
A goal-oriented requirements modelling language
for enterprise architecture1

Dick Quartela, Wilco Engelsmanb, Henk Jonkersb, Marten van Sinderenc

aNovay {Dick.Quartel }@novay.nl
bBiZZdesign {W.Engelsman, H.Jonkers}@bizzdesign.nl

cUniversity of Twente {M.J.vanSinderen}@ewi.utwente.nl

1 This work is partly funded by the Dutch Ministry of Economic Affairs, the Dutch Tax Administration and

BiZZdesign in the BServed project (http://bserved.telin.nl).

Abstract

Methods for enterprise architecture, such as TOGAF,
acknowledge the importance of requirements engineering
in the development of enterprise architectures. Modelling
support is needed to specify, document, communicate and
reason about goals and requirements. Current modelling
techniques for enterprise architecture focus on the
products, services, processes and applications of an
enterprise. In addition, techniques may be provided to
describe structured requirements lists and use cases.
Little support is available however for modelling the
underlying motivation of enterprise architectures in terms
of stakeholder concerns and the high-level goals that
address these concerns. This paper describes a language
that supports the modelling of this motivation. The
definition of the language is based on existing work on
high-level goal and requirements modelling and is
aligned with an existing standard for enterprise
modelling: the ArchiMate language. Furthermore, the
paper illustrates how enterprise architecture can benefit
from analysis techniques in the requirements domain.

1. Introduction

Requirements modelling is an important activity in the
process of designing and managing enterprise
architectures. As mentioned by Brooks [2]: “No other part
of the work so cripples the resulting system if done
wrong”. Nonetheless, most Enterprise Architecture (EA)
modelling techniques focus on what the enterprise should
do by representing ‘as-is’ and ‘to-be’ architectures in
terms of informational, behavioural and structural models
of the different architectural layers (business, application
and technical infrastructure). Little or no attention is paid
to represent (explicitly) the reasons, i.e., the why, behind
the to-be architectures in terms of motivations, rationale,
goals and requirements.

Also in popular methods for enterprise architecture,
such as The Open Group Architecture Framework
(TOGAF) [21], goals and requirements are central drivers
for the architecture development process. In TOGAF’s
Architecture Development Method (ADM), requirements
management is a central process that applies to all phases
of the ADM cycle. The ability to deal with changing
requirements is crucial to the ADM, since architecture by
its very nature deals with uncertainty and change,
bridging the divide between the aspirations of the
stakeholders and what can be delivered as a practical
solution.

Requirements modelling helps to understand, structure
and analyse the way business requirements are related to IT
requirements, and vice versa, thereby facilitating the
business-IT alignment. For example, the concept of ‘goal’
in goal-oriented requirements modelling is used to define
some desired effect, i.e., what should be achieved. In
addition, this goal is related to more abstract (business)
goals that define why the goal is needed, and is also related
to more concrete (IT) goals that define how the goal can be
realized. The explicit definition of these relations facilitates
traceability among the motivations and concerns of
stakeholders, their goals and the (design) artefacts that
ultimately realize the goals. Typically these artefacts are
business and IT services, and the processes and applications
that support these services.

The explicit modelling of the motivation underlying
enterprise architectures using goals, enables new types of
analysis from the requirements domain. For example, one
can analyse to what extent the enterprise architecture meets
the stakeholders’ goals, whether these goals may conflict,
the impact of revised goals on the enterprise, and vice
versa. Furthermore, alternative architectures may be
assessed based on the ability to meet stakeholder goals.

In this paper we assume that ArchiMate [17], [20] is
used for EA modelling. Basically, ArchiMate allows one
to model the products of the enterprise, the value and
services that are offered by these products, and the
processes, applications and technology that implement the

services. An enterprise architecture is structured along
two orthogonal dimensions: layers and aspects. The layer
dimension decomposes the enterprise into a business,
application and technology layer, and the aspect
dimension distinguishes between information,
behavioural and structural aspects of the enterprise. This
work extends the ArchiMate modelling framework with a
fourth aspect: the motivation aspect. This aspect is
concerned with the goals and intentions of the enterprise.
Requirements modelling is positioned within this aspect.

The purpose of this work is to introduce a language,
called ARMOR, for modelling the motivation, i.e., goals
and requirements, of enterprise architectures. This language
should be aligned with the ArchiMate language.
Furthermore, we illustrate the potential use of ARMOR for
analysing enterprise architectures, while focusing on
business-IT alignment issues.

This paper is structured as follows. Section 2 describes
the ArchiMate modelling framework, and its extension
towards motivation modelling. Section 3 discusses existing
languages for requirements modelling, and presents the
‘requirements’ on ARMOR. Section 4 presents ARMOR,
and its implementation in an existing ArchiMate tool.
Section 5 discusses extensions of ARMOR for stakeholder
and use case modelling. Section 6 illustrates the use of
ARMOR by means of an example, including possible
analyses. Section 7 discusses related work. And section 8
presents our conclusions.

2. Enterprise architecture

The modelling of an enterprise architecture involves the
conceptualization of different aspects of the enterprise
and at different levels of abstraction during the life cycle
of the architecture. This section structures the involved
concepts into domains and viewpoints.

2.1. ArchiMate modelling framework

Figure 1 depicts the modelling framework that underlies
the ArchiMate language [17], [20].

Application

Business

BehaviourInformation Structure

Technology

Data

Organisation
Product

ProcessInformation

Application

Technology

Figure 1. ArchiMate modelling framework

This framework decomposes an enterprise along two
dimensions: layers, which represent successive
abstraction levels at which an enterprise is modelled, and
aspects, which represent different concerns of the
enterprise that need to be modelled. The layer dimension
distinguishes three main layers:
- business layer, which offers products and services to

external customers that are realised in the
organisation by business processes;

- application layer, which supports the business layer
with application services that are realised by
(software) application components;

- technology layer, which offers infrastructural
services (e.g., processing, storage and
communication services) that are needed to run
applications, and are realized by computer and
communication devices and system software.

The aspect dimension distinguishes the following
modelling aspects:
- structure aspect, which represents the actors

(systems, components, people, departments, etc.)
involved and how they are related;

- behaviour aspect, which represents the behaviour
(e.g., processes and services) that is performed by the
actors, and the way the actors interact;

- information aspect, which represents the problem
domain knowledge that is used by and communicated
between the actors through their behaviours.
The structuring into dimensions allows one to model

an enterprise from different viewpoints, where a
viewpoint ([11],[10]) is characterized by one’s position
along each dimension. A viewpoint represents a certain
perspective on the enterprise that is of interest to one or
more stakeholders. A stakeholder typically focuses on a
(small) range along each of the dimensions. The
intersection of these ranges spans a viewpoint. For
example, each cube in Figure 1 represents the intersection
of a single layer and single aspect. A viewpoint may span
multiple or only part of a layer or aspect. Furthermore,
depending on the choice of viewpoints, they may (and
often will) overlap.

Each viewpoint comprises a number of concepts that
are used to model an enterprise architecture covering the
levels of abstraction and aspects represented by that
viewpoint. Accordingly, overlapping viewpoints may
comprise overlapping concepts. In order to define,
maintain and apply concepts for EA modelling in a
structured and consistent way, these concepts are
organized in orthogonal, i.e., non-overlapping
‘viewpoints’, called domains. Each domain represents a
conceptual model (set of concepts) that covers a particular
viewpoint, however, the idea is to choose the domains
such that overlap with other domains is minimized. For

example, the ellipses in Figure 1 represent common
modelling domains that have been defined for ArchiMate.

The consistency among viewpoints is not addressed
in this paper. An approach to address consistency is
described in [6].

2.2. Extended framework

ArchiMate focuses on the modelling of extensional and
intensional properties of an enterprise, in terms of
informational, behavioural and structural architecture
elements. Extensional properties model, e.g., the products
and services that are offered, and intensional properties
model how they are offered by processes and
applications.

To support the modelling of intentional properties an
extension of the ArchiMate framework is proposed, as
depicted in Figure 2. This extension comprises the
motivation and meaning aspects, and the value layer.

Technology

Application

Business

BehaviourInformation Structure MotivationMeaning

Value

Goals/
Require-
ments

Principles

Stake-
holders

Figure 2. EA modelling framework

The value layer represents the value of the services
and products that are offered to customers. For example,
existing work on value modelling, such as [8], [28] can be
positioned in this layer. The ‘Value’ concept of
ArchiMate fits in this layer, and could be extended to
model specific types of value, such as cost, and networks
of value exchange.

The meaning aspect represents concerns that are
related to the semantics of enterprise (architecture)
artefacts. For example, different ontologies could be used
by the enterprise and its customers, or even within the
enterprise. The ‘Meaning’ concept of ArchiMate fits in
this aspect, and could be extended to model how an
enterprise handles these ontological differences.

The motivation aspect is concerned with the goals and
intentions of the enterprise. ArchiMate does not provide
any concepts for this aspect. This paper is concerned with
the motivation aspect. The value layer and meaning
aspect are topics of a forthcoming paper. The remainder
of this section discusses the domains within the

motivation aspect. This aspect resembles the motivation
(or why) column of the Zachman framework [26].

Stakeholder domain. This domain models the
stakeholders of the enterprise, including their concerns
and the assessment of these concerns. A concern is
interpreted as some area of attention or interest. For
example, a CEO may be concerned with executing the
mission of the enterprise, a CIO with the clarity of the
enterprise architecture and its ability to adapt to change,
and a system’s manager with the capacity and reliability
of the computing and networking platforms used within
the enterprise. These concerns may be assessed using a
SWOT analysis. For example, this analysis may reveal
that the enterprise’s architecture lacks traceability, which
makes it difficult to handle change.

In addition, the users or customers of the enterprise
may be considered as stakeholders. Customers may be
concerned with, e.g., the diversity of the products and
services that are offered or the privacy of their
information. Also these concerns may be assessed (not
necessarily in terms of SWOT – Strengths, Weaknesses,
Opportunities and Threats) to reveal customer needs.

Stakeholders and their concerns may be identified
from the enterprise’s business plan (cf. section 3.1).

Principles domain. This domain models amongst others
the vision, mission, strategies, policies, principles and
guidelines of the enterprise, constituting the high-level
constraints for the design of the enterprise architecture.
The current definition of the domain [9] merely identifies
the need for defining a vision, mission, strategies,
policies, principles and guidelines, but lacks guidance on
how this can be done. The Business Motivation Model
discussed in section 3.1 could be helpful in this.

Requirements domain. This domain models the goals,
requirements and expectations that further constrain the
design of the enterprise architecture. These goals,
requirements and expectations may originate from the
constraints set in the principles domain or from the
assessment of concerns in the stakeholders domain. This
assessment may reveal strengths, weaknesses,
opportunities or threats that need to be addressed by
means of changing existing goals or setting new ones.

3. Requirements engineering

Requirements Engineering (RE) is, simply said,
concerned with the process of finding a solution for some
problem. This concern can be approached from a
problem-oriented view, which focuses on understanding
the actual problem, and a solution-oriented view, which
focuses on the design and selection of solution
alternatives [29].

3.1. Problem-oriented RE

Problem-oriented RE originates from systems
engineering, emphasizing the modelling and analysis of
the problem domain. A requirements model describes the
experienced problematic phenomena, the relations
between these phenomena, why they are seen as
problematic and by whom. A popular problem-oriented
RE approach is Goal Oriented RE (GORE) [1]. Goals are
considered as high-level objectives of some organization
or system. They capture the reasons why a system is
needed and guide decisions at various levels within the
enterprise. Well-known GORE techniques are i* [31] and
KAOS [5].

GORE enables a number of analyses. Firstly, it
facilitates reasoning about the purpose of a proposed
solution. Goal models can be analyzed to demonstrate
which goals realize other goals and which goals conflict
or negatively contribute to other goals. Secondly, GORE
demonstrates the contribution of the proposed solution to
the actual need. This can be combined with traditional
techniques like Viewpoint-Oriented RE (VORE) [25][7].
Viewpoints can be used to analyze if all the required
views for a solution are satisfied. Furthermore, SWOT
analyses can be used to demonstrate the value of a
proposed solution to business stakeholders (cf. section 7).

3.2. Solution-oriented RE

Solution-oriented RE represents the more traditional
software engineering view on requirements engineering.
A requirements model typically describes the context of
the system to-be, the desired system functions, their
quality attributes, and alternative configurations or
refinements of these functions and attributes. These
alternatives are analysed and compared to decide which
one is the best solution to the problem.

Traditional approaches are structured analysis (SA)
[24] and object-oriented analysis (OOA) [12]. Structured
analysis focuses on the flow of data and control of the
system to-be. Object-oriented analysis applies object-
modelling techniques to analyze the functional
requirements of the system to-be. An important OOA
technique is use-case elicitation and specification. Use
cases capture the solution behaviour in terms of
interaction scenarios between the system and its user.

Problem- and solution-oriented RE can be considered
as two consecutive or complementary phases; also
denoted as the early and late requirements phase in [31].
A language for requirements modelling should preferably
support both phases and facilitate models to be related for
purposes of refinement and analysis.

4. Requirements modelling

Besides its alignment to ArchiMate, the ARMOR
language should be based on or aligned with existing
languages for requirements modelling. Our intention is
not to introduce a new language persé, but one that meets
our modelling requirements. These requirements are
described first, followed by an overview of the following
techniques for goal modelling: the Business Motivation
Model [3], the i* framework [31], and the KAOS notation
from [22].

4.1. Language requirements

The following list gives an overview of our
‘requirements’ for a requirements modelling language:
- Re-use of concepts and ideas from existing languages

and methods for goal modelling.
- Alignment with ArchiMate.
- Enable documentation, communication and

reasoning about requirements.
- Ease of use. ARMOR should be easy to learn,

understand and apply, especially while its main
application is for documentation and communication
purposes. Therefore, we aim at a lean and general
purpose language that supports a limited set of
generic goal modelling concepts.

- Extensible. It should be possible to extend ARMOR
with specialized concepts and associated analysis
techniques. This would allow users to choose
between a basic and advanced versions of ARMOR.

- Traceability. Adaptation to change is an important
requirement for enterprise architectures. In order to
support impact of change analysis, abstract goals
should be traceable to the more concrete goals and
design artefacts such as services and processes that
implement these abstract goals; and vice versa.

4.2. Business motivation model

The Business Motivation Model (BMM) provides a
structure of concepts for developing, communicating and
managing business plans. The concepts can be used to
model (i) the factors that motivate a business plan, (ii) the
elements that constitute the business plan, and (iii) the
relationships between these factors and elements. The
BMM has been developed by the Business Rules group
and has been adopted as an OMG standard in 2005.

The central notion of the BMM is motivation. An
enterprise should not only define in its business plan what
approach it follows for its business activities, but also
why it follows this approach and what results it wants to
achieve. Figure 3 depicts an overview of the Business

Motivation Model. The following three major parts are
distinguished:
- Ends, which describe the aspirations of the

enterprise, i.e., what the enterprise wants to
accomplish;

- Means, which describe the action plans of the
enterprise to achieve the ends, and the capabilities
that can be exploited for this purpose.

- Influencers, which describe the assessment of the
elements that may influence the operation of the
enterprise, and thus influence its ends and means.

Ends
(Aspirations – being)

Ends
(Aspirations – being)

Means
(Action plans – doing)

Means
(Action plans – doing)

InfluencersInfluencers

Opportunity
Threat

Opportunity
Threat

Strength
Weakness

Strength
Weakness

DirectivesDirectives

Business
rule

Business
rule

Business
policy

Business
policy

governed byrealized by

impact impact

MissionMission

StrategyStrategy

TacticTactic

VisionVision

GoalGoal

ObjectiveObjective

Figure 3. BMM overview

4.3. i*

The i* framework focuses on concepts for modelling and
analysis during the early requirements phase. It
emphasises the “whys” that underlie system requirements,
rather than specifying “what” the system should do.

The i* framework has been developed to model and
reason about organizational environments and their
information systems. The central notion is the intentional
actor. Actors within an organization are viewed as having
intentional properties such as goals, beliefs, abilities and
commitments. Actors depend on each other to achieve
goals, to perform tasks and to use resources.
Furthermore, actors are strategic and will try to rearrange
these dependencies to deal with opportunities and threats.

Two types of models are distinguished: the Strategic
Dependency (SD) model and the Strategic Rationale (SR)
model. A Strategic Dependency model describes the
dependencies among actors in an organizational context.
A dependency models an agreement between two actors,
where one actor (the depender) depends on another (the
dependee) to fulfil a goal, perform a task or deliver a
resource (the dependum). A dependency may involve a
soft goal, which represents a vaguely defined goal with
no clear criteria for its fulfilment.

The Strategic Rationale model describes stakeholder
interests and concerns, and how they can be addressed by
various configurations of systems and environments. An

SR model adds more detail to the SD model by looking
“inside” actors to model internal intentional relationships.
Intentional elements, i.e., goals, tasks, resources and soft
goals, appear both as external dependencies and as
internal elements. Intentional elements can be linked by
means-end relations and task decompositions. A third
type of link is the contribution relation, which represents
how well a goal or task contributes to a soft goal.

The i* framework allows various types and levels of
analysis [30], for example, to assess the ability,
workability, viability and believability of goals and tasks.

4.4. KAOS

KAOS is a methodology for requirements engineering. In
comparison to i*, KAOS seems to focus more on the late
requirements phase. Having said this, the goal concept in
KAOS does allow one to model the motivations, i.e., the
why, behind system requirements. But, in contrast to i*,
KAOS seems less concerned with modelling the
‘intentions’ of actors.

The key concept underlying KAOS is goal. [14]
defines a goal as “a prescriptive statement of intent that
the system should satisfy through cooperation of its
agents”. Here, an agent can be any actor involved in the
satisfaction of the goal, e.g., an existing information
system, an application to be developed, or a human user.

Goals can be defined at different abstraction levels.
Higher level goals and lower level goals are related
through refinement relations, which define what lower-
level goals are needed to satisfy a higher level goal. At
the same time, these refinement relations define the
justification for (why) a lower level goal is introduced.

Typically, a (high-level) goal requires the cooperation
of multiple systems. One important outcome of
requirements engineering is the decision which goal can
be automated (partly) and which not. A goal that is
assigned to a system-to-be, such that the system is made
responsible for the satisfaction of a goal, is called a
requirement. Instead, a goal that is assigned to the
environment of the system-to-be is called an expectation.
Unlike requirements, expectations can not be enforced by
the system-to-be.

In KAOS, a conflict relation can be used to model that
the satisfaction of one goal prevents the satisfaction of
another goal (and vice versa). An obstacle can be used to
represent a situation that hinders or obstructs the
satisfaction of some goal or requirement. An obstacle
may be resolved by other goals.

Further, KAOS allows the modelling of properties of
the problem domain: domain hypotheses, which describe
properties that are expected to hold, and domain
invariants, which describe properties that always hold.

KAOS supports various kinds of analysis, such as
traceability, completeness, formal validation, refinement
checking, and risk, threat and conflict analysis [14].

4.5. Observations

The following observations aim at guiding the decisions
about the concepts that should be supported by ARMOR,
which are discussed in section 5.

The BMM can not be considered a true requirements
modelling language. The model focuses on business
plans, which may involve high-level goals and objectives.
A business plan that is developed using the BMM can be
used as a starting point for (early-phase) requirements
engineering. Elements of the BMM, such as goals and
strategies, but also strengths, weaknesses, opportunities
and threats that result from the analysis of business
influencers, may serve as sources or motivations for high-
level goals.

The i* framework focuses on the early requirements
phase and is an expressive language, allowing various
types of analysis. However, the expressiveness of the
language and corresponding rich notation, may be
experienced as (too) complex and prevent people from
using it [30]. Other observations are:
- i* focuses on modelling the intentions of agents

(actors) and allows the analysis of these intentions,
concerning intentional concepts such as ability,
workability, viability and believability;

- the distinction between a means-end relationship and
a decomposition relationship in i* in terms of
semantics and consequence for further design steps is
not always clear and may lead to confusion;

- a similar remark can be made about the distinction
between goals and tasks;

- i* distinguishes between the internal intentions of an
actor, and its external intentions in terms of
dependencies on other actors. This is consistent with
the distinction between the internal and external
perspective on system design in ArchiMate.

The KAOS graphical notation [22] seems to be less
complex and easier to use than i*. This comes at the price
of less expressivity, such as the inability to model the
extent to which a goal contributes to another goal
(although this ability can be introduced). In the tradeoff
between expressivity and ease-of-use, this work prefers
the latter for the basic version of ARMOR. Other
observations are:
- KAOS does not use a separate actor model, but

introduces the actors in the goal model via
responsibility assignment relations;

- KAOS distinguishes between goals that typically
must be satisfied by multiple cooperating agents, and

requirements that are assigned to individual agents.
This distinction corresponds to the distinction
between activities and inter-activities (interactions,
collaborations) in ArchiMate.

5. Language definition

In order to align the conceptual model of ARMOR with
existing requirements modelling languages, the following
approach is followed:
1. Determine the common concepts underlying the

languages studied in section 3 and use these concepts
as basis for ARMOR. This may involve the
abstraction of concepts of one language to relate
them to concepts of another language.

2. Extend the basic concepts of ARMOR in case its
expressiveness is insufficient.

In these steps, criteria like ease-of-use and suitability
of the proposed concepts for the EA domain are
considered as well. Furthermore, a ‘minimal’ set of
generic concepts is strived for in order to keep ARMOR
broadly applicable and to facilitate modifications and
extensions later on when more experience has been
gained with the use of ARMOR.

5.1. Supported concepts

The following describes the concepts supported by
ARMOR, including their motivation.

Goal concept. The key concept is the concept of goal,
which is supported by BMM, i* and KAOS. A goal is
defined as some desired effect in the problem domain, or
some desired properties of a solution.

Furthermore, the goal concept can be used as an
abstraction or generalization of other concepts:
- The concepts of vision and objective in BMM can be

modelled as an abstract (high-level) and concrete
(low-level) goal, respectively. Also the concepts of
mission, strategy and tactic can, from a goal-oriented
perspective, be seen as (sub-)goals that are obtained
by ‘operationalizing’ the concepts of vision, goal and
objective, respectively.

- The concept of task in i* can be modelled as a
concrete goal that defines how (part of) a more
abstract goal can be satisfied.

- The goal concept in KAOS is an abstraction of the
requirement and expectation concepts, since it
abstracts from the agent (actor) to which the goal can
be assigned.

An abstract notion of goal reduces the number of
required concepts. However, this may be at the expense
of precision and intuition. For example, a designer of a
business plan does not only think in terms of ‘goals’, but
specializes in terms of strategies, tactics, objectives, etc.

For a similar reason, we want to distinguish between
goals that can and can not (yet) be assigned to actors.
Therefore, ARMOR supports both the concepts of goal
and requirement, where a requirement is defined as a goal
that can be assigned to a single system The concept of
expectation is not supported explicitly, but can be
modelled as a special type of requirement, i.e., one that
can be assigned to an environment actor.

The distinction between hard and soft goals is made
both in i* and KAOS (and implicitly in BMM via the
distinction between goals and objectives). This distinction
is considered significant and is therefore also supported in
ARMOR. In particular, soft goals are useful in the
evaluation of alternative designs.

Goal refinement. BMM, i* and KAOS all support the
refinement of goals into sub-goals. Moreover, BMM and
i* distinguish two types of refinement relations: means-
end relationships and decomposition relations. The need
to be able to make this distinction is however not always
clear. Furthermore, the distinction is sometimes
considered confusing: when should a refinement be
considered as a decomposition and when as a means-end
relationship?

Therefore, currently only the more abstract refinement
relation is supported in ARMOR, with the possibility to
specialize this relationship later on if this is felt necessary.

Conflicts, obstacles and qualitative contributions. Both
i* and KAOS allow one to model that some goal or
situation may have a negative influence on the
satisfaction of another goal.
- KAOS supports the conflict relation and the obstruct

relation in combination with the obstacle concept.
Furthermore, the resolution relation can be used in
KAOS to resolve, i.e., ‘dissatisfy’, an obstacle;

- i* supports the contribution relation to model positive
and negative influences on the satisfaction of soft
goals. These influences are defined in qualitative
terms, e.g., using the range: ++, +, +/-, -, --.

The obstruction of goals by obstacles are not modelled
as part of a goal model in ARMOR. An obstacle is
considered the result of the assessment of some
stakeholder concern, like the assessment of an influencer
as a threat or weakness in the BMM. The modelling of
assessments should however be supported by ARMOR –
not as part of the goal domain – but as part of the
stakeholders domain; see also section 6.1.

The following properties can be modelled as part of
goal models in ARMOR:
- Positive and negative contributions (influences) on

the satisfaction of hard and soft goals, in order to
facilitate the evaluation of alternative goal
refinements. The need to be able to qualify the
strength of the contribution, and in what detail may

depend on the situation at hand. Therefore, it should
be easy to introduce different qualification ranges,
such as the range 0..10 or the range ++, +, +/-, -, --
mentioned above.

- A conflict between two goals G1 and G2, such that
the satisfaction of G1 inhibits the satisfaction of G2,
and vice versa. A conflict is only possible between
hard goals (and requirements), since the criteria for
the satisfaction of soft goals is unclear; i.e., it is
unclear when the satisfaction of a soft goal inhibits
the satisfaction of another goal.

Assumptions. The refinement of some goal may be based
on certain assumptions about (elements in) the problem
domain. i* and KAOS introduce the notions of
assumption, belief and domain property for this purpose.
Since it is considered useful to make such assumptions
explicit, ARMOR supports the general notion of
‘assumption’.

5.2. Meta-model

Figure 4 depicts the abstract syntax, or meta-model, of
ARMOR. Most ARMOR concepts from section 5.1 are
represented one-to-one by an abstract language element
(i.e., UML class). Instead, assumptions are represented by
an attribute of the goal concept.

Figure 4. ARMOR meta-model

The idea is to use ARMOR in combination with
ArchiMate. Therefore, the actor and assignment relation
concepts are ‘borrowed’ from ArchiMate. The realization
relation of ArchiMate is used to represent refinement and
to link a requirement to design artefacts, such as the
services and processes that implement the requirement.
These artefacts are also modelled using the ArchiMate
language.

5.3. Concrete syntax

The ARMOR language has been implemented in the
BiZZdesign Architect tool as an extension of ArchiMate.
Table 1 depicts the concrete syntax used for ARMOR,
including part of the concrete syntax of ArchiMate.

Table 1. ARMOR concrete syntax

Abstract Concrete Abstract Concrete

Hard goal Hard goal

Soft goal Soft goal

Requirement Requirement

Refinement/
Realization

And-refinem.

Or-refinem.

Contribute +/-

Conflict

Business
service

Business
service

Business
process

Business
process

Used by Association

6. Stakeholders and use cases

Modular extensions of ARMOR have been developed to
support the modelling of the Stakeholders domain, as well
as the modelling of use cases and business rules. In this
paper, we discuss the modelling of stakeholders and use
cases briefly.

6.1. Stakeholders domain

Figure 5 depicts the meta-model of the stakeholders
domain (see section 2.2) and its relation to the goal
concept. The relationships between stakeholders, their
concerns, and the assessments of these concerns are
mapped onto the association relation of ArchiMate.

Figure 5. Stakeholders – meta-model

6.2. Use case domain

The modelling of use cases is strongly related to the
modelling of goals and requirements. Use cases are
generally used as a technique to elicit and specify system
requirements. A use case describes the interactions
between a system and some external actor, i.e., user [12].

This user typically initiates the use case having some goal
in mind. This goal is satisfied when the use case
completes successfully.

Multiple, alternative sequences of interactions (called
scenarios) may satisfy the goal. In addition, a use case
may describe alternative sequences of interactions that
handle failure, e.g., exception or error handling. By
specifying only interactions, the system is considered as a
‘black box’, abstracting from internal detail.

Figure 6 depicts the meta-model of the use-case
domain. Since a use case is defined as a type of
requirement, the use-case domain is a sub-domain of the
requirements domain.

Figure 6. Use cases – meta-model

6.3. Concrete syntax

Table 2 depicts the concrete syntax for the stakeholders
and use-case domains.

Table 2. Extension ARMOR concrete syntax

Abstract Concrete Abstract Concrete

Stakeholder Stakeholder

Concern Concern

Assessment Assessment

Use case Use case

Include <<include>>

 Extend <<extend>>

7. Application of ARMOR

The introduction of ARMOR enhances enterprise
architecture modelling with reasoning and analysis
techniques from the domain of requirements engineering.
This section illustrates the application of ARMOR and
discusses possible analyses. Due to space limitations, we
consider the following example issues in enterprise
architecture: (i) traceability of stakeholder concerns, (ii)
evaluation of alternative architectures, and (iii) detection
of conflicting interests and solutions.

Traceability of stakeholder concerns. Figure 7 depicts
an ARMOR model that represents two stakeholders of
some insurance company, called PRO-FIT, including
their concerns, and some assessments of these concerns.

For example, both senior management and the service &
IT department are concerned with customer satisfaction.
A periodical assessment of these concerns has revealed
several threats and weaknesses: leaving customers, lack
of insight in insurance portfolios, and insufficient support
for portfolio management. The latter is addressed by
defining the goal to improve portfolio management,
which is refined into the sub-goal to enable on-line
portfolio management. This sub-goal supports another
higher-level goal, i.e., the use of on-line services to
expose PRO-FIT’s insurance products. This goal
addresses the innovation concern. One of the assessments
of this concern presented the SOA paradigm as an
opportunity to achieve innovation and to improve the
automated handling of insurance processes.

Decrease of
personnel
budget

Introduce
SOA paradigm

Leaving
customers

Lack of
insight

Profit Customer
satisfaction

Service & IT
department

Innovation

Senior
management

Dropped
sales

On-line portfolio
management

Increase
sales

Increase
customer

satisfaction

Increase
insight

Bad portfolio
management

Improve
portfolio

management

Enable
claim handling

Enable buying
insurances Enable premium

payments

Lack of SOA
knowledge

Acquire SOA
Knowledge

Use on-line
services

Budget

Provide on-line
information Buy

insurance
Buy insurance

service

Buy insurance
processApply for

insurance

Handle
application

Contract creation
service

Receive
contract

Create
contract

Application assessment
service

<<include>>
<<include>>

Figure 7. Traceability of stakeholder concerns

In addition, the ARMOR model illustrates the further
refinement of goals into sub-goals, use-cases and system
requirements, which are realized by means of business
services and processes. This enables the forward tracing
from stakeholder concerns to the services/processes (and
possibly the supporting applications and technology) that
‘solve’ these concerns, and the backward tracing from
services/processes to the goals and concerns that
motivated this solution.

Viewpoint Oriented RE (VORE) [25] may help to
analyze which goals originate from (the view of) a
specific stakeholder and how the proposed solution
addresses the concerns of the stakeholder. A complete
analysis requires the identification of all major concerns.
[13] provides a set of pre-determined viewpoint
categories which can be used as a starting point for

viewpoint identification and analysis. Other techniques
that can be used to assess how well stakeholder goals can
be satisfied are workability, viability and ability analyses
[31].

Evaluation of alternative architectures. The model in
Figure 8 depicts two alternative ways to realize the
‘Improve portfolio management’ goal, i.e., by providing
on-line services or by offering customers a personal
assistant. In addition, the (expected) contribution of these
alternatives to the soft goals ‘Increase customer
satisfaction’ and ‘Increase insight’ has been modelled.
Based on the contribution to these soft goals, the best
alternative seems to be the first one. However, when also
taking into account that the personnel budget must
decrease, and thus efficiency should improve, a different
decision may be made since the first alternative
contributes negatively to this. Using soft goals for
architecture evaluation is originally done by the NFR
framework [4]. Goal analysis techniques [4], [14] can be
used to evaluate architectural alternatives.

Decrease of
personnel
budget

Introduce
SOA paradigm

Leaving
customers

Lack of
insight

Profit Customer
satisfaction

Service & IT
department

Innovation

Senior
management

Dropped
sales

On-line portfolio
management

Increase
sales

Increase
customer

satisfaction

Increase
insight

Bad portfolio
management

Improve
portfolio

management

Personal
portfolio

management

Lack of SOA
knowledge

Acquire SOA
Knowledge

Hire
consultant

Education
and training

Budget

Improve
efficiency

Reduce
support

staff
Assign

assistant

Assistant
support system

Use web- services
to expose and
support products

+
++ +

+
-

--

++

Figure 8. Evaluation of alternative architectures

Detection of conflicting interests and solutions. The
model in Figure 8 shows a conflict between the goal to
assign personal assistants and the goal to reduce support
staff. A conflict is considered stronger than a negative
contribution, i.e., assigning assistants is not possible
without reducing staff (and vice versa), whereas the
improvement of efficiency might still be achieved in other
ways. The early detection of conflicts avoids
implementation costs of goals that ultimately can’t be
realized. This also holds for the detection of goals that
contribute negatively to other goals, with the distinction
that the relative impact of conflicting goals is expected to
be higher. [16] reviews generic types of inconsistency
that can arise during requirements elaboration and
integrated them into a generic framework. Viewpoints are

a recommended mechanism for conflict identification and
resolution [16][19].

8. Related work

As mentioned in the introduction, requirements
management plays a central role in TOGAF’s
Architecture Development Method [21]. TOGAF
provides a limited set of guidelines for the elicitation,
documentation and management of requirements,
primarily by referring to external sources. TOGAF’s
content metamodel, part of the content framework,
defines a number of concepts related to requirements and
business motivation; however, this part has been worked
out in little detail compared to other parts of the content
metamodel, and the relation with other domains is weak.
Also, the content framework does not propose a notation
for the concepts.

The Integrated Architecture Framework (IAF) is Cap
Gemini’s architectural framework [18]. Like TOGAF this
framework also recognizes the importance of
requirements for enterprise architectures. IAF recognizes
requirements at both the contextual and conceptual level.
At the contextual level they identify “business
requirements” that answer the why question and at the
conceptual level they provide more detailed requirements.
But IAF lacks a detailed description of how to represent
either business requirements or the more detailed
requirements. It mainly lacks concept definition and a
requirements language to represent the requirements.

[23], [30] propose to use i* as a problem investigation
technique for architecture design and business modelling.
This way the motivation for architectural elements is
linked to their implementation. [30] illustrates the
potential benefit of using BMM and i* in combination to
support intentional modelling and analysis of enterprise
architectures. This work does not consider the integration
or alignment of these languages with existing enterprise
modelling languages. [8] extends intentional modelling
with value modelling, by combining the i* framework
and the e3 value methodology.

Concerning tool support for enterprise architecture,
many tools claim to support requirements modelling (e.g.,
System Architect and Powerdesigner). However, this
support is often limited to the documentation of
requirements as structured lists, or the modelling of use
cases. Furthermore, they do not offer graphical modelling
techniques, nor the integration with other modelling
domains.

A relevant tool in the field of requirements modeling is
Enterprise Architect from Sparx [27]. Enterprise
Architect is primarily an UML modeling tool focused on
software engineering. But it also supports a Zachman
Framework extension. For modeling the motivation of the

Zachman framework Enterprise Architect relies on goal
modeling techniques as well, but at the level of the BMM
framework. Therefore it lacks GORE based concepts as
used by ARMOR. Secondly the link with the actual
architectural models is weaker than ARMOR’s. For
example, with ARMOR it is possible to explicitly model
the realization relation between a business service and its
use-case. This use-case is associated with a requirement
or refined goal. This way ARMOR realizes traceability
from business goals, through requirements to architectural
elements.

9. Conclusions and future work

We have presented a language, called ARMOR, for
modelling goals and requirements in enterprise
architectures. The origin of high-level goals is modelled
in terms of stakeholders, their concerns and the (SWOT)
assessments that are addressed by the goals. Goals are
refined into (alternative sets of) sub-goals, via goal trees.
Low-level goals (requirements) are related to the services,
processes and applications that implement the
requirements. This enables forward and backward
traceability of goals and requirements.

The ARMOR language is based on existing
requirements modelling languagues and is aligned with
the standard enterprise modelling language ArchiMate.
This brings existing theory and analysis techniques to the
domain of enterprise architecture modelling.

Currently we apply ARMOR combined with an
architecture-driven requirements engineering approach in
consultancy projects. These projects help to validate and
improve ARMOR and the associated approach.
Furthermore, our future work aims at the formalization of
ARMOR and the elaboration of various analysis
techniques, using existing work such as the work referred
to in this paper.

References

[1] A.I. Antón. Goal-based requirements analysis. Proceedings
of the Second International Conference on Requirements
Engineering, pp. 136-144, 1996.

[2] F. Brooks. No silver bullet: Essence and accidents of
software engineering. IEEE Computer, 20, 4, pp. 10-19,
1986.

[3] Business Rules Group. The Business Motivation Model –
Business Governance in a Volatile World. Release 1.3,
http://www.businessrulesgroup.org.

[4] L. Chung. Non-Functional Requirements in Software
Engineering. Springer, 1999, ISBN 0-7923-8666-3.

[5] A. Dardenne, A. van Lamsweerde, S. Fickas. Goal-
Directed Requirements Acquisition. Science of Computer
Programming. Vol. 20, pp. 3-50, 1993.

[6] R.M. Dijkman, D.A.C. Quartel, M.J. van Sinderen.
Consistency in Multi-Viewpoint Design of Enterprise

Information Systems. Information and Software
Technology (IST) 50(7-8), pp. 737-752, 2008.

[7] A. Finkelstein, M. Goedicke, J. Kramer, and C. Niskier.
Viewpoint oriented software development: Methods and
viewpoints in requirements engineering. Lecture Notes in
Computer Science, Vol. 490, pp. 29-54, 1991.

[8] J. Gordijn, E. Yu, B. van der Raadt. e-Service Design using
i* and e3 value Modeling. IEEE Software, Vol. 23, No. 3,
pp. 26-33, 2006.

[9] M.E. Iacob, H. Franken, H. van de Berg. Enterprise
Architecture Handbook – method, language and tools,
BiZZdesign Academy Publishers, 2007.

[10] ISO. ISO/IEC 10746. The ISO Reference Model for Open
Distributed Computing.

[11] ISO. ISO/IEC 42010. Systems and software engineering –
Recommended practice for architectural description of
software-intensive systems.

[12] I. Jacobson. The use-case construct in object-oriented
software engineering. Scenario-based Design: Envisioning
Work and Technology in System Development, pp. 309-
338, 1995.

[13] G. Kotonya and I. Sommerville. Requirements engineering
with viewpoints. Software Engineering Journal, 11(1):5–
18, 1996

[14] A. van Lamsweerde. Requirements engineering in the year
00: a research perspective. In ICSE '00: Proceedings of the
22nd international conference on Software engineering,
pages 5–19, New York, NY, USA, 2000. ACM Press.

[15] A. van Lamsweerde. Requirements Engineering: From
Craft to Discipline. Proceedings FSE'2008: 16th ACM
Sigsoft International Symposium on the Foundations of
Software Engineering, Atlanta, November 2008

[16] A. van Lamsweerde, R. Darimont and E. Letier,
"Managing Conflicts in Goal-Driven Requirements
Engineering", IEEE Transactions on Sofware Engineering,
Special Issue on Inconsistency Management in Software
Development, Nov. 1998.

[17] M. Lankhorst, et al. Enterprise Architecture at work:
modelling, communication and analysis. Springer, 2005.

[18] A. Mulholland, and A.L. Macaulay. Architecture and the
integrated architecture framework. Whitepaper, Capgemini,
2006.

[19] B. Nuseibeh, J. Kramer and A. Finkelstein, "A Framework
for Expressing the Relationships Between Multiple Views
in Requirements Specifications", IEEE Transactions on
Software Engineering, Vol. 20 No. 10, Oct. 1994, 760-773.

[20] The Open Group. ArchiMate® Version 1.
http://www.opengroup.org/archimate.

[21] The Open Group. TOGAFTM Version 9.
http://www.opengroup.org/togaf.

[22] Respect-IT. A KAOS Tutorial, V1.0,
http://www.objectiver.com/fileadmin/download/documents
/KaosTutorial.pdf.

[23] R. Samavi, E. Yu, and T. Topaloglou. Strategic reasoning
about business models: a conceptual modeling approach.
Information Systems and E-Business Management, pp. 1-
28, 2008.

[24] K. Schoman, and D.T. Ross. Structured Analysis for
requirements definition. IEEE Transactions on Software
Engineering, 3(1), 1977.

[25] I. Sommerville, P. Sawyer, and S. Viller. Viewpoints for
requirements elicitation: a practical approach. Proc. Third
IEEE International Conference on Requirements
Engineering (ICRE 98), 1998.

[26] J.F. Sowa, J.A. Zachman. Extending and Formalizing the
Framework for Information Systems Architecture. IBM
Systems Journal, Vol. 31, No. 3, p. 590, 1992.

[27] Sparx Systems. MDG Technology For Zachman
Framework User Guide.
http://www.sparxsystems.com.au/downloads/pdf/ZFUserG
uide.pdf.

[28] H. Weigand, P. Johannesson, et al. Strategic analysis using
value modeling – the c3-value approach. Proc. of the 40th
Annual Hawaii Int. Conf. on System Sciences (HICSS’07),
p. 175c, 2007.

[29] R. Wieringa. Requirements engineering: Problem analysis
and solution specification (extended abstract). Lecture
Notes in Computer Science, 3140:13-16, 2004.

[30] E. Yu, M. Strohmaier, and X. Deng. Exploring Intentional
Modeling and Analysis for Enterprise Architecture.
Proceedings of the EDOC 2006 Workshop on Trends in
Enterprise Architecture Research (TEAR 2006). 2006.

[31] E. Yu. Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering. Proceedings of the
3rd IEEE Int. Symp. on Requirements Engineering (RE’97).
Jan. 6-8, 1997, Washington D.C., USA, pp. 226-235.

