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A Golden  Ratio Control Policy for a 
Multiple-Access Channel 

ALON ITA1 AND ZVI ROSBERG 

Abstract -Consider n stations sharing a  single  communications  channel. 
Each station has a  buffer of length  one. If the arrival rate of station i is ri, 
then 1 - n,(l- rr ) is shown to be an  upper bound (over all policies) on  the 
throughput of the  channel.  Moreover, an optimal  policy  always exists and is 
stationary and periodic. 

The throughput of two policies, the random -policy and the golden - ratio 
pofiq,  are  analyzed for a finite and infinite number of stations. The latter 
is shown to  approach  a  limit  which is within at least 98.4 percent of the 
upper  bound. 

C 
I. INTRODUCTION 

ONSIDER n transmission  stations  sharing  a  single  com- 
munication  channel.  Each station contains  a  buffer  capable 

of storing  a single packet;  a message is fost if it  arrives  at  a 
station whose buffer is full. The  channel is assumed to be  slotted, 
i.e., the  channel  time is divided into equal  segments  called  slots. 
At  each  slot,  several  stations  are  given  permission  to  transmit. 
When  given  permission, a station transmits  a  packet within the 
slot, if its buffer is not  empty;  otherwise, no message  is sent. If a 
collision  occurs  (Le.,  more  than  one station whose buffer is not 
empty is given  permission  to  transmit at the  same  slot) all the 
messages transmitted  are  lost  or  stored  separately  for  later  re- 
transmission. (Thus, our model  does  not  take  advantage of any 
information  obtained from a  collision.) A policy s allocates  to 
each  slot  a station; s depends on the  slot  number r and  the state 
of the  buffers. 

Suppose  that  there is probability ri that  a  packet  arrives  at 
station i during  a time  slot.  Without  loss of generality, rl > r, 2 
... &r,,>O. 

Let r = ( r , ,  r2; . . , r,,) and VT(r, s) be  the  expected  number of 
packets successfully transmitted  during the  first T slots  using 
policy s. Define  the throughput of the  channel (under policy s) 

Finally,  let 

- 
- V is  the value function. A control policy s* is optimal  for r if 

This study is a  continuation of Rosberg [7], where n = 2. There 
it was shown that  the  optimal policy  does  not  contain  conflicts 
(permission  to  more  than  one station to  transmit in a  slot). 
Moreover,  the  optimal  policy  permits  one station to transmit 
every k slots  while  the other station gets  permission  the  rest of 
the time. 

V( r, s*) = F( r ) .  
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Finding an optimal policy for n > 2 turned  out  to  be  a  difficult 
comb~atorial problem.  Here we shall  discuss  only  conflict-free 
policies  (i.e.,  each  slot is allocated  to at most one  station)  and 
conjecture that for every r there  exists an optimal policy  which 
does  not  contain  conflicts. This conjecture  is  motivated  from  the 
fact that the model  does not explicitly  incorporate  retransmitted 
packets. Also, it is partially  supported by the  results of Rosberg 
[7] and the  following  reasoning:  one  would  benefit  most  from 
conflicts when  the r,'s are  very  small. In which  case,  we should 
use sAT, the  policy  which  gives  permission  to  all  the  stations  to 
transmit all the  time,  since  the  probability  that  more  than  one 
station will actually  transmit is neghgible.  However,  for  equal r, 
the  following  calculation  shows  that vAT is  inferior  to sRR, the 
round  robin  policy  (station i is  permitted  to  transmit at slot t if 
t = i mod n): 

~ ( r , s R ~ ) = l - ( l - r ~ ) n > n r ~ ( l - ~ ~ )  -v(r ,sAT).  
Regardless of the  conjecture,  conflict-free  policies  are  important 
for some  communication  networks,  e.g.,  the  loop  circuit  pre- 
sented  and  analyzed  by Konheim and  Meister [SI. 

Our model is similar, but not  identical, to that of Schoute.[8] 
and  Varaiya  and  Walrand [lo]. The  main  differences  are  the 

- n - l - - -  

following. 
1) Our ri's are arbitrary, while  theirs  are all equal. 
2) In their  model,  after  a  fixed  delay,  all  stations  know  the 

buffer  contents of all  the  stations,  i.e.,  a delayed  sharing  type of . 
information. In our model,  no station has any  information  on  the 
buffer  contents of the  other  stations. 

3) In our  model,  there  is no cost  for  collisions,  while  their's 
has. 

This conflict-free  model  is  mainly  applicable to data communi- 
cation systenls  which  use  a  satellite  communication  channel  (see 
[SI), terrestrial  loop  circuit (see [SI), or local  area  networks of 
computers  (see 121). Also, even  when  collision detection  and 
resolution  is cost  effective  and  reliable, it is not worthwhile  to 
allow  conflicts  when  the ri's are  large. 

In Section 111 we  show that attention can be  restricted  to Ioop 
policies; policies  for  which  there  exists an N such that for all 1, 
the station allocated  to  slot t is  also  allocated  to  slot t + N .  For 
such  policies  the  mean  buffer  length  and  the  mean  packet  delay 
in equilibrium  under  a  given  policy  were  studied  by  Kosovych [6], 
using  unjustified  simplifications. 

Using  dynamic-programming  formulation, we  show in  Section 
I1 that the throughput is maximized  by a nonrandom time-divi- 
sion  multiplexing  policy (TDM policy).  Although this result  is 
intuitive, it is nontrivial  to  show  that  there  exists an optimal 
eolicy which is periodic.  The  goal of this paper is to  estimate 
V(r ) ,  invqtigate s*, and give  policies  whose  values v ( r ,  s) 
approach V(r ) .  In Section  I1  our  problem  is  formulated as a 
dynamic  programming  problem.  Section III gives.an upper  bound 
to the  value  function.  The  next  two  sections  discuss  particular 
policies.  Section IV analyzes a  random  control  policy. In Section 
V we discuss a  specific  nonrandom TDM policy,  the  golden ratio 
policy,  which  approaches  a  limit (as the  number of stations  tends 
to infinity)  greater than 98.4 percent of the  upper  bound. 
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11. DYNAMIC PROGRAMMING FORMULATION 

For every station i  define  the  following  r.v.'s  whose  values  are 
0,l. 

X l ( t ) = l  iffthebufferisfullatslot t .  

V ,  ( t ) = 1 iff  a new packet  arrived  at  slot t .  

u, ( t )  = 1 iff  the station had  permission to transmit at slot t .  

Recall that only  conflict-free  policies  are  considered,  i.e., at any 
slot t ,  at most  one station has  permission  to  transmit.  Thus, 
Ci",lui( t )  equals 0 or 1. 

From  the  definitions: 

~ . ( t + 1 ) = ~ . ( t ) + X , ( t ) ( l - ~ ( t ) ) ( l - u , ( t ) ) ,  l , < i , < n ,  

(2.1) 

where {X,(O),y(r): l < i < n ,  f = O , l , . . . }  are  Bernoulli  inde- 
pendent r.v.'s and P (  V;( I )  = 1) = P (  &.(O) = 1) = r,. 

Let  the  immediate reward at slot t, w ( t ) ,  be the  number of 
packets successfully transmitted  during  the  slot 

w ( t ) = w ( X ( t ) , u ( t ) ) = C x i ( t ) l 6 i ( t )  (2.2) 
i 

where X ( t ) = ( X l ( t ) ; . - , X n ( t ) )  and u( t )= (u l ( t ) , - . . ,u , ! t ) ) .  
The  total expected  number of packets successfully transnutted 
during  the  first T slots using  policy B is 

T T 

~ , ( r , a )  = E,, C w(r) = C E , , ( W ( ~ ) ) ,  (2.3) 
i = l  t = l  

where E , ( w ( f ) )  is  the  expected  immediate  reward at slot r using 

As in Berrnan [l] and  Rosberg  [7], we  use the following 
sufficient  statistics  (for  sufficient  statistics in optimum  control  of 
stochastic systems,  see,  e.g.,  Striebel [9]). Let k(')(  t )  (i  = 
1,2; . 0 ,  n )  be  the  elapsed  time  since station i's last  permission to 
transmit.  Define k(')(O) = 1  (i =1,. . e ,  n). We  have 

policy B. 

k ( i ) ( r + l ) = l + k ( i ) ( r ) ( l - u , ( f ) ) ,  i = l , . . .  , n .  (2.4) 

Let ur-' = (u(l), u(2),. . e, u(t -1)). Since the V;'s are  indepen- 
dent, collisions  are  avoided  and X, ( t )  depends  only on u'-' and 
V;, we  have the following. 

Lemma 2.1: 

pendent r.v.'s. 
1) Given ur-',{Xl(t),X2(t),--.,Xn(t)} are mutuallyinde- 

2) ~ ( X , ( t > = ~ l u r - l ) = l - ( l - r i ) k ' i ' ( r )  i= l , - - : ,n .  

Let 

p j ( k ) = l - ( l - r j )  . (2.5) 
k 

The  assumption of no conflicts,  (2.2),  (2.3),  and  Lemma  2.1 
imply  that 

n 
~ , , ( w ( t ) ~ u ' - ' ) =  p , ( k ( ' ) ( t ) ) u , ( r )  (2.6) 

where u,( t ) ,  i =1,2;. -, n are  the  control  actions  taken by  policy 

A dynamic p r o g r m g  problem is defined by the state space 
S, the  action  space A = X, EsA, ,  the law  of motion q, and  the 
reward  function w. 

For every t ,  X ( t )  is a  random  variable whose probability 
distribution depends  only on uf-'. If X ( t )  were known it could 
serve as a  state. However,  we are  interested  in  a  decentralized 
control policy, therefore X ( t )  cm be  considered by all  the 
stations only as a  random  variable whose distribution  depends on 

i =1 

B. 

* z - 1  , which  is  common information  (since  all  the  stations know 
the  policy). 

From Lemma  2.1  the  distribution of X ( t )  is completely  de- 
fined by the  parameters k ( t )  = (k( ' ) ( t ) , -  - -, k(")( t ) ) .  Therefore, 
we consider  the state space 

and  the  action  space at state s E S 

From (2.4), the law of motion  (transition  probabilities) becomes 

q(( .)l(k('),-.  -, k(")) ,  u ) )  = 0 otherwise.  (2.7) 

Note that @e  law  of motion  is  deterministic.  Finally,  from  (2.6) 
the expected  immediate  reward  is 

Thus, from  (2.3) 

Lemma 2.2: Let  be a policy in which station i  is  permitted 
to  transmit  only  a  finite  number of times. Then  there  exists  a 
policy B' such that 

V ( r ,  9') > V ( r ,  B). 

Proo) Let 0 < s1 < s2 s3 < 2n. Because  of the  convexity 
of Pj ( k )  

f i ( S l , S 5 3 )  = p j ( s ' - s ' ) + p j ( s ~ - s 2 ) - p . ( s 3 - s ~ ) < 1 .  
def 

J 

Let 

and T 2 2n  be  such  that p,( r )  3 f. 
Let to be the last  slot  policy B permitted  station i to  transmit. 

Define tm = to + mr.  In each interval [ t2 (m-1) ,  t2m] there  is  a 
station j ,  # i which is permitted  to  transmit  three  times: 

Consider  the  policy IT' which is identical to B except that at 
slots sil station i is permitted to transmit  instead of station jm. 

From (2.9)  the  net gain in the  immediate  reward for the 

Sm, S m ,  Sm. 
1 2 3  

interval [ t 2 m r  t 2 m + 2 1  is 

Since this gain repeats every interval of length 27 
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and 
n 

C =  n (1-   r j ) .  (3.7) 

As promised,  these x ( ' )% are  nonnegative.  From  (3.3),  (3.4),  and 
(3.7) it follows that 

i=l 

n 
U ( r ) = l -   n ( 1 - 1 ~ ) .  

i =1 

w 
CoroIIav 3.1: If ri = r,, i =1;. e, n, then  the  "round  robbin" 

policy vRR is  optimal. 
Proofi A straightforward  calculation  shows that 

- 
I / ( v R R ) = 1 - ( l - r l ) " = U ( r ) .  

If all  the r,'s are  equal,  then  all  the x(') 's  are also equal  and 
x ( ' )= l /n .  The inte retation is that station i is  permitted to 
transmit every ,/x(?= n slots.  However, in general,  the x ( ' ) %  
are irrational, thus  the ith station cannot  transmit  every 1 / x ( ' )  
slot. Consequently,  the  upper  bound  cannot be obtained. We 
shall try to approximate  the o timal solution  by  policies  which 
permit station i to transmit N E )  = x(')N equally  spaced  times in 
a loop of sue N (according to Remark  2.2). Thus, we shall first 
calculate  the x(') 's then  consider  policies,  which  give station 
i ,  N'') permissions.  These  policies will be  close to the  optimal 
only if  the  permissions  to station i are  nearly  equally  spaced. 

Thus, we are  confronted  with  the  following placement problem. 
Given 

n 
N"),  N(", . . . , N ( " ) ,   N ( i )  N ,  

i = l  

Place  the  permissions of each station such that 

1 N / N ( ' ) ~  d i )  Q N N ( I )  
- 

- I /  ' 1  
- 

where d(') and d(')  are  the minimum and maximum distance 
betweeiiiimecutive permissions to station i. 
This problem  does  not  always  have  a  solution. (For example: 

n = 3, N = 6 ,  N(') = 3, N(') = 2, and N ( 3 )  =1, ideally, station 1 
should  be  given  permission  every other time  slot, station 2 at  time 
slots t and t +3 mod 6; t h i s  is not obtainable.) 

Let us consider also the  asymptotic  case  where the number of 
stations n 4 03 and ri = ri( n) + 0. Suppose n is a  loop  policy 
which  permits  each station to transmit at least  once  during  a  loop 
of  size N = N ( n ) ,  and  let dj") be as above.  From (3.1) 

where r = X;= However, 
n 

~ ( r ) = l -   n ( 1 - r i ) = r + 0 ( r 2 )  
i = l  

Thus, if also r -+ 0, V ( r ,  n) = ~ ( r )  for  every n. 
Thus, it is important to define  the  asymptotic  behavior  nontriv- 

iallv.  That  is, when the  number of stations n -+ 00. the arrival rate 

to station i (given n stations) ri(n) 4 0 and  the total arrival rate 
r = Cy= rj ( n) remains  fixed. 

Let x:)( n) be  the  proportion of permissions  given to station i 
by  policy v in the  system (n, r(n)),  where 

r ( . )=(r l (n ) ; . . , rn (n ) ) .  

Also let 

where di(')(n) are the distances dj ')  defined  above  for  policy v 
and  system (n, r (n) ) .  For  a given  policy n we  simplify  the 
notation to x(')( n) and C(')( n). 

Since attention can  be  restricted to loop  policies,  a  policy n 
depends  only on (n, r( n)). Denote  by P the  set of all loop 
policies. 

Definition 3.1: A policy v :  { ( n , r ( n ) ) }  4 P is  asymptoti- 
cally  optimal if n - x  

i n  \ 

Note that under  the  above  asymptotic  conditions 
n 

(3.10) 

Theorem 3.2: Let n be  a  loop  policy, if 

and 

C ( ' ) ( n ) r , ( n )  + 0, 

then n is  asymptotically optimal. 
Pro08 For  any  given (n, r( n)) we  have  from (3.1) 

i=l 

Since , E : = , X ( ~ ) ( T Z )  = 1, (1 - ri(n))r/ri(n) .+ e-' and (1 - 
ri( r ~ ) ) - ' ( ' ) ( ~ )  .+ 1 we obtain 

n-+m 

lim V ( r ( n ) , r ( n , r ( n ) ) ) = l - e - r ,  

and in conjunction  with (3.10) the  theorem is proved. rn 
Remark 3.1: Since the  average distance between  two  consecu- 

tive  permissions to station i is i / x ( " ( n ) ,  the  condition 
C(')(n)r '(n)+ 0 implies that lx(i)(n)-(ri(n)/r)l  -+ 0. 

Remark 3.2: From  Theorem  3.2 it follows .that for  a  large 

n - m  

~~ , -~ - number of stations,  a  policy v might  still  be  good,  even if Gs 
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d"'s are far away  from  the  desired  distances  according  to (3.7). 
'fhus, it might not be needed to solve  the  placement  problem. 

We  have not been  able to prove that  any policy is asymptoti- 
cally  optimal, even  though we  have a  candidate (see  Section VI). 
In the  next two sections we analyze  two  policies. 

For a given  system ( n ,  r( n)), let 

Definition 4.1: Let vR be the control policy  which at every  slot 
i, t =1,2; + e ,  permits station i to transmit  with  probability 

This policy can  be  implemented  distributively  (without con- 
flicts) if all the  stations use  the  same  random  number  generator. 

Let D(')  be  the  number of slots between  two  consecutive 
permissions to station i .  D(') (i =1;- ., n )  are  independent 
geometrically  distributed  random  variables  with  probability of 
success x(l)(n). Therefore, 

x ( l ) ( n ) ,  i=1 ,2; . . ,n .  

n - 
Y(r(n),vR)= E (1-(1- r , ( r ~ ) ) " ( ~ ) .  

i = l  

The expectation is taken  over  the  common  distribution ( I ,  D ) ,  
where I is the  station which has been  given  permission to 
transmit at a random  slot  and D is the  distance from the  last 
permission.  Clearly, 

=EIEDII( l - ( l -rr)D(")= 2 x ( i ) ( n ) E ( l - ( l - r i ( n ) ) D " ) )  
i=l 

n x(')(n)(l-  r , ( n ) )  
=1-  x ( ' ) ( n )  

i=l 1 - (1 - ri( n ) ) ( l -  x(i)(n)) ' 

Under the asymptotic  conditions, h ( l -  ri (n))  = r i (n ) ,  and 
from L'Hopital's  rule r , (n)  -+ 0 

Now  since Ey=lx(i)(n) =1 for every n we  have  from (4.2) and 
(4.3) 

lim V ( ' ( n ) , T R ( n , r ( n ) ) ) = l -  
n - m  

1 
I +  r .  
- 

Note that  for small and  large r ,  the  random policy rR is asymp- 
totically close to  the  upper  bound V ( r )  =1-  e-'. However, for 
the  intermediate r's mR is  not recommended  since  the D(')'s tend 
to  deviate largely  from  the l/x(')'s (this property  is typical of the 
geometrical  distribution). 

V. THE GOLDEN RATIO CONTROL POLICY 

Let(n,r(n))beagivensystemandx("(n)>O, i=1,2;. . ,n,  
Ey=lx( i ) (n)  = 1 be  the  desirable  proportions of permissions to 
each  of the  stations. (When no confusion  arises  the  argument n 
will be  omitted.) Also, let Fk be the kth Fibonacci  number  and 
N i i ) ,  i = 1,2,. . -, n be  integers  such  that 

and 
n 

i = l  

Thus 

For each k, the golden ratio policy assigns N t '  slots to station i 
and  attempts to distribute the  permissions  uniformly  over a loop 
of  size Fk. (The analysis of  Section  I11 implies  that it is desirable 
to distribute the  permissions  uniformly.) 

Open address  hashing  confronts  a  similar  problem:  to distrib- 
ute keys  uniformly  over a hash  table.  The  uniformity of the 
distribution  depends on the hash  function. It has  been shown that 
multi  licative  hashing  with  the  golden ratio multiplicand, rp-' 
= (R- 1)/2 = 0.6180339887, distributes  the keys most uni- 
formly [4, vol. 13. The golden ratio policy  applies  some of these 
results.  Fibonacci  numbers  are  related  to  the  golden ratio rp-' by 
the  equation 

Fk = 
p"(l-fp)k 
6 

Let f r a c ( y ) = y -  I y j ,  a,=fra~(jrp-'),  and A N =  { a . I j =  
O,-.-,N-l}.ThetthsmallestpointofAFk isidentifiedwihthe 
tth slot of the  loop. 

Definition 5.1: The golden ratio policy, mGGR(k),  is the  policy 
which  assigns to station i the  slots  correspondmg to the points 

It will be  convenient  to  identify  the  points 0 and 1, and  thus  the 
points ai are distributed over a circle C. 

Example 5.1: Suppose n=3 ,  x( ' )=$+cl ,  X ( ~ ) = $ + E ~ ~  x(3) 
= 4 f c3,  where e j  > 0 are  arbitrarily small and x(') + + x(3)  
= l .  Taking &=8,  NJ')=4,  NJ2)=3, and Ni3)=1, mGna, as- 
signs to station 1 the  slots  corresponding  to 0, rp-1, frac(5rp-1) 
and frac(3rp-'); to station 2 the  slots corresponding to 
jrac(4rp-'), jruc(5p-'), and jrac(6cp-l); and to station 3 the 
point corresponding  to /rac(7~-'). Thus,  the  loop  policy  keeps 
giving  permission to the  stations in the  following  cyclic order: 
"1,2,1,3,2,1,2,1." 

Let I ,  =/rac((-l)"'Fm-lp-'). From  Knuth [4, vol. 3, pp. 
506-5491 we can  deduce  the  following. 

Theorem 5.1: Let N =  F, + s (0 < s < F,-l): 
1) A ,  partitions C into 

s intervals of length 
Fm-2 + s intervals of length I,,,; 
F, - - s intervals  of  length I,,, - '. 

2) An additional  point, aN ( N  B F,-'), breaks an interval of 

3 The  lengths of the subintervals  decreases, moreover I , , ,  = 

Coroiialy 5.1: For each station i (with NLi) = s f )  + Fk,) there 

length fm-l into one of length I, and one of length Zmal. 

rp I,. D 

are at most  three  types  of  intervals: 
s f )  of length l k ,  + '; 
Fk,-2 + s(') of length ik,; 
F~,-' - s!;) of length 1k,--l .  
Proof: Theorem 5.1 considered starting at a,, = 0. However, 

the  same  result  holds if  we  make a  circular  shift  and start at a4 
where q = Ci=lNk("). - H 

In order to compute V(r,vGR(k)),, we shall  find  the  number of 
slots between two consecutive pemsions to station i. Thus, we 
consider  the  number  of points of AFk in  intervals of lengths 

-2  

' k , - l %  Ik,, and I k , + l .  
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Consider  the  partitioning of C by AFk into subintervals. A 
subinterval is atomic if it is not partitioned into any  smaller 
Subinterval.  Let X' and X 2  be two intervals of length lXjl  = I ,  
and whose endpoints belong to AFk. Let & ( X i )  denote  the 
number of atomic  subintervals in Xf. 

From Theorem 5.1 the  atomic  subintervals have  lengths I ,  and 
I k - 1 ,  thus 

lkgk(Xi)+lk-lgk-l(Xj)=lm, j = 1 , 2 .  

From Theorem 5.1 (3) 

~ - ' ~ k ( x ' ) + ~ k - 1 ( x ' ) = ~ ) - 1 ~ ~ ~ x 2 ) _ t ~ k - 1 ( x 2 ) ~  

and 

~-'(gk(x')-gk(X2))=gk-1(X2)-gk-1(x'). 

Since g k ( X J )  are  integers  and 'p-' is irrational: 

g k - 1 ( X ' ) = g k - l ( x 2 )  

g k ( X ' ) = g k ( x 2 ) .  

Thus, g, is independent of the  particular choice  of X j ,  and 
dk( lm) ,  the  number of atomic  subintervals in an interval of length 
l,,,, given  the partitioning A,,, satisfies 

d k ( ' , ) = g k ( X ' > + g k - l ( x ) .  

To compute d k ( l m ) ,  notice that 

d k ( / k ) = d k ( / k - I ) = l .  

From Theorem 5.1 each  interval of  size I ,  is partitioned into an 
interval of  size I,+1 and  one of  size lm+*.  Thus, 

d k ( ' m ) = d k ( z m + l ) + d k ( z m + 2 ) .  

Comparing this to  Fibonacci's recursive  formula  yields  the  fol- 
lowing. 

Lemma 5.1: 

d k ( l m ) = F k + l - m -  

D 
Remark  5.1 Note  that d k ( l k ; - l ) ,   d k ( l k , ) ,  and d k ( l k j I t l )  are 

the  number of slots between two consecutive  permisslons  to 
station i. 

Lemma 5.2: Let j ,  satisfy 'p-" < x(')< QJ-';+', if x(')+ p-ji 
then  for  almost all k 

ki  = k - j .  
I '  

' Prooj From (5.2) and  the  definition of Nji) and s f )  

Consequently,  for almost all k 

From Knuth [4] 

Thus, from (5.3) for  almost aU k 

The  result  follows since Sf)< F k j - ' .  w 
Remark  5.2: The  above  proof is not valid for x(;) = ' p - j i .  

However, in this case  we may  choose ~ k ( i )  = Fk-j,, 
CoroZIury 5.2: 

I = ___ = 'p-(J,+q) 
Fk -q  Fk-j i -q  

k - m  Fk  Fk 

d k ( l k , - l + q )  = 4 ; + 2 - g  q =  0,1,2 

Theorem  5.2: 

The theorem  follows  from  Corollary 5.2. W 
We  now investigate  the  asymptotic  behavior of the  throughput 

for increasing n and €ked r. 
Theorem 5.3: If r i (n)  + 0 and C:,,r,(n> = r ,  then 

n+m 

lim ~ ~ ( r ( n ) , ~ G ~ ) ~ l - ( l - ' p - I ) e - r , / ~ - ' p - ' e - ~ ~ / ~  
"+a) 

Frooj 'From  Lemma  5.2 

j i  = -log, x ( i )  + ai 
where ai = fracflog, x( ' ) ) .  Thus, 

q-ii = x(i)cp-q, 

Therefore,  by  Theorem  5.2, 
n - 

V ( r ( n ) , T G R ) = l -  x ( i ) ( n ) h ( i ) ( n )  ( 5  -4) 
i = I  

where 

'In the proof we omit the argument n, whenever it is understood. 



71 8 EEE TRANSACTIONS ON AUTOVATIC CONTROL, VOL. AC-29, NO. 8, AUGUST 1984 

q =  0,1 ,2 .  

c y a l - 2  

( 5 . 5 )  

using 
qa+2 = qa + p a + l  

and 

P a t + ’ >  0, 

it is sufficient to show that 

g ( a ) = ( l - q - ~ ) c - ~ ~ - ’ + ( l - ( p - ~ - ~ ) + ( q - ~ + 1 - l ) c ~  

attains its maximum  when a =l. 
Since 

(1-p-~)+(1-q-”-’)-t(cp-~+’-1)=0 

g(a) = (1- q - a ) ( c - ~ “ - ’ -  c q + q l - ~ - y c ~ ‘ - l ) + l .  

it foUows that 

Clearly,  the  first  summand of g(a)  increases in a. By differentia- 
tion and  using  the  fact that z(1- In z )  increases  for 0 < z < l it 
can be shown that the  second  summand also increases in a. 
Thus, for almost all n, (5.4) and (5.5) imply 

v ( r ( n ) , r G R )  >I- x ( i ) ( n ) [ ( l -  ‘ p - ‘ ) c y +  q- l c f l  
i z l  . 

To finish the  proof  note that ci + e-‘’fi and Cy= lx(’)( n )  = 

Finding the minimum  over r of the ratio between 

Corollary 5.3: Under  our  asymptotic  conditions,  for  almost 

1. 

liminf F( I (  n), rGR) and lim U( r( n ) )  yields  the  following. 

all n 

n + m  

- 
v ( r ( n ) *  % R >  ,0.984. 

U ( r ( n ) >  

VI. CONCLUSIONS 

Theorem 2.1 implies that there  always  exists  a stationary 
periodic  optimal  policy,  hence,  there is always  an  asymptotically 
optimal  policy.  Even  though  Theorem 3.2 gives  sufficient  condi- 
tions for a  policy to be  asymptotically  optimal, we  have  not  been 
able to demonstrate  one.  The  golden-ratio  policy of Section V is 
shown to be very  close to being  asymptotically  optimal (see 
Corollary 5.3). These  results  depend on k t h  Fibonacci number 

ever this approximation is justified because h ( “ ( n )  is codtinuous. and for 
’The correct h”)(   n)  is obtained by replacing c, by c (1 + o(1)). how- 

large n the error approaches zero. 

being  sufficiently  large.  For  practical  implementation k must  be 
finite. We  believe that when Fk B l/x(’) the  throughput is 
sufficiently dose to the limit [see (3.31. 

The above results  do  not  imply that we  should  always  use  the 
golden ratio policy.  For  a  specific r the  placement  problem  may 
be  easily  solvable.  For  example:  when  the r,’s are equal,  then 
x(’) = l / n  implying that the  round-robin  policy is optimal. 

We conjecture that the  following  policy is asymptotically opti- 
mal. Let 

a,(t) be  the  number of slots station i was permitted to 
transmit until time r; 

ui(  t) 1 iff i is the station for  which 

is obtained. 
Numerical  calculations  indicate that this policy is promising. 
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