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S U M M A R Y

We have developed a novel goal-oriented adaptive mesh refinement approach for finite-element

methods to model plane wave electromagnetic (EM) fields in 3-D earth models based on the

electric field differential equation. To handle complicated models of arbitrary conductivity,

magnetic permeability and dielectric permittivity involving curved boundaries and surface

topography, we employ an unstructured grid approach. The electric field is approximated by

linear curl-conforming shape functions which guarantee the divergence-free condition of the

electric field within each tetrahedron and continuity of the tangential component of the electric

field across the interior boundaries. Based on the non-zero residuals of the approximated

electric field and the yet to be satisfied boundary conditions of continuity of both the normal

component of the total current density and the tangential component of the magnetic field

strength across the interior interfaces, three a-posterior error estimators are proposed as a

means to drive the goal-oriented adaptive refinement procedure. The first a-posterior error

estimator relies on a combination of the residual of the electric field, the discontinuity of the

normal component of the total current density and the discontinuity of the tangential component

of the magnetic field strength across the interior faces shared by tetrahedra. The second a-

posterior error estimator is expressed in terms of the discontinuity of the normal component

of the total current density (conduction plus displacement current). The discontinuity of the

tangential component of the magnetic field forms the third a-posterior error estimator.

Analytical solutions for magnetotelluric (MT) and radiomagnetotelluric (RMT) fields im-

pinging on a homogeneous half-space model are used to test the performances of the newly

developed goal-oriented algorithms using the above three a-posterior error estimators. A

trapezoidal topographical model, using normally incident EM waves at both MT and RMT

frequencies, is adopted to further test the convergence of the newly developed algorithms

against a surface integral approach. Next, the 3D-1 benchmark model from the COMMEMI

project is used to show the efficiency of the goal-oriented adaptive algorithm and to compare

our solutions against volume integral solutions and other finite-element solutions. For all three

test cases, we found that the error estimator using face jumps of normal components of current

density embedded in the goal-oriented adaptive refinement procedure shows the most robust

performance.

Key words: Numerical solutions; Electromagnetic theory; Magnetotelluric; Magnetic and

electrical properties.

1 I N T RO D U C T I O N

During the last few decades, plane wave electromagnetic (EM) in-

duction methods have become more and more popular to study

the deep structure of the Earth utilizing magnetotelluric (MT) ap-

proaches (Chen et al. 1996; Nelson et al. 1996; Berdichevsky &

Dmitriev 2008; Becken et al. 2011) and to investigate the shallow

subsurface in engineering and environmental applications using the

radiomagnetotelluric (RMT) method (Pedersen et al. 2006; Tezkan

& Saraev 2008; Ismail & Pedersen 2011). The EM field charac-

teristics are determined by the medium properties as well as the

frequency. At low frequency, say less than several hundred Hz, the

inductive diffusion behaviour of the EM field is dominant, whereas

at high frequency, say several tens of thousands of Hz, wave propa-

gation becomes dominant in highly resistive environments. There-

fore, the popular practice of directly applying simulation codes
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Adaptive FEM for 3-D EM modelling 701

designed to solve the low-frequency MT problem and ignoring the

propagation behaviour of the EM field at high frequencies, may be

inappropriate (Kalscheuer et al. 2008). Consequently, we have de-

veloped a new modelling code, which can accurately and efficiently

handle both low- and high-frequency situations.

3-D EM modelling is an active research topic in the geophys-

ical community due to its core role in inverting for near-surface

structure using EM data. Typically, the simulation methods can be

divided into four classes: volume integral methods (Raiche 1974;

Hohmann 1975; Weidelt 1975; Avdeev et al. 2002; Farquharson

et al. 2006; Zhdanov et al. 2006), surface integral methods (Parry

& Ward 1971; Doherty 1988; Liu & Becker 1992; Xu et al. 1997;

Liu & Lamontagne 1998; Ren et al. 2013), finite-difference meth-

ods (Mackie et al. 1994; Aprea et al. 1997; Smith 1996; Haber

et al. 2000; Newman & Alumbaugh 2002; Hou et al. 2006; Streich

2009) and finite-element methods (Badea et al. 2001; Mitsuhata

& Uchida 2004; Key & Weiss 2006; Nam et al. 2007). The ad-

vantages and disadvantages of these four methods are compared in

the review papers by Avdeev (2005), Boerner (2010) and Everett

(2011). In this paper, our method of choice is the finite-element

method.

Since the first application of the finite-element method to geoelec-

tromagnetic modelling (Coggon 1971), numerous improvements

and further developments have occurred. These include:

(1) Developing proper differential formulations, such as (i) the

electric field equation (Nam et al. 2007; Farquharson & Miensopust

2011), (ii) the magnetic field equation (Siripunvaraporn et al. 2002;

Franke et al. 2008), (iii) the so-called H − φ formula (Franke et al.

2007) based on the vanishing curl of the magnetic field strength in

the air domain under the low-frequency quasi-static approximation,

(iv) the A − φ formula (Haber et al. 2000; Badea et al. 2001) based

on the vanishing divergence of the magnetic field strength, (v) the

T − � formula (Mitsuhata & Uchida 2004) based on the vanishing

divergence of the total current density, or various combinations of

the above;

(2) Obtaining proper expansion functions, such as nodal-based

scalar shape functions (Mogi 1996) and curl-conforming edge-

based shape functions (Nédélec 1986; Farquharson & Miensopust

2011);

(3) Devising properly discretized meshes, such as structured and

unstructured meshes (Key & Weiss 2006; Franke et al. 2007);

(4) Improving linear equation solvers (Smith 1996) to quickly

and accurately approximate EM fields, such as pre-conditioning

techniques to accelerate the convergence rates of iterative solvers

and parallel techniques (Zyserman & Santos 2000) to improve

solver efficiency;

(5) Finding an optimal distribution of mesh density to improve

the accuracy of numerical solutions at low cost, such as the

newly developed state-of-the-art adaptive mesh refinement tech-

niques based on global a-posterior error estimators (Key & Ovall

2011; Schwarzbach et al. 2011). There are two adaptive refine-

ment approaches, which are the goal-oriented adaptive method

and the non-goal–oriented adaptive approach (Oden & Prudhomme

2001). In contrast to so-called non-goal–oriented adaptive refine-

ment strategies, which use global a-posterior error estimators, goal-

oriented approaches enforce the efficient refinement of the subdo-

main in the area of interest, such as domains including the mea-

surement profile. In addition, it allows for global refinement of

the mesh density if needed. Therefore, the goal-oriented approach

offers an optimal mesh density distribution to ensure accurate

solutions.

In this study, we use the electric field equation and check its

capability for solving the geoelectromagnetic problem over a wide

frequency range. The total electric field is approximated by the low-

est order curl-conforming edge-based shape functions and by using

unstructured tetrahedral meshes. The OpenMP technique (Chandra

2001) is adopted to assemble and solve in parallel the final system of

linear equations. To develop an accurate finite-element code with a

low computation cost, the adaptive refinement technique is adopted

and is further developed. Only in recent years, the benefits of the

adaptive refinement technique were noted by geoelectromagnetic

modelling researchers for 2-D MT problems (Key & Weiss 2006;

Franke et al. 2007) and for 2-D and 2.5-D controlled-source EM

problems (Li & Key 2007; Key & Ovall 2011). The successful ap-

plication of the non-goal–oriented adaptive refinement technique to

3-D controlled-source problems and its performance, were recently

reported by Schwarzbach et al. (2011). In controlled-source EM

problems, the EM field to be approximated around the source is

singular if the total field approach is adopted. If the secondary field

approach is used, the secondary field in and close to anomalous bod-

ies will still be singular. Therefore, global error estimators designed

to decrease the global numerical error and allowing for strongly

singular fields caused by physical sources usually offer reasonable

numerical solutions (Ren & Tang 2010).

For plane wave EM modelling problems solved by the total field

approach where active sources are not considered, it is more efficient

to apply the goal-oriented adaptive refinement technique (Oden

& Prudhomme 2001). The benefits of the goal-oriented approach

have been validated in 2-D and 2.5 D MT and controlled source

electromagnetic (CSEM) problems by several authors (e.g. Key &

Weiss 2006; Li & Key 2007; Key & Ovall 2011), by using the

secondary field approach in which field singularities arise from

anomalous bodies. For 3-D plane wave problems using the total

field approach, large numbers of unknowns are encountered unless

adequate boundary conditions and mesh refinement algorithms are

used. Because both artificial refinement techniques and non-goal–

oriented adaptive approaches (Franke et al. 2007) will lead to dense

meshes in some areas which do not contribute to the accuracy of

the solutions, the necessity of a goal-oriented adaptive approach

becomes more critical.

To drive the goal-oriented adaptive refinement procedure, we pro-

pose three residual-based a-posterior error estimators. Since linear

curl-conforming shape functions are used to solve the curl–curl elec-

tric field equation, the continuity requirements for the normal com-

ponent of the total current density (J) and the tangential component

of the magnetic field (H) across the interior faces cannot be guaran-

teed. In addition, the residuals of the electric field over each tetrahe-

dron do not vanish. Therefore, the first error estimator is based on

a combination of the volume residuals of the electric field, the face

jumps of the normal component of the total current density and the

tangential component of the magnetic field strength. The second er-

ror estimator is based on jumps in the normal component of the total

current density across internal faces, which actually is a measure-

ment of how far the divergence-free condition of the total current

density is fulfilled. The third approach is based on the face jumps of

the tangential component of the magnetic field, which is a measure-

ment of the basic continuity condition for the magnetic field.

To check the performances of the goal-oriented adaptive refine-

ment algorithms, several numerical experiments were conducted.

The numerical experiments not only verify our implementations,

but also demonstrate the advantages of the goal-oriented adaptive

refinement strategy for 3-D plane wave EM modelling problems

over a wide frequency range.
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702 Z. Ren et al.

2 P L A N E WAV E E M I N D U C T I O N

P RO B L E M

2.1 Weak formulation of electric field equation

Plane wave geoelectromagnetic induction problems which arise in

MT and RMT surveying require the solution of the EM responses

in a given bounded computational domain � with known tangential

components of the magnetic field or the electric field on its surface

∂� (see Fig. 1). Inside this bounded domain, the EM fields (E,

H) are controlled by Maxwell’s differential equations (Harrington

2001; Jin 2002; Stratton 2007) which in the frequency domain (for

time harmonic dependence exp −iωt) take the form

∇ × E = −ξH, (1)

∇ × H = χE, (2)

∇ · (Jc + Jd) = 0, (3)

∇ · μH = 0, (4)

where E is the electric field strength (V m−1), H is the magnetic

field strength (A m−1), ξ is the impedivity, ξ = −iωμ, and χ is

the admittivity, χ = σ − iωǫ, μ is the magnetic permeability (V s

A m−1), ǫ is the dielectric permittivity (A s V m−1), ω is angular

frequency in rad s−1, J = χE is the total current density flowing

through the whole domain � including conduction currents (Jc =
σE) and displacement currents (Jd = −iωǫE). The divergence-free

condition for the total current density J in eq. (3) is the continuity

equation in a generalized form.

Eliminating the magnetic field strength from Faraday’s law (eq. 1)

and Ampere’s law (eq. 2), we obtain a curl–curl equation for the

electric field

∇ ×
1

ξ
∇ × E + χE = 0 in the computational domain �. (5)

To guarantee the uniqueness of the electric field E, the known

Neumann type boundary condition (Stratton 2007) for the electric

Figure 1. Illustration of the geometrical domain � (including both air and

Earth) for the electromagnetic induction problem. Here, ∂� is the boundary

and n̂ is its unit normal vector pointing out of �. The subdomain �j contains

the measuring profile on the air–Earth interface and, hence, is the domain of

interest.

field is enforced on the surface ∂� of the computational domain,

which takes the form

− n̂ ×
1

ξ
∇ × E = gt on ∂�, (6)

where n̂ is the outward pointing unit normal vector on ∂�, gt =
n̂ × H0 and H0 is the plane wave solution of a half-space model or

a multilayered earth model with horizontal layer interfaces.

Taking the vector dot product of eq. (5) with a vector test func-

tion V ∈ H(curl, �), applying the first vector Green’s identity

and integrating by parts (Jin 2002), the equivalent weak formu-

lation of eqs (5) and (6) can be stated thus: Seek E ∈ H(curl, �),

H(curl, �) = {V ∈ L2(�), ∇ × V ∈ L2(�)}, such that

B(E, V) = D(V), ∀V ∈ H(curl,�), (7)

where L2 is the Hilbert vector space of square integrable functions,

in which the following inner products are defined:

‖v‖L2,� =
∫ ∫ ∫

�

|v|2 dv, � ⊂ R
3,

‖v‖L2,F =
∫ ∫

F

|v|2 ds, F ⊂ ∂� ⊂ R
2.

B(,) is a self-adjoint symmetric bilinear form and D() is a source

inner product term.

B(E, V) =
∫ ∫ ∫

�

1

ξ
(∇ × E · ∇ × V − k2E · V) dv, (8)

D(V) =
∫ ∫

∂�

V · gt ds, (9)

where k is the complex wavenumber given by k =
√

−ξχ .

The entire domain � is discretized into a set of tetrahedral

elements T =
⋃Nt

n=1 Tn ⊆ �, 1 ≤ n ≤ Nt, Nt is the total number of

tetrahedra. The lowest order vector Nédélec shape function (Nédélec

1986) is used to obtain an approximate solution Eh ∈ H(curl, T ) of

the electric field in eq. (7) on unstructured meshes. Here,H(curl, T )

is the finite-element space with lowest order vector Nédélec shape

functions. For more detail of the finite-element approximation,

please see Appendix A. Once the electric field Eh ∈ H(curl, T )

is obtained, we use the post-processing procedure presented in Ap-

pendix C to compute more interesting variables, such as apparent

resistivities, phases and vertical magnetic transfer functions.

2.2 Error sources of Eh ∈ H(curl, T )

The numerical error sources involved in solving for the electric

field Eh ∈ H(curl, T ) can be classified as follows. The first error

source arises from the model set-up and the mesh discretization

of complicated models entailing curved surfaces. This includes: (i)

the sizes of the surfaces of the computational domain � which is

normally required to have its boundaries several skin depths from

the anomalous bodies, (ii) the size of each tetrahedron which needs

to be less than one skin depth so that the assumption of a linear

variation of the electric field is approximately guaranteed, (iii) the

quality of each tetrahedron and (iv) how closely the curved sur-

faces for geometrically complicated models are approximated. The

second error source arises from inaccurately solving the final sys-

tem of equations (A3). To avoid the above two error sources, first

high-quality unstructured meshes are used. The mesh quality is gen-

erated by enforcing the ‘radius-to-edge’ ratio for each tetrahedron

to be no more than 1.4. (Rücker et al. 2006; Si 2006; Ren & Tang
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Adaptive FEM for 3-D EM modelling 703

2010). The distance of the surface ∂� to the anomalous bodies is

about 5–10 skin depths. Then, besides using analytical forms for

volume integrals of the vector products containing Nédélec vector

shape functions (see eq. A2) in constructing the system matrix A

(see Appendix A), a multicore parallel direct LU solver PARDISO

(Schenk & Gärtner 2004) via Intel MKL C library (Intel 2010) is

used to accurately yield the solutions.

The third error source is due to the use of the curl-conforming

space H(curl, T ) to solve for the electric field. In the curl-

conforming space H(curl, T ) (using the lowest order Nédélec ele-

ments), although the divergence-free condition of the total current J

is satisfied within each tetrahedron, the strong differential equation

form for the electric field is relaxed to its weak (integral) formulation

and only the continuity of the tangential component of the electric

field is satisfied. The residual of the strong differential formulation

is not strictly equal to zero, which is equivalent to a residual volume

current density Jre . This non-zero volume current density gener-

ates an additional magnetic field according to the Biot–Savart law

(Stratton 2007). The continuity of the normal component of the total

current across the interior faces is not satisfied; and the tangential

continuity of the magnetic field H across these faces is not satisfied.

The jumps in the normal component of the total current density

are equivalent to the generation of an additional interface charge

density ρ. Using Coulomb’s law (Stratton 2007), these falsely ac-

cumulated surface charges ρ generate an additional electric field,

which is denoted by Eρ . The jumps in the tangential component of

the magnetic field strength can be explained as falsely accumulated

surface electric currents J which generate an additional magnetic

field according to the Biot–Savart law denoted by HJ (Stratton

2007). Then, both the electric field Eh and the magnetic field Hh

can be updated as

Eh ⇐= Eh − Eρ, (10)

Hh ⇐= Hh − HJ − HJre
. (11)

The first approach of using the divergence correction for the electric

field in eq. (10) was adopted by Smith (1996) and Farquharson

& Miensopust (2011), who showed that great acceleration of the

convergence rate of iterative solvers was achieved. Without this

divergence correction, iterative solvers show very slow convergence

rate and struggle to compute correct forward modelling solutions

(Farquharson & Miensopust 2011). In our study, we used a direct

matrix solver to solve the system of linear equations. We show that a

robust direct solver has the capability of offering accurate solutions

for both MT and RMT models. Therefore, the divergence correction

is not needed or adopted in our study.

For the following discussion, we define the residual of the electric

field Eh ∈ H(curl, T ) as

re = ∇ ×
1

ξ
∇ × Eh + χEh . (12)

For linear Nédélec shape functions and elements with constant im-

pedivity ξ , the curl–curl term on the right of eq. (12) vanishes.

The direct divergence correction for the electric field (eq. 10) or

the magnetic field (eq. 11) might be still questionable. Although the

erroneously accumulated surface electric charges or currents can

be kept to a minimum level, the residuals re of the electric field

Eh ∈ H(curl, T ) might be increasing so that the resultant magnetic

field contains increasing errors by the last term in eq. (11). Then, the

Galerkin orthogonality property of the vanishing integral of the dot

product of the residual of the electric field re and the vector Nédélec

shape functions Ni in eq. (A2) over the tetrahedra Tn supporting Ni

is no longer valid, that is,
∫ ∫ ∫

Tn

Ni · re dv �= 0. (13)

This inequality will to some extent break down the equivalence of

the solutions between the strong differential equation form given by

eqs (5) and (6) and its weak formulation given in eqs (7) and (A1)

for simple models having continuous material parameters. For com-

plicated models with discontinuities of material parameters across

interfaces between elements, additional continuity conditions (dis-

cussed in Section 3) have to be enforced. Therefore, the optimal

approach of improving the accuracy of Eh appears to be to simul-

taneously decrease the numerical errors arising from the non-zero

residuals and falsely accumulated surface electric charges and cur-

rents, which is implemented in the following goal-oriented adaptive

refinement algorithm, accounting for the continuity conditions.

3 A - P O S T E R I O R E R RO R E S T I M AT O R S

Over an interior face F , which is shared by two tetrahedra Ti and

T j , having unit normal vector n̂F pointing from Ti to T j , we denote

the finite-element solutions of the EM field in H(curl, T ) on the

sides of Ti and T j by E− and H−, and E+ and H+ over the face,

respectively. The continuity conditions for the electric field and the

magnetic field yield

∇ · J = 0 ⇒ ∇ · χE = 0, n̂F · (χ−E− − χ+E+) = 0, (14)

n̂F × (E− − E+) = 0, (15)

∇ · B = 0 ⇒ ∇ · μH = 0, n̂F · (∇ × E− − ∇ × E+) = 0, (16)

n̂F ×
(

1

ξ−
∇ × E− −

1

ξ+
∇ × E+

)

= 0. (17)

Define [·]F as the L2 difference norm operator cross the shared face,

then, we have

[n̂ · J]F =

√

∫ ∫

F

|n̂ · (χ−E− − χ+E+)|2 ds, (18)

[n̂ × E]F =

√

∫ ∫

F

|n̂ × (E− − E+)|2 ds, (19)

[n̂ · B]F =

√

∫ ∫

F

|n̂ · (∇ × E− − ∇ × E+)|2 ds, (20)

[n̂ × H]F =

√

∫ ∫

F

|n̂ ×
(

1

ξ−
∇ × E− −

1

ξ+
∇ × E+

)

|2 ds. (21)

According to the physical behaviour of the EM fields in each

tetrahedron having constant electrical parameters, both the elec-

tric field and magnetic field should be divergence-free and both

of them should satisfy the constraints of the continuity conditions

across the internal surfaces. We note that Eh belongs to H(curl, T ),

such that the divergence-free condition for the electric field inside

each element is satisfied (refer to eq. 3). Then according to Fara-

day’s law, inside each element, the divergence-free condition for the

magnetic field is also satisfied, ∇ · Bh = 1
iω

∇ · ∇ × Eh ≡ 0, since
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704 Z. Ren et al.

∇ · ∇ × ≡0. The tangential component of the electric field is con-

tinuous across the interior surface F. This leads to [n̂ × E]F = 0.

Furthermore, note that n̂F · ∇ × E = −∇ · (n̂F × E), therefore,

[n̂ · B]F = 0. However, the continuity of the normal component

of the total current density J and the continuity of the tangential

component of the magnetic field H cannot be guaranteed in the

H(curl, T ) space. The approach of evaluating the conformity to

these continuity conditions naturally offers a means to estimate the

numerical errors of the finite-element approximations and can be

used to guide the mesh refinement procedure to reduce these am-

plitude discontinuities.

First, we construct an a-posterior error estimator (ηe
Tn

, which is

named as error estimator rJH) for a given tetrahedron Tn in terms of

the volume residuals for the electric field and the required continuity

constraints on the normal component of the total current density and

the tangential component of the magnetic field across surfaces F of

the tetrahedron Tn , that is,

[

ηe
Tn

]2 = h2
Tn

‖re‖2
L2,Tn

+
1

2
hF

{

[n̂ · J]2
F + [n̂ × H]2

F

}

. (22)

Here, F is redefined as the union of four triangles enclosing the

tetrahedron Tn , hF stands for the maximum diameter of each tri-

angle in F (especially the last term in eq. 22 is to be understood

as the sum over all four faces of Tn), hTn is the maximum diame-

ter of the tetrahedron Tn . The factor 1/2 comes from the fact that

the residuals/jumps on the faces F of the tetrahedra are shared by

two elements and the factors hF and hTn arise from the Helmholtz

decomposition theory of H(curl, T ) (Beck et al. 2000). The first

term refers to the effect of the extra volume current density though

the whole tetrahedron generated by inaccurate numerical solutions

Eh . The second term stands for the contribution of incorrect sur-

face charges accumulated through discontinuous currents through

the surfaces. The third term takes account of fictitious surface elec-

tric currents due to discontinuous tangential magnetic fields. This

a-posterior error estimator is consistent with that presented by other

authors (e.g. Chen et al. 2007) which is obtained by multiplying

eq. (22) by the factor of ξ 0 = −iωμ0. For the high-contrast scenar-

ios of geophysical applications (such as at the air–Earth interface),

the dominant error term in eq. (22) could be the second term which

measures the jump of the normal component of the electric current

density across faces. While the L2 norm of this quantity scales like

O((σ− − σ+)2), its energy norm (which was used by Beck et al.

2000) scales like O((σ− − σ+)). This difference might make the

above L2 norm error estimator in eq. (22) more efficient than its

energy norm variation.

In terms of the amount of additionally accumulated charges and

currents on the surfaces, we define two further a-posterior error

estimators for the electric field. The first (which is named as error

estimator J) is

[

ηe
Tn

]2 =
1

2
[n̂ · J]2

F , (23)

and the second (which is named as error estimator H) is

[

ηe
Tn

]2 =
1

2
[n̂ × H]2

F . (24)

In the above two error estimators, the factor hF is dropped so that

we can directly estimate the absolute amount of falsely accumu-

lated surface charges and currents, respectively. Using Coulomb’s

law (Stratton 2007), the accumulated surface charges generate an

additional electric field. The accumulated surface electric currents

generate an additional magnetic field according to the Biot–Savart

law (Stratton 2007). Therefore, these two error estimators with-

out the scaling factor hF are consistent with the measurements of

unsatisfied physical behaviour of the EM fields. It avoids an under-

estimation or an overestimation of errors that occurs on small or

large faces, respectively, if the scaling factor hF is considered.

4 G OA L - O R I E N T E D A DA P T I V E

R E F I N E M E N T

4.1 Error in the quantity of interest

In geophysical EM surveying, the measuring profiles are usually

located on the air–Earth interface. We are particularly interested

in the accuracy of the electric and magnetic fields, or apparent

resistivities and phases, in the subsurface surrounding the measuring

sites. It is well known from classical error analysis theory of the

finite-element method (Brenner & Scott 2008), that once the global

mesh density satisfies a certain level, the accuracies of the finite-

element solutions are strongly affected by the local mesh density.

This suggests that global refinement techniques might not only

increase the number of unknowns and hence the computational cost,

but also they may not efficiently improve the accuracy of numerical

solutions. To seek an optimal balance between computational cost

and numerical accuracy, our interest focuses on local refinement of

the elements surrounding the profiles, so that solution accuracy can

be improved in subdomains of practical interest.

The goal-oriented adaptive refinement concept (Oden &

Prudhomme 2001) is an ideal method to satisfy our above inter-

est. Instead of globally decreasing errors of the electric fields, it

targets decreasing the error of a linear functional L(E) of the local

electric field, cooperating with the dual/adjoint bilinear form B∗(,) of

the original weak formulation B(,) for the electric field E. We define

this linear functional of the electric field as L(E), E ∈ H(curl, �)

(E is the accurate solution of the electric field). Hence, we construct

the dual weak form to the primary weak form (eq. 7), which seeks

to find W ∈ H(curl, �), such that

B∗(W, V) = L(V), ∀V ∈ H(curl, �),

where B∗(,) is the adjoint operator of the bilinear form B(,). Due to

the self-adjoint property of B(,), B∗(,) is equal to B(,). The solution

W of the above dual problem is usually referred to as the ‘influence

function’ (Oden & Prudhomme 2001). Then, considering the pri-

mary weak formulation given by eq. (7), the weak variational form

of W becomes

B(W, V) = L(V). (25)

In analogy to eq. (A1), the finite-element approximation Wh of W

is defined as Wh ∈ H(curl, T ) such that

B(Wh, Vh) = L(Vh), ∀Vh ∈ H(curl, T ). (26)

Now, we turn our attention to the numerical error analysis of

L(E). Let e denote the numerical error of the electric field, then,

L(e) = L(E − Eh), e ∈ H(curl, �). (27)

Using eq. (25),

L(e) = B(W, e) = B(Wh + w, e)

= B(Wh, e) + B(w, e)

= B(w, e), (28)

where w is the error of W, and due to Wh ∈ H(curl, T ), e ∈
H(curl, �), the Galerkin orthogonality property (Brenner & Scott

2008) yields B(Wh, e) = 0.
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Adaptive FEM for 3-D EM modelling 705

Using eq. (8), the explicit form of B(e, w) is

B(e, w) =
∫ ∫ ∫

�

1

ξ
(∇ × e · ∇ × w − k2e · w) dv,

where w and e are the expressions for the numerical errors. Now,

we define an error indicator for L(e), using the Cauchy–Schwartz

inequality (Oden & Prudhomme 2001; Brenner & Scott 2008)

|L(e)| = |B(e, w)| �

Nt
∑

n=1

|BTn (e, w)|

�

Nt
∑

n=1

‖e‖e,Tn ‖w‖e,Tn ≅

Nt
∑

n=1

Cn‖e‖L2,Tn
‖w‖L2,Tn

, (29)

where Cn is a positive constant number which depends on the mesh

size, impedivity ξ and admittivity χ , and ‖·‖e is the energy norm in

terms of the bilinear form B(,), with its definition as ‖·‖e =
√

|B(, )|.
To avoid the difficulty of evaluating errors in the energy norms (f

as to ‖e‖e,Tn , the true solution of the electric field E is unknown

so it is impossible to evaluate the terms ∇ × e · ∇ × e and e · e

in B(,) over each element Tn) and to still maintain the efficiency

of error estimation, we replace the energy norm by its equivalent

L2 norm (Zdunek & Rachowicz 2005), which can be easily and

efficiently evaluated in terms of the error estimators defined in eqs

(22)–(24). Denote ηe
Tn

= ‖e‖L2,Tn
as the element error indicator for

E and ηw
Tn

= ‖w‖L2,Tn
for W, then the error estimator for L(e) is

ηL =
Nt

∑

n=1

ηe
Tn

ηw
Tn

. (30)

4.2 Boundary value problem for the dual problem

In the dual weak form of eq. (25), L(V) is a linear functional of

an arbitrary function V ∈ H(curl, �). In geoelectromagnetic mod-

elling problems, we are interested in the accuracy of the electric field

(E ∈ H(curl, �)) around the profiles. Hence, a reasonable form for

the linear functional could be

L(E) =
t

∑

j=1

1

V j

∫ ∫ ∫

� j

E · Idv. (31)

Here, L(E) denotes the averaged electric field over t subdomains �j

of interest (see Fig. 1), which contain the measuring profiles and Vj

denotes the volume of the jth subdomain �j. Taking the variation

of the weak form of eq. (25) and considering the above definition,

we can recover the differential boundary value problem for W in

the dual problem as

∇ ×
1

ξ
∇ × W + χW = −

t
∑

j=1

ϒ j I

V j

in �, (32)

− n̂ ×
1

ξ
∇ × W = 0 on ∂�, (33)

where I = [1, 1, 1] is a vector of unit elements which acts as a vector

source injected into each tetrahedron of each subdomain of interest

(see Fig. 1), and ϒ j is the characteristic function which is 1 over the

entire subdomain �j.

From a physical point of view, the vector function W (in eqs 32

and 33) can be considered as the generalized electric field Green’s

function due to the injection of a set of vector sources with the ho-

mogeneous Neumann boundary condition. The correctness of en-

forcing the homogeneous Neumann boundary condition of eq. (33)

is easily validated. To obtain the error indicator ηL (eq. 30) of L(e),

we need only consider the difference between the accurate and the

numerical solutions. We could use any other boundary condition if it

can guarantee the existence and uniqueness of W, because we do not

care about the real distribution of the influence function, as long as

it puts emphasis on the numerical errors of the solutions in the sub-

domains of interest. It can be realized that this generalized Green’s

function W varies rapidly over the subdomains containing the pro-

files, due to the artificially injected unit vector sources I. Similar

to the point sources used in direct current resistivity surveying, W

surrounding these domains changes significantly, which definitely

leads to rather large numerical errors. Therefore, the element error

indicator ηw
Tn

for W in these domains can be rather large compared

to those in other domains and enlarges the element error indicator

ηe
Tn

of the electric field in a weighting approach by using eq. (30).

Hence, artificially increasing the element error indicator ηw
Tn

in

subdomains of interest is physically equivalent to introducing artifi-

cial sources within the confines of these subdomains. Furthermore,

as evident from eqs (28) and (29), local numerical errors of the

linear functional L(e) over certain subdomains of interest are prop-

agated over the whole computational domain and are influenced by

the global numerical errors of both the electric field and the gen-

eralized Green’s function W. This is why the generalized Green’s

function W is referred as the ‘influence function’. The approxima-

tion of the influence function is listed in Appendix B.

4.3 Fully automatic refinement algorithm

With the availability of the above element error estimators for the

electric field and for the influence field, ηL can be easily approxi-

mated using the relationship in eq. (30). Here, we define a global

relative error estimator as

rL
η =

ηL

|L(Eh)|
. (34)

It should be noted that we have replaced the energy norm by its

equivalent L2 norm which is scaled by a positive factor Cn (n =
1, . . . , Nt) for each tetrahedron to evaluate the above ηL in eq. (30).

Therefore, we cannot expect this global relative error estimator to be

a rather small number. However, rL
η should decrease during the mesh

refinement procedure, which is actually observed in our numerical

experiments.

The goal-oriented adaptive refinement strategy can be described

by the following four-step process:

(1) Given a mesh T =
⋃Nt

n=1 Tn of �, a maximum number of

unknowns and a maximum number of iterations, compute the finite-

element approximations Eh of the electric field and Wh of the

influence field. Estimate the element error indicators ηe
Tn

and ηw
Tn

and also the relative error indicator rL
η by using eqs (34) and (30).

(2a) If rL
η is not less than a given small positive tolerance ∁ (such

as 10−2), the number of unknowns on the mesh Tn is less than the

given maximum number and the current iteration number is less

than the given maximum number, then search the array of element

error indicators and mark the tetrahedra with error indicators η
Tn

L =
ηe
Tn

ηw
Tn

satisfying

η
Tn

L

max(η
Tn

L )
= βn > β, 0 < β < 1, (35)

where βn is the relative element error indicator and β is a threshold

value which controls the number of refined elements. Then, generate

a new mesh by dividing the volumes of the marked elements by a
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706 Z. Ren et al.

factor of 2 by the Delaunay refinement approach (Si 2006), replace

the old mesh Tn by the new mesh and go back to step (1).

(2b) If rL
η < ∁ or the maximum number of unknowns or iterations

is reached, stop the refinement procedure and go to step (3).

(3) Compute the magnetic field from the electric field using

Faraday’s law in eq. (1). Compute the vertical magnetic transfer

functions (VMTFs) and the impedance tensor as described in Ap-

pendix C.

Using the a-posterior error estimators rJH, J and H defined in

eqs (22), (23) and (24), respectively, and the above fully automatic

refinement scheme, seven different mesh refinement strategies are

proposed as follows:

• Global mesh refinement: Do not estimate a-posterior errors

estimators and in step (2a), simply divide the volumes of all Tn by

a factor of 2.

• Non-goal–oriented approach rJH: Use error estimator rJH in

eq. (22) to estimate ηe
Tn

in eq. (30). Do not solve the dual problem

to compute ηw
Tn

in eq. (30) (which is equal to setting ηw
Tn

= 1.0), that

is, base the mesh refinement entirely upon the set of ηe
Tn

.

• Non-goal–oriented approach J: Similar to Non-goal–oriented

approach rJH, but using error estimator J in eq. (23) to estimate

ηe
Tn

in eq. (30) (setting ηw
Tn

= 1.0).

• Non-goal–oriented approach H: Similar to Non-goal–oriented

approach rJH, but using error estimator H in eq. (24) to estimate

ηe
Tn

in eq. (30) (setting ηw
Tn

= 1.0).

• Goal-oriented approach rJH: Use error estimator rJH in

eq. (22) to estimate ηe
Tn

and ηw
Tn

, that is, base the mesh refinement

upon η
Tn

L .

• Goal-oriented approach J: Use error estimator J in eq. (23) to

estimate ηe
Tn

and ηw
Tn

.

• Goal-oriented approach H: Use error estimator H in eq. (24)

to estimate ηe
Tn

and ηw
Tn

.

The numerical solutions for the E p
x source polarization are used

to estimate the a-posterior errors for the electric field, ηe
Tn

in eq. (30)

in the following experiments. Numerical solutions for the H p
x source

polarization can also be used to estimate the a-posterior errors. It

might yield better performance than the E p
x source polarization,

because fields of the H p
x source polarization may be less smooth

than fields of the E p
x source polarization. Therefore, both options

are offered in our implementation. For a given mesh, three linear

systems sharing the same system matrix have to be solved, where

two linear systems arise from these two source polarizations and

one linear system is for the influence field. Therefore, once the

LU decomposition of the system matrix for the primary problems

involving the E p
x or H p

x sources polarization is achieved, the extra

cost to compute the influence field is relatively inexpensive.

5 N U M E R I C A L E X P E R I M E N T S

We have implemented the above algorithms in a stand-alone C++
code which is derived within the framework of a freely download-

able 3-D direct current adaptive finite-element method code (Ren

& Tang 2010). The linear nodal Lagrange elements of the direct

current resistivity forward solver are replaced by the linear vector

edge-based elements (Nédélec 1986; Jin 2002) and the iterative

solvers are replaced by the direct sparse matrix solver PARDISO

(Schenk & Gärtner 2004). The mesh refinement and generation are

accomplished by directly calling the open source package TetGen

(Si 2006). The slices of mesh density and element error estima-

tor distributions are visualized by the open visualization software

Paraview (Henderson et al. 2004). The computation platform is a PC

with Intel(R) Xeon(TM) CPU 3.20 GHz (four cores) and 32.0 GB

RAM.

5.1 Comparison with analytical solutions

First, a half-space model at two frequencies of 10 Hz and 300 kHz

is investigated. The resistivity of the air space is set to 1016�m.

The magnetic permeability and the dielectric permittivity are the

free space values. A total of 51 measuring sites is located with

equidistant spacing along the y-axis. For this model, the numer-

ical errors arise only from improper mesh discretization. During

the goal-oriented and non-goal–oriented adaptive mesh refinement

procedures, elements with relative error indicators βn > 0.01 are

selected to be refined for the next step. The adaptive iteration is

terminated when the number of unknowns exceeds 1.5 million. On

this model, the solutions of the EM field are regular (non-singular),

therefore the non-goal–oriented adaptive strategies might not have

the capability to focus on locally refining the subdomains of interest

that enclose the measurement profile.

5.1.1 MT case

The frequency is 10 Hz, the resistivity of the homogeneous Earth

structure is 102 � m, the computational domain is � = [−10 km,

10 km]3, with sites located in y = [−500 m, 500 m]. The plane wave

is normally incident (angle of incident from vertical = 0◦) on the

horizontal ground surface. Plots of relative and absolute errors for

apparent resistivities and phases, respectively, versus the numbers

of unknowns (degrees of freedom) of the above mesh refinement

strategies are shown in Fig. 2. Due to the usage of linear curl-

conforming shape functions, the expected theoretical quasi-optimal

slope of the convergence rate on a log–log plot is −1/3 for the

global mesh refinement technique and non-goal–oriented adaptive

mesh refinement techniques (Chen et al. 2007). Not surprisingly,

the non-goal–oriented adaptive refinement algorithms (Franke et al.

2007; Ren & Tang 2010; Schwarzbach et al. 2011) show poor con-

vergence rates which are even worse than the global refinement

technique. The reason is that the non-goal–oriented algorithms are

mainly focused on refining the global mesh density and try to de-

crease the global numerical error. In fact, the poor performances of

these non-goal–oriented adaptive refinement algorithms are consis-

tent with their theoretical behaviour (Beck et al. 2000; Chen et al.

2007) which were designed to automatically decrease the global

numerical error. Although the numerical solutions at this level are

still inaccurate, we believe that they will improve if we allow the

adaptive refinement procedures to continue to levels where the mesh

densities in subdomains both including and excluding the measur-

ing sites are dense enough. Their quasi-optimal convergence rates

would then show the standard log–log slope of −1/3.

In Fig. 2, we also present the error curves of the three goal-

oriented adaptive refinement strategies. The goal-oriented approach

rJH shows a log–log convergence rate slightly less than −1/3 at the

beginning and then it quickly adjusts its behaviour after three itera-

tions. Unlike goal-oriented approach rJH, goal-oriented approach

H quickly reaches the quasi-optimal slope of −1/3, and starting

with the second iteration at 84 967 unknowns, the slope is steeper

than −1/3. The most efficient performance is obtained with goal-

oriented approach J. Starting from the initial model, super-optimal

log–log slopes in the range of −1/2 to −1.0 are obtained which

means that the numerical errors decrease linearly or quadratically

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
9
4
/2

/7
0
0
/6

0
1
8
7
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Adaptive FEM for 3-D EM modelling 707

Figure 2. Errors of apparent resistivities (a) and phases (b) in terms of different mesh refinement strategies for the half-space model at a frequency of 10 Hz

and for the E
p
x source polarization. Similar errors were obtained for the H

p
x source polarization but were omitted here. Due to the similar behaviour of the

non-goal–oriented approaches rJH, J and H, only results for non-goal–oriented approach J are shown. The dashed black lines give the theoretically obtainable

optimal convergence curves of the global mesh refinement and non-goal–oriented adaptive mesh refinement techniques (for problems with singular geometries

and fields, Chen et al. 2007).

with the number of unknowns. We should note that in the 11th it-

eration, the number of unknowns of goal-oriented approach J is

less than 0.7 million, yet it can still offer highly accurate solutions

compared to all other mesh refinement strategies. Between two it-

erations, the number of added elements slightly decreases while

dramatically improving the accuracy of the numerical solutions.

To see the details of mesh refinement procedures, we compare in

Fig. 3 mesh densities and the relative element error indicators βn

(defined in eq. 35) at the fourth iteration for the global mesh refine-

ment, goal-oriented approach J and non-goal–oriented approach J.

In Fig. 3, for comparison purposes, the relative element error indi-

cators βn are computed in terms of both ηe
Tn

and ηw
Tn

for these three

approaches, though the global refinement approach does not require

computation of βn and βn of the non-goal–oriented approach nor-

mally is computed with ηw
Tn

= 1.0. Starting with the initial mesh of

7044 nodes and 40 255 elements, the globally refined mesh (Figs 3a

and b) which decreases the element volume of the initial mesh by

a factor of (1/2)3 has 209 788 nodes, 1 305 855 elements and

1 531 497 edges (unknowns). We observe that the elements are

globally refined for elements both close to and far away from the

subdomain of interest which includes the profile region marked by

a white rectangle. Departures of this solution from the analytic ex-

pressions are 0.41 per cent relative error for the apparent resistivies

and 0.08◦ absolute error for the phases which are close to those of

the solution at the fourth iteration for goal-oriented approach J with

involves fewer unknowns, only 14 per cent of those used in the glob-

ally refined mesh. The resulting mesh and the relative element error

estimator distribution of the fourth iteration for goal-oriented ap-

proach J are shown in Fig. 3(c). Unlike the global mesh refinement

algorithm, this error estimator efficiently identifies the subdomains

of interest. This includes the white rectangular region. The method

refined the elements inside this region. A local view for the whole

domain marked by the white rectangle is shown in Fig. 3(d). At the

same time, its error estimator performed correctly in identifying

other subdomains in need of refinement. For instance, we can see

that the discretization of the air space was not dramatically refined.

Because of the low frequency 10 Hz used in this model, the EM field

varies only slightly and therefore, the approximate condition of less

than 0.1 wavelength for the side lengths of the tetrahedra to obtain

accurate solutions with linear curl-conforming shape functions is

easily satisfied. Similarly, for subdomains below ground that are at a

distance of five to six times the skin depth from the measuring sites,

the amplitudes of the fields are close to zero so that their variations

can be ignored.

In Figs 3(e) and (f), we show the global view and the local view,

respectively, of the mesh densities at the plane x = 0 on the fourth

mesh for non-goal–oriented approach J. There are 77 041 nodes,

475 524 elements and 558 943 edges (unknowns) in Fig. 3(e). The

relative errors of these numerical solutions are 1.35 per cent for the

apparent resistivies and of 0.77 per cent for the phases. Compared

to goal-oriented approach J, this inferior solution which entails a

denser mesh indicates that a large number of extra elements added

to subdomains far away from the domain of interests (white rect-

angle) actually do not contribute to the accuracy of the numeri-

cal solution on the profile. For subdomains including the profile

(shown in Fig. 3f), the elements are not refined enough (compared

to the local view of mesh density in Fig. 3d) so that the accuracy

of the solution is not dramatically improved. This is a sacrifice in

computational efficiency by globally densening the mesh. This phe-

nomenon actually is consistent with the theoretical error population

(Brenner & Scott 2008) of the finite-element method, which

states that once the global mesh density reaches a certain level,
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Figure 3. Illustration of mesh densities at slice x = 0 for the half-space model at a frequency of 10 Hz. The panels (a) and (b) in the left-hand column show

global and local expanded views of the fourth grid generated by the global refinement approach. The panels (c) and (d) show distributions of the element

relative error indicator βn on the fourth grid generated by goal-oriented approach J, where panel (d) is a local view of the white rectangle marked in (c). The

right-hand panels (e) and (f) are for non-goal–oriented approach J. For comparison, the relative element error indicators βn are computed in terms of both ηe
Tn

and ηw
Tn

for these three approaches.

the accuracies of numerical solutions at special subdomains are

strongly dependent on the local mesh densities in these special

subdomains. This error population theory acts in basic support of

our goal-oriented adaptive refinement strategies, which try to redis-

tribute the global mesh density to achieve an optimal accuracy and

then focus on locally refining the mesh density in the subdomains of

interest.

5.1.2 RMT case with an oblique incidence angle

We now consider the RMT case in which frequency is 300 kHz, the

resistivity of the homogeneous Earth is 30 000 �m, the computa-

tional domain is � = [−1 km, 1 km]3, with receiver sites located in

y = [−50 m, 50 m]. The plane wave is obliquely incident on the flat

air–Earth interface at an inclination angle of 60◦ from the z-axis and

an azimuthal angle of 0◦ from the x-axis. Due to small wavelengths,

the starting mesh discretization is generated by enforcing the spatial

constraints of side lengths of 0.5 wavelength in each tetrahedron.

Curves showing the relative and absolute errors for apparent resis-

tivities and phases, respectively, versus the number of unknowns for

the above mesh refinement strategies are given in Fig. 4. Similar ob-

servations can be made as for case 1. In the H p
x polarization case, the

normal component of the total current density Jn at the Earth side

does not vanish due to galvanic leakage (Berdichevsky & Dmitriev

2008). On the air–Earth interface, the normal component of the total

current density needs to be continuous due to the divergence-free

condition of total current density ∇ · J = 0. To measure how the

divergence-free condition is satisfied in our computation, we com-

pute the relative error of the numerical discontinuity of J0
n − J1

n,

where J0
n is the normal component of total current density at the air

side and J1
n is the normal component of total current density at the

Earth side. The result is shown in Fig. 5. The convergence of these

relative errors shows the ability of the algorithm to recognize and

adjust for the galvanic leakage phenomena.

5.2 Comparison with boundary element method (BEM)

solutions for a topographic hill model

5.2.1 MT case

As a second example, the trapezoidal hill model of Nam et al.

(2007) at a frequency of 2 Hz is considered. Due to the effect of

the 3-D topographical surface, the electric field should be weakly

singular at the corners. Therefore, this model should provide a good

performance test of the above adaptive strategies to deal with sin-

gular field cases. Accurate solutions of this model are available

from a surface integral approach (Ren et al. 2013), which can be

utilized as the reference solutions. The size of the hilltop square is

450 m × 450 m, the size of the square base is 2000 m × 2000 m

and the height of this hill is 450 m. A geometrical approxima-

tion is made to cut off the horizontally infinite Earth–air interface

into a finite square of size 40 km × 40 km. The resistivity of the
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Figure 4. Errors at a frequency of 300 kHz and for plane waves obliquely incident on the air–Earth interface at an angle of 60◦ from the z-axis.

Earth is 100 �m; the di-dielectric permittivity of the Earth is ε0 and

its magnetic permeability is μ0. The resistivity of the free space

is 1016 �m. 19 sites along the y-axis are arranged at equidistant

spacing over the interval y = [−1500 m, 1500 m]. The purpose of

this example is to distinguish the performances of the three goal-

oriented approaches. The starting mesh discretization is generated

by enforcing the spatial constraints of side lengths of 1.0 wave-

lengths in each tetrahedron, which results in 34 588 unknowns. The

obtained parameters on the seventh mesh refinement are listed in

Table 1, as well as the average residuals compared to surface inte-

gral solutions. Goal-oriented adaptive approach J, shows the most

robust performance. At the seventh mesh refinement, it needs the

lowest number of unknowns of all tested approaches but still has

excellent agreement with the surface integral solution. The mesh

contains only 104 344 edges (unknowns) which is just 12.7 per cent

of the unknowns used by goal-oriented adaptive approach rJH

and 18.0 per cent of the unknowns used by goal-oriented adaptive

approach H.

Local views of the mesh densities and the element relative error

indicator βn of goal-oriented approach J for a slice at x = 0 across

the topographical hill are shown in Fig. 6. All elements with βn >

β = 0.05 are identified to be refined in the next iteration. We com-

pare three meshes, the starting mesh, the third mesh and the seventh

mesh, with their results shown in Figs 7 and 8. First, neither the air

domain nor the subdomains far away from the topographical hill or

below the ground surface are refined densely. The reason is similar

to that for the half-space model. Since the frequency of just 2 Hz is

rather low, the quasi-static approximation is valid in this example,

since displacement currents are negligible. The variations of the EM

fields in both air and Earth domains are not dramatic. Therefore,

the approximate condition of 0.1 skin depth of the EM field for

the side lengths of each tetrahedron in these two domains is easily

satisfied. For subdomains containing the profiles, due to the large

contrast of the conductivities between the air and the Earth and the

introduction of the singular unit sources inside these subdomains

in the dual problem, all local subdomains enclosing the measur-

ing sites are efficiently refined, especially for the endpoints of the

profile.

To carefully check the performance of goal-oriented approach

J, we present in Figs 7 and 8 the horizontal electric and magnetic

fields, as well as apparent resistivities and phases, from the starting

mesh, and the meshes of the third and the seventh iterations. In

Fig. 7, we observe that there are large differences in the solutions of

the three meshes for the y-component of the electric field of the H p
x

polarization, but only slight differences for the x-component of the

electric field of the E p
x polarization. The reason is that E H

p
x

y is singu-

lar at the corners due to charge accumulation. Therefore, sufficiently

dense meshes are required to correctly treat this singular behaviour.

The correct convergence behaviour observed in Fig. 7(b) once

again validates the goal-oriented adaptive scheme using a posterior

error estimator J. At sites close to the two endpoints of the profile,

the magnetic fields for the starting mesh and for the third iteration

mesh have relatively large differences compared to the reference

solutions. The reason is that the magnetic fields are computed by

Faraday’s law (eq. 1), and to obtain highly accurate solutions, dense

meshing is required in these two subdomains. Thanks to the idea

from the goal-oriented approach of introducing singular sources in-

side these subdomains, the final E and H solutions converge to the

reference solutions. Goal-oriented adaptive approach J also suc-

cessfully forces the apparent resistivities and phases to converge

(see Fig. 8) to the reference solutions at relatively low cost, espe-

cially at the endpoints, which is a challenge for the other strategies.

Similar convergence behaviour of the z-component of the magnetic

fields of the E p
x polarization and the y-component of the VMTF (Ty)

can be observed in Fig. 9 (due to the symmetry of the profile and

the hill model, H H
p
x

z = 0 and Tx = 0).
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710 Z. Ren et al.

Figure 5. The relative errors of the real [panel (a)] and imaginary [panel (b)] parts of the discontinuity of the normal component of the total current density

Jn across the air–Earth interface in the H
p

x polarization for a half-space model with a 60◦ incidence angle and at a frequency of 300 kHz, in terms of goal

oriented approach J. J0 and J1 are the total current density at the air and Earth side, respectively. The number of unknowns for each refinement is shown in

Fig. 4. The real part errors are larger than the imaginary component errors, but decrease with increasing mesh density, and are typically less than 1 per cent for

the seventh mesh. The error jumps at several points in the imaginary part arise from the relocation of tetrahedrons around the RMT sites during in the mesh

regeneration. This phenomenon was also observed in the 2-D case (Key & Weiss 2006; Li & Key 2007). The real [panel (c)] and imaginary parts [panel (d)]

of J0
n are also shown. Owing to the oblique incidence, ℜ(J0

n) has a zero crossing at y ≈ −40 m and ℑ(J0
n) obtains its maximum amplitude there. This explains

the smaller relative errors in the imaginary part and the trends of the errors along the profile.

Table 1. Parameters of the mesh discretization of the three goal-oriented approaches for the trapezoidal hill model of Nam

et al. (2007) at a frequency of 2 Hz. In the adaptive refinement procedure, elements with βn > 0.05 (in eq. 35) are marked to

be refined. The residuals of the apparent resistivities and phases obtained by three goal-oriented approaches are given with

respect to the reference solutions obtained by the surface integral approach (Ren et al. 2013).

Method Mesh level No. elements No. edges Average residual

ρ
xy
a (�m) ρ

yx
a (�m) φ

xy
a (◦) φ

yx
a (◦)

Goal-oriented approach rJH 7 953 218 1 107 619 1.45 3.80 0.16 0.16

Goal-oriented approach J 7 88 698 104 344 1.58 3.62 0.09 0.09

Goal-oriented approach H 7 500 201 580 996 1.26 3.71 0.10 0.09

5.2.2 RMT case

Here, we investigate a model involving high frequency (100 kHz)

and high resistivity, such as arises in RMT where displacement cur-

rents can be important. The plane wave is vertically incident along

the z-axis. The model is rescaled from the trapezoidal hill model

(Nam et al. 2007; Ren et al. 2013) used in our second numerical

experiment. The computational domain is � = [−1 km, 1 km]3.

The resistivity of the Earth is 10 k�m; the di-dielectric permittiv-

ity of the Earth is 5ε0 and the magnetic permeability is μ0. This

combination of electrical properties may, for instance, be represen-

tative of weakly fractured granite. The resistivity of the free space

is 1016 �m. A total of 53 station sites is distributed at equal dis-

tance along the y-axis between y = [−150 m, 150 m]. Due to the high

frequency, the variation of waves in both the air and the Earth is dra-

matic, therefore, careful mesh discretization with high node density

is required. Spatial dimensions of less than 1.0 wavelengths in each

tetrahedron are initially enforced, which generates a rather dense

mesh with 221 280 elements and 265 095 edges (unknowns). Goal-

oriented approach J is used to simulate this challenging model.

The reference solutions are from the semi-analytical surface inte-

gral approach on a highly dense surface mesh computed by the
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Adaptive FEM for 3-D EM modelling 711

Figure 6. Illustration of the element relative error indicator βn (defined in

eq. 35) and local mesh densities for a slice at x = 0 through the trapezoidal

hill model at a frequency of 2 Hz for goal-oriented approach J. Panel (a) is

the starting model, (b) is the third mesh and (c) is the seventh mesh.

adaptive multilevel fast multipole boundary element method (Ren

et al. 2013).

We show the relative element error indicators βn in Fig. 10.

Elements with βn > β = 0.01 are marked for refinement in the next

iteration. Unlike the previously presented low-frequency case, large

numbers of elements in the air space are identified by their relative

element error estimators for refinement in the next iteration. In the

high-frequency examples, the air space has serious influence on the

accuracies of solutions, because the presence of displacement cur-

rents dramatically decreases the wavelength as compared to that of

the quasi-static approach. Hence, careful mesh discretization must

be considered in the air space. The element relative error indicators

βn of subdomains under the ground, which are far away from the

topographical surface and are at sufficiently large depth, are rather

small, which is consistent with the nearly vanishing amplitudes of

the EM waves in such regions due to induction phenomena. For

the sixth mesh, the numerical solutions in a local coordinate sys-

tem (x, t, n) along the profile are presented in Fig. 11. The vertical

component n is in the direction normal to the topography and the

tangential component t is along the topography of the profile. The

component x is perpendicular to the profile direction and also fol-

lows the air–Earth interface. The adaptively refined solutions are

clearly convergent to the surface integral solutions. A discussion on

the physical behaviour of transfer functions and EM field compo-

nents in the local coordinate system is given in Ren et al. (2013).

Apart from the excellent agreement between our adaptive goal-

oriented finite-element method solutions and the surface integral

solutions, we also observe the singular behaviour of the electric

field across topographic changes of slope in the conductivity model

for the H p
x polarization if we increase the mesh density of corner

regions. For the H p
x source polarization, the y-components of the

electric fields are singular at the topographic corners, due to the

accumulation of surface charges on these positions. These singular-

ities lead to large differences of 0.5–1.0 orders of magnitude in the

amplitudes of the field components (predominantly in the electric

field) and are consistent with the analytical behaviour of waves at

high frequencies (Olyslager 1994, 1995).

5.3 Comparison with 3-D benchmark numerical solutions

The 3D-1 model (shown in Fig. 12) is a benchmark test model which

was analysed within the COMMEMI project (Zhdanov et al. 1997).

It comprises a resistive homogeneous background Earth with an

embedded conductive prism. The depth to the top surface of the

prism is 250 m. The resistivity of the air space is 1016 �m, the

resistivity of the background Earth ρ1 is 100 �m and the resistivity

of the prism ρ2 is 0.5 �m. Both the dielectric permittivity and

magnetic permeability of the Earth are the same as the free space

values. A total of 62 measuring sites is located at equal spacing

along the x-axis in the range x = [−3000 m, 3000 m]. We compare

our numerical solutions with those of other approaches, that is, the

solutions from the COMMEMI project, the T − � finite-element

solutions on structured meshes (Mitsuhata & Uchida 2004) and

the divergence-correction finite-element method (Farquharson &

Miensopust 2011) using the curl–curl electrical field equation and

structured meshes. Instead of applying direct divergence correction

of the total current density after several iterations (Farquharson &

Miensopust 2011), our approach focuses on increasing mesh density

where there are significant jumps of the normal components of

the total current density, while keeping the Galerkin orthogonality,

which is a basic condition for the existence and uniqueness of a

finite-element solution in the curl-conforming space.

The first test frequency is 0.1 Hz. The computational domain

is � = [−70 km, 70 km]3 containing an air layer with a height of

70 km. The starting model which has spatial dimensions of less than

1.0 wavelength for each tetrahedron, involves 30 835 elements and

36 789 edges. Here, we use the optimal goal-oriented approach

J to compare against other solutions. A threshold value of β =
0.05 is specified in the refinement procedure. As for the above two

experiments, the goal-oriented approach J again refines the mesh

density of subdomains of interest, with the number of elements

and edges slowly increasing. We compare the solutions obtained

on the starting mesh, the 15th mesh and the 20th mesh (with mesh

discretization listed in Table 2). First, since our solutions are sym-

metrical along the profile, only half of the profile needs to be shown

in Fig. 13. Due to the coarse mesh density of the starting mesh,

its solution has large differences compared to our FEM solutions

of the other meshes. When the adaptive refinement procedure is

applied, the goal-oriented algorithm automatically detects the large

discrepancies at the measuring sites right above the centre of the

conductive prism where the current density and the EM fields are

sharply varying. For the 15th mesh, involving 154 572 tetrahedra,

both apparent resistivities (Figs 13a and b) and phases (Figs 13c
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712 Z. Ren et al.

Figure 7. Horizontal electric fields of the H
p

x polarization (a) and the E
p
x polarization (b) as well as the horizontal magnetic fields of the H

p
x polarization (c)

and the E
p
x polarization (d) obtained using goal-oriented approach J, compared to the surface integral solutions (reference solutions) of the trapezoidal hill

model at a frequency of 2 Hz. The black curves are obtained by the surface integral method (Ren et al. 2013). The blue curves represent solutions on the initial

mesh, the green curves are solutions on the third mesh and the red curves are solutions on the seventh mesh. The solid lines are the real part of the field and

the dashed lines are the imaginary parts of the field.

Figure 8. Apparent resistivities (a and b) and phases (c and d) obtained through goal-oriented approach J, and compared to the surface integral solutions of

the trapezoidal hill model at a frequency of 2 Hz. The black curves are obtained by the surface integral approach (reference solutions of Ren et al. 2013). The

blue curves represent solutions of the initial mesh, the green curves are for solutions of the third mesh and the red curves are solutions of the seventh mesh.
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Adaptive FEM for 3-D EM modelling 713

Figure 9. The z-component of the magnetic field of the E
p
x polarization (a) and the y-component of the VMTF (b) obtained through goal-oriented approach J,

which are compared to the surface integral solutions of the trapezoidal hill model at a frequency of 2 Hz. The black curves are obtained by the surface integral

approach (reference solutions of Ren et al. 2013). The blue curves represent solutions of the initial mesh, the green curves are for solutions of the third mesh

and the red curves are solutions of the seventh mesh. The real parts are denoted by the dashed lines and the imaginary parts by the solid lines.

Figure 10. Illustration of the relative element error indicator βn and the

local mesh densities for a slice at x = 0 for the trapezoidal hill model at

a frequency of 100 kHz. Computed for the sixth mesh of goal-oriented

approach J. Elements with βn > 0.01 are to be refined in the next iteration

of the adaptive mesh refinement.

and d) show good agreement with the reference solutions of

Zhdanov et al. (1997), Mitsuhata & Uchida (2004) and Farquharson

& Miensopust (2011). In particular, our solutions have better agree-

ment with the approach of Farquharson & Miensopust (2011) which

uses more unknowns (elements). In the 20th mesh (results are not

shown here), generated with our refinement algorithm where the

number of unknowns is 245 128, solutions are very close to those of

the 15th mesh, which implies relative convergence to the accurate

solution. It should be noted that using a lesser number of unknowns,

the T − � approach obtained quite good results. This is because

the T − � approach which makes the quasi-static assumption ex-

plicitly enforces the condition of En = 0 at the air–Earth interface,

where En is the normal component of the electric field on the Earth

side. However, this assumption is not valid for high-frequency cases

where displacement currents must be considered.

Similar results are obtained at a frequency of 10 Hz (in Table 2

and Fig. 14), where � = [−7 km, 7 km]3 contains an air layer with

a thickness of 7 km. In Fig. 14, only the solution of the 10th mesh

is shown. The solution of the 15th mesh (not shown) is quite close

to the solution of the 10th mesh. This might imply that our solution

shown in Fig. 14 can be trusted.

For the 3D-2 model from the COMMEMI project (Zhdanov et al.

1997), we also obtained excellent results. They are given in a sup-

plementary file of this paper.

6 C O N C LU S I O N S

We have successfully developed and reported on a novel goal-

oriented adaptive finite-element scheme for plane wave EM mod-

elling. The applicability of the curl–curl electric field equation over a

wide frequency band is established utilizing curl-conforming shape

functions and unstructured grids. Therefore, a new accurate and ef-

ficient 3-D code for plane wave problems such as low-frequency MT

problems and high-frequency RMT problems is available. It has the

capability to automatically improve the accuracy for complicated

problems involving curved subsurface interfaces and topographic

surfaces.

In our goal-oriented approach, four parameters control the goal-

oriented adaptive mesh refinement strategies: the threshold value

∁ for the global relative error estimator, the maximum number of

unknowns, the maximum permissible number of iterations and the

threshold value β for the relative element error indicators. Indeed,

the global relative error estimator rL
η cannot be less than a rather

small threshold ∁, although the values of rL
η decrease when the
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714 Z. Ren et al.

Figure 11. Comparison of apparent resistivities (a and b), phases (c and d) and VMTF (Tt, (d)) obtained with the goal-oriented approach J on the sixth

adaptively refined FEM mesh, compared to surface integral solutions of Ren et al. (2013) for the trapezoidal hill model at a frequency of 100 kHz in a local

coordinate system, where t is the direction along the profile. The black curves are obtained by the surface integral method. The red curves are solutions on the

sixth mesh. In panel (e), the solid curves are the real parts of Tt and the dashed curves are its imaginary parts.

Figure 12. Illustration of the benchmark 3D-1 model with measuring sites

along a profile (marked in red) parallel to the x-axis on the flat air–Earth

interface.

adaptive strategies are applied. Therefore, the most practically use-

ful stopping criterion is the maximum number of unknowns, which

is dependent on the computer hardware. The accuracies of all the

solutions shown in this study, while very good, can be further im-

proved as soon as more powerful computational resources become

available. Based on our experiments, a good option for the choice

of β is to mark a subset of elements with large error indicators so

that the per cent ratio of these marked elements to the total elements

is about 1–5 per cent.

Based on our experiments, the advantages of goal-oriented adap-

tive approaches over the global refinement method and non-goal–

oriented adaptive approaches are clearly evident. In addition, the

performances of the three a-posterior error estimators were eval-

uated in the framework of the goal-oriented adaptive approach,

and all three can offer acceptable convergence rates. We observed

that the error estimator rJH has inferior performance compared

to the error estimators J and H. The reason is that the residual of

the electric current density within an element is dominant in the

error estimator rJH. Since geophysical EM problems normally in-

volve large contrasts of conductivities, a-posterior error estimator J

based on the continuity condition of the normal component of the

total current density exhibits the most effective performance. There-

fore, it might be the most desirable error estimator for geophysical

EM modelling problems.

It is noteworthy that our modelling approach does not use the

divergence correction for the total current density in the form of

interspersed iteration steps or additional equations in the system of

linear equations (e.g. Smith 1996; Streich 2009). Instead, the goal-

oriented approach tries to decrease the normal jumps of current

density across element interfaces, in terms of locally adaptive mesh

refinement. It honours the continuity of the normal component of

the current density solely with an a-posterior error estimator based

on this continuity condition. To completely remove the jumps in nor-

mal components of current density across interfaces is an ongoing

research topic.

From the last high-frequency topographic hill example, the er-

ror estimators show large errors in the elements included in the

air space due to the strong variations of high-frequency EM waves
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Table 2. Parameters of the mesh discretization for goal-oriented approach J involving the 3D-1 model at frequencies

of 0.1 and 10 Hz. In contrast to the T − � (Mitsuhata & Uchida 2004) and E − φ (Farquharson & Miensopust 2011)

approaches which use structured meshes, we use unstructured meshes.

Frequency Method Mesh level No. elements No. unknowns Run time (s)

Goal-oriented approach J 1 30 835 36 789 10.7

15 154 572 180 370 107.4

0.1 Hz 20 210 396 245 128 137.9

T − � 18 816 <75 264

E − φ 191 100 E (594 199), φ (201 640)

Goal-oriented approach J 1 73 995 86 451 46.7

10 320 063 371 972 615.7

10.0 Hz 15 454 846 528 441 946.5

T − � 47 040 <188 160

E − φ 191 100 E (594 199), φ (201 640)

Figure 13. Comparison of apparent resistivities (a and b) and phases (c and d) obtained for FEM meshes of the 15th refinement step by goal-oriented approach

J to other solutions using different algorithms on the 3D-1 model at a frequency of 0.1 Hz. These reference solutions are from the COMMEMI project

(Zhdanov et al. 1997), the T − � finite-element solutions on structured meshes (Mitsuhata & Uchida 2004) and the divergence-correction finite-element

method (Farquharson & Miensopust 2011) using the curl-curl electrical field equation and structured meshes.

in the air space. This indicates that a nearly global refinement is

needed in the air space due to little energy dissipation in the air

space. To completely remove the requirements of careful mesh dis-

cretization in the air space which is essential at high frequencies,

an optimal option is to transform the volume differential equation

for the electric field in the air space to a surface integral equation

on the topographical surface. Then, we can apply the finite-element

method in the Earth domain due to its capability of handling com-

plicated subsurface models. Such a hybrid boundary finite-element

approach, which could be very useful for the high-frequency cases,

is the subject of our current research and will be reported in a future

paper.
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Figure 14. Similar to Fig. 13, but at a frequency of 10 Hz.
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A P P E N D I X A : F I N I T E - E L E M E N T

A P P ROX I M AT I O N

Let � be discretized into a set of tetrahedral elements T =
⋃Nt

n=1 Tn ⊆ �, 1 ≤ n ≤ Nt, Nt is the total number of tetrahedra.

The finite-element approximation is: Seek Eh ∈ H (curl, T ), such

that

B(Eh, Vh) = D(Vh), ∀Vh ∈ H (curl, T ). (A1)

Letting the finite-element space H (curl, T ) be reduced to a low-

est order curl-conforming linear space H(curl, T ) (Nédélec 1986)

in which only the existence of Vh and the curl of Vh ∈ H(curl, T )

in the weak sense is guaranteed, the electric field Eh ∈ H(curl, T )

within the discretized computational domainT can be approximated

as

Eh =
Ne

∑

j=1

E j N j , (A2)
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where E j is the average tangential electric field along the jth edge

in T and Ne is the total number of edges in T . The lowest order

vector Nédélec shape function N j (Nédélec 1986) is attached along

the jth edge of T . Substituting the above approximation into the

weak formulation given by eq. (A1) and selecting the Galerkin

test function Vh ∈ H(curl, T ) as Vh = Ni to be one of the shape

functions used above, we obtain an Ne × Ne sparse system of linear

equations for the electric field

AXe = B. (A3)

Here, Xe = {E j , j = 1, ..., Ne} and the explicit expression for the

elements in the system matrix A is

Ai j =
∫ ∫ ∫

�

1

ξ
(∇ × Ni · ∇ × N j − k2Ni · N j ) dv. (A4)

The source term is given by

Bi =
∫ ∫

∂�

Ni · gt ds. (A5)

A P P E N D I X B : F I N I T E - E L E M E N T

A P P ROX I M AT I O N O F T H E D UA L

P RO B L E M

Using a Galerkin FEM approximation similar to that of the electric

field in eq. (A2), we obtain a set of linear equations for the influence

field

AXw = C. (B1)

Here, Xw = {W j , j = 1, ..., Ne} and the system matrix is the same

as A in eq. (A4). The source term is given by

Ci =
∫ ∫ ∫

� j

Ni ·

⎛

⎝

t
∑

j=1

I

V j

⎞

⎠ dv. (B2)

Due to Wh ∈ H(curl, T ), the a-posterior error estimators rJH, J

and H in eqs (22), (23) and (24), respectively, can be directly applied

to the influence field to compute the element error estimators ηw
Tn

,

which is needed in eq. (30).

A P P E N D I X C : P O S T - P RO C E S S I N G

P RO C E D U R E

To compute the apparent resistivities and phases from the E and H

fields (as required in MT and RMT applications), we need to solve

eq. (A3) with two boundary conditions gt on ∂� for at least two

different source polarizations, E p
x and H p

x , where subscript x de-

notes the coordinate direction. We assume these independent source

fields to correspond to polarized (p) boundary electric and magnetic

fields. For the E p
x source polarization, the boundary electric field

Ep is along the x-direction and its amplitude on ∂� at the air side

of the flat air–Earth interface is set to one. For the H p
x source po-

larization, the boundary magnetic field Hp is along the x-direction

and its amplitude on ∂� at the air side of the flat air–Earth interface

is set to one. For all other edges on ∂�, we compute the necessary

boundary values on these of a 1-D layered model with Wait’s recur-

sion formula (Wait 1954). The distance to the boundary ∂� from

anomalous bodies is set to be 5-10 skin depths where the scattered

fields caused by these anomalous bodies can be reasonably ignored

(Weidelt 1975; Nam et al. 2007).

Assuming that there is a local coordinate system (u, v, n) at each

measuring site, the components of the electric fields and magnetic

fields are related by an impedance tensor Z and the vertical magnetic

transfer function (VMTF) T (Berdichevsky & Dmitriev 2008). The

impedance tensor is determined as follows:

[

Zuu Zuv

Zvu Zvv

]

=

[

E E
p
x

u E H
p
x

u

E E
p
x

v E H
p
x

v

][

H E
p
x

u H H
p
x

u

H E
p
x

v H H
p
x

v

]−1

. (C1)

The VMTF is computed from the expression

[

Tu

Tv

]

=

[

H E
p
x

u H E
p
x

v

H H
p
x

u H H
p
x

v

]−1 [

H E
p
x

n

H H
p
x

n

]

. (C2)

Once the impedance tensor is available, the apparent resistivities

and phases are extracted from the basic definitions

ρi j
a =

1

ωμ0

|Z i j |2, i, j = u, v, (C3)

φi j = arctan
(

Im(Z i j )/Re(Z i j )
)

. (C4)

S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-

sion of this article:

Figure 1. Illustration of the 3D-2 model of the COMMEMI project

(Zhdanov et al. 1997) in the global coordinate (x, y, z) system.

The measuring sites are arranged along with the x-axis on the flat

air-Earth interface.

Table 1. Computation cost of the 3D-2 model at a frequency of

0.001 Hz.

Figure 2. Comparison of horizontal and vertical components of the

magnetic field and horizontal components of the electric field for

the 3D-2 model at a frequency of 0.001 Hz for a profile at y=0 m.

The solution from the 25th mesh (267,599 unknowns) is convergent

to the solution of the 15th mesh (232,262 unknowns).

Figure 3. Comparison of apparent resistivities and phases and

vertical magnetic transfer functions (VMTF) for the 3D-2 model

at a frequency of 0.001 Hz. The symbol IE stands for solutions

obtained by the volume integral equations method (Xiong 1992).

The symbol DDFEM stands for solutions obtained by the domain-

decomposition finite-element method (Zyserman & Santos 2000).

(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/ggt154

/-/ DC1)

Please note: Oxford University Press are not responsible for the

content or functionality of any supporting materials supplied by

the authors. Any queries (other than missing material) should be

directed to the corresponding author for the article.
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