
A Goal Modeling Framework for Self-Contextualizable
Software

Raian Ali, Fabiano Dalpiaz and Paolo Giorgini

University of Trento - DISI, 38100, Povo, Trento, Italy
{raian.ali, fabiano.dalpiaz, paolo.giorgini}@disi.unitn.it

Abstract. Self-contextualizability refers to the system ability to autonomously
adapt its behaviour to context in order to maintain its objectives satisfied. In this
paper, we propose a modeling framework to deal with self-contextualizability
at the requirements level. We use Tropos goal models to express requirements;
we provide constructs to analyse and represent context at each variation point
of the goal model; and we exploit the goal and context analysis to define how
the system satisfies its requirements in different contexts. Tropos goal analysis
provides constructs to hierarchically analyse goals and discover alternative sets
of tasks the system can execute to satisfy goals; our framework extends Tropos
goal model by considering context at its variation points, and provides constructs
to hierarchically analyse context and discover alternative sets of facts the system
has to monitor to verify a context. A self-contextualizable promotion information
system scenario is used to illustrate our approach.

Key words: GORE, Context Analysis, Self-Contextualization

1 Introduction

There is a continuous need for systems that are adaptive and have a degree of autonomy
to take decisions by themselves with the minimum intervention of users or designers.
As a baseline, we need to identify the parameters that stimulate the need for changing
the system behavior, what choices the system has that reflect to each range of param-
eters, and how to select between choices when more than one are possible. Context,
the reification of the environment in which the system is supposed to operate [1], has
been considered as a main stimulus for system behavior changes, but still there is a lack
of research that involves context with requirements. The relation between context and
requirements is tight; context can influence the requirements set, the choices to satisfy
a requirement, and the quality of each choice.

Goal analysis (i* [2], Tropos [3], and KAOS [4]) provides a way to analyse high
level goals and to discover and represent alternative sets of tasks that can be adopted to
achieve such goals. Goal models – a mainstream technique in requirements engineering
– are used to represent the rationale of both humans and software systems, and help
for representing software design alternatives. These features are also important for self-
contextualizable software that must allow for alternatives and have a rationale to reflect
users and software adaptation to context for adopting one useful execution course [5].

2 Raian Ali, Fabiano Dalpiaz and Paolo Giorgini

From a goal-oriented perspective, a self-contextualizable software is assigned a set
of goals and has to keep them satisfied in different contexts. Context is out of the con-
trol of the system, and we do not expect it to adapt to software; rather, we can build
software that adapts to context. Moreover, context may influence not only the software
behaviour, but also the behaviour and possible choices of users. Therefore, the software
should reflect users adaptation to the variable context to effectively satisfy users expec-
tations. For example, hotel reservation is a common goal for travelers, while reservation
procedures can differ from one hotel to another, and the same hotel can have distinct
procedures each applying to a specific type of customers.

In our previous work [6, 7, 8], a modeling and reasoning framework has been pre-
sented to tackle some research challenges concerning mobile information systems pre-
sented in [9]. The main idea was to associate location (environmental or contextual)
properties to the variation points of the goal model, and then to extract a location model
from such properties. In that work, location properties are defined without further anal-
ysis, i.e. specified in one step as one monolithic block. We believe that a hierarchical
analysis and representation of location properties would help for having more under-
standable, modifiable, and reusable specifications. There is also a need for analysing
the domain of discourse1 of goals and location properties to express explicitly the ele-
ments each goal and location property concern. Moreover, modeling the adaptable task
execution workflow according to location is still missing.

In this paper, we extend the modeling framework proposed in [6, 7, 8] trying to
overcome its mentioned limitations. We use goal analysis in conjunction with our pro-
posed context analysis to build self-contextualizable goal models2. We provide con-
structs to hierarchically analyse context so to identify the verifiable facts and the mon-
itorable data (i.e., we specify the monitoring requirements). We also identify and il-
lustrate how to create self-contextualizable execution workflow from the resulted goal
model, and discuss the utilization of the overall framework.

The rest of this paper is structured as follows. In section 2, we overview Tropos
goal modeling. In section 3, we explain our proposed framework, defining the goal
model variation points, the context analysis constructs, the self-contextual workflow,
and discussing the utilization of the overall framework. We discuss the related work in
section 4, and we conclude and discuss our future work in section 5.

2 Tropos Goal Modeling: Overview

Goal analysis represents a paradigmatic shift with respect to object-oriented analysis.
While object-oriented analysis fits well to the late stages of requirement analysis, the
goal-oriented analysis is more natural for the earlier stages where the organizational
goals are analysed to identify and justify software requirements and position them
within the organizational system [10]. Tropos goal analysis projects the system as a
1 Domain (or universe) of discourse refers to the part of the world under discussion.
2 Although the term “location” was used as a synonym of “context”, we chose to use “context”,

because we realized that it has more common and well-accepted definition that also fits to what
we meant by “location”.

A Goal Modeling Framework for Self-Contextualizable Software 3

set of interdependent actors, each having its own strategic interests (goals). Goals are
analysed, iteratively and in a top-down way, to identify the more specific sub-goals
needed for satisfying that upper-level goals. Goals can be ultimately satisfied by means
of specific executable processes (tasks).

In Fig.1, we show a partial Tropos goal model to clarify our goal analysis main
concepts. Actors (Customer IS and Mall Website) have a set of top-level goals (pro-
vide information to customer), which are iteratively decomposed into subgoals by
and-decomposition (all subgoals should be achieved to fulfil the top goal) and or-
decomposition (at least one subgoal should be achieved to fulfil the top goal). The goal
provide information to customer is and-decomposed into establish network connection,
get product identifier, and provide answer; the goal provide answer is or-decomposed
into query mall database and get answer through website. Goals are finally satisfied by
means of executable tasks; the goal “get product identifier” can be reached by one of
the tasks “read RFID tag”, “read barcode”, “let customer type product ID”.

Mall
Website

get product
identifier

provide information to
customer

provide
answer

establish network
connection

get answer
through website

query mall
database

and

customer
types

product ID

or
read RFID

tag

read
barcode

-

Goal Task

Actor

Actor

boundary

Softgoal

Means-ends

link

Decomposition

link

Dependency

link

Legend

establish wireless
connection

establish wired
connection

easy
connection

reliable
connection +/-

Contribution

link

+

-

+

or

Custom
er IS

Fig. 1. Tropos goal model example.

A dependency indicates that an actor (depender) depends on another actor (de-
pendee) to attain a goal or to execute a task: the actor Customer IS depends on the actor
Mall Website for achieving the goal get answer through website. Soft-goals are quali-
tative objectives for whose satisfaction there is no clear cut criteria (easy connection is
a rather vague objective), and they can be contributed either positively or negatively by
goals and tasks: establish wireless connection contributes positively to easy connection,
while establish wired connection contributes negatively to easy connection.

Goal analysis allows for different alternatives to satisfy a goal, but does not specify
when each alternative can be adopted. Supporting alternative behaviours without spec-
ifying when to follow each of them rises the question “why does the software support
alternative behaviours and not just one?”. On the other side, the consideration of differ-
ent contexts the software has to adapt to, without supporting alternative behaviours rises
the question “what can the software do if context changes?”. Analysing the different
alternatives for satisfying a goal, and specifying the relation between each alternative
and the corresponding context justify both alternatives and context, and help for having
a self-contextualizable software.

4 Raian Ali, Fabiano Dalpiaz and Paolo Giorgini

3 Self-Contextualizable Software Modeling Framework

Fig. 2 represents a goal model for a promotion information system that is intended to
interact with customers and sales staff, through their PDAs, in order to promote products
in different ways. To make it self-contextualizable, we need to explicitly represent the
relation between these alternatives and context. Contexts, labeled by C1..C12 in the
figure, might be related to the following categories of the goal model variation points:

by offering discount
on [p] to [c]

promote product [p] to
customer [c] in mall [m]

by giving free
sample of [p] to [c]

by cross-selling
[p] to [c]

deliver [p]
sample to [c] by
sales staff [ss]

[c] gets [p]
sample of

machine [mc]

[c] arrives to
[mc]

or

show [p] demo
to persuade [c]

show [p]
place to [c]

make & show [p]
discount to [c]

make & give
[p] discount
code to [c]

discount [p]
to [c]

and

or

[c] knows
about [p] [c] allowed to

get [p] sample
from[mc]

show [p]
features to [c]

and

[c] confirms [p]
sample offer

get [c]
confirmation by

voice recognition get [c]
confirmation
by clicking

generate & give
authentication

code on [p] to [c]

trace&
instruct [c]

to [mc]
show path to

[mc]on [m] map

persuade and
inform [c] about

[p]

and

guide [ss] to
[c] place

and

[ss] delivers [p]
sample to [c]

notify [ss]
by vibration

notify [ss]
by voice

command

show [c]
place to

[ss]

show [c]
picture to

[ss]

and

[ss] is
notified [ss] meets [c]

Sales
Staff IS

C1

C2 C4

C7

C5

C9 C10

C8

C3

C6

Customer
IS

C11 ¬C11

C12

Fig. 2. The parametrized goal model with the variation points annotation.

1. Or-decomposition: Or-decomposition is the basic variability construct, we still need
to specify in which context each alternative in an Or-decomposition can be adopted.
E.g. “promoting the product by cross-selling” can be adopted when the product can
be used with another product the customer already has (C2), while “promoting by
offering discount” is adopted when product is discountable and interesting to the
customer (C3), and “promoting by free sample” can be adopted when product is
free sampled and new to the customer (C4). The alternative “get free sample from
a machine” can be adopted when customer has experience with such machines and
can reach the machine and start to use it in a little time (C5).

2. Actors dependency: in some contexts, an actor might attain a goal / get a task ex-
ecuted by delegating it to another actor. E.g. the customer information system can
satisfy the goal “deliver a sample of the product to customer by sales staff” by del-
egating it to the sales staff information system, when the corresponding sales staff
is free, speaks a language common to the customer, has sufficient knowledge about
the product, and is close enough to the customer (C6).

A Goal Modeling Framework for Self-Contextualizable Software 5

3. Goal/Task activation: an actor, and depending on the context, might find necessary
or possible triggering (or stopping) the desire of satisfying a goal/ executing a task.
E.g. to initiate the goal “promote product to customer in mall”, there should be
enough time to accomplish the promotion, the customer is not in a hurry or has to
work, and the customer did not recently buy the product and does not have it in
his/her shopping cart (C1).

4. And-decomposition: a sub-goal / sub-task might (or might not) be needed in a cer-
tain context, that is some sub-goals / sub-tasks are not always mandatory to fulfil
the top-level goal / task in And-decomposition. E.g. the sub-task “show customer
current place to sales staff” is not needed if the customer stays around and can be
seen directly by the sales staff (C12).

5. Means-end: goals can be ultimately satisfied by means of specific executable pro-
cesses (tasks). The adoption of each task might depend on the context. E.g. “get
customer confirmation by voice recognition” can be adopted when the customer
place is not noisy, and the system is trained enough on the customer voice (C7),
while the alternative “get customer confirmation by clicking” can be adopted when
the customer has a good level of expertise with regards to using technology and a
good control on his fingers, and the used device has a touch screen (C8). The task
“show path to sample machine on the mall e-map” is adopted when customer can
arrive easily to that machine (C9), while “trace and instruct customer to sample
machine” task is adopted when the path is complex (C10). The task “notify by vi-
bration” can be adopted when sales staff is using his PDA for calling (C11), while
”notify by headphone voice command” is adopted in the other case (¬C11).

6. Contribution to soft-goals3: the contributions to the softgoals can vary from one
context to another. We need to specify the relation between the context and the
value of the contribution. E.g. the goal “establish wireless connection” contributes
differently to the softgoal “reliable connection” according to the distance between
the customer’s device and the wireless access point.

We need to analyse context to discover, represent, and agree on how it can be ver-
ified. Differently from the other research in context modeling (for a survey see [11]),
we do not provide an ontology or a modeling language for representing context, but
modeling constructs to hierarchically analyse context. Moreover, and in order to keep
the link between the domain of discourse (i.e. the elements of the environment under
discussion) between goal and context analysis, we propose parametrizing the goal and
context models. Deciding the parameters is not straightforward and we might need sev-
eral iterations to settle the final set of parameters.

Taking the parametrized goal “by offering discount on product [p] to customer [c]
in mall [m]”, the analysis of its context (C3), and the data conceptual model that the
analyst could elicit from the leaf facts are shown in Fig. 3. Each leaf of the context
analysis hierarchy represents an atomic fact that is verifiable on a fragment of the data
conceptual model that the monitoring system has to instantiate.
3 In the rest of this paper, we do not consider softgoals and contextual contribution.

6 Raian Ali, Fabiano Dalpiaz and Paolo Giorgini

MC3

Mall Store

ProductRegion

has

exist_in

contains

+quantity

End_Season

+start_date

+end_date

Customer Position

+x

+y

+floor

in

Category

belongs_to

Area

Is_At

+at_Time

Bought

+at_Time

Touched

+start_time

+end_time

located_at

Fact Decomposition linkStatement Help link

Legend

Fig. 3. The statement analysis for C3 and the correspondent data conceptual model MC3.

3.1 Context Analysis Constructs

We provide a set of constructs to analyse high-level contexts and elicit the atomic facts
that are verifiable on monitorable data. Context, the reification of the environment sur-
rounding a system, can be monitored but not controlled by the system itself [1]. Under
this assumption, systems cannot change the context but should adapt to it for satisfying
their objectives.

Definition 1 (Fact) a boolean predicate specifying a current or a previous context,
whose truth value can be computed objectively.

The objective method to compute a fact truth value requires monitoring some charac-
teristics and history of a set of relevant environment elements. Facts are graphically
represented as parallelograms as in Fig.3. Examples of facts are the following:

– “customer recently bought the product from the mall”: to compute the truth value of
this fact, the system can check the purchase history of the customer since a number
x of days ago.

– “two products are usually sold together”: the system can check the sales record of
all customers and check if the two products p1 and p2 are often sold together.

– “product is not in the shopping cart of the customer”: the system can use an RFID
reader in the cart to check if the product (identified by its RFID tag) is in the cart of
the customer.

Definition 2 (Statement) a boolean predicate specifying a current or a previous con-
text, whose truth value cannot be computed objectively.

Statement verification could not be objectively done because the system is not able to
monitor and get all the data needed to compute the truth value of a statement, or because
there could be no consensus about the way of knowing the truth value of a statement.
Anyhow, to handle such problem we adopt a relaxed confirmation relation between
facts, which are objectively computable by definition, and statements, in order to assign
truth values to statements. We call this relation “help” and define it as following:

Definition 3 (Help) Let f be a fact, s be a statement. help(f, s) ⇐⇒ f → s

A Goal Modeling Framework for Self-Contextualizable Software 7

The relation help is strongly subjective, since different stakeholders could define differ-
ent help relations for the same statement, i.e. one stakeholder could say help(f1, s) ∧
help(f2, s), whereas another one could say help(f2, s) ∧ help(f3, s). Statements are
graphically represented as shadowed rectangles, and the relation help is graphically
represented as a filled-end arrow between a fact and a related statement as in Fig.3.
Examples of statements and help relations are the following:

– “customer does not have the product”: is a statement since the system cannot objec-
tively compute its truth value. The system can get some evidence of this statement
verifying two facts: “customer did not buy the product from the mall recently”, and
“the product is not in the cart of the customer”, but these facts do not ensure that
the customer does not have the product (e.g. the system cannot verify if the customer
was given the product as a gift).

– “customer is interested in the product”: is a statement that different stakeholders
would define differently how we can get an evidence about it. Moreover, to verify
it, the stakeholder might state a variety of other conditions which are not necessar-
ily computable due to the lack of some necessary data the system cannot monitor.
However, we might relax this problem using the help relation; a possible solution
is to specify several facts that help the verification of the statement like following:
“customer buys the product periodically”, “customer buys usually from the product
category”, “customer often comes to the product area”, or “customer holds recently
the product for long time”.

Definition 4 (And-decomposition) Let {s, s1, . . . , sn}, n ≥ 2 be statements (facts).
and decomposed(s, {s1, . . . , sn}) ⇐⇒ s1 ∧ . . . ∧ sn → s

Definition 5 (Or-decomposition) Let {s, s1, . . . , sn}, n ≥ 2 be statements (facts).
or decomposed(s, {s1, . . . , sn}) ⇐⇒ ∀i ∈ {1, . . . , n}, si → s

Decomposition is graphically represented as a set of directed arrows from the sub-
statements (sub-facts) to the decomposed statement (fact) and annotated by the label
And or Or. Examples of decompositions are the following:

– “customer is interested in the product” is a statement verified if the sub-statements
“customer is historically interested in the product” or “customer is behaviourally
interested in the product” are verified.

– “customer did not get the product from the mall recently” is a fact that is verified if
the sub-fact “customer does not have the product in his/her cart” and the sub-fact
“the customer did not buy the product from the mall recently” is true.

As discussed in [1], context is a reification of the environment that is whatever
in the world provides a surrounding in which the system is supposed to operate. Each
single fact and statement is a context, and our proposed reification hierarchy relates dif-
ferent subcontexts into one more abstract. Moreover, by considering that context is the
reification of the environment, our context analysis is motivated by the need for con-
structs to analyse context to discover by the end the relevant atomic data that represent
that environment, i.e. the data the system has to monitor.

8 Raian Ali, Fabiano Dalpiaz and Paolo Giorgini

3.2 From Goals to Self-Contextualizable Workflow

Specifying the relation between context and goal alternatives is not enough to define
how self-contextualizable software will execute tasks to achieve goals depending on
the context. In order to handle this issue, two questions should be answered:

1. How are goals / tasks sequentialized?. For example, if the achievement of a goal g
requires the execution of t1∧ t2, we have to specify if t1 is executed before or after
or in parallel with t2.

2. How does the system choose between alternatives when more than one are adopt-
able?. For example, if a goal g can be reached through g1∨ g2, we need to specify
which one to follow. The intervention of stakeholders is required to prioritize alter-
natives along the goal hierarchy (for goals and tasks) to face cases where multiple
options are possible in some contexts.

A possible self-contextualizable goal achievement workflow is shown in the activity
diagram of Fig. 4. We have used activities to represent the tasks of the goal model of
Fig. 2. The context of the alternative with the highest priority is evaluated first, and if
it is confirmed that alternative is selected and carried out (even if other alternatives are
also applicable). In our example, stakeholders stated that the priority for the alternative
“promotion by cross-selling” is higher than the priority of the alternative “promotion by
free sample”, whose priority is in turn higher than that of “promotion by discounting”
alternative. Our depicted workflow reflects such prioritization – and also other priori-
tization on the other sets of sub-alternatives – by evaluating the contexts associated to
the alternative with a higher priority first.

[C1*]

[not C1*]

[C2]

[not C2]

[C4*] [C5*]

[C7]

[not C7]

[not C4*]

[not C5*]

show product demo to
persuade customer

show product place to
customer

show product
features to
customer

get customer
confirmation by

voice recognition

get customer
confirmation by

clicking

generate and give
authentication code

make & show product
discount to customer

make & give product
discount code to customer

[not C11]

notify sales staff by
PDA vibration

[C11]

notify sales staff by
voice command

[not C12] show customer
picture to sales

staff

show customer
place to sales staff

[C12]

show path to
machine on mall

map

trace & instruct
customer to

machine

[not C9]

[C9]

Fig. 4. A possible self-contextualizable goal achievement workflow.

Fig. 4 introduces an additional concern, that is the accumulation of context at each
variation point. Looking at Fig 2, we highlight that the confirmation of C1 is not suf-
ficient to assure the existence of a workflow for the achievement of the top-level goal.
For example, if C2-C3-C4 are all false, no task execution workflow is possible. Thus,
finding an alternative for the top-level goal “promote product [p] to customer [c] in
mall [m]” needs checking C1∗, defined as follows:

A Goal Modeling Framework for Self-Contextualizable Software 9

C1∗ = C1 ∧ (C2 ∨ C3 ∨ C4∗)
C4∗ = C4 ∧ (C5∗ ∨ C6∗)
C6∗ = C6 ∧ (C11 ∨ ¬C11) ∧ (C12 ∨ ¬C12) = C6
C5∗ = C5 ∧ (C7 ∨ C8) ∧ (C9 ∨ C10)

In order to evaluate the applicability of the alternative goal “customer [c] gets prod-
uct [p] free sample from a dedicated machine [mc]”, we have to check the accumulated
context C5∗, evaluating both C5 and the contexts that are lower in the goal model hi-
erarchy: (C7 or C8) and (C9 or C10). If C5∗ is false, this means that no satisfaction
alternative for the considered goal can be adopted.

3.3 Framework Utilization

Contextualization: the decomposition of the system into the functional part captured
by goal model and the monitoring part that is captured by context analysis, and the
association between variation points of goal model and the analysed context allow for
a systematic contextualization of the software at the goal level of abstraction. All the
functionalities needed by the alternative execution courses to satisfy goals has to be
developed and then the contextualization has to be done. Contextualization can be done
at two different times:

– contextualization at deployment time: when deploying the software to one specific en-
vironment, and when we know a priori some contexts that never change in that envi-
ronment, we can consequently exclude from the deployed software some alternative
sets of functionality that are never applied at that environment, as such functionalities
will be never used and redundant. E.g. if the software is going to be deployed in a
mall where the noise level is always high due to the nature of that mall (for instance,
the mall is located in an open area, or the mall sells products of a specific nature), the
context C7 will never, or rarely, be satisfied, and therefore the deployed software for
that mall can exclude the functionality of voice recognition as a way of interaction
with customer.

– contextualization at runtime: some other contexts are highly variable and should be
monitored at runtime to know what behaviour to adopt. Consequently, the software
has to monitor context, instantiating the monitoring data conceptual model, validat-
ing facts and inferring statements assigned to the variation points, and then adopt
the suitable software alternative course of execution. E.g. the distance between cus-
tomer and the self-service machine is a context which has always different values,
and whether the software has to guide the customer to the machine using the al-
ternative functionality “trace and instruct customer to machine”, or “show path to
machine on the mall map” depends on the actual value of this variable distance.

Capturing and justifying monitoring requirements: our framework uses goal anal-
ysis in conjunction with context analysis to reduce the gap between the variability of
software, at the goal level, and the variability of context, and helps for identifying and
justifying both the functional and the monitoring software requirements. While goal
analysis helps to elicit and justify each software functionality and to position it within
the set of the organizational goals, the context analysis we propose, helps to elicit and

10 Raian Ali, Fabiano Dalpiaz and Paolo Giorgini

justify the data the system has to monitor. The system has to monitor data to validate
leaf facts so to confirm top level facts or statements that are used to decide which alter-
native to adopt for satisfying some organizational goal.

Reusability and scalability: systems change continuously; managing evolution is a
hard task that is highly expensive and error-prone. Structuring the software functional
requirements using the hierarchy of goal model and the monitoring requirements using
the hierarchy of context analysis makes it more feasible to modify, extend, and /or reuse
the software for another evolution of the system to operate in a new context or/and for a
different group of stakeholders. The same goal model, or parts of it – and hence the same
software functionality – can be contextualized differently by different stakeholders. We
might need only to change the statements at each variation point, which might influence
the data to be monitored.

The hierarchical context analysis has the potential to make a context (i) more under-
standable for the stakeholders, (ii) easily modifiable as it is not given as one monolithic
block, and (iii) more reusable as parts of the statement analysis hierarchy can be also
used for other variation points or other stakeholders context specifications. Specifying
for each fact the related fragments of the data conceptual model is useful for purpose of
tracking. For example, if for some reason, a group of stakeholders decided to drop, to
alter, or to reuse one alternative, statement, or fact, we still can track which fragments
in the conceptual data model could be influenced.

MC3'

Mall

ProductRegion

exist_in

End_Season

+start_date

+end_date

Customer Position

+x

+y

+floor

in

Category

belongs_to

Area

Is_At

+at_Time

Bought

+at_Time

Touched

+start_time

+end_time

located_at

C3'

Fig. 5. The modified context C3′ and the correspondent modified data model MC3′.

For example, a certain mall administration could decide that to promote by offering
discount, it is not requested that “few pieces of the product left”, and it is, instead,
requested that the fact “[p] sales < 60 percent of the [p] historical sales average for
the last 15 days” is true. In this new context specification (C3′), one part of C3 is
deleted, one is reused, and another is added as shown in Fig. 5. Removing the fact “few
pieces of product[p] remained”, leads to remove the corresponding data conceptual
model fragments (the class store, and the association class contain). To verify the new
fact, the system needs the sales records that are already represented in the data model
fragment MC3. Therefore, the new data conceptual model for C3′ will be like shown
in Fig. 5.

A Goal Modeling Framework for Self-Contextualizable Software 11

4 Related Work

The research in context modeling, (e.g. [12]), concerns finding modeling constructs to
represent software and user context, but there is still a gap between the context model
and software behaviour model, i.e. between context and its use. We tried to reduce
such gap and to allow for answering questions like: “how do we decide the relevant
context?”, “why do we need context?” and “how does context influence software and
user behaviour adaptation?”. Modeling context information should not be done as a
standalone activity; context should be defined jointly with the analysis we do for dis-
covering the alternative software behaviours. Salifu et al. [13] investigate the use of
problem descriptions to represent and analyse variability in context-aware software; the
work recognizes the link between software requirements and context information as a
basic step to design context aware systems.

Software variability modeling, mainly feature models [14, 15], concerns modeling
a variety of possible configurations of the software functionalities to allow for a sys-
tematic way of tailoring a product upon stakeholders choices, but there is still a gap
between each functionality and the context where this functionality can or has to be
adopted, the problem we tried to solve at the goal level. Furthermore, our work is in
line, and has the potential to be integrated, with the work in [16] and the FARE method
proposed in [17] that show possible ways to integrate features with domain goals and
knowledge to help for eliciting and justifying features.

Requirements monitoring is about insertion of a code into a running system to gather
information, mainly about the computational performance, and reason if the running
system is always meeting its design objectives, and reconcile the system behaviour to
them if a deviation occurs [5]. The objective is to have a more robust, maintainable,
and self-evolving systems. In [18], a GORE (goal-oriented requirements engineering)
framework KAOS [4] was integrated with an event-monitoring system (FLEA [19]) to
provide an architecture that enables the runtime automated reconciliation between sys-
tem goals and system behaviour with respect to a priori anticipated or evolving changes
of the system environment. Differently, we propose model-driven framework that con-
cerns an earlier stage, i.e. requirements, with the focus on identifying requirements to-
gether with context, and hierarchically analysing and representing context and eliciting
the monitoring data.

Customizing goal models to fit to user skills and preferences was studied in [20, 21].
The selection between goal satisfaction alternatives is based on one dimension of con-
text, i.e. user skills, related to the executable tasks of the goal hierarchy, and on user
preferences which are expressed over softgoals. Lapouchnian et al. [22] propose tech-
niques to design autonomic software based on an extended goal modeling framework,
but the relation with the context is not focused on. Liaskos et al [23], study the vari-
ability modeling under the requirements engineering perspective and propose a clas-
sification of the intentional variability when Or-decomposing a goal. We focused on
context variability, i.e. the unintentional variability, which influences the applicability
and appropriateness of each goal satisfaction alternative.

12 Raian Ali, Fabiano Dalpiaz and Paolo Giorgini

5 Conclusions and Future Work

In this paper, we have proposed a goal-oriented framework for self-contextualizable
software systems. We have used goal models to elicit alternative sets of executable tasks
to satisfy a goal, and we have proposed the association between the alternative software
executions and context. In turn, context is defined through statement analysis that elicits
alternative sets of facts the system has to verify on monitorable data so to confirm the
high level statements. Analysing facts will also lead to identify the data conceptual
model the monitoring system has to instantiate to enable facts verification. Facts are
verified upon the monitorable data to confirm statements that restrict the space of goal
satisfaction alternatives. We have also shown how to construct self-contextualizable
goal execution workflows that allow for the construction of an exact execution course of
tasks to satisfy goals according to the context. Doing this, we specify the requirements
of the monitoring system and the reasoning the system has to do on context to construct,
autonomously, a contextualized goal execution course.

As future work, we will define models covering all development phases of self-
contextualizable software and a process to facilitate the development of high qual-
ity self-contextualizable software. We also want to find a formalization and reasoning
mechanisms that fit well to the modeling framework introduced in this paper. We will
work on more complex case studies in order to better validate our approach. Similarly
to features [24], contexts suffer from interaction problems; for instance, there could
be contexts that contradict with others on one goal satisfaction alternative. Therefore,
supporting tools and reasoning techniques should be proposed to assist the design and
verification of models.

Acknowledgement

This work has been partially funded by EU Commission, through the SERENITY, and
COMPAS projects, and by the PRIN program of MIUR under the MEnSA project. We
would also like to thank Prof. Jaelson Brelaz de Castro for the valuable discussion we
had about this work.

References

1. Finkelstein, A., and Savigni, A.: A framework for requirements engineering for context-aware
services. Proc. 1st Int. Workshop on From Software Requirements to Architectures (STRAW),
2001

2. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. Thesis, University
of Toronto (1995)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Systems
8(3) (2004) 203–236

4. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci-
ence of computer programming 20(1-2) (1993) 3–50

5. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In: Proceedings
of the Second IEEE International Symposium on Requirements Engineering, IEEE Computer
Society Washington, DC, USA (1995) 140

A Goal Modeling Framework for Self-Contextualizable Software 13

6. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based variability for mobile information systems.
In Bellahsene, Z., L-eonard, M., eds.: CAiSE. Volume 5074 of Lecture Notes in Computer
Science., Springer (2008) 575–578

7. Ali, R., Dalpiaz, F., Giorgini, P.: Modeling and analyzing variability for mobile information
systems. In Gervasi, O.,Murgante, B., Lagan‘a,A., Taniar,D., Mun,Y.,Gavrilova, M.L., eds.:
ICCSA (2). Volume 5073 of Lecture Notes in Computer Science., Springer (2008) 291–306

8. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based software modeling and analysis: Tropos-
based approach. In Li, Q., Spaccapietra, S., Yu, E., Oliv-e, A., eds.: ER. Volume 5231 of
Lecture Notes in Computer Science., Springer (2008) 169–182

9. Krogstie, J., Lyytinen, K., Opdahl, A., Pernici, B., Siau, K., Smolander, K.: Research areas and
challenges for mobile information systems. International Journal of Mobile Communications,
Inderscience Publishers Ltd, 2004, 2, 220–234

10. Mylopoulos, J., Chung, L., Yu, E. From object-oriented to goal-oriented requirements anal-
ysis Commun. ACM, ACM, 1999, 42, 31-37

11. Strang, T., Linnhoff-Popien, C. A context modeling survey. Workshop on Advanced Context
Modelling, Reasoning and Management as part of UbiComp, 2004

12. Henricksen, K., Indulska, J.: A software engineering framework for context-aware pervasive
computing. In: Proc. Second IEEE Intl. Conference on Pervasive Computing and Communi-
cations (PerCom-04). (2004) 77

13. Salifu, M., Yu, Y., Nuseibeh, B. Specifying Monitoring and Switching Problems in Context
Proc. 15th Intl. Conference on Requirements Engineering (RE’07), 2007, 211–220

14. Pohl, K., B-ockle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer (2005)

15. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented reuse
method with domain-specific reference architectures. Ann. Softw. Eng. 5 (1998) 143–168

16. Yu, Y., do Prado Leite, J.C.S., Lapouchnian, A., Mylopoulos, J.: Configuring features with
stakeholder goals. In: SAC -08: Proceedings of the 2008 ACM symposium on Applied com-
puting, New York, NY, USA, ACM (2008) 645–649

17. Ramachandran, M., Allen, P.: Commonality and variability analysis in industrial practice for
product line improvement. Software Process: Improvement and Practice 10(1) (2005) 31–40

18. Feather, M. S., Fickas, S., Lamsweerde, A. V., Ponsard, C. Reconciling System Require-
ments and Runtime Behavior. Proceedings of the 9th international workshop on Software
specification and design IWSSD ’98, IEEE Computer Society, 1998, 50

19. Cohen, D., Feather, M. S., Narayanaswamy, K., Fickas, S. S. Automatic monitoring of soft-
ware requirements ICSE ’97: Proceedings of the 19th international conference on Software
engineering, ACM, 1997, 602–603

20. Hui, B., Liaskos, S., Mylopoulos, J.: Requirements analysis for customizable software goals-
skills- preferences framework. In: RE, IEEE Computer Society (2003) 117–126

21. Liaskos, S., McIlraith, S., Mylopoulos, J.: Representing and reasoning with preference re-
quirements using goals. Technical report, Dept. of Computer Science, University of Toronto
(2006) ftp://ftp.cs.toronto.edu/pub/reports/csrg/542.

22. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design of auto-
nomic application software. In: Proc. 2006 conference of the Center for Advanced Studies on
Collaborative research (CASCON -06), ACM (2006) 7

23. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On goal-based variability acqui-
sition and analysis. In: Proc. 14th IEEE Intl. Requirements Engineering Conference (RE-06).
(2006) 76–85

24. Cameron, E.J., Griffeth, N., Lin, Y.-J., Nilson, M.E., Schnure, W.K., Velthuijsen, H.: ”A
feature-interaction benchmark for IN and beyond,” Communications Magazine, IEEE , vol.31,
no.3, pp.64–69, Mar 1993

