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Abstract-This paper develops a goal programming model for achieving racial balance in segregated public schools. 
The model is illustrated and offered as an improvement upon linear programming, a model previously applied in the 
literature which allows a single objective function only and, in comparison with goal programming, requires more 
variables and constraints. Goal programming, a member of the general multiple objective linear programming (MOLP) 
model, improves upon these among other disadvantages thereby emerging as a more efficient tool for student 
assignment problems. 

INTRODUCTION 

The 1954 landmark Supreme Court decision in Brown 
vs Board of Education ([2], p. 686) signaled a reversal in 
the Court’s attitude towards racial desegregation in the 
nation’s school system. Prior to this decision many 
school districts were administered under the “separate 
but equal” doctrine expressed in the 18% Supreme Court 
decision, Plessy vs Ferguson, which stated that “equality 
of treatment.. , is essentially achieved.. . where the races 
are provided substantially equal facilities even though 
these facilities are separate.? The 1954 decision, on the 
other hand, stated that “separate educational facilities 
are inherently unequal” and therefore the “separate but 
equal” doctrine does not hold in public education issues 
involving segregation of the races ([12], p. 686). The 
decision further stipulated that students should be ad- 
mitted to schools “. . . with all deliberate speed.” $ In 1%8 
the Supreme Court reiterated its position regarding racial 
desegregation in the school systems by ruling that the 
systems must comply more rapidly with the 1954 
decision ([6], p. 1689). 

These recent Supreme Court decisions confronted the 
multitude of local school boards across the country with 
significant administrative problems. For example, 
students must be assigned to schools to achieve an as yet 
unspecified race allocation ratio. This assignment should 
represent some semblance of racial balance and must be 
effected by using whatever means necessary. Two of the 
methods available were realignment of school districts 
and busing of students to distant schools. Inherent in 
either of these, or any other method, was the 
criterion that the solution obtained result in a minimal 
cost consistent with constraints of the system. This 

tReference ([I 11, p. 1138). 
*Reference ([2], p. 686) 

paper presents a goal programming model which can be 
used for the purpose of assigning students to schools. 

THE LINEAR PROGRAMMING APPROACH 

One approach to the problem noted above would be to 
randomly assign students to schools until the’desired ratio 
of the races is obtained. While this procedure would 
undoubtedly result in a workable solution it is nevertheless 
time consuming and, consequently, expensive. Addition- 
ally, there would be no element of optimality, regarding 
cost minimization, in the solution unless the allocation 
process was repeated many times. 

The literature is replete with articles dealing with the 
application of operations research techniques to achieve 
racial desegregation in school systems [l-5,7,10,14]. 
While other operations research techniques have been 
used for the design of bus routes and schedules, the 
application of LP has generally been aimed at the student 
assignment problem. 

The application of LP techniques normally involves a 
minimization of some function of cost, i.e. total student 
busing distance, total number of buses required, etc. In one 
application in the literature, total student travel time was 
minimized [4] and in another entire population units were 
assigned to schools [ lo]. 

Constraints for the problems were normally constructed 
around the following criteria: 

(I) Each student must be assigned to a school; 
(2) Consideration must be given to school capacities; 
(3) Racial balance must be achieved within specified 

ranges. 
These criteria resulted in a large number of variables and 
constraints. For example, in the simple application 
presented in a later section of this article, in which two 
races, three schools and four school districts are con- 
sidered the number of constraints is eighteen and the 
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number of variables forty-seven. One can readily imagine 
the inordinate size of the variable-constraint matrix in a 
problem of any appreciable complexity. 

As potentially powerful and useful a tool as LP may be, it 
is not without shortcomings. The basic model is deter- 
ministic and, as such, assumes certainty, i.e. inputs are 
known and constant. These known and constant inputs 
include objectives as well as constraints, which ordinarily 
is not the case in a real-world situation. Normally a 
practical problem involves trade-offs between several 
objectives rather than the optimization of a single objec- 
tive. The typical LP application considers only the maxi- 
mization (or minimization) of a single objective. 

Recent efforts by Charnes, Cooper and Niehaus[3], 
Lee[B], Steuer and Oliver [ 131 and others, while not totally 
negating the above shortcomings, have considerably 
diminished their effect. The continually developing tech- 
niques in Multiple Objective Linear Programming (MOLP) 
are adding a great deal of diversity and utility to the original 
LP model. 

THE MULTIPLE OBJECTIVE LINEAR PROGRAMMING APPROACH 

MOLP techniques allow a decision-maker to give 
consideration to more than one objective when deriving 
solutions to allocation type problemst Of course a solu- 
tion to an MOLP problem is not to be regarded as a 
maximum (or minimum as the case may be), but as one 
which satisfied the constraints and simultaneously opti- 
mizes the objective according to the weighting scheme 
imposed on them. In other words, the solution obtained 
will represent an “optimal” solution which in real-world 
situations is undoubtedly more valuable than an artificial 
maximum. 

Presently there are, at least four methods of treating 
MOLP problems [3, 121: 

(I) Point estimate weighted sum method. 
(2) Feasible region reduction method. 
(3) Goal programming. 
(4) Vector maximum method. 

While these methods will not be discussed in depth, it 
can be noted that with the exception of the “Goal 
Programming Method,” an assumption of non-satiety 
(i.e. the utility function is monotonically non-decreasing) 
on the decision maker’s part is implicit. This means that 
the higher the value of the objective function the more 
satisfied the decision maker. In many real world situa- 
tions this assumption is invalid, making the application of 
MOLP techniques utilizing the assumption questionable. 
Additionally, the “Feasible Region Reduction Method” 
may result in an empty feasible region and thus no 
feasible solution. 

Because of the above disadvantages and the relative 
simplicity in applying “Goal Programming” the authors 
regard it as the most potentially useful of the four 
models noted. Consequently “Goal Programming” is 
utilized in this paper. 

+In this example shown later in the paper, only one objective 
function was converted to a goal. Previously, school officials had 
to specify the objective to be optimized. Typically, this objective 
was tied to a cost factor: minimization of either miles or number 
of students bussed. With the use of goal programming, both of 
these objectives may be incorporated as well as other goals such 
as minimizing the likelihood of suburban white schools and urban 
black schools, or maximizing the use of schools with special 
interest facilities (for example, indoor swimming pools, in- 
dustrial/technical equipment or academic subjects of infrequent 

Primarily because of the simplicity of application and 
structuring of the problem, the “composite objective 
function by weighting all deviation variables” method of 
goal programming[8] is used in this paper. This method 
requires the statement of the objective functions in the 
form of constraints. An acceptable level of achievement 
is specified and the objective becomes an equality con- 
straint. If the objective need not meet this exact level of 
achievement, then deviation variables, allowing for some 
movement from the equality position, are inserted into 
the objective-turned-constraint (which will be called a 
goal). 

The objective functions are all restated as goals. In the 
LP setting, the new objective function of the problem is 
the sum of all the deviation variables from the goals and 
the desire is to minimize the deviations with the objec- 
tive of achieving the goals. Thus, the form of the prob- 
lem appears as a normal LP tableau, only some of the 
constraints are actually the goals to be optimized. 

THE GOAL PROGRAMMING MODEL 

Formulation of this model, as in the previously 
tioned LP methods, centers around the following 
general constraints: 

men- 
three 

(1) Each student must be assigned to a school; 
(2) Consideration must be given to school capacities; 

and 
(3) Racial balance must be achieved within specified 

ranges. 
Before the constraints can be made more specific per- 
tinent variables must be defined: 

Xjk 

dir, 

Pik 
pk 
G 

DPij 

identifying number for race or ethnic group; 
identifying number for a specific school; 
identifying number for a population subdivision, 

i.e. tract, block, neighborhood, etc.; 
number of students of race i assigned to school j 

from tract k; 
distance students of race i assigned to school j 

from tract k must travel; 
percentage of students of race i in tract k; 
total number of students in tract k; 
maximum student capacity of school j; and 
desired percentage of race i assigned to school j. 

The following general information was assumed for 
the example presented herein: 

i = I, 2, i.e. minority i = I, majority i = 2. 
j= l,2,3 
k= 1,2,3,4 

In that only two races or ethnic groups are considered in 
the example, the following simplications can be made. 

Pit becomes Pk percentage of minority students in 
track k; 

DPij becomes DPj desired percentage of minority 
students assigned to school j and; 

DPi becomes DP overall percentage of minority in the 
general population (the desired 
percentage in each school is 
normally the same). 

The specific constraints can now be formulated as fol- 
demand). lows: 
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1. Each student must be assigned to a school. 
(a) Minority students where i = 1 

2 Xl, = pk 4 for each k. 

(b) Majority students where i = 2 

$, Xzs = (I- p,J& for each k. 

2. Consideration for school capacities. 

2 3, Xit I Ci for each j. 

3. Specified racial balance. 

(4) 

The factor 

acts as a correction for over or under utilization of 
school capacities. 

4. The objective function in earlier LP models now 
becomes the last constraint. In this example total student 
miles from their assigned schools is used. 

2 ,$ 3, dijk X,, 5 arbitrary constant. (5) 

In order to enhance the comprehensibility of the 
model, some simplifying assumptions are made, with 
regard to input data for the example presented. These 
assumptions are: 

1. Racial mix is homogeneous within a tract. 
2. Distances are measured as a straight line distance 

from the centroid of the tract population to the different 
schools. 

3. Total student busing miles is directly proportional 
to total student miles from their assigned schools. 
The above assumptions do not constitute limitations of 
the model itself but rather of the example presented 
herein, and are made for the sake of simplicity. Indeed 
the versatility of the model extends well beyond these 
assumptions. 

AN APPLICATION OF THE GOAL PROGRAMMING MODEL 

For demonstration purposes hypothetical data were 
assumed and used as input for the model. These data are 
shown below; and in Tables l-3. 

Overall Minority Percentage in Population 
D = 13.1% 

A graphical representation of the hypothetical dis- 
tances is shown in Fig. 1. While the school locations are 
pre-determined, the centroid (i.e. population center) of 
the tract populations must be computed. Of course as the 
tract sizes are reduced this computation becomes less 
difficult. 

In order to enable the reader to more readily visualize 
the model and simultaneously highlight the fact that even a 

Table I. Tract populations and minority percentages 

Tract # Student Population Minority Percentage 

1 
p1 

= 1500 Pl = 4.0 

2 P 2 = 2500 P2 = 5.0 

3 P3 = 3500 P3 = 30.0 

4 P4 = 2500 P4 = 3.0 

Table 2. School capacities 

School B Capacity 

1 c = 3000 

2 c = 4500 

3 c = 3500 

Table 3. Distance from schools to the centroid of individual tract 
population 

Tract # School ii1 School 62 School 113 

1 
dll 

= 1.0 d 2l = 3.4 djl = 5.2 

2 d12 = 3.4 d22 = 1.0 
d32 

= 2.1 

3 
d13 

= 2.7 
d23 = 2.5 d33 = 2.6 

4 d 14 = 5.4 dz4 = 4.1 d34 = 1.4 

simple LP problem requires a relatively large capacity 
computer, the initial tableau is presented in Fig. 2. This 
tableau represents the actual input data to the LP pro- 
gram, for the initial run. Note that with the GP model a 
solution can be obtained by utilizing commonly available 
LP computer programs, rather than sophisticated MOLP 
programs since all goals are incorporated as constraints 
and only one objective function is used. As was pre- 
viously pointed out, this was one of the reasons for the 
development of the GP model, as opposed to other 
modeling possibilities. 

The objective function, in the initial tableau shown in 
Fig. 2, contains zeros for all of the original variables, 
999s for all of the artificial variables and “positive one” 
values for all of the deviation variables. This objective 
function is then minimized. Zeros, in the objective func- 
tion, for the original variables allow them to enter the 
solution at no cost to the objective function, hence “free 
access” in a sense. If for any reason one of the original 
variables was not desired in the final solution (perhaps 
due to an infeasible road route), an arbitrarily large 
number (999), in lieu of zero, could be inserted in the 
objective function as a coefficient for this variable. 
Because of its high cost, the variable would then be 
excluded from the final solution. 

In a similar fashion, the insertion of 999s as objec- 
tive function coefficients for the artificial variables will 
cause them to be absent in the final solution. If they were 
to be present, the problem is normally infeasible. 

The objective function coefficients for the deviation 
variables were set at “positive one” values for the initial 
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Fig. 1. Map of schools and districts. 

0 3 

n 4 

trial run. This was done to obtain a “feel” for the 
problem and its possible solutions. 

Any desired weighting of the problem may be ac- 
complished by changing the coefficient in the objective 
function. For example, where other researchers have 
squared distances, a simple coefficient change in the 
objective function for any one of the variables will 
produce similar results. 

Sensitivity analysis is a powerful tool which can be 
used to determine the magnitude of a coefficient change 
necessary to effect a change in the make-up of the final 
solution. However, in the example presented herein, 
changes in the coefficients were determined intuitively. 
Consequently, a follow-up run was made utilizing rather 
large changes in the coefficients which did effect a 
change in the final solution and satisfied the explanatory 
function of the example. 

Table 4 contains the school make-ups, by tract, for 
trial solution No. 1, i.e. all deviation variables assigned 
equal weights in the objective function. The assumed 
data resulted in a total school overcapacity of 1000 
students, all of which were assigned to school No. 1. 
Additionally the minority percentage for school No. I 
was 17.80/h-considerably higher than the desired 13.1%. 

In order to alter these two values, in the subsequent 

run, a cost (i.e. objective function coefficient) of 1000 
was assigned to the capacity deviation variable (0,) and 
to the positive racial composition variable (Ds). Note 
that since in this example there was an overabundance of 
school capacity, it was unnecessary to provide a negative 
deviation variable for the school capacity constraints. 
However, had the situation been otherwise, a negative 
deviation variable would have been included in the 
school capacity constraints. 

In trial solution No. 2 (shown in Table 5), the over- 
capacity shifted to schools No. 2 and No. 3, while the 
minority percentage clustered much more closely around 
the desired percentage of 13.1% than in trial solution No. 
1 (I 1.9-17.8 for solution No. I, 11.9-14.7 for solution No. 
2). This improvement was accomplished while incurring 
an increase in busing mileage of less than 1%. 

Admittedly further “fine tuning” of the objective 
function is possible in order to further refine the solution. 
However, the two trial solutions shown should be 
sufficient to demonstrate the potential of the goal pro- 
gramming model. 

CONCLUDING REMARKS 

The goal programming model developed in this paper 
offers several advantages over the LP models applied to 
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Table 4. School make-up trial solution No. I 

Tract School i/l School 82 School 113 

1 Minority 60 ___ ___ 
Majority 1,440 ___ ___ 

2 Minority ___ 125 ___ 

Majority __- 2,375 ___ 

3 Minority 297 411 342 
Majority 203 1,589 658 

4 Minority _-- ___ 75 
Majority ___ ___ 2,425 

Total 2,000 4,500 3,500 

Underutilization of 
School 1,000 ___ _-_ 

Percent Minority 17.8 11.9 11.9 

Total Bussing Miles = 16,450 

Table 5. School make-up trial solution No. 2 

Tract School i/l School W2 School 83 

1 Minority 60 ___ ___ 

Majority 1,440 ___ ___ 

2 Minority __- 125 __- 

Majority ___ 2.375 ___ 

3 Minority 297 411 342 
Majority 1,203 1,247 ___ 

4 Minority ___ ___ 75 
Majority ___ ___ 2,425 

Total 3,000 4,158 2,842 

Underutilization of 
School ___ 342 658 

Percent Minority 11.9 12.9 14.7 

Total Bussing Miles = 16,548 

113 

the student assignment problem. Fewer variables and 
constraints are required in the goal programming model 
than with the LP model because the constraint with 
positive and negative deviation variables replaces an 
upper and a lower constraint for racial composition 
and/or school capacities. No artificial variables are 
required for the GP constraint hence reducing the num- 
ber of variables needed. For the example presented 
fifteen constraints and forty-three variables were 
required. To use the LP model with the same data, 
eighteen constraints and forty-seven variables would 
have been required. Since the number of iterations 
required to obtain a solution is dependent upon the 
number of constraints, it is easy to see the double 
savings resulting from the use of the goal programming 
model (i.e. a smaller matrix and fewer required itera- 
tions). Because the example only had 18 constraints and 
47 variables, the reduction in the number of constraints 
and variables was relatively small. However, this reduc- 
tion could be very significant in any practical-size prob- 
lem consisting of many more constraints and variables. 

As mentioned earlier, use of the LP model allowed 
consideration of a single objective function only, 
whereas the “Goal Programming” approach, being a 
member of the general MOLP model, allows the con- 
sideration of more than one objective simultaneously. 
This greatly enhances the versatility of the output and 
provides the decision maker with a catalog of feasible 
solutions rather than a group of “optimal” solutions 
based upon a single objective. There should be little 
disagreement regarding the proposition that the MOLP 
model more closely approximates real-world situations 
than does the LP model. 

When making changes in the problem formulation 
(such as squaring of the distance) for purposes of 
obtaining alternate solutions, considerable effort may be 
required with the LP model. However, with the goal 
programming model practically all desired changes can 
be obtained by modification of the objective function 
coefficient, resulting in much less effort. The increased 
effort required in changing the LP model naturally means 
increased opportunity for the commission of errors. 
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As discussed earlier, the goal programming model is 
one of a number of potential models encompassed in the 
general MOLP model and, as such, possesses the ad- 
vantage that the MOLP model has over the LP model. 
However, the goal programming model is capable of 
being used with commonly existing LP computer pro- 
grams and does not require the use of the more sophisti- 
cated and scarce MOLP computer programs. 
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