f

∂y . Similarly we make sense of
√

t
∂G∗

yi
f

∂ȳ . Continuing in a
similar fashion, if we differentiate G∗

yi
f by k times and measure it using the ambient

metric, then as long as our choices of trivialisations are well behaved (meaning v−v′

have good higher order weighted Hölder estimates), we will get

tk/2|
∂kG∗

yi
f

∂jy∂k−j ȳ
| ≤ Ctk/2r−3krτ−k ‖f‖Ck,α

τ (Xyi
) .

The main effect of horizontal differentiation along a unit vector, compared to vertical
differentiation, is that it brings about an extra factor of O(t1/2r−3) for each deriva-
tive. This principle also works for tensors. The underlying reason for this principle
to work is an approximate homogeneity under z → λz, which reduces the problem
to the case where r ∼ 1, |y′| ≪ 1.

As a special observation, as long as r ≫ t1/6, horizontal differentiation is sup-
pressed by vertical differentiation. Using these principles, we see in particular that

∥

∥f ′
t

∥

∥

C0,α
δ−2,τ−2,t(X∩{|y|>2t

6
14+τ })

≤ Ctδ
′

.

But the metric ω̃Y is only Lipschitz, so the best improvement is the C1
δ−2,τ−2,t bound.

Staying in the region {|y| > 2t
6

14+τ }, we also need to estimate the error f ′′
t =

(ωt−t−1ω̃Y )3

3t−1
√

−1Ω∧Ω
. Since ωt is approximately ωSRF |Xy

on the fibre, the size of (ωt−t−1ω̃Y )3

depends on knowing the horizontal part of ωt − t−1ω̃Y (the horizontal-vertical mixed
terms also play a role, whose contributions can be treated similarly). This in turn
requires understanding the horizontal second derivative of G∗

yi
ψyi

, and the horizontal

component of
√

−1∂∂̄{χi(G
∗
yi

ψyi
−G∗

yj
ψyj

)} when the support of χi and χj overlap.

The former is estimated by Ct
r6 using Lemma 2.2 and the above principles concerning

horizontal differentiation. Notice in our region this error is insignificant compared
to f ′

t:

Ct

r6
≪ Ct1/2|y|−1

4
(τ+2)rτ−2.

The new feature of the latter term
√

−1∂∂̄{χi(G
∗
yi

ψyi
− G∗

yj
ψyj

)} comes from differ-
entiating χi, which by Lemma 2.5 can be controlled. For instance,

|(G∗
yi

ψyi
− G∗

yj
ψyj

)
√

−1∂∂̄χi| ≤ C|G∗
yi

ψyi
− G∗

yj
ψyj

| ≤ Ct1/2|y|− 1

4
(τ+2)rτ ,

which is again dominated by Ct1/2|y|− 1

4
(τ+2)rτ−2; the same happens for all terms

involving differentiating χi. At each given point only a bounded number of yi con-
tribute, so the errors do not accumulate, and the horizontal part of ωt − 1

t ω̃Y is

dominated by Ct1/2|y|− 1

4
(τ+2)rτ−2, whence the same holds for |f ′′

t |. All these indi-
cate that f ′′

t is less significant compared to f ′
t. Proceeding further,

∥

∥f ′′
t

∥

∥

C0,α
δ−2,τ−2,t(X∩{|y|>2t

6
14+τ })

≤ Ctδ
′

.
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The total error ft can be expressed as

ft = −1 +
3

tat
(1 + f ′

t + f ′′
t ).

Here the normalising constant is 3
tat

= 1+O(t), so combining the above discussions,

in the region {|y| > 2t
6

14+τ },

‖ft‖
C0,α

δ−2,τ−2,t(X∩{|y|>2t
6

14+τ })
≤ Ctδ

′

.

In the region {|y| ∼ t
6

14+τ }, there are new contributions from the terms in (20)
inside χ0. The arguments are very similar once we have (21). The main new features
to observe is that φ′

C3 is negligible using (15), and that the cutoff functions γ1 and

γ2 have Ck,α
0,0,t estimates, so multiplication by such cutoff functions only increases

Ck,α
δ−2,τ−2,t norms by a bounded factor. The result is

‖ft‖
C0,α

δ−2,τ−2,t(X∩{|y|∼t
6

14+τ })
≤ Ctδ

′

.

Next, we focus on the region with |y| < t
6

14+τ , but r � (t1/10 + t1/12ρ′1/6). As
before we start with the contribution f ′

t measuring the failure of fibrewise Calabi–Yau
condition, making use of (22) and the fact that the fibrewise holomorphic volume
form Ωy is close to Ω0. In the subcase of |y| > t3/5, since −2 < τ < 0, δ < 2

3 + 5τ
6 ,

0 < ǫ ≪ 1 and r � |y|1/6,

|f ′
t| ≤ C max (t3/5−ǫ, |y|)r−4 ≤ C(max (t3/5−ǫ, |y|)ρ′τ−δr−2−τ )ρ′δ−2w′τ−2

≤ Ct−
1

2
(τ−δ)(max (t3/5−ǫ, |y|)|y|τ−δ|y| 1

6
(−2−τ))ρ′δ−2w′τ−2

≤ Ct−
1

2
τ+ 1

2
δt

6

14+τ
(2/3+5τ/6−δ)ρ′δ−2w′τ−2

= Ctδ
′

ρ′δ−2w′τ−2.

On the other hand, when r > 2(t1/10 + t1/12ρ′1/6), the fluctuation error f ′′
t is

|f ′′
t | ≤ C

t

r6
≪ |y|r−4,

so is insignificant compared to f ′
t. At the cutoff scale, there is an extra term coming

from t1/3φ′
C3 , which gives a contribution to f ′′

t of order O(t1/3ρ−1+ǫr−2), which is
again dominated by C max (t3/5−ǫ, |y|)r−4. Proceeding further,

‖ft‖
C0,α

δ−2,τ−2,t({t3/5�|y|<t
6

14+τ ,r�t1/10+t1/12ρ′1/6})
≤ Ctδ

′

.

In the region {|y| < t3/5, r � t1/10}, the error due to failure of fibrewise Calabi–
Yau condition can be estimated by (22)

|f ′
t| ≤ Ct3/5−ǫr−4 ≤ Ct2/5−δ/10−ǫρ′δ−2w′τ−2,
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and the fluctuation error is

|f ′′
t | ≤

{

C t
r6 ≪ Ct3/5r−4, r > 2(t1/10 + t1/12ρ′1/6),

Ct1/3ρ−1+ǫr−2 ≤ Ct3/5−ǫr−4, r ∼ t1/10,

so |f ′
t| is the dominant error. Proceeding as usual,

‖ft‖C0,α
δ−2,τ−2,t({|y|<t3/5,r�t1/10}) ≤ Ct2/5−δ/10−ǫ ≪ tδ

′

.

Combining all the discussions above gives the claim. ⊓⊔

We now turn our attention to the region {|y| < t
6

14+τ , r < t1/10 + t1/12ρ′1/6}, con-
tained in U1. Recall from Remark 12 that the metric ωt is predominantly ( t

2A0
)1/3ωC3 .

Lemma 2.8. Let −2 < τ < 0 and δ < 2
3 + 5τ

6 , then in the region {|y| < t
6

14+τ , r <

t1/10 + t1/12ρ′1/6}, we have the estimate for the volume form error

‖ft‖C0,α
δ−2,τ−2,t

≤ C(α, δ, τ)tδ
′

,

where we recall δ′ = 6
14+τ (2

3 + 5τ
6 − δ) + 1

2δ − 1
2τ .

Proof. As explained in Remark 12, in this region the deviation of ωt from ( t
2A0

)1/3ωC3

arises from 1
t (Ay − A0)ω̃Y and ωX .

In the coordinates z1, z2, z3 on F−1
t (U1) ⊂ C3, the metric ωX is comparable to

the Euclidean metric t2/3
√

−1∂∂̄R4, from which we get a bound for the weighted
Hölder norm on C3,

‖ωX‖Ck,α
2,2 (U1,ωC3 ) ≤ Ct2/3.

and in particular its magnitude |ωX |ωC3 ≤ Ct2/3(R+1)2 ≪ t1/3 ∼ |t1/3ωC3 |ωC3 in the

region {|y| < t
6

14+τ , r < t1/10 + t1/12ρ′1/6}. Morever, since δ < 2
3 + 5τ

6 , −2 < τ < 0,
we can deduce from the numerical properties of the weights that

|ωX |ωC3 ≤
{

Ct2/3R2 ≤ Ct
6

14+τ
( 2

3
+ 5τ

6
−δ)+ 2

3
δ− 1

2
τρδ−2wτ−2, R > 1,

Ct2/3 ≪ Ct
6

14+τ
( 2

3
+ 5τ

6
−δ)+ 2

3
δ− 1

2
τ , R � 1.

As for 1
t (Ay −A0)ω̃Y , since Ay is Lipschitz in y, this term is O(|y|) = O(t

6

14+τ ) small

compared to 1
t ω̃Y which is essentially the horizontal part of t1/3ωC3 , thus

|1
t
(Ay − A0)ω̃Y |ωC3 ≤ Ct1/3|y| ≪ t2/3R2,

so this contribution is insignificant compared to ωX . From this we deduce that the

function f ′′′
t = ω3

t

( t

2A0
)ω3

C3
− 1 satisfies the estimate

|f ′′′
t | ≤ Ct

6

14+τ
( 2

3
+ 5τ

6
−δ)+ 2

3
δ− 1

2
τ− 1

3

{

ρδ−2wτ−2, R > 1,

1, R � 1.
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Proceeding further,

∥

∥f ′′′
t

∥

∥

C0,α
δ−2,τ−2({|y|<t

6
14+τ ,r<t1/10+t1/12ρ′1/6},ωC3 )

≤ Ct
6

14+τ
( 2

3
+ 5τ

6
−δ)+ 2

3
δ− 1

2
τ− 1

3 .

This cannot be improved to higher orders because we do not have higher order
control for Ay.

Recall from Section 2.3 that ω3
C3 = 3

2

∏3
1

√
−1dzidz̄i, so

(

t

2A0

)

ω3
C3 =

3

2

(

t

2A0

) 3
∏

1

√
−1dzidz̄i =

3A0

t

∏√
−1dzidz̄i,

which we compare to

Ω =
√

A0dz1dz2dz3(1 + O(z)),
√

−1Ω ∧ Ω = A0

∏√
−1dzidz̄i(1 + O(r2)),

where O(z) denotes a fixed holomorphic function. We see that

(

t

2A0

)

ω3
C3 = at

√
−1Ω ∧ Ω(1 + O(t) + O(r2)).

The O(r2) term arises from the deviation of the holomorphic volume form Ω from√
A0dz1dz2dz3; its strength is comparable to the error caused by ωX which we just

analysed. Both this error and f ′′′
t contribute to ft = ω3

t

at

√
−1Ω∧Ω

− 1. These lead to

‖ft‖
C0,α

δ−2,τ−2({|y|<t
6

14+τ ,r<t1/10+t1/12ρ′1/6},ωC3 )
≤ Ct

6

14+τ
( 2

3
+ 5τ

6
−δ)+ 2

3
δ− 1

2
τ− 1

3 .

Finally, to convert this into the weighted Hölder norm C0,α
δ−2,τ−2,t on X, we need to

multiply by an extra factor t−
δ−2

6 (cf. Section 2.4). This gives the claim. ⊓⊔

Combining the above lemmas, we get

Proposition 2.9. Let −2 < τ < 0 and 3
4τ − 1

2 < δ < 2
3 + 5τ

6 . The volume form
error is globally estimated by

‖ft‖C0,α
δ−2,τ−2,t(X) ≤ Ctδ

′

, (24)

where we recall δ′ = 6
14+τ (2

3 + 5τ
6 − δ) + 1

2δ − 1
2τ .

Remark 13. It is conceivable that some variant of the metric ansatz has smaller
volume form error.

Remark 14. Since the norm C0,α
δ−2,τ−2,t itself depends on t, some explanation is

needed concerning how to appreciate the strength of an estimate like (24). An impor-
tant test is that such an estimate on any function f should imply that f is small in
L∞ norm, which is the chief indication that nonlinear effects of the Monge–Ampère
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equation are insignificant. Notably, in the region U1 ≃ F−1
t (U1) ⊂ C3, for δ ≤ 1

2 + 3
4τ

and −2 < τ < 0,

‖f‖L∞(U1)
≤ C ‖f‖Ck,α

δ−2,τ−2(U1,ωC3 ) ≤ C ‖f‖Ck,α
δ−2,τ−2,t(X) t

δ−2

6 .

The reason for the constraint on the weight is to ensure for R > 1, there is the
inequality

Rδ−2wτ−2 ≤ CRδ−2R− 3

4
(τ−2) ≤ C.

Thus (24) is only useful for gluing purposes when

−2 < τ < 0,
3

4
τ − 1

2
< δ ≤ 1

2
+

3

4
τ, δ′ +

δ − 2

6
> 0.

The constraint δ < 2
3 + 5

6τ is implied by the other constraints. These constraints
have solutions, for instance, if we specialize to τ = −2

3 , then we need − 3
13 < δ ≤ 0.

2.6 Metric deviation. In the course of estimating the volume form error we
have essentially showed the closeness of ωt to various simpler metrics in their respec-
tive regions. We now wish to state a coarser version of these estimates, valid on some-
what larger regions. This can be viewed as a quantified statement for the intuition
discussed at the beginning of Section 2.4, and will be useful in Section 3.3.

Let Λ2 ≫ 1, Λ3 ≫ 1 be two large numbers, and 0 < ǫ3 ≤ ǫ1 be a small number, all
to be fixed independent of t. We demand that ǫ3 ≪ ( 1

Λ1Λ2
2
)12 is so small that the set

{r > Λ−2
2 (t1/10 + t1/12ρ′1/6), |y| < ǫ3} is contained in U2. For technical convenience,

we impose further that ǫ
1/3
3 Λ8

2 ≪ ǫ
1/7
3 .

Proposition 2.10. Given ǫ3, Λ2, Λ3 as above, then as long as t is sufficiently small,
the following estimates hold.

• In the region {r � t1/10 + t1/12ρ′1/6} ∩ {|y| < ǫ3} ⊂ U1, the metric ωt deviates
from the scaled C3 model metric by

∥

∥

∥

∥

∥

ωt −
(

t

2A0

)1/3

ωC3

∥

∥

∥

∥

∥

C0,α
0,0,t

≤ C(α)ǫ
1/7
3 .

• In the region {r > Λ−2
2 (t1/10+t1/12ρ′1/6), |y| < ǫ3} ⊂ U2, which can be identified

as a subset of X0 × C via the trivialisation G0, the metric ωt deviates from the
product metric by

∥

∥

∥

∥

ωt − G∗
0

(

ωSRF |X0
+

1

t
A0

√
−1dy ∧ dȳ

)∥

∥

∥

∥

C0,α
0,0,t

≤ C(α)ǫ
1/7
3 .
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• Let Xy′ be any fibre with |y′| > ǫ3
2 . For |y − y′| ≤ Λ3t

1/2 ≪ ǫ2|y′|, the trivial-
isation Gy′ is well defined. The metric ωt deviates from the product metric in
the region {|y − y′| ≤ Λ3t

1/2} by

∥

∥

∥

∥

ωt − G∗
y′

(

ωSRF |Xy′
+

1

t
Ay′

√
−1dy ∧ dȳ

)∥

∥

∥

∥

C0,α
0,0,t

≤ C(α, ǫ3)Λ3t
1/2.

Here if y′ goes beyond the coordinate neighbourhood, then Ay′

√
−1dy∧dȳ should

be replaced by the local Euclidean metric on the base which best approximates
ω̃Y .

Proof. (Sketch). For brevity, we will only indicate how to estimate the metric devi-
ation in the L∞ norm. The weighted Hölder improvement is no more difficult, given
the methods in Lemma 2.7 and 2.8 .

When |y| < t
6

14+τ the first two estimates are essentially extractable from the
calculations in Lemma 2.7 and Lemma 2.8, the point being that the metric deviation
is bounded by some positive power of t, so when t is sufficiently small all these terms
are negligible compared to any bound independent of t.

Let |y| � t
6

14+τ . We consider first the deviation of ωt from ( t
2A0

)1/3ωC3 . In the

region {r � t1/10 + t1/12ρ′1/6}∩{t
6

14+τ ≤ |y| < ǫ3}, around a given fibre Xy′′ the met-
ric deviation is primarily the deviation between ( t

2A0
)1/3ωC3 and the local product

metric G∗
y′′(ωSRF |Xy′′

+ 1
t

√
−1Ay′′dy ∧ dȳ). In the base direction, the only deviation

which is not suppressed by a power of t comes from 1
t (Ay′′ − A0)

√
−1dy ∧ dȳ, which

is of order O(|y|) = O(ǫ3). In the fibre direction, we can use Proposition 2.4 to
estimate the deviation of ωSRF |Xy

from the Eguchi–Hanson metric on fibres, which

is of order O(|y| 2

3
− 1

6
β+ 1

4
(β−2)) = O(ǫ

1

12
(β+2)

3 ) for any −2 < β < 0. The fibrewise
deviation of ( t

2A0
)1/3ωC3 from the Eguchi–Hanson metric is negligible in this region.

In particular, these errors are all controlled by Cǫ
1/7
3 . The exponent is not optimal;

anything less than 1
6 will do.

Next we consider the deviation of ωt from the product metric G∗
0(ωSRF |X0

+
1
t A0

√
−1dy ∧ dȳ), in the region {r > Λ−2

2 (t1/10 + t1/12ρ′1/6), t
6

14+τ � |y| < ǫ3}. Apart

from the O(ǫ1/7) error in the previous case, there is an additional contribution,
caused by the deviation of Eguchi–Hanson metric from G∗

0(ωSRF |X0
), which is of

order O( |y|
r4 ) = O( |y|

|y|2/3Λ−8
2

) = O(ǫ
1/3
3 Λ8

2). By our imposed assumptions, this term is

also dominated by O(ǫ
1/7
3 ).

The last claim of this Proposition deals with fibres bounded away from the sin-
gular fibre, and is therefore easy. ⊓⊔
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3 Inverting the Laplacian

We first describe the harmonic analysis on various model spaces of ωt at different
scales, and then produce a parametrix of the Green operator by means of decompo-
sition and patching, a method I learnt from Székelyhidi [Szé17].

Let A0,α
δ−2,τ−2,t(X) be the space of ∂∂̄-exact (1,1) type forms completed under the

C0,α
δ−2,τ−2,t norm on 2-forms. The trace over ωt defines a bounded map

Trωt
: A0,α

δ−2,τ−2,t(X) → C0,α
δ−2,τ−2,t(X).

The image lies in the subspace {
∫

X fω3
t = 0} by construction. Our main result for

the linear analysis is

Proposition 3.1. Let −2 + α < δ < 0, −2 + α < τ < 0, and assume δ avoids a
discrete set of values. Then there exists a right inverse R to Trωt

on the subspace of
average zero functions,

R :

{

f ∈ C0,α
δ−2,τ−2,t(X) :

∫

X
fω3

t = 0

}

→ A0,α
δ−2,τ−2,t,

with norm bound ‖R‖ ≤ C(δ, τ, α) independent of t.

In this Chapter we will use the analyst’s Laplacian ∆ωt
= 2 Trωt

√
−1∂∂̄. The

right inverse R can be thought schematically as R = 2
√

−1∂∂̄∆−1
ωt

. It maps a real
valued function to a real (1,1)-form. We emphasize that the t-independent bound is
optimal, which is the main strength of the method.

3.1 Harmonic analysis for ωC3. We need the mapping property of the
weighted function space Ck,α

δ,τ (C3, ωC3), introduced in Section 2.3.
The following can be extracted from [Szé17], which shows how to invert the

Laplacian outside a large ball. It is proved by producing an approximate Green
operator. (Strictly speaking [Szé17] deals with the Laplacian of an approximation of
ωC3 , but near spatial infinity their difference is negligible.)

Lemma 3.2. ( cf. [Szé17] Proposition 6). Let −2 < τ < 0 and let δ avoid a discrete
set of values. There exists a sufficiently large radius A ≫ 1 and an operator PA :
C0,α

δ−2,τ−2(C
3) → C2,α

δ,τ (C3) with ‖PAf‖C2,α
δ,τ

≤ C ‖f‖C0,α
δ−2,τ−2

, such that ∆PAf = f in

the exterior region {|z| > A}.

Remark 15. The purpose for δ to avoid the discrete set of indicial roots, is to make
sure the model Laplace operator on C2/Z2 × C is invertible on a double weighted
Hölder space (cf. Proposition 13 in [Szé17]). For example, if −2 < τ < 0 and
−2 < δ < 0, then this condition is automatic.

Proposition 3.3. Let −2 < τ < 0, and δ > −4 avoids a discrete set of values.
Then there exists a bounded right inverse PC3 : C0,α

δ−2,τ−2(C
3) → C2,α

δ,τ (C3) to the
Laplacian.
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Proof. By the above lemma, it suffices to invert the Laplacian for functions f with
support in {|z| ≤ A}. In particular f satisfies |f | ≤ C ‖f‖ ρδ′−2 for any choice of
−4 < δ′ < min{δ, 0}. But since (C3, ωC3) is Ricci flat with Euclidean volume growth,
the function ρ is uniformly equivalent to the distance to the origin outside the unit
ball, and ρ|∆ρ|+ |∇ρ| ≤ C, so we can apply Theorem 1.6 in [Hei11] to find a unique
function u solving the Poisson equation with estimate

∆u = f, |u| ≤ C ‖f‖C0,α ρδ ≤ C ‖f‖ ρδwτ .

Since u is harmonic in {|z| > A}, we can bootstrap this to a C2,α
δ,τ estimate on u,

‖u‖C2,α
δ,τ

≤ C ‖f‖C0,α
δ−2,τ−2

. ⊓⊔

3.2 Harmonic analysis for K3 × C. Let Xy be a K3 fibre equipped with the
Calabi–Yau metric ωSRF |Xy

in the class [ωX |Xy
]. We consider the case where either

Xy is one of the nodal fibres, or y is bounded away from the set S of critical values,
so that Xy has bounded geometry. We sketch the harmonic analysis on Xy × C

with the product metric ωSRF |Xy
+

√
−1
2 dζ ∧ dζ̄, following the established method

of Székelyhidi [Szé17], Walpuski [Wal13] and Brendle [Bre03]. Here ζ denotes the
standard coordinate on C. Of particular importance to us is an exponential decay
property when the forcing term has fibrewise average zero and compact support,
which will be exploited later to localise the Green operators.

We begin by working with the usual Hölder space Ck,α(Xy×C). Let Ck,α,ave(Xy×
C) denote the subspace of functions with average zero on Xy fibres.

Lemma 3.4. The Laplacian ∆ : C2,α,ave(Xy × C) → C0,α,ave(Xy × C) is an iso-
morphism, with bounded inverse Py = ∆−1, ‖Py‖ ≤ C(y). Morever, if the forcing
term f ∈ C0,α,ave is supported in Xy × {|ζ| < B} for some B > 1, then outside of
Xy × {|ζ| < B + 1} the function Pyf has exponential decay:

|Pyf | ≤ C(y, α)e−m(|ζ|−B) ‖f‖C0,α , |ζ| ≥ B + 1. (25)

Similarly for the higher derivatives. The constants C(y) are independent of B, and
are uniform for y bounded away from S, or y ∈ S.

Proof. (Sketch). By standard Schauder estimate, applicable also to the orbifold cen-
tral fibre,

‖u‖C2,α ≤ C ‖∆u‖C0,α + C ‖u‖L∞ .

Applying Lemma 7.5 in [Wal13], the kernel of ∆ : C2,α(Xy×C) → C0,α(Xy×C) must
be constant on the C factor, so must be a global constant. It is clear from Fourier
decomposition in the fibre direction that ∆ restricts to a map between the subspaces
of functions with fibrewise average zero, where the kernel of ∆ is removed. Then a
standard blow up argument shows the coercivity estimate ‖u‖C2,α ≤ C ‖∆u‖C0,α .

For the surjectivity claim, we can use Fourier analysis to invert ∆ for smooth
functions with fibrewise average zero, whose Fourier transform in the C direction
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has compact support. One can then remove the compact support assumption by an
approximation argument in the weak topology, using the above coercivity estimate
(cf. Page 23, [Szé17] for a very similar argument).

For the exponential decay estimate, one considers the fibrewise L2 integral g(ζ) =
∫

Xy
u2(·, ζ), which is a function on C. Since ∆u = 0 for |ζ| > B, we have

∆Cg =

∫

Xy

2|∇Cu|2 + 2u∆Cu =

∫

Xy

2|∇Cu|2 − 2u∆Xy
u =

∫

Xy

2|∇u|2.

Now since the fibrewise average is imposed to be zero, by the Poincaré inequality
∫

Xy
|∇u|2 ≥ m′2g for some m′ > 0, so we have

∆Cg ≥ m′2g, |ζ| > B.

The L∞ bound on g is already bounded in terms of ‖∆u‖Cα . We now compare g on
{|ζ| ≥ B} with a positive supersolution

g̃ǫ = C ‖∆u‖Cα log(2|ζ|/B)e−m′(|ζ|−B) + ǫeǫ|ζ|, 0 < ǫ ≪ 1

satisfying ∆Cg̃ǫ ≤ m′2g̃ǫ, to deduce g ≤ g̃ǫ in the region {|ζ| ≥ B} . Sending ǫ → 0
gives an exponential decay estimate on g with any decay rate 0 < m < m′, and since
u is harmonic outside {|ζ| ≤ B}, by elliptic regularity this implies exponential decay
on u and all the higher derivatives. ⊓⊔

Remark 16. The physical intuition of this exponential decay is that massive parti-
cles have exponentially decaying Yukawa potentials.

Now let X0 be a nodal K3 fibre. Recall the double weighted Hölder space
Ck,α

δ,τ (X0 × C) from Section 2.4, which is adapted to viewing X0 × C as a space
with local conical singularity at the origin with singular link. Recall the vertical
distance to the nodal line is comparable to r, the distance in the base direction is
|ζ|, and ρ′ =

√

|ζ|2 + r2 essentially measures the distance to the origin.

Lemma 3.5. Let −2 < τ < 0, and δ > −2, then functions f in C0,α
δ−2,τ−2(X0 × C)

can be integrated along X0 fibres,

π∗f(ζ) =

∫

X0×{ζ}
f, |π∗f(ζ)| ≤ C(1 + |ζ|)δ−τ ‖f‖C0,α

δ−2,τ−2(X0×C) .

If morever min (τ, δ) > −2 + α, then for |ζ − ζ ′| ≤ 1,

|π∗f(ζ) − π∗f(ζ ′)| ≤ C(1 + |ζ|)δ−τ |ζ − ζ ′|α ‖f‖C0,α
δ−2,τ−2(X0×C) .

Proof. For the first claim, notice

|f | ≤ Cρ′δ−2w′τ−2 ‖f‖ = Cρ′δ−τrτ−2 ‖f‖ ≤ C ‖f‖ max (rδ−2, rτ−2),
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so if rδ−2, rτ−2 are both integrable along fibres, then |π∗f(ζ)| ≤ C ‖f‖ for |ζ| � 1.
When |ζ| > 1, then ρ′ is uniformly equivalently to |ζ|, so |f | ≤ C|ζ|δ−τrτ−2, and we
obtain |π∗f(ζ)| ≤ C|ζ|δ−τ ‖f‖.

For the weighted Hölder statement, we use the integrability of rδ−2−α, rτ−2−α

instead. ⊓⊔

For such weights we can make sense of the subspace C0,α,ave
δ−2,τ−2(X0 × C) ⊂

C0,α
δ−2,τ−2(X0 × C) of functions with zero average on fibres. Likewise with the sub-

space C2,α,ave
δ,τ (X0 × C) ⊂ C2,α

δ,τ (X0 × C). Observe also that L2 integrals on fibres

make sense for functions in C2,α
δ,τ (X0 × C).

Proposition 3.6. Let −2 + α < τ < 0, and −2 + α < δ < 0. The Laplacian
∆ : C2,α,ave

δ,τ (X0 × C) → C0,α,ave
δ−2,τ−2(X0 × C) is an isomorphism, with bounded inverse

Py=0 = ∆−1. Morever, if the forcing term f ∈ C0,α,ave
δ−2,τ−2 is supported in X0 × {|ζ| <

B}, then outside of X0 × {|ζ| < B + 1} the function Py=0f has exponential decay:

|Py=0f | ≤ C(α, τ, δ)e−m(|ζ|−B) ‖f‖C0,α
δ−2,τ−2

, |ζ| ≥ B + 1. (26)

Proof. From elliptic estimates

‖u‖C2,α
δ,τ

≤ C ‖∆u‖C0,α
δ−2,τ−2

+ C
∥

∥

∥
ρ′−δw′−τu

∥

∥

∥

L∞

.

We claim the coercivity estimate ‖u‖C2,α
δ,τ

≤ C ‖∆u‖C0,α
δ−2,τ−2

. If this fails, then we

consider a blow up sequence with
∥

∥ρ′−δw′−τui

∥

∥

L∞
= 1, ‖∆ui‖C0,α

δ−2,τ−2
→ 0, and

|ρ′−δw′−τui(xi)| > 1
2 , where xi does not lie on the nodal line. The elliptic estimates

provide a uniform C2,α
δ,τ bound, and we will use Arzela-Ascoli to extract a subsequence

to reach a contradiction.

• If xi tends to the origin, and r(xi)
ρ′(xi)

is uniformly bounded positively from below,

then we perform a metric scaling so that the distance from xi to the origin is
normalised to 1, and scale the function ui to have value 1 at xi. Passing to the
scaled limit, we get a nontrivial harmonic function on the flat C2/Z2 × C away
from the nodal line, with a double power law bound of the type O(ρ′δw′τ ).
(Here we abuse notation to denote by ρ′ and w′ the corresponding quantities
on C2/Z2 × C.) For our range of weights the harmonic function is in L2

loc, so
extends over the real codimension 4 nodal line. But our weights also force decay
in the C2/Z2 direction, so the harmonic function is trivial, contradiction.

• If r(xi) → 0, and r(xi)
ρ′(xi)

tends to zero, then we perform a metric scaling so

that the distance from xi to the nodal line is normalised to be 1, and scale the
function ui to have value 1 at xi. Passing to a scaled limit, we get a nontrivial
harmonic function on C2/Z2 × C, with a power law bound of the type O(rτ ),
which implies a contradiction similar to the previous case.
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• If xi stays in a bounded region of X0 × C, and r(xi) is uniformly bounded
positively from below, then after passing to the limit, we obtain a nontrivial
harmonic function u in C2,α,ave

δ,τ (X0 × C), which must extend smoothly across
the nodal line because it is locally integrable. We note that the fibrewise average
of u is zero. Then we can consider the fibrewise L2 integral

g(ζ) =

∫

X0×{ζ}
|u|2,

satisfying ∆Cg ≥ m′2g for m′ > 0 as in Lemma 3.4, and compare it to the
function C + ǫeǫ|ζ| in the region {|ζ| ≥ 1}. As ζ → ∞ the harmonic function u
is controlled by a power law O(|ζ|δ−τ ), so must be dominated by C + ǫeǫ|ζ|. By
comparison principle g ≤ C + ǫeǫ|ζ|, and taking the limit ǫ → 0 shows that g is
bounded, hence u is bounded, so we can apply Lemma 3.4 to conclude u = 0,
contradiction.

• If r(xi) stays bounded below, but ρ′(xi) → ∞, then we normalise ui to have
value 1 at xi. Passing to the scaled limit we get a nontrivial harmonic function u
on X0 ×C with fibrewise average zero, and there is a bound of type u = O(rτ ).
Then u must extend smoothly across the nodal line, and a similar argument
as before shows u = 0, contradiction.

In particular ∆ : C2,α,ave
δ,τ (X0 × C) → C0,α,ave

δ−2,τ−2(X0 × C) is injective. For the

surjectivity claim, we need to solve ∆u = f for a given f ∈ C0,α,ave
δ−2,τ−2(X0 × C). For

this we can use a sequence of functions fi ∈ C0,α,ave(X0 ×C) which weakly converge
to f on compact subsets of the complement of the nodal line, and are uniformly
bounded in C0,α,ave

δ−2,τ−2; such a sequence can be produced using cutoff functions and

integration on fibres. Using Lemma 3.4 we find ui ∈ C2,α solving ∆ui = fi. Notice
for our range of weights C2,α ⊂ C2,α

δ,τ . By the coercivity estimate ui is a bounded

sequence in C2,α,ave
δ,τ , from which we can extract a weak limit u, giving the desired

solution to ∆u = f .
The exponential decay argument is as in Lemma 3.4. ⊓⊔

Remark 17. If δ > 0, then the surjectivity statement must fail. If a smooth function
u ∈ C2,α

δ,τ (X0 × C), then the positive weight forces u to vanish at the origin. But for
a smooth forcing function f , in general we cannot expect to solve ∆u = f with
fibrewise average zero and the vanishing condition at the origin. For the rescue, it
seems necessary to enlarge C2,α

δ,τ by allowing for an extra smooth function locally
constant near the origin.

Remark 18. There are two reasons why we did not consider the function spaces
Ck,α

δ,τ (X0 × C) for larger k. The first is that we do not have higher regularity esti-
mates for the metric ansatz ωt (cf. Section 2.5). The second is that the higher order
derivatives ∇ku = O(ρ′δ−kwτ−k) can fail to be L1 integrable along fibres when k
is large, which can also cause the disagreement between classical and distributional
derivatives.
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3.3 Decomposition, patching and parametrix. Let f be a function in the
weighted space C0,α

δ−2,τ−2,t(X) as in Section 2.4. Our aim is to find an approximate

solution to ∆ωt
u = f subject to the condition

∫

X fω3
t = 0. This ultimately leads to a

proof of Propostion 3.1. For simplicity of presentation, we pretend there is only one
nodal fibre in X, although more nodal fibres present no further difficulty. We shall
assume thoughout this section that −2+α < τ < 0 and −2+α < δ < 0. Furthermore
let δ avoid the discrete set of values appearing in Proposition 3.3 (which is actually
automatically true for this range of weights.)

Remark 19. In this section, we regard the parameters δ, τ, α, ǫ1, ǫ2, Λ1 as fixed once
for all, and all constants are allowed to depend on them; we will introduce some
additional parameters ǫ3, Λ2, Λ3 to be fixed in due course, and the dependence of
various estimates on these parameters will be explicitly tracked down. It is also our
standing assumption that t is sufficiently small with respect to the choices of all
other parameters.

We will perform decomposition on f both spatially and spectrally, so that on
each constituent of f the harmonic analysis becomes simpler.

Recall we have a standard cutoff function

γ1(s) =

{

1 if s > 2,

0 if s < 1.

and γ2 = 1− γ1. Let Λ2 ≫ 1 be a large number to be fixed independent of t. On the
region {|y| < ǫ1}, we build cutoff functions

η1 = γ1

(

rΛ2

t1/10 + t1/12ρ′1/6

)

, η2 = 1 − η1.

These will be used to decompose the function near the singular fibre into regions
modelled by C3 and X0×C. We also need a partition of unity {χ′

i}N ′

i=0 on the base Y .
Here χ′

0 is equal to 1 for |y| ≤ ǫ3/2 and vanishes for |y| > 2ǫ3/3, where 0 < ǫ3 ≤ ǫ1

is some small number to be fixed independent of t, satisfying the constraints listed
in Section 2.6. For i = 1, 2, . . . , N ′, the functions χ′

i have supports contained in
{|y| ≥ ǫ3/2}, each having length scale ∼ t1/2 in the ωY metric, and containing a
point y′

i which we think of as the centre of that support. We can demand 0 ≤ χ′
i ≤ 1,

and all these χ′
i have uniform Ck bounds with respect to the metric 1

t ωY for any
given positive k. Morever, at each point in Y there are only a bounded number of
nonvanishing χ′

i, even though N ′ ∼ O(1
t ).

We now decompose f into pieces.

• For i = 1, . . . , N ′, we use the trivialisation Gy′

i
to identify χ′

if as a compactly
supported function (G−1

y′

i
)∗(χ′

if) on Xy′

i
× C, and use integration on fibre to

decompose it into the sum of a function fi with fibrewise average zero in Xy′

i
×C,

and a function f ′
i on the base:

χ′
if = fi + f ′

i .
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Clearly the supports of fi and f ′
i are contained in the support of χ′

i. The

C0,α
δ−2,τ−2,t norms of these functions fi and f ′

i are bounded in terms of the norm
on f , because integration on fibre is a bounded operator for −2 + α < δ < 0
and −2 + α < τ < 0. The reader is encouraged to think of functions on the
base as the zeroth Fourier mode and fibrewise average zero functions as the
higher Fourier modes.

• For i = 0, we use the trivialisation G0 to identify χ′
0η1f as a compactly sup-

ported function (G−1
0 )∗(χ′

0η1f) on X0 ×C. We calculate the integration on the
fibres of X0 × C to obtain a locally defined function on C, given by

f ′
0(y) =

∫

X0×{y}(G
−1
0 )∗(η1f)ωSRF |2X0

∫

X0×{y} η1ωSRF |2X0

.

Here we notice that η1 is equal to 1 on most of the measure of the fibres,
so the denominator is approximately 1. The function χ′

0f
′
0 is well defined

on the support of χ′
0, and has a weighted Hölder bound ‖χ′

0f
′
0‖C0,α

δ−2,τ−2,t
≤

C ‖f‖C0,α
δ−2,τ−2,t(X), when −2 + α < δ < 0 and −2 + α < τ < 0. (This follows

from Lemma 3.5 but does not manifest its full strength. A refined statement
is Lemma 3.9.)

Then we write

f0,1 = χ′
0η1(f − f ′

0(y)), f0,2 = χ′
0η2(f − f ′

0(y)).

By construction f0,1 and f0,2 are supported where the cutoff functions are supported,

their C0,α
δ−2,τ−2,t norms are bounded in terms of the same norm on f up to a bounded

factor, and f0,1 has fibrewise average zero. This gives a decomposition

χ′
0f = f0,1 + f0,2 + χ′

0f
′
0.

To summarize, we obtain f0,1, f1, f2, . . . fN ′ which have some fibrewise average
zero property, a function f0,2 which is supported near the nodal point, and a func-
tion on the base fY = χ′

0f
′
0 + f ′

1 + · · · + f ′
N ′ , which has a weighted Hölder bound

‖fY ‖C0,α
δ−2,τ−2,t(X) ≤ C ‖f‖C0,α

δ−2,τ−2,t(X) with constant independent of t, because even

though we are summing over many terms, near any given fibre only a small number
of them contribute. These give a decomposition of f :

f = f0,1 + f0,2 + f1 + f2 + · · · + fN ′ + fY . (27)

The strategy is then to use the harmonic analysis we developed on various model
geometries to divide and conquer all these pieces, at least approximately.

We first deal with f1, f2, . . . , fN ′ , which are supported on the support of χ′
i, so in

particular are far away from the singular fibre. Via the trivialisations Gy′

i
, we regard

these as functions on Xy′

i
×C with average zero, so we can apply the Green operator

Py′

i
provided by Lemma 3.4 to solve the Poisson equation on Xy′

i
× C. To put these
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local solutions back on X, we use the cutoff function χ̃′
i = γ2(

|y−y′

i|
Λ3t1/2 ), where Λ3 is a

large number to be fixed independent of t. We write

P1f =

N ′

∑

i=1

χ̃′
iPy′

i
fi. (28)

Notice the cutoff procedure makes the function well defined on X.

Lemma 3.7. Given ǫ3, then we can choose Λ3 sufficiently large, so that for suffi-
ciently small t with respect to all previous choices,

∥

∥

∥

∥

∥

∆ωt
P1f −

N ′

∑

i=1

fi

∥

∥

∥

∥

∥

C0,α
δ−2,τ−2,t(X)

≤ 1

100
‖f‖C0,α

δ−2,τ−2,t(X) ,

and

‖P1f‖C2,α
δ,τ,t(X) ≤ C(ǫ3, α, δ, τ) ‖f‖C0,α

δ−2,τ−2,t(X) .

Proof. In this proof we shall not keep track of dependence on δ, τ, α, ǫ3. By
Lemma 3.4 there is a uniform estimate,

∥

∥Py′

i
fi

∥

∥

C2,α(Xy′

i
×C)

≤ C ‖fi‖C0,α(Xy′

i
×C) ,

and a uniform exponential decay estimate with rate m on |Py′

i
fi| and the higher

derivatives, for |y − y′
i| � t1/2, namely outside the support of χ′

i.
We examine the norm of ∆ωt

Py′

i
fi − fi. The error comes from two sources:

the cutoff at scale |y − y′
i| ∼ Λ3t

1/2, and the deviation of ωt from the product
metric on Xy′

i
× C. Because of the exponential decay, the cutoff error is of order

O(exp (−mΛ3) ‖fi‖C0,α). The metric deviation error is of order O(t1/2Λ3

∥

∥Py′

i
f
∥

∥

C2,α)
using Proposition 2.10. For t sufficiently small with respect to all previous choices,
the errors suppressed by a power of t can be ignored, so

∥

∥∆ωt
Py′

i
fi − fi

∥

∥

C0,α(Xy′

i
×C)

≤ C exp (−mΛ3) ‖fi‖C0,α(Xy′

i
×C) .

The norm on C0,α(Xy′

i
×C) differs from the C0,α

δ−2,τ−2,t(X) norm by a factor of order

t
1

2
(δ−τ) (cf. Section 2.4). The effects of the weight factors cancel out to give

∥

∥∆ωt
Py′

i
fi − fi

∥

∥

C0,α
δ−2,τ−2,t(X)

≤ Ce−mΛ3 ‖fi‖C0,α
δ−2,τ−2,t(X) ≤ Ce−mΛ3 ‖f‖C0,α

δ−2,τ−2,t(X) .

Now we want to sum the contributions over i. Our cutoff procedure ensures that
each forcing term fi can only influence the points with |y − y′

i| � Λ3t
1/2, so each

point y only receives contributions from O(Λ2
3) terms. Thus

∥

∥

∥

∥

∥

P1f −
N ′

∑

i=1

fi

∥

∥

∥

∥

∥

C0,α
δ−2,τ−2,t(X)

≤ CΛ2
3e

−mΛ3 ‖f‖C0,α
δ−2,τ−2,t(X) .

When Λ3 is chosen to be sufficiently large, we can make this coefficient arbitrarily
small. Once we fix this choice, the claims of the Lemma are clear. ⊓⊔
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Remark 20. The intuition is that by the exponential decay property, the forcing
functions with fibrewise average zero have localised effect for the Poisson equation.
They almost do not interact with the rest of the manifold, and that explains why
their effects do not accumulate.

Next, we deal with f0,1, which is supported on the support of χ′
0η1 and thus can

be regarded as a function on X0 × C, and has some fibrewise average zero property.
We prepare some cutoff function χ̃′

0 on Y , supported in {|y| < ǫ3}, is equal to 1 on
{|y| ≤ 3

4ǫ3}, and

|∇k
1

t
ωY

χ̃′
0| ≤ C(k)(t1/2ǫ−1

3 )k.

We also need a logarithmic cutoff function

η̃1 = γ1

⎛

⎝

log
(

rΛ3
2

t1/10+t1/12ρ′1/6

)

log Λ2

⎞

⎠ ,

which equals 1 on the support of f0,1, and whose gradient is supported in the range
1
Λ2

2
≤ r

t1/10+t1/12ρ′1/6 ≤ 1
Λ2

, involving O(log Λ2) dyadic scales. Its key property is that

‖dη̃1‖Ck,α
−1,−1,t

≤ C
log Λ2

, namely that we can gain an extra factor of order O( 1
log Λ2

)

compared to ordinary cutoff functions. Then we set

P0,1f = χ̃′
0η̃1Py=0f0,1, (29)

where we recall from Lemma 3.6 that Py=0 is the Green operator on X0 × C for the
product metric.

Similarly, we deal with f0,2, which is supported on the support of χ′
0η2, so can

be regarded as a function on C3. We need an extra logarithmic cutoff function

η̃2 = γ2

⎛

⎝

2 log
(

rΛ
3/2
2

2(t1/10+t1/12ρ′1/6)

)

log Λ2

⎞

⎠ ,

which equals 1 on the support of f0,2, and whose gradient is supported in the range
2
Λ2

≤ r
t1/10+t1/12ρ′1/6 ≤ 2

Λ
1/2
2

≪ 1. Its key property is that ‖dη̃2‖Ck,α
−1,−1,t

≤ C
log Λ2

. Then

we set

P0,2f =

(

t

2A0

)1/3

χ̃′
0η̃2PC3f0,2, (30)

where we recall from Proposition 3.3 that PC3 is the Green operator on (C3, ωC3).
The scaling factor is inserted to account for the relation between ωt and ωC3 , so that
∆ωt

P0,2f is approximately f0,2.
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Lemma 3.8. We can choose Λ2 ≫ 1, ǫ3 ≪ 1 subject to the constraints in Section 2.6,
such that for t sufficiently small with respect to all previous choices,

‖∆ωt
P0,1f − f0,1‖C0,α

δ−2,τ−2,t(X) ≤ 1

100
‖f‖C0,α

δ−2,τ−2,t(X) ,

‖P0,1f‖C2,α
δ,τ,t(X) ≤ C(δ, τ, α) ‖f‖C0,α

δ−2,τ−2,t(X) ,

and morever

‖∆ωt
P0,2f − f0,2‖C0,α

δ−2,τ−2,t(X) ≤ 1

100
‖f‖C0,α

δ−2,τ−2,t(X) ,

‖P0,2f‖C2,α
δ,τ,t(X) ≤ C(δ, τ, α) ‖f‖C0,α

δ−2,τ−2,t(X) .

Proof. The norm ‖∆ωt
P0,1f − f0,1‖C0,α

δ−2,τ−2(X0×C) is caused by the cutoff error and

the deviation of ωt from the product metric on X0 × C. The cutoff error caused
by χ̃′

0 is suppressed by a power of t, hence negligible. The cutoff error caused by
η̃1 is of order O( 1

log Λ2
‖Py=0f0,1‖C2,α

δ,τ (X0×C)). The metric deviation error is of order

O(ǫ
1/7
3 ‖Py=0f0,1‖C2,α

δ,τ (X0×C)) using Proposition 2.10, provided the constraints in Sec-

tion 2.6 are satisfied. We also observe that, because our cutoff scale takes place far
above the quantisation scale when t is sufficiently small, the C0,α

δ−2,τ−2(X0 ×C) norm

and the C0,α
δ−2,τ−2,t(X) norm are equivalent for the functions under consideration.

Combining these discussions,

‖∆ωt
P0,1f − f0,1‖C0,α

δ−2,τ−2,t(X) ≤ C

(

1

log Λ2
+ ǫ

1/7
3

)

‖Py=0f0,1‖C2,α
δ,τ (X0×C)

≤ C

(

1

log Λ2
+ ǫ

1/7
3

)

‖f0,1‖C0,α
δ−2,τ−2(X0×C)

≤ C

(

1

log Λ2
+ ǫ

1/7
3

)

‖f0,1‖C0,α
δ−2,τ−2,t(X)

≤ C

(

1

log Λ2
+ ǫ

1/7
3

)

‖f‖C0,α
δ−2,τ−2,t(X) .

Now setting Λ2 ≫ 1 and ǫ3 ≪ 1 subject to the constraints in Section 2.6, we can
make the coefficient arbitrarily small. The first couple of claims follow.

The claims about P0,2f are almost completely analogous, except that we need to

insert some scaling factors such as t
1

6
(δ−2) which account for the difference between

the C0,α
δ−2,τ−2,t(X) norm and the C0,α

δ−2,τ−2(C
3, ωC3) norm. ⊓⊔

Now we consider the function fY on the base Y . We will evantually reduce the
question of inverting the Laplacian on fY to a question essentially on the base. We
first summarize the information about fY .

Lemma 3.9. The function fY satisfies the bound

|fY (y)| ≤ C ‖f‖C0,α
δ−2,τ−2,t(X)

{

(1 + t−1/2|y|)δ−τ , |y| < ǫ1,

t
τ−δ

2 , |y| ≥ ǫ1,
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and for |y − y′| ≤ t1/2, there is a weighted Hölder bound

|fY (y) − fY (y′)| ≤ C ‖f‖C0,α
δ−2,τ−2,t(X) (t−1/2|y − y′|)α

{

(1 + t−1/2|y|)δ−τ , |y| < ǫ1,

t
τ−δ

2 , |y| ≥ ǫ1.

Morever, the average values

f̄ =

∫

X fω3
t

∫

X ω3
t

, fY =

∫

Y fω̃Y
∫

Y ω̃Y
=

∫

Y
fω̃Y

differ by only a ‘small amount’:

|f̄ − fY | ≤ Ct
1

2
(τ−δ)ǫδ−τ+2

3 ‖f‖C0,α
δ−2,τ−2,t(X) .

In particular if f̄ = 0 then |fY | ≤ Ct
1

2
(τ−δ)ǫδ−τ+2

3 ‖f‖C0,α
δ−2,τ−2,t(X) . Here constants

only depend on δ, τ, α, and t is assumed to be sufficiently small as usual.

Proof. The weighted Hölder control on fY is immediate from its construction and
Lemma 3.5.

We explain why the average values are close to each other. On the set {|y| > ǫ3}
which has most of the ω3

t -measures, the measure ω3
t is very close to 3

t ωSRF |2Xy
ω̃Y

up to some relative error suppressed by a power of t, and fY is essentially just the
integration along fibres using the ωSRF |2Xy

measure, so

∫

fω3
t ∼

∫

3

t
ω̃Y

∫

Xy

fωSRF |2Xy
∼

∫

3

t
fY ω̃Y ,

∫

ω3
t ∼

∫

3

t
ω̃Y ,

and cancelling factors gives f̄ − fY ∼ 0. After neglecting the small error caused by
the set {|y| > ǫ3}, and making a very crude estimate for the error caused by the set
{|y| ≤ ǫ3}, we arrive at

|f̄ − fY | ≤ C

∫

|y|≤ǫ3
|f |ω3

t
∫

X ω3
t

≤ C

∫

|y|≤ǫ3
(1 + t−1/2|y|)δ−τ ω̃Y

∫

Y ω̃Y
‖f‖C0,α

δ−2,τ−2,t(X)

where we have integrated along fibres and cancelled factors. The RHS is estimated
by Ct

1

2
(τ−δ)ǫδ−τ+2

3 ‖f‖C0,α
δ−2,τ−2,t(X). ⊓⊔

A requirement for solving the Poisson equation is that the forcing term has zero
average. Thus we would like to decompose fY into an average zero function and a
small error function. Let χ′′

0 be a cutoff function on Y with support in {|y| > ǫ1},
and equals 1 on a subset of Y with at least half of the ωY -measure, and has bounded
higher derivatives with respect to 1

t ωY . Let

f ′
Y = fY − fY

χ′′
0

∫

Y χ′′
0ω̃Y

, f ′′
Y = fY

χ′′
0

∫

Y χ′′
0ω̃Y

.
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By construction
∫

Y f ′
Y ω̃Y = 0, the function f ′

Y satisfies the same kind of weighted
Hölder estimate as fY described in Lemma 3.9, and if f̄ = 0, then

∥

∥f ′′
Y

∥

∥

C0,α
δ−2,τ−2,t(X)

≤ C|fY |t 1

2
(δ−τ) ≤ Cǫδ−τ+2

3 ‖f‖C0,α
δ−2,τ−2,t(X) .

We now define PY f to be the unique solution to the following Poisson equation on
Y ,

∆ 1

t
ω̃Y

(PY f) = f ′
Y ,

∫

Y
(PY f)ω̃Y = 0,

or equivalently,

√
−1∂∂̄(PY f) =

1

2t
f ′

Y ω̃Y ,

∫

Y
(PY f)ω̃Y = 0. (31)

Lemma 3.10. Assume that the average value f̄ = 0. If ǫ3 is chosen to be sufficiently
small, then for sufficiently small t with respect to all previous choices,

‖∆ωt
PY f − fY ‖C0,α

δ−2,τ−2,t(X) ≤ 1

100
‖f‖C0,α

δ−2,τ−2,t(X) ,

and
∥

∥∂∂̄(PY f)
∥

∥

C0,α
δ−2,τ−2,t(X)

≤ C(δ, τ, α) ‖f‖C0,α
δ−2,τ−2,t(X) .

Proof. The estimate on
∥

∥∂∂̄(PY f)
∥

∥

C0,α
δ−2,τ−2,t(X)

is immediate from the definition of

PY f and the fact that
∥

∥

1
t ω̃Y

∥

∥

C0,α
0,0,t(X)

≤ C.

To estimate ‖∆ωt
PY f − fY ‖C0,α

δ−2,τ−2,t(X), it suffices to control the norm

‖∆ωt
PY f − f ′

Y ‖C0,α
δ−2,τ−2,t(X), since ‖f ′′

Y ‖ = O(ǫδ−τ+2
3 ‖f‖) can be made arbitrarily

small by choosing small ǫ3. By a standard formula of the Laplacian,

√
−1∂∂̄(PY f) ∧ ω2

t =
1

6
(∆ωt

PY f)ω3
t .

The point is that to control the Laplacian, we do not actually need to estimate PY f ;
all we need is the tautological properties of

√
−1∂∂̄PY f . From this formula and the

definition of PY f ,

∆ωt
PY f = f ′

Y

3ω̃Y ∧ ω2
t

tω3
t

.

In the region {|y| � t
6

14+τ } ∪ {|y| ≤ t
6

14+τ , r � t1/10 + t1/12ρ′1/6} where the semi-

Ricci-flat behaviour is dominant, the quantity 3ω̃Y ∧ω2
t

tω3
t

is very close to 1. Following
almost the same calculations in Lemma 2.7, one can extract an estimate in this
region

∥

∥

∥

∥

ω̃Y ∧ ω2
t√

−1Ω ∧ Ω
− 1

∥

∥

∥

∥

C0,α
0,0,t

≤ Ct
τ+2

2(14+τ) ,

∥

∥

∥

∥

tω3
t

3
√

−1Ω ∧ Ω
− 1

∥

∥

∥

∥

C0,α
0,0,t

≤ Ct
τ+2

2(14+τ) ,
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so
∥

∥

∥

3ω̃Y ∧ω2
t

tω3
t

− 1
∥

∥

∥

C0,α
0,0,t

≤ Ct
τ+2

2(14+τ) , hence in this region

∥

∥∆ωt
PY f − f ′

Y

∥

∥

C0,α
δ−2,τ−2,t

≤ Ct
τ+2

2(14+τ)

∥

∥f ′
Y

∥

∥

C0,α
δ−2,τ−2,t

≤ Ct
τ+2

2(14+τ) ‖f‖C0,α
δ−2,τ−2,t

.

This term is suppressed by a power of t, hence negligible.

In the region {|y| < t
6

14+τ , r < t1/10 + t1/12ρ′1/6}, we have a very coarse estimate

∥

∥

∥

∥

3ω̃Y ∧ ω2
t

tω3
t

− 1

∥

∥

∥

∥

C0,α
0,0,t

≤ C,

hence

∥

∥∆ωt
PY f − f ′

Y

∥

∥

C0,α
δ−2,τ−2,t

≤ C
∥

∥f ′
Y

∥

∥

C0,α
δ−2,τ−2,t

= C ‖fY ‖C0,α
δ−2,τ−2,t

.

The last equality is because f ′
Y = fY in this region. But the bounds on fY in

Lemma 3.9 imply that

‖fY ‖
C0,α

δ−2,τ−2,t({|y|<t
6

14+τ ,r<t1/10+t1/12ρ′1/6})
≤ C ‖f‖C0,α

δ−2,τ−2,t(X) sup
r

{r2−τ , r2−δ}

≤ C ‖f‖C0,α
δ−2,τ−2,t(X) t

2

14+τ .

Conceptually, this extra gain of t
2

14+τ factor comes from the fact that integration on
fibre has a regularising effect for a certain range of weights. This suppression factor
makes ‖∆ωt

PY f − f ′
Y ‖C0,α

δ−2,τ−2,t
negligible. ⊓⊔

Remark 21. It is easy to see that

‖PY f‖C2,α(Y ) ≤ C ‖f‖C0,α(Y ) ,

from which we have some t-dependent bound

‖PY f‖C2,α
δ,τ,t(X) ≤ C(t) ‖f‖C0,α

δ−2,τ−2,t(X) .

The subtlety in the Lemma is that we did not seek a fully t-independent estimate
of PY f , but were content with estimating

√
−1∂∂̄PY f . Our first reason for doing so

is that geometrically speaking, metric quantities are primary, and the potential is
only auxiliary. The second reason is that the weighted Hölder space for PY f is quite
awkward to work with, due to the fact that δ − τ + 2 > 0.

We now sum over the pieces to define an approximate Green operator

Pf = P1f + P0,1f + P0,2f + PY f (32)

Combining Lemma 3.7, 3.8, 3.10 and fixing ǫ3 ≪ 1, Λ2 ≫ 1, Λ3 ≫ 1 to satisfy all
the constraints, we see
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Corollary 3.11. Let −2 + α < δ < 0, −2 + α < τ < 0, and assume δ avoids a
discrete set of values. Let f be a function in C0,α

δ−2,τ−2,t(X) with
∫

X fω3
t = 0. Then

one can choose ǫ3, Λ2, Λ3 such that

‖∆ωt
Pf − f‖C0,α

δ−2,τ−2,t(X) ≤ 1

25
‖f‖C0,α

δ−2,τ−2,t(X) ,

and

∥

∥∂∂̄Pf
∥

∥

C0,α
δ−2,τ−2,t(X)

≤ C(δ, τ, α) ‖f‖C0,α
δ−2,τ−2,t(X) .

Finally, we prove Proposition 3.1.

Proof. (Proposition 3.1). Let f be a function in C0,α
δ−2,τ−2,t(X) with integral zero.

We can define

u = P

∞
∑

j=0

(1 − ∆ωt
P )jf,

which converges because ‖∆ωt
P − 1‖ ≤ 1

25 . Although we do not have good control
on u directly, we do know

∥

∥∂∂̄u
∥

∥

C0,α
δ−2,τ−2,t

≤ C
∥

∥∂∂̄P
∥

∥ ‖f‖ ≤ C ‖f‖ .

Using our convention for the Laplacian, the ∂∂̄ exact (1,1)-form θ = 2
√

−1∂∂̄u
solves Trωt

θ = ∆ωt
u = f , so setting

R(f) = θ = 2
√

−1∂∂̄P

∞
∑

j=0

(1 − ∆ωt
P )jf (33)

gives the desired right inverse R with bounds. We remark that R maps a real valued
function to a real (1,1)-form. ⊓⊔

3.4 Exponential localising property. An interesting consequence of the
parametrix construction in Section 3.3 is that away from the singular fibres, the
effect of the forcing term is very localised.

Proposition 3.12. In the setup of Proposition 3.1, if the forcing function f is
supported away from the neighbourhood of a smooth fibre {x ∈ X : |π(x) − y′| ≤
d} ⊂ X \ {|y| ≤ ǫ1}, then

‖Rf‖C0,α
δ−2,τ−2,t({x∈X:|π(x)−y′|≤ d

2
}) ≤ C(δ, τ, α) exp

(−m(δ, τ, α)d

t1/2

)

‖f‖C0,α
δ−2,τ−2,t(X) ,

where the exponential decay constants do not depend on f, d, y′, t.
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Proof. Without loss of generality the set {|y − y′| ≤ d} ⊂ Y has less than 1
3 of the

total ωY -measure. Using the flexibility of the definition of the cutoff function χ′′
0,

we may arrange that χ′′
0 is supported away from {|y − y′| ≤ d} ⊂ Y . Then in the

construction of the operator 1 − ∆ωt
P , only the part 1 − ∆ωt

P1 can propagate a
forcing term supported outside {x ∈ X : |y − y′| ≤ d} ⊂ X into this set.

The key point now is that the construction of R in (33) involves an iteration of the
operator 1 − ∆ωt

P , and each iteration can propagate the support towards Xy′ only
by a very small amount of ωY -distance, of order ∼ O(Λ3t

1/2). Thus it requires about
O( d

Λ3t1/2 ) iterations to propagate the forcing term into the set {|y − y′| ≤ d
2} ⊂ X.

Each iteration results in a damping factor 1
25 on the norm of the forcing term, so

‖Rf‖C0,α
δ−2,τ−2,t({x∈X:|π(x)−y′|≤ d

2
}) �

(

1

25

)
−Cd

t1/2

‖f‖C0,α
δ−2,τ−2,t(X)

as required. ⊓⊔

4 Collapsed Calabi–Yau Metric

4.1 Perturbation to the Calabi–Yau metric. We carry out the main gluing
construction. To avoid complication, we choose the weights τ = −2

3 and − 3
13 <

δ < 0 (cf. Remark 14). We also assume that δ avoids a discrete set of values, so
Proposition 3.1 applies. The elementary numerical properties of these weights are
summarised as

{

‖f‖C0,α
0,0,t(X) ≤ Ct

1

6
δ− 1

3 ‖f‖C0,α
δ−2,τ−2,t(X) ,

‖fg‖C0,α
δ−2,τ−2,t(X) ≤ C ‖g‖C0,α

0,0,t(X) ‖f‖C0,α
δ−2,τ−2,t(X) ,

where f, g are arbitrary elements of the function spaces. The same statement holds
for forms.

Theorem 4.1. Let τ = −2
3 and − 3

13 < δ < 0. Assume δ avoids the discrete set of
values in Proposition 3.1. Then for sufficiently small t, the Calabi–Yau metric ω̃t in
the class [ωt] = [ωX ] + 1

t [ωY ] is close to ωt, with the bound

‖ω̃t − ωt‖C0,α
δ−2,τ−2,t(X) ≤ C(δ, α)t

23

60
+ 1

20
δ. (34)

In particular by the numerical property of the weights

‖ω̃t − ωt‖C0,α
0,0,t(X) ≤ C(δ, α)t

1

20
+ 13

60
δ ≪ 1.

Proof. We wish to find the Calabi–Yau metric ω̃t as a small perturbation of the
metric ansatz ωt. Using the defining conditions (cf. Section 2.5)

ω̃3
t = at

√
−1Ω ∧ Ω, ω3

t = at(1 + ft)
√

−1Ω ∧ Ω,
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it suffices to find a function f ∈ C0,α
δ−2,τ−2,t(X) with

∫

X fω3
t = 0, such that

(ωt + Rf)3 =
1

1 + ft
ω3

t , ‖f‖C0,α
δ−2,τ−2,t(X) ≤ Ct

23

60
+ 1

20
δ. (35)

Once we found f , then setting ω̃t = ωt +Rf gives the CY metric with estimate. We
point out the subtlety that although ωt and f can fail to be smooth, the equation
ω̃3

t = at

√
−1Ω ∧ Ω would imply the smoothness of ω̃t by standard argument, so ω̃t

is an honest CY metric, and hence the unique CY metric in this class.
We now focus on solving (35). Define the nonlinear operator F acting on the

subspace {f :
∫

X fω3
t = 0} ⊂ C0,α

δ−2,τ−2,t(X),

F(f) =
(ωt + Rf)3

ω3
t

− 1.

Notice F(f) automatically has zero integral. We restrict attention to the open subset

U =

{

f ∈ C0,α
δ−2,τ−2,t(X) :

∫

X
fω3

t = 0, ‖f‖C0,α
0,0,t(X) < ǫ4

}

⊂ C0,α
δ−2,τ−2,t(X)

where ǫ4 ≪ 1 is a small constant independent of t, and we separate F into the
linearisation and the nonlinearity,

F(f) = Trωt
Rf + Q(f) = f + Q(f).

Here Q(0) = 0. The equation (35) can be cast in the form of a fixed point equation

f =
−ft

1 + ft
− Q(f).

Using the basic numerical properties of the weights, for u, v ∈ U , the nonlinearity
Q satisfies

‖Q(u) − Q(v)‖C0,α
δ−2,τ−2,t(X) ≤ C(‖u‖C0,α

0,0,t(X) + ‖v‖C0,α
0,0,t(X)) ‖u − v‖C0,α

δ−2,τ−2,t(X)

≤ Cǫ4 ‖u − v‖C0,α
δ−2,τ−2,t(X)

≤ 1

2
‖u − v‖C0,α

δ−2,τ−2,t(X) .

The contraction property in the last step can be ensured by choosing ǫ4 sufficiently
small. On the other hand, our volume error estimate (24) reads

‖ft‖C0,α
δ−2,τ−2,t(X) ≤ Ct

23

60
+ 1

20
δ,

which implies by the numerical properties of the weights, that
∥

∥

∥

∥

−ft

1 + ft

∥

∥

∥

∥

C0,α
δ−2,τ−2,t(X)

≤ Ct
23

60
+ 1

20
δ,

∥

∥

∥

∥

−ft

1 + ft

∥

∥

∥

∥

C0,α
0,0,t(X)

≤ Ct
13

60
δ+ 1

20 ≪ ǫ4.

The Banach fixed point theorem then yields a solution f ∈ U to equation (35) with
estimates, as required. ⊓⊔
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Remark 22. A particular consequence of our bound is

|ω̃t − ωt|ωt
≤ C(δ)t

1

20
+ 13

60
δ, − 3

13
< δ < 0.

Notice that the exponent 0 < 1
20 + 13

60δ < 1
20 is rather small, which indicates that our

metric ansatz ωt is a rather coarse approximation. Our gluing construction is only
made possible because of the optimal nature of the linear theory.

We now sketch the proof of Theorem 1.1 and 1.2 , which are immediate conse-
quences of the main gluing theorem 4.1.

Proof. By construction ωt is C0 close to the product metric G∗
0(ωSRF |X0

+
A0

t

√
−1dy ∧ dȳ) in the region {r > t1/10 + t1/12ρ′1/6, |y| < t

6

14+τ }, with error sup-

pressed by a power of t. The region {r < t1/10 +t1/12ρ′1/6, |y| < t
6

14+τ } is negligible in

the GH convergence because every point is within ω̃t distance t
1

14+τ to the previous

region. The region {|y| > t
6

14+τ } is invisible to the pointed GH limit because its

ω̃t-distance to the nodal point is of order O(t
−(2+τ)

2(14+τ) ), which diverges to infinity. Thus
the pointed GH limit of ω̃t is X0 ×C with the product metric, proving Theorem 1.1.

On any fixed Euclidean ball inside F−1
t (U1) ⊂ C3 centred at the origin (cf. Sec-

tion 2.3 for notation), the metric ansatz has the asymptotic formula ωt ∼ ( t
2A0

)1/3ωC3

as t → 0, so Theorem 4.1 easily implies Theorem 1.2 as well. ⊓⊔

Remark 23. As a digression, the exponential localising property discussed in Sec-
tion 3.4 implies that the CY metric near a smooth fibre is locally determined up
to exponentially small corrections from the rest of the manifold, and in particular
receives almost no correction effect from the initial errors supported near the sin-
gular fibre. Thus contrary to the low global regularity of our metric ansatz ωt, the
actual CY metric ω̃t may have much better regularity near a given smooth fibre,
such as admitting a formal power series expansion in t similar to the work of J. Fine
[Fin04]. It is interesting to compare this observation with the very recent work of
Hein and Tosatti [HT18].

4.2 Open directions. In this section we speculate how this work may be gen-
eralised, in the direction of describing collapsing CY metrics ω̃t on more complicated
fibrations π : X → Y over a 1-dimensional base Y , where [ω̃t] lies in the Kähler class
[ωX + 1

t ωY ], and 0 < t ≪ 1. To begin with, we point out that our gluing construction
depends essentially on the fact that all fibres admit (possibly singular) Calabi–Yau
metrics, and on the existence of the model CY metric ωC3 on C3, which fits well
with the singularity in the fibration π. The 1-dimensional base assumption is also
essential because much less is known about the generalised KE metrics on Y for
higher dimensions.

Following the papers [CR17, Szé17] a large class of examples of complete CY
metrics on Cn are now known, which generalise the model metric ωC3 . In particular,
on the total space of the standard higher dimensional Lefschetz fibration f : Cn → C
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where f =
∑

z2
i , there is a complete CY metric ωCn , whose asymptotic behaviour

at infinity approximates the semi-Ricci-flat metric on Cn, namely that in the fibre
direction it approximates the Stenzel metrics on the fibres, and in the horizontal
direction it is predominantly the pullback of the Euclidean metric on the base.

Now suppose a projective CY manifold X admits a Lefschetz fibration π : X →
Y , where the fibres have complex dimension at least 3. By adjunction, the fibres are
Calabi–Yau varieties in their own right, and admit (possibly singular) Calabi–Yau
metrics. The result of Hein and Sun [HS17] says in particular that the CY metrics
on the singular fibres are modelled on the Stenzel metric near the nodal point,
with polynomial rate of convergence. By standard gluing argument, the CY metrics
on the smoothing fibres are modelled on the stenzel metric in the region close to
the vanishing cycles. Thus it seems very plausible that the collapsing metric ω̃t is
obtained by gluing a suitably scaled copy of ωCn to a suitably regularised version
of the semi-Ricci-flat metric on X. It is also conceivable to extend this picture to
more complicated fibrations with isolated critical points, using the model metrics
provided by [CR17, Szé17].

In a slightly different vein, the strategy of producing complete CY metrics in
[CR17, Szé17] does not depend in an essential way on the ambient manifold being
Cn. To give a special interesting example to indicate the possible generalisation, it is
a folklore speculation that there may be a non-standard complete CY metric ωQǫ

on
the affine quadric Qǫ = {ζ2

1 + ζ2
2 + ζ2

3 + ζ2
4 = ǫ2}, which admits a Lefschetz fibration

by projecting to the first coordinate

f : Qǫ → C, (ζ1, ζ2, ζ3, ζ4) �→ ζ1.

There are exactly two singular fibres, corresponding to ζ1 = ±ǫ. The expected
behaviour is that asymptotically near infinity ωQǫ

looks like the semi-Ricci-flat met-
ric on Qǫ, namely that restricted to the fibres it approximates the Eguchi–Hanson
metrics on the fibres, and in the horizontal direction it is dominated by the pullback

of the Euclidean metric
√

−1
2 dζ1 ∧dζ̄1; in particular ωQǫ

has maximal volume growth
rate and tangent cone C2/Z2 × C at spatial infinity. As ǫ → 0, it is expected that
ωQǫ

converges to a CY metric ωQ0
on the conifold Q0, with local tangent cone at

the origin isometric to the Stenzel cone, and tangent cone at infinity isometric to
C2/Z2 × C. This would be one of the simplest examples of such conjectural transi-
tion behaviours between different Calabi–Yau cones. Alternatively, these ωQǫ

can be
regarded as a family of metrics on the fixed complex manifold Q1, by changing the
relative size of the fibre compared to the base, much like our setup in the compact
case.

Now the relevance of ωQǫ
to the collapsing metrics comes in when we ‘collide

two singular fibres’. More formally, let Xǫ be a polarised family of projective CY
3-folds admitting Lefschetz K3 fibrations over Y = P1, such that in a neighbour-
hood containing two critical points, the fibration is modelled by f : Qǫ → C. The
collapsing CY metric ω̃t,ǫ depends on both the small collapsing parameter t and the
small degeneration parameter ǫ in the picture.
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• When ǫ > 0 is fixed and t → 0, the situation is a collapsing Lefschetz K3
fibration, covered by the gluing construction in this paper. The ω̃t,ǫ distance
between the two nearby singular fibres is of order O(ǫt−1/2). The quantisation
scale, namely the ω̃t,ǫ-length scale of the C3 bubble embedded in Xǫ, is of order
O(( t

A0
)1/6). To understand how A0 depends on ǫ, we notice that for ζ1 very

close to ǫ, the Lefschetz fibration is approximately

y = −2ǫ(ζ1 − ǫ) = ζ2
2 + ζ2

3 + ζ2
4 ,

which means

A0 ∼
∫

Xy=0

Ω0 ∧ Ω0 ∼
∫

Xy=0

Ω ∧ Ω

dy ∧ dȳ
∼ 1

ǫ2

∫

Xy=0

Ω ∧ Ω

dζ1 ∧ dζ̄1
∼ O

(

1

ǫ2

)

.

Hence the quantisation scale is O(t1/6ǫ1/3).
• When we descrease ǫ until ǫ ∼ t, then O(ǫt−1/2) = O(t1/6ǫ1/3) = O(t1/2),

namely the quantisation scale is comparable to the ωt,ǫ-distance between the
two critical points, so the interaction between the two C3 bubbles become
significant. On the other hand, if we substitute ζi = ǫζ ′

i, and scale the metric
by a factor t−1 so that the distance scale becomes of order 1, then as t ∼ ǫ → 0
we expect to see a blow up limit complex analytically isomorphic to Q1, which
is up to some scaling factor isometric to some member of the family of model
metrics on Q1.

• When ǫ = 0, the CY manifolds develop a local conical singularity, and by Hein
and Sun’s result the CY metric ω̃t,0 is locally modelled on the Stenzel cone,
at least on some extremely small scale. When ǫ ≪ t, the effect of collapsing
is insignificant in a very small region near the conical point, and one sees the
usual behaviour of the smoothing of the conical singularity.

These discussions are meant to suggest that there is a numerous supply of non-
compact complete CY metrics associated to a fibration structure, and these examples
are intimately tied to the local behaviour of collapsing metrics on compact CY
manifolds admitting fibration structures.
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