
A Goal-Oriented Approach for the Generation and

Evaluation of Alternative Architectures

Gemma Grau, Xavier Franch

Universitat Politècnica de Catalunya (UPC)
c/ Jordi Girona 1-3, Barcelona E-08034, Spain.

{ggrau, franch}@lsi.upc.edu

Abstract. There is a recognized gap between requirements and architectures.
There is also evidence that architecture evaluation, when done at the early
phases of the development lifecycle, is an effective way to ensure the quality
attributes of the final system. As quality attributes may be satisfied at a different
extent by different alternative architectural solutions, an exploration and
evaluation of alternatives is often needed. In order to address this issue at the
requirements level, we propose to model architectures using the i* framework,
a goal-oriented modelling language that allows to represent the functional and
non-functional requirements of an architecture using actors and dependencies
instead of components and connectors. Once the architectures are modelled, we
propose guidelines for the generation of alternative architectures based upon
existing architectural patterns, and for the definition of structural metrics for the
evaluation of the resulting alternative models. The applicability of the approach
is shown with the Home Service Robot case study.

1 Introduction

There is a gap between requirements and architectures which is mainly due to the fact
they use different terms and concepts to capture the model elements relevant to each
one [20]. However, there is a connection between architectural design decisions and
the quality attributes of the final system and, so, it is possible to analyse and to
evaluate an architecture in the context of the goals and requirements that are levied to
the systems that will be build from it [8]. On the other hand, quality attributes may be
satisfied by different alternative architectural solutions (i.e., architectural patterns)
and, so, there is often the need of exploring and evaluating several alternatives.

In this paper we propose to address the generation and evaluation of architectures
at the requirements level by using a goal-oriented approach. Goal-oriented models
allow expressing the intentional concepts using the same constructs for the
requirements and for the architectures. We consider that they are an adequate
formalism for representing software architectures because they allow expressing usual
architecture-related concepts such as component, node, file, resource, dependency and
so on. Additionally, goal-oriented models are becoming intensively used in fields
such as requirements engineering and organizational process modelling, which has
two main implications. In the one hand, transition from organizational and system

Grau, G.; Franch, X. A goal-oriented approach for the generation and evaluation of alternative architectures.
A: European Congress on Software Architecture. "Software Architecture: First European Conference, ECSA 2007:
Aranjuez, Spain, September 24-26, 2007: proceedings". Berlín: Springer, 2007, p. 139-155.
The final authenticated version is available online at https://doi.org/10.1007/978-3-540-75132-8_12

2 Gemma Grau, Xavier Franch

models to architecture models can be smoother due to the use of the same formalism,
and even traceability benefits from this. On the other hand, contributions and findings
made in these other fields can be assessed and eventually incorporated into software
architecture modelling and analysis.

Because of that, goal-oriented models [25], [28] have already been used for
representing software architectures addressing the gap between requirements and
architectures [25]. Among the different existing goal-oriented proposals, we remark
the i* framework [27], a goal-oriented modelling language that allows representing
the functional and non-functional requirements of an architecture using actors and
dependencies instead of components and connectors. For more details on the
adequacy of using i* models for representing and analyzing software architectures,
we refer to [17].

In this paper we use the i* framework in order to support the generation and
evaluation of alternative architectures. We are interested in doing this process in a
reliable way and, thus, we propose a set of guidelines for performing both activities in
a systematic manner. Therefore, the generation of alternatives is based on the use of
architectural patterns [6] and the evaluation of alternatives is done by applying
structural metrics [14] over the produced models. In order to show the applicability of
our approach, we apply the proposed steps and guidelines to the Home Service Robot
case study as presented in [22], [23].

The remainder of this paper is organized as follows. The problem statement for the
Home Service Robot case study is presented in section 2. In section 3 we present a
brief introduction to the i* framework. In our approach we do not consider the
generation and evaluation of alternative architectures as an isolated process and, so,
the context of applicability and tool support are presented in section 4. In section 5 we
propose a set of guidelines for the generation of alternative architectures based on
existing architectural patterns. Our proposal of metrics for evaluating the resulting
models and a set of guidelines for defining the metrics are presented in section 6.
Finally, section 7 presents the conclusions and future work.

2 The Home Service Robot Case Study

This case study is based on the problem statement of the prototype of a Home Service
Robot (HSR) for daily services provided in [22], [23]. The case study has been chosen
because the details about the problem statement are very clear, it is simple enough to
be analysed and understood in the context of a paper, and also because mobile robots
are commonly used in software architecture examples [26].

According to [22], [23], the HSR is a prototype that supports the following daily
home services:
• Call and Come (CC). This service analyzes the audio data sampled in order to

detect predefined sound patterns. If a “come” command is recognized, the robot
tries to detect the direction of the sound source, rotates to the direction of the sound
source and tries to recognize a human. If the caller’s face is detected, the robot
moves forward until it reaches within 1 meter from the caller. If a “Stop” command
is recognized while the robot is moving, the robot stops.

A Goal-Oriented Approach for the Generation and Evaluation of Alternative Architectures 3

• User Following (UF). The robot locates a user and constantly checks vision data
and sensor data for keep following the user. The robot follows the user within 1
meter range. If the robot misses the user, it notifies him by saying “I lost you” and
the action terminates.

• Security Monitoring (SM). The robot patrols around a house for surveillance
using a map. Intrusion or accidents are defined as patterns recognizable from
vision and sound data. If such an event is detected, the robot notifies the user
directly via an alarm or indirectly through a home server.

• Tele-presence (TP). A remote user can control the robot using a PDA. The robot
sends the remote user a map of the house and the user can command the robot to
move to a specific position. In addition, the robot can send captured images to the
remote PDA for surveillance.
In order to provide those services, the HSR has the following hardware

components: a Single Board Computer that controls the peripherals; a Front Camera
to allow face recognition, user tracking, security monitoring and tele-presence; a
Ceiling Camera to do map building and self-positioning; 8 SL Microphones to
interpret speaker commands and locate its specific position; a Structured Light Sensor
to detect obstacles and recognize footsteps; an Actuator to allow the HSR movement;
an LCD display to show information; a Wireless Lan to communicate to the Home
Server; and, finally, a Speaker to generate sound.

For more details about the HSR problem statement we refer to [22], [23].

3 The i* Framework

The i* framework proposes the use of two types of models for modelling systems,
each one corresponding to a different level of abstraction: the Strategic Dependency
(SD) model represents the intentionality of the process and the Strategic Rationale
(SR) model represents the rationale behind it. SD models focus on the relationships
among different actors that cooperate for satisfying some goals and, so, they are more
interesting from the architecture point of view. Consequently, in this paper we focus
on SD models.

A SD model consists of a set of nodes that represent actors and a set of
dependencies that represent the relationships among them. Dependencies express that
an actor (depender) depends on some other (dependee) in order to obtain some
objective (dependum). Thus, the depender depends on the dependee to bring about a
certain state in the world (goal dependency), to attain a goal in a particular way (task
dependency), for the availability of a physical or informational entity (resource
dependency) or to meet some non-functional requirement (softgoal dependency).
These four types of dependum allow two different types of relationships: intentional,
representing what behaviour a component expects from other parts of the system; and
operational, representing how one component communicates with other parts of the
system. Therefore, intentional relationships are represented by:

− Goal dependencies stating functional requirements, e.g. the User depends on
the HSR for the goals Come when called and Accidents are avoided.

− Softgoal dependencies stating high-level non-functional requirements, e.g. the

4 Gemma Grau, Xavier Franch

User depends on the HSR depends for the softgoals User position location is
accurate and Robot movement is efficient.

− Resource dependencies stating flow of concepts, and remarkable some type of
knowledge, or a concept, relevant for the domain that does not physically exist,
e.g. the concept Voice Command in the context of the HSR.

On the other hand, i* may be also used to represent architectural concerns by means
of the following operational relationships:

− Task dependencies stating service invocation, e.g. the HSR depends on the
User for the tasks Introduce position in map and Introduce Sound patterns.

− Resource dependencies stating information interchange, e.g. the HSR depends
on the user for the resource Tele-surveillance images.

− Goal dependencies stating fit criteria for non-functional requirements, e.g. the
HSR Ensures security by avoiding obstacles. Note thus that non-functional
requirements change from being represented as soft goals to goals.

For more details about i*, we refer to [21], [27]. The graphical notation is shown in
Fig. 1. using, as an example, the SD dependencies between the HSR and the User.

4 Context of Applicability and Tool Support

In our approach we do not consider the generation and evaluation of alternative
architectures as an isolated process but as a part of a reengineering framework, that
we have named ReeF [16]. The reasons for such a claim are twofold. On the one
hand, most of the reengineering approaches consider the generation and evaluation of
alternative solutions. On the other hand, in most of the cases, it is possible to state the

Fig. 1. Excerpt of an i* model for the HSR case study

A Goal-Oriented Approach for the Generation and Evaluation of Alternative Architectures 5

premise that there is always a current process undertaken by humans or by a legacy
system that can be used as a departing point for reengineering. Several proposals in
the field of software architectures also follow a reengineering approach, among them
we remark [3], [22], [23].

We have refined the ReeF generic framework into SARiM [16], a Software
Architecture Reengineering i* Method, which is composed of the following phases:
1) Analysis of the source software architecture; 2) Conceptualization of the analysed
software architecture into an i* model; 3) Elicitation of new requirements for the
software architecture; 4) Exploration of candidate software architecture solutions; 5)
Assessment of the generated solutions using evaluation techniques; and 6) Creation of
the specification for the new software architecture. In this paper we focus on phases 4
and 5. However, we assume that other existing techniques have been used for the first
three phases and, so, before the generation and evaluation of architectures, there is an
existing source i* architecture model and a set of quality attributes to be used as the
starting point. These artefacts can be generated with many existing techniques, among
which, we have chosen the PRiM method [19] for generating the source i*
architecture model, and KAOS [9] for obtaining the requirements and quality
attributes.

In Fig. 2 we provide an overview of the proposed process. We can observe that the
generation of alternatives begins with the definition of the generic i* architectural
patterns. These patterns are constructed using already existing architectural solutions,
which are selected according to the quality attributes to be achieved. Once the generic
i* architectural patterns are defined, the alternative architectures are generated by
applying a dependency analysis and matching process over the source i* architecture
model and each selected generic i* architectural pattern, resulting to set of alternative
i* architecture models. We remark that the generic i* architectural patterns can be
stored and reused when reapplying the process. Finally, once the alternative i*
architecture model are generated, they can be evaluated by defining or reusing
structural metrics, providing the evaluation results that would assess the selection of
the most suitable architecture.

In order to perform the generation and evaluation of alternatives in a reliable way,
tool support is needed. We propose to use J-PRiM [18], a tool that supports the first
five phases of ReeF using the techniques proposed in PRiM [19] and, thus, it has been
adapted to the generation and evaluation of alternatives that we propose.

Fig. 2. Overview of the process for the generation and evaluation of alternative architectures

6 Gemma Grau, Xavier Franch

5 Generation of the Alternative Architectures

There are several existing proposals on the generation of architectures, for instance
[3], [4], [20], among others. These methods have in common that they all use an
existing architecture specification as a departing point; they all propose the use of
well-known architectural solutions for the generation of alternatives; and, they all
choose the solutions according to previously obtained quality attributes.

On the other hand, existing work on the generation of alternative architectures
using the i* framework as a modelling language adopt a similar approach. This work
is mainly represented by [24], [2], and it is oriented towards agent-oriented software
architectures. In their context, patterns are used for generating organizational
architectures which are represented in i*. Based on these patterns, the i* models are
build by matching the concepts represented in the i* organizational patterns with the
functional and non-functional requirements for the new software architecture.

Based on this existing work, our approach for the generation of the alternative
software architectures proposes four guidelines that transform existing architectural
solutions into generic i* architectural patterns and, then, use a matching process
between the dependencies expressed in the source i* architecture model and the ones
defined in the generic i* architectural patterns. These guidelines can be intertwined
and iterated as needed. We remark that guidelines 1.1 and 1.2 are only applied once
for each architectural pattern, allowing reusability when reapplying the method.

• Preliminaries: Pattern Selection. There are many architectural patterns that can

be used for generating software architectures. So, in order to generate alternative
architectures in a controlled way, we will only explore those patterns that help the
achievement of the quality attributes we want for the final software system. The
way these quality attributes are elicited from the stakeholders remains out of the
scope of this paper, however, we mention that most of the quality attributes will be
represented as softgoals in the i* model. A way to select the patterns is to use the
NFR [7] approach for modelling the contributions of each softgoal to the
architectural patterns and, then, select those with a positive contribution. It is also
possible to check the properties of each pattern in a pattern catalogue [6], a feature-
solution graph [4], or a Property to Style Mapping Table [20], among others.

For instance, if the quality attribute to achieve is Maintainability we may select a
Blackboard pattern, and if Exchangeability is needed, we may select a layered
architecture. None of these architectural solutions have to be selected if efficiency is a
crucial point for the architecture.

• Guideline 1.1: Actor Identification. Once the pattern is selected, we analyse it in

order to identify the architectural components suggested by the pattern. Each
component will be modelled as an actor in the i* model of the new alternative
architecture.

For instance, in the Blackboard architectural pattern as defined in [6], three actors are
identified: the Blackboard, the Knowledge Source and the Control. We remark that,
according to the pattern documentation, several Knowledge Sources can be used.
Moreover, in some cases, the specific number and name of the components remains
undefined in the pattern. For instance, that’s the case of the Layers architectural

A Goal-Oriented Approach for the Generation and Evaluation of Alternative Architectures 7

pattern as defined in [6]. In this situation, in order to discover all the actors we have
first to determine the number of layers and the abstraction level that they represent.
This can be done by applying our own criteria or by adapting the criteria used to
define other layer architectures, such as the OSI 7-Layer Model or the TCP/IP
protocol [6].

• Guideline 1.2: Definition of the generic i* architectural pattern. Once the

actors are defined, the architectural solution is deeper analysed in order to abstract
the general responsibilities of each actor and the generic dependencies with the
other actors. As a result we obtain a generic i* architectural pattern. The
information needed for such an analysis is the one documented in the architectural
solution. In order to enforce the link between requirements and architectures when
deciding the kind of a certain dependency, we propose to adapt the six CBSP
architectural dimensions proposed in [20] into the i* framework:
− Task dependencies model those elements that describe or involve processing

components.
− Resource dependencies model those elements that describe or involve data

components.
− Goal dependencies model those elements that that describe system-wide

features or features pertinent to a large subset of the system’s components or
connectors.

− Softgoal dependencies model those elements that describe or imply data or
processing component properties, bus properties or system properties.

In order to allow further reuse of the documented generic i* architectural pattern
the source of the pattern and the decisions taken during its definition have to be
documented.

In Fig. 3. we show how we have defined the generic i* architectural pattern for the
Blackboard architectural pattern. At the left of the figure we can see the classes and
their responsibilities as they are documented in [6]. We can also observe that we have
added an i* actor for each of the classes of the pattern. The dependencies have been
established as follows:

− The Blackboard manages central data, which is a system feature and so, it is
modelled as the goal dependency Central data is managed. As central data is a
data component, a resource dependency Central data is also stated. As both the
Knowledge Source and the Control depend on the Blackboard for the central
data management, each dependency appears twice.

− The Control monitors the Blackboard and schedules the Knowledge Sources
activations. Both are system features and so they are represented as goal
dependencies. Thus, the Blackboard depends on the Control for Blackboard is
monitored whilst the Knowledge Source depends on the Control for the goal
Knowledge source activations are scheduled. We remark that the Control
monitors the Blackboard by analysing the Central data (which is an already
existing dependency). On the other hand, as the Control involves a process for
scheduling the Knowledge Sources, we need a task dependency stating that the
Control depends on the Blackboard for Activate knowledge sources.

− The Knowledge Source evaluates its own applicability by using the central data.
Thus, the Blackboard depends on the Knowledge Source for the goal

8 Gemma Grau, Xavier Franch

Knowledge source applicability is evaluated. The Knowledge Source has the
responsibility to compute a result (which involves a data component) and to
update the Blackboard (which involves a processing component). Thus, the
Blackboard depends on the Knowledge Source for the resource Computed
result, and the Knowledge Source depends on the Blackboard for the task
Update blackboard.

• Guideline 1.3: Actors analysis and matching. Using the source i* architecture

model and the generic i* architectural pattern of the solution to be applied, we
analyse the dependencies in both models in order to match the related elements and
establish the equivalence between the source i* architecture model actors and the
generic i* architectural pattern actors. As it is proposed in [17], in both groups we
distinguish four kinds of actors:
− Human actors. i.e., the final users of the software system.
− Organizational actors. i.e. the organizations that provide or require services from

the software system and its final users.
− Software actors. i.e., the software system that is in charge to satisfy the human

actor requirements. The software system can be represented by a unique
software actor or by a set of actors that represents components and interact one
with each other.

− Hardware actors. i.e., the hardware devices in those software systems where we
need to obtain certain information from the environment.

We remark that there are some actors on the source i* architecture model that may
not have an equivalence in the generic i* architectural pattern and viceversa, for
instance the actors that represent humans, organizational or hardware components
in the source i* architecture model are not typically actors of the generic i*
architectural patterns. This aspect is solved in the next guideline with the
reallocation of responsibilities.

If we match the concepts of the Home Service Robot (HSR) and the Blackboard
architectural pattern we can observe that the HSR involves a human actor (the User),
a software actor (the Single Board Computer that is the component that controls the

Class

 Knowledge Source

Responsibilitiy

- Evaluates its own

applicability

- Computes a Result

- Updates blackboard

Collaborator

- Blackboard

Class

 Blackboard

Responsibilitiy

- Manages central data

Collaborator

-

Black-

board

Know-

ledge

Source

Control

Knowledge source

applicability is evaluated

Computed

result

Update

blackboard

Central data

is managed

Central

data

Blackboard is

monitored

Central

data

Knowledge

source activations

are scheduled

Goal

Task Softgoal

Resource

Actor Dependency
Link

Class

 Control

Responsibilitiy

- Monitors blackboard

- Schedules knowledge

sources activations

Collaborator

- Blackboard

- Knowledge

Source

Central data

is managed

Activate

knowledge

sources

Fig. 3. Abstraction of the generic i* pattern for the Blackboard architectural pattern

A Goal-Oriented Approach for the Generation and Evaluation of Alternative Architectures 9

HSR), and several hardware actors that interact with the user (i.e., Front Camera,
Microphones, Actuator, etc., see section 2 for more details). However, we can also
observe that, although the actors on the generic i* architectural pattern and the ones
on the source i* architecture model conform two disjoint groups, the HSR software
actor that controls the HSR can be refined into the set of actors proposed by
Blackboard i* architectural pattern.

 The Blackboard architectural pattern contemplates the possibility of having
several Knowledge Sources. The strategy we follow to decide the number of
Knowledge Sources and their specific responsibilities is to analyse other existing
blackboard configurations specific for robots. Among them we have chosen the one
proposed in [26], which suggest the following Knowledge Sources, that we model as
actors in the alternative i* architecture model: the Lookout, which monitors the
environment for landmarks; the Pilot, which is in charge that planning the current
path and control the robot actuators; and, finally, the Map Navigator, which plans the
high-level path. The actor Control of the Blackboard i* architectural pattern
corresponds to the Captain component in [26] and the hardware actors can be
considered as the perception subsystem in [26].

• Guideline 1.4: Reallocation of responsibilities. Once the actors of the source i*

architecture model and the generic i* architectural pattern have been analysed, we
create the new alternative i* architecture model with the following actors:
− The software actors of the generic i* architectural pattern.
− The human, organizational, and hardware actors of the source i* architecture

model.
As the actors of the source i* architecture model may not be considered on the
generic i* architectural pattern, the dependencies related with these actors have to
be reallocated on the actors suggested by the pattern. This reallocation is done by
matching the different elements in both models until having the entire source i*
architecture model dependencies represented following the structure of the generic
i* architectural pattern.

As a result of the matching activities we create a new alternative i* architecture model
with the human and hardware actors of the Home Mobile Robot source i* architecture
model and the software actors of the Blackboard i* architectural pattern as it has been
customized applying the previous guideline. Once this is done, the reallocation of
responsibilities is carried out as follows: the processes for locating the user, analysing
the distance with objects and detecting predefined intrusions patterns fall into the
Lookout actor; the current path planning, including the control of the movement
actuators (rotation and advance functions) fall into the Pilot actor; the analysis of the
current position and the planning of the tele-surveillance path, remain inside the Map
Navigator; and, finally, the interpretation of user commands and the monitoring of all
his/her actions is done by the Control actor. Dependencies steaming from or going to
the hardware actors remains unchanged on the hardware actors’ side and are
reallocated into the Blackboard actor in the Software side, the rest are reallocated in
the software actors as mentioned.

10 Gemma Grau, Xavier Franch

6 Evaluation of the Alternative Architectures

There are many proposals that address the evaluation of alternatives, and there is also
already existing work to compare the different evaluation techniques [10]. According
to [8], there are several categories of evaluation techniques:

− Questioning techniques allow investigating any area of the project at any state
of readiness and include scenario-based methods [3], [4];

− Measuring techniques require the existence of some artefact to measure and
include the definition of metrics for an static analysis of the structure, being
common to use an Architecture Description Language for that purpose; and,

− Hybrid techniques that combine elements from questioning and measuring
techniques, such as the ATAM method [8].

In a deeper analysis of the techniques used in each category, we can observe that
most of the methods that evaluate architectures at their early stages use scenario-
based techniques, and that Architecture Description Languages represent a much
lower level of detail and focus on the evaluation of the behaviour and performance.

There is also work that addresses the evaluation of alternatives modelled within the
i* framework. Despite that most of this proposals use reasoning-based techniques
[27], structural metrics are also being used [5], [12], [13], [14].

Based on the structure of the i* SD models, it is possible to analyse the degree of
fulfilment of the quality attributes for each alternative architecture, which allows
evaluating the generated alternatives and informing their selection. The quality
attributes can be evaluated with metrics in the form proposed in [14]. Metrics are
defined in terms of the actors (actor-based metrics) and the dependencies
(dependency-based metrics) of the model. It is also possible to distinguish between
global and local metrics, where global metrics give an overall value of the quality-
attribute under consideration and local metrics uses maximum and minimum values to
locate specific elements. As we want to evaluate generated architectures, we will only
work with global metrics, for the definition and use of local metrics see [14].

• Global actor-based metrics. Given an architectural property P and an i* SD

model that represents a system model M = (A, D), where A are the actors and D
the dependencies among them, an actor-based architectural metric for P over M is
of the form:

Σa: a∈A: filterM(a) × correctionFactorM(a)
P(M) =

|| A ||

being filterM: A�[0,1] a function that assigns a weight to the every actor (e.g., if
the actor is human, software or from a specific kind), and correctionFactorM:
A�[0,1] a function that corrects the weight of an actor considering the
dependencies stemming from or going to it.

• Global dependency-based metrics: Given an architectural property P and an i*
SD model that represents a system model M = (A, D), where A are the actors and
D the dependencies among them, a dependency-based architectural metric for P
over M is of the form:

A Goal-Oriented Approach for the Generation and Evaluation of Alternative Architectures 11

Σd: d(a,b,x) ∈D: filterM(d)×correctionFactorM,dee(a)×correctionFactorM,der(b)
P(M) =

|| D ||

being filterM: D�[0,1] a function that assigns a weight to the every dependum
(e.g., if the dependum is goal, resource, task, softgoal if it is from a specific kind),
and correctionFactorM,der: A�[0,1] and correctionFactorM,dee: A�[0,1] two
functions that correct the weight accordingly to the kind of actor that the depender
and the dependee are, respectively.

In order to guide the definition of the filters and correction factors proposed by the
metrics and perform the evaluation of the generated architectures, we propose the
following guidelines.

• Preliminaries: Quality Attributes Selection. Quality attributes tend to be non-

functional requirements or constraints that have already arisen in the previous
phases of the method and, as such, they are modelled as softgoals in the source i*
architecture model. However, not all the quality-attributes are equally important
and, thus, we have to choose the most relevant to the new architecture. This can be
done using different techniques being one of them prioritising the requirements
(e.g., by considering individual stakeholder ranking of properties).

• Guideline 2.1: Defining the Evaluation Goal. The Goal Question Metric (GQM)

paradigm [1] is commonly used for defining metrics. For instance, in [11] the
GQM is used to analyse what has to be measured. In our case, the scope of
measurement is restricted, as we already know that we want to measure the degree
on what the software architecture ensures a quality attribute. Thus, the general
form of the evaluation goal will be:
− To evaluate the <quality attribute> of the modelled software architecture in
order to assess it.

For instance, the evaluation goal for assessing the quality attribute maintainability
is:
− To evaluate the maintainability of the modelled software architecture in order
to assess it.

• Guideline 2.2: Defining the Goal Questions. Once the goal is defined, questions

for evaluating the goal have to be defined, in the same way as it is proposed in [1]
and applied in [11].
For instance, for assessing the goal defined for maintainability, the question is:
− What elements do affect maintainability?
In the literature, there is evidence that maintainability is better achieved it in those
architectures that present a low level of coupling and a high level of cohesion [6].

• Guideline 2.3: Defining the Goal Questions Metrics. Metrics are used to assess
the questions and, as we have explained at the beginning of this section, they can
be actor-based or dependency-based according to [14]. For deciding the kind of
metric we propose to define the following questions:

12 Gemma Grau, Xavier Franch

− What are the architectural elements that are more relevant for the quality
attribute?

If the components are more relevant, we define an actor-based metrics. If the
connections are more relevant we will define a dependency-based metric. Once the
kind of metrics is defined, we have to choose the values to be assigned to filterM(a)
and correctionFactorM(a) in actor-based metrics, and the ones for filterM(d),
correctionFactorM,der(a) and correctionFactorM,dee(a) in dependency-based metrics.

For guiding the selection of the most suitable structural element, we propose the set of
questions shown in Table 1. The contents of the table was defined after a deep
analysis of the structural elements on the i* framework. This kind of analysis is
similar to the one performed when applying metrics over UML Class Diagrams [15].

As a result, in Table 1 we present the set of questions for actor-based metrics. We
observe that a certain actor can be filtered according to its kind and the specific
component it represents. A correction factor can be applied if the number of
dependencies related with the actor (#dep(a)) negatively affects the quality attribute;
if only the dependencies where the actor is a depender (#Deper(a)) negatively affects
the quality attribute; if only the dependencies where the actor is a depender
(#Depee(a)) negatively affects the quality attribute; or, if it is the total amount of
actors related with the actor (#actor(a)) that negatively affects the quality attribute.

We remark that both the filters and the correction factors can be further refined as
needed until getting the desired level of detail. For instance, we may only be
interested in the number of actors related with the actor that are of a certain kind or
that represent and specific component. Also other arithmetical combinations are

Table 1. Questions, answers and examples for stating the filters and correction factors of actor-
based metrics

Metric element Question Answer Example Value

1.1. Actor-based: filterM(a)
Does the kind of the actor or the actor itself affects the quality attribute?

No FilterM(a) = 1
w, if a ∈ Human
x, if a ∈ Software
y, if a ∈ Hardware

Yes, the kind of component
affects the quality attribute.

FilterM(a) =

z, otherwise
m, if a = ActorA
n, if a = ActorB

Yes, the specific component
affects the quality attribute FilterM(a) =

...
1.2. Actor-based: correctionFactorM(a)

Does the actor dependencies or the actors related with the dependecies affects the
quality attribute?

No CorrectionFactorM(a) = 1
1 Yes, the number of

dependencies affects it.
CorrectionFactorM(a) = #Dep(a)

1 Yes, the number of
dependencies ER affects it.

CorrectionFactorM(a) = #Deper(a)
1 Yes, the number of

dependencies EE affects it.
CorrectionFactorM(a) = #Depee(a)

1

Yes, the number of actors
related with a affects it.

CorrectionFactorM(a) = #Actor(a)

A Goal-Oriented Approach for the Generation and Evaluation of Alternative Architectures 13

possible, if they allow providing more accuracy in the results. Dependency-based
metrics would be defined following a similar approach.

As we have mentioned before, maintainability is better achieved in those
architectures that present a low level of coupling and a high level of cohesion. In the
structure of the i* models a low level of coupling can be measured by stating an actor-
based metric, where the number of actors related with the current actor negatively
affects the property:

1
Actor-based coupling metric: filterM(a) = 1 and correctionFactorM(a) = #Actor(a)
In a similar manner, cohesion is related with the number of dependencies that

steam from or goes through each actor. If the same dependency appears more than
once, cohesion is damaged. In this case we can define a dependency-based metric as
follows:

1 correctionFactorM,der(d) = 1 Dependency-based

cohesion metric:
filterM(d) = #Duplicated(d)

 and
correctionFactorM,dee(d) = 1

• Guideline 2.4: Evaluating the Metrics. The evaluation of the metrics is done by

applying the corresponding actor-based or dependency-based formula with the
values stated in the previous guideline. As alternative i* architecture models can be
large and complex, tool support is essential. As we have mentioned in section 4,
we use J-PRiM [18] to support the evaluation of the alternatives according to the
defined metrics.

In order to show the application of the metrics, we have generated and evaluated 4
different alternatives architectures for the HSR in J-PRiM [18]. In Fig. 3. we show an
schema of how the dependencies are distributed according to the patterns: A)
Blackboard; B) 8-Layers defining the 8 levels as proposed in [26]; C) 3-Layers
defining the 3 levels as proposed in [6], and D) a Control-loop as defined in [26].

D

D D D

D

DD

D

D D

D D

D

D

D

D

D D D D

D

D

D D D

D

Fig. 3. Schema of the generated alternative i* architecture models

14 Gemma Grau, Xavier Franch

The results of the evaluation are presented in Table 2. According to the coupling
metric, we observe that those alternative i* architecture models where there are more
components and these components have dependencies with few other ones, score
better for coupling (e.g., Layered architectures, being 8 levels better than 3). On the
other hand, those alternative i* architecture models where there are less dependencies
for data interchange between different components, score better for cohesion (e.g., the
Control loop architecture is more cohesive than the Layered architectures). Therefore,
the solution that provides a better trade-off of this aspects is the Blackboard pattern.

7 Conclusions and Future Work

In this paper we present a set of guidelines for the generation and evaluation of
alternative architectures. Our proposal uses the i* framework, a goal-oriented
modelling language that represents the software architecture functional and non-
functional requirements using actors and dependencies between them. The guidelines
assume that an initial source i* architecture model and a set of relevant quality
attributes have been obtained previously to the execution of the guidelines. From this
point of view, we address the generation and evaluation of alternatives by adapting
existing architecture solutions to the i* framework by generating generic i*
architectural patterns. The elements on those patterns are analysed and matched
against the ones on the source i* architecture model in order to obtain the alternative
i* architecture models. Finally, these models are evaluated by applying structural
metrics, which are defined by following a set of guidelines that follows the Goal
Question Metric paradigm [1]. This process is supported by J-PRiM [18].

Among the benefits of the proposed approach we remark the following three. First,
architectures are modelled at the early stages of the requirements process using a
goal-oriented language, which we believe reduces the gap that is usually found
between requirements and architectures. Second, it allows applying structural metrics
directly on the requirements model, allowing the evaluation of alternative
architectures without having to build any other artefact. Finally, as we are
representing architecture-related concepts at the requirements level, we can benefit
from the contributions and experience on both the use of the i* framework and the
research on the generation and evaluation of alternatives.

Regarding the capabilities to deal with the modelling, generation and evaluation of
software architectures, our process satisfies the desiderata proposed in [26] as
follows:
• Composition. The i* framework allows describing a system as a composition of

independent components and connections, where the components are represented

Table 2. Evaluation results for the metrics indicating cohesion and coupling over 4 different
architectural styles.

Property Blackboard

pattern

8-Levels layered

architecture

3-Levels layered

architecture

Control-loop

architecture

Coupling 0.6250 0.5814 0.6065 0.8125
Cohesion 0.5217 0.1611 0.4000 0.95

A Goal-Oriented Approach for the Generation and Evaluation of Alternative Architectures 15

by actors and the connections are represented by means of dependencies between
these actors.

• Abstraction. The i* framework allows describing the components and their
interaction at different abstraction levels. Thus, the system can be represented as a
unique software actor or as a set of software actors representing the components of
the software architecture.

• Reusability. Reusability is achieved at two levels. On the one hand, generic i*
architectural patterns are created only once for each architectural solution and can
be used in other applications of the process. On the other hand, generated i*
architectures can be used as the source i* architecture model in further iterations of
the process.

• Configuration. The generated i* architectures are based on existing architectural
solutions, which clearly states that the system structure is independent from the
elements being structured.

• Heterogeneity. It is possible to combine several architectural descriptions
modelled within the i* framework, and also to switch the level of detail they
represent (for instance, from the whole system to the representation of architectural
patterns or architectural styles).

• Analysis. We propose to analyse the resulting i* models using structural metrics as
proposed in [14], however other analysis techniques within the i* framework can
be used. They can be based on the structural properties of the i* framework [2],
[12], [13], or based on the reasoning capabilities it provides [27], [28].

As future work, we aim at creating a catalogue of generic i* architectural patterns and
a catalogue of reusable structural metrics. We are interested in stating which types of
architectural attributes can be evaluated with structural metrics, and how to define
them and use them in a simple way in order to make the evaluation of alternatives
more systematic. Although the use of J-PRiM has been adequate for supporting the
development of the Home Service Robot case study, more experimentation will be
done in order to provide accurate data on the effort and benefits of using this approach
in industrial case studies.

Acknowledgements. This work has been partially supported by the CICYT
programme project TIN2004-07461-C02-01. Gemma Grau work is supported by an
UPC research scholarship.

References

1. Basili, V.R., Caldiera, G., Rombach, H.D.: “The Goal Question Metric Approach”.
Encyclopedia of Software Engineering, Wiley, 1994.

2. Bastos, L.R.D., Castro, J.F.B.: “Enhancing Requirements to derive Multi-Agent
Architectures”. In Proceedings of WER 2004. pp. 127-139.

3. Bengtsson, P., Bosch, J.: “Scenario-based Software Architecture Reengineering”. In
Proceedings of the5th International Conference on Software Reuse, 1998. pp. 308-317.

4. H. de Bruin, H., van Vliet, H.: “Scenario-based Generation and Evaluation of Software
Architectures”. In Proceedings of the Third International Conference on Generative and

16 Gemma Grau, Xavier Franch

Component-Based Software Engineering, 2001. LNCS 2186, pp.128-139, 2001.
5. Bryl, V., Massacci, Mylopoulos, J., Zannone, N.: “Designing Security Requirements

Models Through Planning”. In Proceedings of CAiSE 2006. LNCS 4001, pp. 33-47.
6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented

Software Architecture, Volume 1: A System of Patterns. ISBN 0-471-95889-7. John's Wiley
& Sons Ltd, 2001.

7. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, 2000.

8. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures. Methods and
Case Studies. ISBN 0-01-70482-X. Addison-Wesley, 2002.

9. Dardenne, A., van Lamsweerde, A., Fickas, S.: “Goal-directed Requirements Acquisition”,
Science of Computer Programming, Volume 20, Issue 1-2 (April 1993), pp. 3-50.

10. Dobrica, L., Niemelä, E.: “A survey on software architecture analysis methods”. IEEE
Transactions on Software Engineering, Vol. 28 , Issue 7, July 2002. pp: 638 – 653.

11. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. ISBN
0-534-95429-1. International Thomson Computer Press, 1996.

12. Franch, X., Maiden, N.: “Modeling Component Dependencies to Inform their Selection”.
2nd Intl. Conference on COTS-Based Software Systems (ICCBSS), LNCS 2580, 2003.

13. Franch, X. “On the Quantitative Analysis of Agent-Oriented Models”. In Proceedings of
CAiSE 2006. LNCS 4001, pp. 495-509.

14. Franch, X., Grau, G., Quer, C.: "A Framework for the Definition of Metrics for Actor-
Dependency Models". In Proceedings of RE 2004, pp. 348-349.

15. Genero, M., Piattini, M., Calero, C.: “A Survey of Metrics for UML Class Diagrams”. In
Journal of Object Technology, vol. 4, no. 9, November-December 2005, pp. 59-92.

16. Grau, G., Franch, X.: “ReeF: Defining a Customizable Reengineering Framework”. In
Proceedings of CAiSE 2007. LNCS 4495. pp. 485-500.

17. Grau, G., Franch, X.: “On the Adequacy of i* Models for Represeinging and Analysing
Software Architectures”. To appear in Proceedings of the First International Workshop on
Requirements, Intentions and Goals in Conceptual Modelling, RIGiM 2007 (at ER 2007).

18. Grau, G., Franch, X., Ávila, S.: "J-PRiM: A Java Tool for a Process Reengineering i*
Methodology". In Proceedings of RE 2006. pp. 352-353.

19. Grau, G., Franch, X., Maiden, N.A.M.: "A Goal Based Round-Trip Method for System
Development". In Proceedings of REFSQ 2005. pp. 71-86.

20. Grünbacher, P., Egyed, A., Medvidovic, N.: “Reconciling software requirements and
architectures with intermediate models”. Software and Systems Modeling, Vol. 3, Num. 3,
August 2004. pp. 235-253.

21. The i* wiki at: http://istar.rwth-aachen.de/. Last Accessed: May 2007.
22. Kang, K.C., Kim, M., Lee, J., Kim, B.: “Feature-Oriented Re-engineering of Legacy

Systems into Product Line Assets – a case study”. In Proceedings of SPLC 2005. LNCS
3714. pp. 45-56.

23. Kim, M., Lee, J., Kang, K.C., Hong, Y., Bang, S.: “Re-engineering Software Architecture
of Home Service Robots: A Case Study”. In Proceedings of ICSE 2005. pp. 505-513.

24. Kolp, M., Giorgini, P., Mylopoulos, J.: “Organizational Patterns for Early Requirements
Analysis”. In Proceedings of CAiSE 2003. LNCS 2681. pp. 617-632.

25. van Lamsweerde, A. “Goal-Oriented Requirements Engineering: A Guided Tour”. In
Proceedings of ISRE 2001. pp. 249-263.

26. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
ISBN: 0-13-182957-2. Prentice Hall, 1996.

27. Yu, E. Modelling Strategic Relationships for Process Reengineering. PhD. thesis,
University of Toronto, 1995.

28. Yu, E.: “Towards Modeling and Reasoning Support for Early-Phase Requirements
Engineering”. 3rd IEEE Intl. Symposium on Requirements Engineering, ISRE 1997.

