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Abstract

We compare different evaluation functions that are all designed to mea-

sure the quality of a timetable from passengers’ perspective. Already in

small examples fundamentally different timetables can be preferred by

evaluation functions that seem to be similar. To investigate this effect in

practice, we design a set of evaluation functions as representatives for a

wide range of commonly used evaluation functions in optimization models,

evaluation applications, or choice models. These functions are compared

by analyzing their evaluation values of multiple timetables in three case

studies. To investigate to what extent these evaluation functions agree on

a good or a bad timetable, we apply cluster analysis as well as a novel

methodology to quantify the similarity of pairs of evaluation functions

based on the values they yield on different timetables.

We empirically show that the choice of the evaluation function can

have a significant impact on the assessed quality of timetables, and thus

also on which timetable is considered optimal, even though all evaluation

functions are meant to evaluate the same - the quality of a timetable from

passengers’ perspective. Due to the structure of the designed evaluation

functions, it is further possible to identify which components of the func-

tions influence the results of an evaluation and under which conditions

they this is most pronounced. This can be very beneficial when designing

timetable evaluation functions for passengers.
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uation, comparison of evaluation functions
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1 Introduction

When providing public transport, operators should aim for the highest possi-
ble quality from passengers’ viewpoint, respecting physical and monetary con-
straints. However, there are many different definitions for ’quality from pas-
sengers’ viewpoint’. The literature on public transport planning, both from
Transport Engineering and Operations Research perspectives, as well as prac-
titioners in railway companies, have come up with very different evaluations of
quality . These range from very basic functions designed to be used in linear
programming frameworks to sophisticated multi-variable models optimized to
fit observed passenger behavior as well as possible.
In this paper, we investigate the following question: Considering a situation
characterized by demand for public transport, and different public transport
services provided to satisfy this demand, to what extent do different evaluation
functions agree on the quality of the provided transport services? That is, will
the evaluation functions considered - all designed to measure ’quality from pas-
sengers’ perspective’ - lead to the same evaluation of what is a good or a bad
timetable?

We give an overview of different evaluation functions for timetables proposed in
literature and identify three components in which the functions differ from each
other. Based on this, we classify the considered evaluation functions and design
a set of representative evaluation functions that differ from each other in the
three components. These functions cover a wide range of the most commonly
used evaluation functions in mathematical models, in evaluation applications
or in choice models. Moreover, their modular structure as combination of the
three components allows a purposeful analysis of their similarity.
To empirically compare these representative functions with each other and an-
alyze how similar they are, we conduct three case studies. In each case study,
we evaluate a set of possible timetables for a given demand situation with each
of the representative evaluation functions. Two sets of timetables are defined
for an artificial grid network and one set is defined for the real-world network
of Netherlands Railways (NS). Since the sets of timetables are designed by dif-
ferent parties with varying methods and various objectives, the comparison of
the functions should not be biased by the way the timetables were created.
Based on the resulting evaluation values of all timetables with respect to each
evaluation function, we develop a methodology to quantify the degree to which
the different evaluation functions coincide. The result of the methodology al-
lows a pairwise comparison of the evaluation functions and can be interpreted
as a measure of inconsistency, which we investigate in two ways. First, the pair-
wise inconsistency is interpreted directly, visualized with the help of heat maps
and multidimensional scaling. This gives an overview of the extent of incon-
sistency between the evaluation functions and allows an immediate recognition
of patterns of which evaluation functions are more or less consistent with each
other. Second, we use cluster analysis to determine the strongest inconsisten-
cies between the functions. The cluster analysis identifies groups of evaluation
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functions that are consistent while the evaluation functions in different groups
are less consistent.

The contribution of this paper is twofold. First, we develop an empirical method-
ology to compare multiple evaluation functions on a set of timetables. Since this
methodology is independent of the structure of the evaluation functions, it can
be applied to empirically compare evaluation functions in other applications as
well. Second, we provide a thorough comparison of timetable evaluation func-
tions for passengers. Our analysis shows whether and under which circumstances
a component of a sophisticated evaluation function is crucial for the result of
an evaluation. This can be used to either justify the simplifications made in
current state-of-the-art optimization approaches to public transport planning,
or to point out which aspect is still lacking and needs to be incorporated to
obtain objective functions providing a valid evaluation. An earlier version of
the findings was presented at the Symposium in Rail Transport Demand Man-
agement 2018 in Darmstadt, Germany.

The remainder of this paper is organized as follows. In Section 2 we give an
overview of evaluation functions that are commonly used to measure the quality
of public transport from passengers’ viewpoint. Afterwards, in Section 3 we
structure the evaluation functions used in the literature and define a set of
representative evaluation functions which we use for the analysis in this research.
In Section 4 we describe the data which we use in the case studies. Section 5
introduces a novel measure of inconsistency of evaluation functions and gives
insight on the used methodology of comparison. We report on the main findings
of our experiments in the same section. In Section 6 it is briefly demonstrated
how the results can be used at the design of an evaluation function. The paper
concludes in Section 7.

2 Literature on evaluation functions

Naturally, research concerned with the design of public transport also deals with
the corresponding evaluation. There are various evaluation functions proposed
in different research areas. Since we focus on the evaluation of public trans-
port from passengers’ point of view, we restrict ourselves to these evaluation
functions. An overview of the most important factors of influence for timetable
evaluation for passengers is given by Parbo et al. (2016). We consider only the
planned case and neither disruptions nor robustness measures are considered,
following the motto that "time savings are the single most important benefit of
transport improvement projects all over the world" (Dios Ortuzar and Willum-
sen, 2011). In this section, we give an overview of different evaluation functions
for timetables structured by the different components of timetable evaluation.

3



2.1 Types of evaluation functions

First, there exist many different ways to evaluate public transport. These differ
from each other in the incorporated characteristics and the structure of the
functions. We distinguish between two principally different types of evaluation
functions, where each of them can appear in different variations.
On the one hand, most commonly used are travel time based evaluation func-
tions. This is the default way of evaluation in both the research areas of Opera-
tions Research and Traffic Engineering. The key idea is to quantify the quality
of public transport for passengers by a travel time equivalent. Travel time based
evaluation functions are typically linear functions of passengers’ travel time, but
they vastly differ in the number and kind of incorporated characteristics (Hen-
sher and Button, 2007). In Operations Research, the timetabling models are
mostly based on the periodic event scheduling problem introduced by Serafini
and Ukovich (1989) and often use the absolute time passengers spend in public
transport for evaluation. In advanced evaluation functions the travel time is
usually "subdivided into walking time, waiting time, time on vehicle, transfer
time, and concealed waiting time" (Flyvbjerg et al., 1986). Furthermore, travel
time based evaluation functions often take more influential factors into account,
among them fare, frequency or temporal spread of the connections offered to
passengers. In this case, they are mostly referred to as perceived travel time,
generalized cost or disutility. Sometimes, also preferred departure or arrival
times of passengers are modeled by penalizing early or late departures or ar-
rivals. Kanai et al. (2011) considered late departures to be equivalent to waiting
times for transfers and Robenek et al. (2016) introduced additional variables and
penalty terms for the modeling of departure time preferences.
A comprehensive overview of generalized cost as evaluation functions can be
found in Dios Ortuzar and Willumsen (2011). Both in research and practice the
generalized costs are commonly used for evaluation purposes, although since
long time there have been many publications recommending to stop using them
to evaluate the quality of timetables from passengers’ point of view. For in-
stance, Grey (1978) discussed five aspects why generalized cost are unsuitable
for evaluation, all following the same argument that depicting peoples’ variety
of perceptions in a single variable leads to an inaccurate representation.
On the other hand, we consider utility based evaluation models that are mainly
known from research in choice modeling. The difference to travel time based
evaluation models is that the evaluation value is not a travel time equivalent
but follows the concept of passenger supplement. That means, each reasonably
good connection for passengers adds to the utility and thus improves quality of
the service. A comprehensive overview of utilities of alternatives is given in Ben-
Akiva and Lerman (1985). Utility based evaluation functions are still almost
exclusively found in choice modeling, although several publications proposed to
employ them for evaluation purposes as well. For example, Jong et al. (2007)
concluded that the ’logsum’, a utility based evaluation function, is well suited for
evaluation and a probable reason for their little success is the seemingly complex
theory behind it - in contrast to travel time based evaluation functions.
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2.2 Passenger distribution

Second, the assumed passenger distribution model is crucial for the evaluation.
To evaluate the quality of a public transport service in a meaningful way, it is
important to estimate how passengers will use it, that means, it is important
to estimate how passengers distribute over the offered routes. The applied pas-
senger distribution models in timetable related research range from very sim-
ple assumptions to highly developed choice models. In Operations Research,
it is often assumed that passenger routes are known before the timetable is
fixed and most publications use a priori fixed passenger loads on the connec-
tions (Nachtigall, 1998; Liebchen, 2018). Recently, there is a change in the
timetabling literature visible with more publications focusing on an integrated
timetable dependent passenger distribution. Since the connections passengers
choose are not always reliably determinable beforehand, a shortest path search
was included in timetabling models. Schmidt and Schöbel (2015) did that for
the aperiodic case, Borndörfer et al. (2017) for the periodic case and Gatter-
mann et al. (2016) also for the periodic case using a satisfiability formulation
instead of a periodic event scheduling formulation. In these cases, the total
travel time of all passengers on their shortest connections are evaluated, instead
of the travel time on a previously defined connection. While it is often assumed
that passengers only use a single route for each origin-destination pair, some
timetabling papers specifically focus on a realistic distribution of the passen-
gers. For instance, Parbo et al. (2014) developed an iterative approach where
the passenger distribution is adjusted in each iteration of timetable optimization
and Sels et al. (2013) used passenger loads derived from ticket sales data. We
are not aware of an integrated search for multiple routes, most probably due to
the high complexity of such a model.
In contrast to that, research in Traffic Engineering primarily applies passenger
distribution models including multiple routes for passengers. Commonly ap-
plied for passenger route choice are choice models like the rooftop (Guis and
Nijënstein, 2015), probit (Yang and Lam, 2006) or logit model. The theory of
choice models is explained in Ben-Akiva and Lerman (1985) and an overview
of choice models suited for passenger route choice in transit networks can be
found in Dios Ortuzar and Willumsen (2011). It seems that the logit model is
capable of depicting the passenger behavior best and it is therefore found most
regularly. For example, Friedrich et al. (2001) designed an efficient algorithm
based on the logit model to compute passenger distributions in public transport
networks. Recently, Espinosa-Aranda et al. (2018) proposed a new formulation
with estimation of a constrained nested logit model for connection choice in
public transport.

2.3 Passenger preferences

Third, the evaluation of public transport services should be suited to the target
group, which is in this case the passengers. Therefore, it is important that
their preferences are reflected in the evaluation functions. These are expressed
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by parameters to tune the evaluation functions. Wardman and Toner (2018)
showed in their analysis for the case of generalized cost that choosing the correct
parameters is essential for a correct evaluation. While research in Operations
Research focuses on developing algorithmic methods to compute timetables and
mainly uses given or estimated parameters, there is much research in Traffic
Engineering and choice modeling on parameter identification.
Usually, the parameters are found by either stated preference or revealed prefer-
ence approaches. In the first case, people are asked to take decisions in a survey
and their theoretical choice is used to derive rules for passenger behavior. For
example, Bradley and Gunn (1990) determined the value of travel time of the
Dutch population by a stated preference survey. In the second case, the actual
decisions of passengers are generalized. Recently, with more data being avail-
able, more publications analyze passenger behavior with revealed preferences
approaches. For example, Kusakabe et al. (2010) estimated passenger usage
patterns from smart card data.
The most important parameters for public transport evaluation are of two dif-
ferent kinds, modeling passengers’ preferences and passengers’ behavior. The
preference parameters specify how the different components of the passenger’s
journey are weighted. Different components include, but are not limited to wait-
ing time, in-vehicle time or transfer time. Dell’Olio et al. (2010) provides pas-
senger preference parameters measured from a bus transport service and Schit-
tenhelm (2013) lists preferences of passengers of the Copenhagen S-train. A col-
lection of multiple parameter settings found in various publications is published
in Wardman (2004). Part of the passenger preferences but usually individually
researched is the value of time, with many publications determining values un-
der certain conditions, see for example Wardman et al. (2012). Parameters for
passengers’ behavior refer to the parameters used in the passenger distribution
model, for example the logit parameter. The importance of correct parameter
modeling for logit models is stressed in Swait and Louviere (1993).

2.4 Comparison of evaluation functions

Although there are various approaches to evaluate public transport from pas-
sengers’ point of view, there is only limited research comparing different evalu-
ation functions. Publications undertaking a comparison of evaluation functions
mostly compare two evaluation functions only, a newly introduced function and
the state of the art. Usually, the purpose is either to illustrate the merits of the
newly introduced evaluation function, as it was done in the previously discussed
integrated shortest path search (Schmidt and Schöbel, 2015; Borndörfer et al.,
2017; Gattermann et al., 2016), or to better fit the evaluation to reality. As ex-
ample for the latter, Jong et al. (2007) showed that in their case study a logsum
based evaluation should be preferred to the currently applied evaluation since
it is more precise in computing passengers’ surplus when changing the public
transport service. Some publications undertake a comparison of multiple eval-
uation functions, however, these are limited to a theoretical comparison. For
example, Parbo et al. (2016) provides a literature review on public transport
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evaluation and focuses on the conflict of passenger’s versus operator’s focus. We
are not aware of an empirical comparison of public transport evaluation func-
tions or of an investigation of their inconsistency, which are the topics of this
paper.

3 Timetable evaluation

From the literature review it is apparent that there are many different evaluation
functions in use to measure quality of timetables from passengers’ viewpoint.
In this section, we classify this multitude of different functions and design a set
of 16 evaluation functions to represent the evaluation functions in use.
For this purpose, we now define the terms important for the design of evaluation
functions. All variables introduced are summarized in Appendix A. Passengers’
demand is specified by a set of origin-destination (OD) pairs OD, where each
of them is a directed pair of stations in the public transport network with
time-dependent demand. We consider disjoint time slices t ∈ T of one hour
and define the hourly demand of passengers that want to depart in time slice
t ∈ T for each OD pair to be otod. The sum of all hourly demand equals the
daily demand ood of each OD pair, i.e., ∑t∈T otod = ood. To meet the demand of
passengers, each timetable offers connections to the passenger. We use the term
connection to denote a time-bound route for passengers using public transport
services and denote a set of reasonable connections for each OD pair od with
preferred departure time slice t by Ct

od. To evaluate timetables, we follow the
usual approach to measure and aggregate the quality of available connections
for the passengers.

3.1 Quality measurements

We give a brief introduction into important characteristics of connections for the
passengers, explain how we aggregate these characteristics to the network level
and define four quality measurements for timetables. The four quality measure-
ments are based on the characteristics and reflect the evaluation functions found
in the literature.

Basic characteristics of a connection

To evaluate the public transport services, we quantify five characteristics of a
connection c as listed in Table 1. These characteristics are important factors
of influence for a passenger’s decision whether to travel on connection c or not.
Note, that we do not take the fare of connections into account. We assume a fare
system where the fares depend on origin and destination only, as used, e.g., at
Netherlands Railways (NS), the largest Dutch railway operator. Consequently,
in such a system the cost for each OD pair od is constant and does not affect
the attractiveness of connections.
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IVT(c) In-vehicle
time

The time spent in public transport vehicles

WKT(c) Walk time The time spent walking between platforms for a
transfer

TWT(c) Transfer
wait time

The time spent at a station waiting for the next
connecting public transport vehicle

NTR(c) Number of
transfers

The number of transfers in the connection

DEP(c) Departure
time

The departure time at the origin

Table 1: Characteristics of connections

Derived characteristics of a connection

Using these characteristics of connections, we derive more characteristics of
connections which provide a basis for commonly used evaluation functions. One
derived characteristic that is commonly found in publications in the field of
Operations Research to quantify the quality of a connection is the absolute
travel time (ATT). The absolute travel time is defined as the sum of in-vehicle
time and the transfer time, consisting of walk time and transfer wait time:

ATT(c) ∶= IVT(c) +WKT(c) +TWT(c).

More general, many evaluation functions used in literature apply a weighting of
travel times of the different trip segments and include a penalty for transfers.
To model this weighting, we define the perceived journey time (PJT) as

PJT(c) ∶= IVT(c) + αWKT ⋅WKT(c) + αTWT ⋅TWT(c) + αNTR ⋅NTR(c) (1)

With the coefficients
αWKT, αTWT, αNTR ∈ R≥0

it is possible to model different passenger preferences and the perceived journey
time can be interpreted as a time equivalent expressing how long the connection
c feels to a passenger.
Some publications include departure time preferences of passengers in their eval-
uation. To model these preferences, we introduce the adaption time (ADT),
which is the time a passenger has to deviate from their preferred departure time
slice t to take connection c. Each time slice t corresponds to a one hour interval
[ t, t ) of preferred departure time. Let t̂ ∈ t be a time point in the time slice
t = [ t, t ), then the adaption time is defined as

ADTt(c) ∶= ADT[ t, t )(c) ∶= min
t̂∈[ t, t )

∥t̂ −DEP(c)∥.

The adaption time could similarly be defined for arrival times, however, for the
sake of simplicity we restrict ourselves to an adaption time at departures only.
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The adaption time is further explained in Example 1 for the case that the time
window of preferred departure time equals the time slice t. To model stronger
departure time preferences we split each time slice t in γ ∈ N time windows tj
of equal length, with

t =
γ

⊍
j=1

tj .

Then, we assume that otod/γ passengers want to depart in each of the γ time
windows and the adaption time generalizes to the average adaption time to the
γ time windows, i.e.,

ADTt(c) = 1

γ

γ

∑
j=1

ADTtj(c).

Using this, it is possible to include the impact of access time and spread of
available connections in the evaluation. We define the adapted journey time
AJTt(c) of a connection c for all passengers with preferred departure time slice t
by

AJTt(c) ∶= IVT(c) + αWKT ⋅WKT(c) + αTWT ⋅TWT(c)
+αNTR ⋅NTR(c) + αADT ⋅ADTt(c).

(2)

This number quantifies how unattractive a certain connection is perceived by a
passenger who wants to start traveling in time slice t. We denote the passenger
preferences by

α ∶= (αWKT, αTWT, αNTR, αADT) ∈ R4

≥0
.

Note, that for α = (1,1,0,0) the adapted journey time equals the absolute travel
time ATT, and for α = (αWKT, αTWT, αNTR,0) the adapted journey time equals
the perceived journey time PJT.
Furthermore, there also exist utility based evaluation functions in literature that
are derived from choice models. To represent these functions, we consider the
evaluated total utility of a connection (ETU) as a number expressing how useful
a connection is to a passenger with preferred departure time slice t. We define
the evaluated total utility of a connection c to be

ETUt(c) = e−β⋅AJTt(c), (3)

based on the definition of the logit model as a passenger distribution model.
The logit model and its associated parameter β ∈ R≥0 will be explained in detail
in Section 3.3.
Table 2 gives a theoretical comparison of the four quality measurements. If a
characteristic is included linearly in a quality measurements, the table shows the
coefficient, if the dependency is non-linear, it is only indicated by an asterisk
whether the characteristic is taken into account.
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IVT WKT TWT NTR ADT

absolute travel time ATT 1 1 1 0 0
perceived journey time PJT 1 αWKT αTWT αNTR 0
adapted journey time AJT 1 αWKT αTWT αNTR αADT

evaluated total utility ETU ∗ ∗ ∗ ∗ ∗

Table 2: Each entry indicates which of the five characteristics (in-vehicle time
IVT, walk time WKT, transfer wait time TWT, number of transfers NTR and
adaption time ADT) are taken into account in the four quality measurements
ATT, PJT, AJT and ETU. Linear dependencies are indicated by coefficients,
non-linear by asterisks.

Example 1. We consider an example network with four stations, O,A,B and
D and one OD pair from O to D. The public transport service provides a (slow)
bus line driving from O to D via A and B. Let there be two buses departing at
9∶05 and 10∶05, arriving in A at 9∶20 and 10∶20 and in D at 9∶47 and 10∶47,
respectively. In addition to the bus, there is a direct train connecting A and D,
without a detour via B. Let the train depart at 9∶23 from A and arrive at 9∶38
in D. In this example we are only interested in the time slice t10

9
between 9am

and 10am and assume that all passengers want to depart during that time, i.e.,

oOD = o
t10
9

OD. A layout of the network can be found in Fig. 1.

Fig. 1. Exemplary public transport network

This public transport service offers three connections for passengers traveling
from O to D:

c1 Direct bus at 9∶05

c2 Direct bus at 10∶05

c3 Bus at 9∶05 and transfer to train in A

Let the walk time at station A from the bus terminal to the train platform be
2min and assume passenger preferences of α = (1,1,10,2) and β = 0.22. Then,
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the connections c1, c2, c3 have the characteristic values as listed in Table 3.

measured derived

IVT WKT TWT NTR DEP ATT PJT ADT AJT ETU

c1 42 0 0 0 9:05 42 42 0 42 9.7 ⋅ 10
−5

c2 42 0 0 0 10:05 42 42 5 52 5.0 ⋅ 10
−5

c3 30 2 1 1 9:05 33 43 0 43 7.8 ⋅ 10
−5

Table 3: Measured and derived characteristics of three connections

Connections c1 and c3 have an adaption time of 0min since both depart between
9∶00 and 10∶00. The second connection has an adaption time of 5min as it
departs 5min after the preferred interval. The same adaption time would result
for a connection departing at 8∶55.

Characteristics for OD pairs

The goal is to design evaluation functions for a whole timetable but, so far,
just characteristics of connections were defined. For the purpose of a timetable
evaluation we aggregate the characteristics of connections.
As a first step, we aggregate the characteristics over all time slices t and con-
nections c per OD pair. In this way we obtain the characteristic values for each
OD pair. Let pt(c) be the probability that connection c is chosen by passengers
with preferred departure time slice t ∈ T , i.e.,

∑
c∈Ct

od

pt(c) = 1 ∀t ∈ T

and
pt(c) ≥ 0 ∀t ∈ T, c ∈ Ct

od.

How we derive realistic and meaningful values for this probability is outlined
in Section 3.2. Let Xt(c) be a characteristic of connection c ∈ Ct

od, with a
value that possibly depends on the preferred departure time slice t. We con-
sider Xt(c) ∈ {ATT(c),PJT(c),AJTt(c)} and denote these as travel time based
characteristics. Then the average value of that characteristic over all time slices
t ∈ T and connections c ∈ Ct

od for the OD pair od is defined as

Xod ∶=

∑t∈T (otod∑c∈Ct
od
pt(c) ⋅Xt(c))

∑t∈T ot
od

. (4)

To compute the characteristic value for OD pairs, this value is weighted with the
probability pt(c) that a connection c is chosen, given the preferred departure
time slice t. This can heavily influence the characteristic values as the next
example shows.
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Example 2. We continue with the example network from above and assume
two different scenarios for passenger distribution. In the first, all passengers

travel on the shortest path w.r.t the absolute travel time. This yields pt
10

9 (c1) =
0 = pt

10

9 (c2) and pt
10

9 (c3) = 1. Thus, we obtain for the absolute travel time

ATTOD =

∑t∈T (otod∑c∈Ct
od
pt(c) ⋅ATT(c))

∑t∈T ot
od

=
o
t10
9

od
⋅ 1 ⋅ 33

o
t10
9

od

= 33,

the average absolute travel time over all passengers from O to D is 33min.
In the second scenario we assume that all passengers distribute uniformly over
the available connections, independent of their characteristics. This corresponds

to a distribution pt
10

9 (c1) = 1/3 = pt109 (c2) and pt
10

9 (c3) = 1/3 with an absolute travel
time of

ATTOD =

∑t∈T (otod∑c∈Ct
od
pt(c) ⋅ATT(c))

∑t∈T ot
od

=

o
t10
9

od
⋅ (1

3
⋅ 42 +

1

3
⋅ 42 +

1

3
⋅ 33)

o
t10
9

od

= 39.

Since the passengers distribute over the connections, the absolute travel time
increases from 33min to 39min compared to the case where all passengers travel
on the shortest connections. This example shows that the characteristics of the
public transport service for passengers heavily depends on the passenger behavior
pt(c).
Furthermore, we define the evaluated total utility for passengers as

ETUod ∶=

∑t∈T (otod∑c∈Ct
od

ETUt
od(c))

∑t∈T ot
od

. (5)

This characteristic is independent of the passenger distribution pt(c) since the
evaluated total utility of each connection ETUt

od(c) is derived from the logit
model which we use for choice connection. However, the assumed passenger dis-
tribution model might affect which connections are considered to be reasonable
alternatives in the set Ct

od, which will be addressed in Section 3.2.

Characteristics of the public transport service

In accordance with many evaluation functions used in research, we define the
characteristics of the public transport service X to be the weighted average of
the characteristics for OD pairs, computed by

X ∶=
∑od∈OD ood ⋅Xod

∑od∈OD ood
,
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for Xod ∈ {ATTod,PJTod,AJTod,ETUod}. We refer to the corresponding four
characteristics of a timetable X ∈ {ATT,PJT,AJT,ETU} as quality measure-
ments. While the first three quality measurements are travel time equivalents,
the evaluated total utility is a utility based evaluation function, where each rea-
sonably good connection for passengers adds to the utility and thus improves
quality of the service. Hence, we refer to ATT, PJT and AJT as travel time
based, and to ETU as utility based quality measurement.

3.2 Passenger distribution

The decision which connections passengers choose is dependent on the charac-
teristics of the connections. There are two fundamentally different approaches
for passenger distribution used in the literature. While research in Operations
Research often assumes that all passengers travel on the shortest connection
available, most publications from other research areas apply more realistic pas-
senger distribution models when evaluating timetables. To investigate this dif-
ference, we consider two passenger distribution models.
On the one hand, we rely on the logit model to obtain a realistic distribution of
the passengers on multiple connections (mc). We assume the set Cod of reason-
ably good connections for OD pair od to be given. Then, the logit model can be
interpreted as a function assigning a probability pt(c) to each connection c ∈ Cod

that it is used by passengers with preferred departure time slice t. The logit
model is defined by

pt(c) = e−β⋅AJTt(c)

∑c′∈Cod
e−β⋅AJTt(c′)

∀c ∈ Cod, (6)

where the parameter β ∈ R≥0 is used to adjust the model to a specific case study.
Note, that the choice set of connections Cod is independent of the preferred
departure time slice t of the passengers. Since the logit model is based on the
adapted journey time of all considered alternative connections, only connections
departing in or close to the time slice t will be assigned a probability that is
significantly larger than 0. This is a common way to model connection choices
of passengers realistically (Ben-Akiva and Lerman, 1985).
On the other hand, we consider a shortest connection (sc) strategy for the
passengers. That means, passengers only take connections with lowest journey
time departing within or close to their preferred departure time slice. Let Ct

od

be the set of all connections with lowest adapted journey time for passengers of
an OD pair od that want to depart in time slice t. Then, the share of passengers
using connection c ∈ Ct

od is

pt(c) = 1

∣Ct
od
∣ ∀c ∈ Ct

od.

That means, in case there are multiple shortest connections available, we assume
that the passenger distribute on them uniformly.
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We want to point out that the passenger distribution also affects the quality
measurements defined in Section 3.1. As mentioned, with the two possible
passenger distribution models sc and mc we also assume two different choice
sets to be given. For the logit distribution on multiple connections, we assume
a set of reasonably good connections to be given and for the shortest connection
assumption, we require the choice set to only contain connections with lowest
adapted journey time. The respective choice set is also used for aggregating the
characteristics in Equations 4 and 5, depending on which passenger distribution
model will be applied.

3.3 Passenger preferences and behavior

We take different assumptions on passenger preferences and passenger behavior
into account. In the definition of the perceived and adapted journey time of a
connection in Equations 1 and 2 many passenger preferences are contained. The
values of the coefficients α ∈ R4

≥0
indicate how important in-vehicle time, walk

time, transfer wait time, number of transfers and adaption time are (relative to
each other) to the passenger.
In addition, we have the logit coefficient β ∈ R≥0 in Equation 6 to tune the
sensitivity of passengers to absolute differences in the adapted journey time of
connections. For example, for β = 0 all connections in the choice set will be used
by passengers equivalently and the logit model reduces to a uniform distribution.
The higher the coefficient β, the more passengers will use the connections with
lowest adapted journey time. This coefficient also influences the evaluated total
utility of a public transport service, as defined in Equation 3.
Furthermore, it is possible to set the passenger tolerance γ ∈ N for early or
late departure. High values for γ indicate a low tolerance and already slight
deviations from the preferred departure time are penalized.
To analyze the impact of modeling passenger preferences on the evaluation, we
consider two user groups. These are represented by the two parameter settings

ps1 = (α, β, γ) with α = (1, 1, 5, 1), β = 0.13, γ = 1 (7)

and
ps2 = (α, β, γ) with α = (2, 2, 10, 2), β = 0.22, γ = 60. (8)

The first parameter setting models passengers that are mainly focused on jour-
ney time (αWKT = 1, αTWT = 1) and are relatively undeterred by transferring
(αNTR = 5). They would also make use of connections with higher adapted jour-
ney time (β = 0.13) and are rather flexible regarding departure time (αADT =

1, γ = 1), as long as the connections are fast.
The second parameter setting models passengers that are more convenience
oriented. They prefer a public transport service that is suited to their needs
with less and short transfers (αWKT = 2, αTWT = 2, αNTR = 10), preferably
use connections with low adapted journey time (β = 0.22) and are inflexible
regarding their desired departure time (αADT = 2, γ = 60).
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The parameters are chosen following recommendations from research and prac-
tice. For example, as of 2012, the NS used a penalty of 10min for each transfer
(De Keizer et al., 2012). Wardman (2004) provides a thorough study of values of
time, among them several values for wait and walk time compared to in-vehicle
time are listed. Usually, the coefficients for wait and walk time are around 2.
The logit parameter β should be adjusted for each case study, but experience
has shown that values of β ∈ [0.13,0.22] are a reasonable choice if minutes are
used as time units. The adaption time is modeled to fit the characteristics of
the two parameter sets from Equations 7 and 8.

3.4 Evaluation functions

We define an evaluation function as a combination of a quality measurement, a
passenger distribution model and an assumption on passenger preferences. That
means, applying an evaluation function consists of two steps: Given a timetable
with a connection choice set for passengers, the passengers are first distributed
on the connections according to the distribution model and their preferences.
Second, the quality of the timetable is evaluated with respect to the quality
measurement, again using the passenger preferences. Many publications focus
only on the second step when describing their evaluations. However, we believe
that the distribution is an integral component of the evaluation which influences
the evaluation results. Hence, we also investigate the extent of this influence.
When combining the four quality measurements defined in Section 3.1 with the
two distribution models described in Section 3.2 and the two different assump-
tions on passenger preferences fixed in Section 3.3, we obtain 16 evaluation
functions in total. This design of evaluation functions entails two advantages.

sc mc

ATT Borndörfer et al. (2017) Parbo et al. (2014)†

PJT Wardman and Toner (2018) Parbo et al. (2014)†

AJT Kanai et al. (2011) Robenek et al. (2016)

ETU ‡ Jong et al. (2007)§

Table 4: Examples for the use of different evaluation functions in recent litera-
ture. We provide one publication for each cell, exemplifying the use of a quality
measurement (absolute travel time ATT, perceived journey time PJT, adapted
journey time AJT and evaluated total utility ETU) in combination with a short-
est connection (sc) or multiple connection (mc) passenger distribution model
† Used ATT in evaluation and PJT in distribution
‡ ETU in combination with sc is not used since ETU does not require a passenger distribution
§ Used slightly different utility based evaluation function

These functions cover a wide range of commonly used evaluation functions in
mathematical models, in evaluation applications or in choice models as it is
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indicated in Table 4. In addition to that, their modular structure as combina-
tion of quality measurement, distribution model and assumptions on passenger
preferences allows a purposeful analysis. Differences or similarities of evaluation
functions can easily be traced down to a single component of the functions. We
denote the set of the 16 evaluation functions by F .

4 Case studies

Our goal is to analyze how inconsistent the 16 different evaluation functions
are by comparing their evaluation behavior on multiple public transport ser-
vices. In this section, we describe three case studies in which we perform these
evaluations. Each case study is characterized by a fixed public transport in-
frastructure, a demand situation on that infrastructure and a set of services
supplying the demand. A public transport infrastructure consists of stations
and direct links between them and a demand situation is specified by a set
of origin-destination (OD) pairs OD, where each of them is a directed pair of
stations with time-dependent demand. For this demand situation, we consider
several public transport services supplying this demand, for comparison. Each
of the public transport services is formalized by a line plan and a timetable
which together determine the potential connections and their quality.

4.1 Case studies on a grid infrastructure

As a first infrastructure we use an artificial 5 × 5 grid network1 introduced by
the research group FOR2083. The infrastructure consists of 25 stations and 40
direct links and the network is depicted in Fig. 2a.
On this infrastructure we consider two demand situations with multiple corre-
sponding benchmark services available, each of them consisting of a line plan and
a timetable. Both demand situations have an almost complete demand matrix
with nearly 600 non-zero entries. Although they share the same infrastructure,
we treat them as two different case studies due to the different data structure of
demand and supply. The first demand situation has a typical daily demand pat-
tern and 27 suitable services that are operated throughout the whole day. All of
these services were designed by traffic engineers with established methods used
in transport planning. We refer to the case study as GL. The second demand
situation depicts a morning peak and 28 services operating only in the morning
hours are available. These service were found with different optimization mod-
els by Operations Researchers and we denote the corresponding case study by
GS. The names of all 55 services as used in this paper and their corresponding
names in the repository can be found in Appendix B.

1https://github.com/FOR2083/PublicTransportNetworks/tree/master/Grid_5x5, ac-

cessed November 12, 2018.
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(a) Grid infrastructure
(b) Dutch railway infrastructure.

Tracks and stations in black are oper-

ated by NS

Fig. 2. The evaluation functions are compared on these two infrastructures

4.2 Case study on the Dutch railway infrastructure

The second infrastructure is the Dutch railway network with roughly 270 sta-
tions as it is operated by Netherlands Railways (NS). In Fig. 2b a route map
of the Dutch railway network is shown. The demand is given by a scientific
demand set of more than 62000 non-zero OD pairs defined between the stations
reflecting a realistic demand situation. For evaluation we consider the yearly
transport services that were operated by NS in the years 2012 till 2018. Note,
that due to changes in the infrastructure in the Dutch railway network, not all
public transport services are defined on the same network. That means, over
the years some stations and tracks might have been introduced or abolished.
However, we evaluate all different services with the same demand set between
the same stations, therefore the evaluation is not directly affected by the slight
changes of the infrastructure. We refer to this case study by NS.

4.3 Derivation of a connection choice set

In all case studies multiple services are considered, each of them consisting
of a line plan and a timetable. The evaluation functions assume a set Ct

od of
reasonable connections for each OD pair od with preferred departure time slice t

to be given. In this section we describe how we derive such sets from a given
public transport service. To ensure better comparability of the evaluation, we
derive the same choice sets for all evaluation functions within each case study.
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In Section 3.2 we remark that two different connection choice sets are assumed,
depending on the applied passenger distribution model. In case of a distribution
on multiple connections with the logit model, we assume that a set Cod of
reasonably good connections for OD pair od is given. When all passengers
are assigned to the shortest connections, we assume that the set Ct

od of all
connections with lowest adapted journey time for passengers of OD pair od that
want to depart in time slice t is given.

Choice set for logit model

To obtain a set with all reasonably good connections for an OD pair, we consider
all connections with low absolute travel time, low perceived journey time and low
number of transfers. The perceived journey time of the connections is compared
using the fixed parameters

(αWKT, αTWT, αNTR) = (1.5, 1.5, 7.5).

These values are the arithmetic mean of the values used for α in the two pa-
rameter settings ps1 and ps2. In addition, we use parameters δPJT, δATT, εPJT,
εATT and εNTR to decide whether a connection is good enough to be considered.
Then, the choice set Cod contains

• all connections c which have at most an absolute travel time ATT(c) with

ATT(c) < δATT ⋅ATT(c′) + εATT

where c′ is the connection with the lowest possible absolute travel time
for OD pair od,

• all connections c which have at most a perceived journey time PJT(c)
with

PJT(c) < δPJT ⋅PJT(c′) + εPJT

where c′ is the connection with the lowest possible perceived journey time
for OD pair od and

• all connections c which have at most NTR(c) transfers with

NTR(c) < NTR(c′) + εNTR

where c′ is the connection with the lowest possible number of transfers for
OD pair od.

For the derivation of choice sets for the analysis we use the values

δPJT ∶= 1.5, δATT ∶= 1.5, εPJT ∶= 10, εATT ∶= 10 and εNTR ∶= 1.

All dominated connections are removed from the choice sets. A connection
c ∈ Cod is dominated by another connection c′ ∈ Cod if
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• connection c′ starts simultaneously or later and arrives simultaneously or
earlier than connection c, and

• connection c′ has at most as many transfers as c, and

• the perceived journey time of connection c′ is at most as high as the
perceived journey time of connection c and

• at least one of the three conditions is a strict inequality

Since the search is independent of the time slice t, the choice set Cod contains all
reasonably good connections for the OD pair during the whole analysis period T .
As mentioned before, the logit model assigns a share of passengers significantly
different from 0 only to those connections with low adaption time.

Choice set for shortest connections

For the assumption that all passengers use the shortest connections only, one
choice set for each departure time slice t is required. We define these to be the
subset of the choice set Cod with reasonably good connections, containing only
the connections with minimal adapted journey time, i.e.,

Ct
od ∶= {c ∈ Cod ∶ AJTt(c) ≤ AJTt(c′) ∀c′ ∈ Cod}.

5 Comparison of evaluation functions

We defined 16 evaluation functions for public transport services in Section 3
and introduced the infrastructures with corresponding demand situation and
multiple services for the three case studies in Section 4. In this section we
describe a methodology to compare different evaluation functions and to set
them into relation. Using this methodology, the 16 evaluation functions are
investigated for their inconsistency in the three case studies.
The key idea is to compare the evaluation functions when applied to a num-
ber of services. We evaluate all public transport services s ∈ S with each of
the evaluation functions f ∈ F and use the resulting evaluation values vfs to
compare the functions in F . We conduct the evaluation of the services with
PTV Visum (PTV Planung Transport Verkehr AG, 2017), a software package
for macroscopic traffic analysis and forecasting. For the NS case study, Table 5
shows the evaluation values of the services operated between 2012 and 2018 for
all 16 evaluation functions.
At a first glance, all public transport services in Table 5 have very similar eval-
uation values, suggesting that the quality of the services is effectively the same.
For example, the absolute travel time on the shortest connection evaluated with
the first parameter setting (evaluation function 1) ranges for all seven services
between 35.94 and 36.78 minutes, implying a difference of only 0.84 minutes.
While this difference sounds negligible, it actually comprises considerable dif-
ferences for individual OD pairs. A total gain of 0.84 minutes in absolute travel
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ATT PJT AJT 100 ⋅ETU

ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NS12 36.78 37.43 36.79 37.60 37.99 38.90 41.04 42.22 38.64 40.49 58.37 53.30 38.31 55.98 1.29 1.77

NS13 36.30 36.96 36.32 37.13 37.44 38.38 40.27 41.58 38.07 39.97 57.60 52.63 34.19 53.60 1.11 1.70

NS14 36.30 36.94 36.31 37.09 37.44 38.37 40.31 41.60 38.03 39.96 56.88 52.22 36.83 56.50 1.21 1.80

NS15 36.22 36.90 36.24 37.07 37.36 38.33 40.22 41.51 37.98 39.93 56.88 52.01 36.68 56.25 1.20 1.77

NS16 36.23 36.91 36.26 37.06 37.38 38.32 40.24 41.52 37.99 39.92 56.90 51.97 38.28 55.93 1.28 1.75

NS17 36.03 36.77 36.04 36.96 37.25 38.29 40.28 41.67 37.87 39.90 56.85 52.03 40.44 57.67 1.33 1.80

NS18 35.94 36.71 35.95 36.89 37.14 38.22 40.14 41.56 37.78 39.83 56.96 51.75 39.72 59.16 1.31 1.85

Table 5: Evaluation values vfs in NS case study. Each column corresponds to one
evaluation function f ∈ F and each row to one public transport service s. The
name of the services indicate the year in which this service was operated. The
four topmost rows show the quality measurement, the used parameter setting
and distribution model as introduced in Section 3 and lastly an index to iden-
tify the evaluation functions. The values for the travel time based evaluation
functions (ATT, PJT, AJT) show average travel time in minutes, the values of
the utility based evaluation functions (ETU) is dimensionless. For ease of expo-
sition, all evaluation values of utility based evaluation functions are multiplied
with 100.

time corresponds to an improvement of 2.3% and could for example be achieved
by decreasing the travel time on all connections of the 20 biggest OD pairs by
10 minutes. This improvement would affect more than 90,000 travelers every
day.
Furthermore, Table 5 also shows that the best service regarding one evaluation
function is not necessarily the best service regarding another evaluation function.
For example, the best services regarding evaluation functions 7 and 8 do not
coincide. While NS18 provides on average the shortest perceived journey time
weighted with the second parameter set on the shortest connection, NS15 yields
the shortest perceived journey time on multiple connections, indicating that the
passenger distribution model has an influence on the evaluation in this case.
Table 6 summarizes differences in ranking of all public transport services and
all evaluation functions in a ’medal count’, indicating how often the respective
service is classified on a certain rank.

1st 2nd 3rd 4th 5th 6th 7th

NS12 0 0 2 0 2 0 12
NS13 0 0 0 2 1 9 4
NS14 0 1 2 0 11 2 0
NS15 1 1 7 5 0 2 0
NS16 0 2 4 8 0 2 0
NS17 3 10 0 1 1 1 0
NS18 12 2 1 0 1 0 0

Table 6: ’Medal count’ from NS case study showing the number of times a public
transport service is ranked on the nth rank. Both row and column sum add up
to 16, the number of considered evaluation functions.
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The highest numbers in Table 6 appear on, or close to the antidiagonal. This
shows that the evaluation functions essentially agree that the services improved
from NS12 to NS18, or equivalently, improved over the years. Taking an average
over all evaluations, it seems to be conclusive which service is best. However,
not all of the services could be unambiguously classified. Most of the services are
ranked over a range of five, some even over six ranks. Using just one evaluation
function, as it is often done in research, might yield a very different ranking
than the average suggests. The medal counts from the other two case studies
GS and GL can be found in Appendix C. To draw inferences from this about
the inconsistency of the evaluation functions, it is interesting to see whether the
deviations in ranking are due to some random dispersion or whether there is a
structural connection between the rankings of evaluation functions.

5.1 Inconsistency of two evaluation functions

Even when the differences in the ranking are large, actual evaluation values may
be very close to each other. To avoid fallacy when comparing the evaluation
functions by rank, we focus on the relative differences in objective values. Since
the evaluation values vfs are dependent on the evaluation function and thus
not directly comparable, we normalize the evaluation values. These normalized
values are in the same number range and can be compared easily.
We define

V (f) ∶=max
s∈S

vfs −min
s∈S

vfs

to be the range of objective values of all public transport services with respect to
evaluation function f ∈ F . For evaluation functions, for which smaller values are
better, we define the normalized value of service s ∈ S with respect to evaluation
function f ∈ F to be

ϕf
s ∶=

vfs −mins′∈S v
f
s′

V (f) . (9)

Equivalently, the normalized value for evaluation functions, for which larger
values are better, is defined as

ϕf
s ∶=

maxs′∈S v
f
s′ − v

f
s

V (f) . (10)

The normalized values lie in the unit interval and indicate to what extent ser-
vice s performs worse than the best service with respect to the same evaluation
function considering the range of all other values. Therefore, the normalized
values ϕ depend on the set of all considered services S of a case study. Tables
with all normalized evaluation values for the three case studies are provided in
Appendix D.
The normalized values allow a comparison of the quality of public transport
services regarding different evaluation functions. To compare the evaluation
functions pairwise with each other, we define the inconsistency of two evaluation
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functions f1 and f2 as the mean difference in the normalized value, i.e.,

iϕ(f1, f2) ∶= 1

∣S∣ ∑s∈S
∣ϕf1

s −ϕ
f2
s ∣.

As the normalized values ϕf
s depend on the set of all considered services S of a

case study, also the inconsistency i depends on the set S.

f1 f2

s1

s1

s2

s2

v
f
s

↝

0

1

f1 f2

s1

s1

s2 s2

∣ϕf1
s1 −ϕ

f2
s1 ∣

∣ϕf1
s2 −ϕ

f2
s2 ∣

ϕ
f
s

Fig. 3. Normalization of evaluation values vfs for two evaluation functions and
indication of computation of inconsistency iϕ(f1, f2) for two public transport
services

For a better understanding, the normalization of evaluation values and the def-
inition of the inconsistency as mean difference in normalized values is depicted
in Fig. 3. The graph on the left shows the ranges of the evaluation values vfs of
two evaluation functions f1 and f2 as vertical lines. On the lines the evaluation
values of two services s1 and s2 are marked. As it can be seen in this graph, the
two evaluation functions yield different ranges of evaluation values and therefore
it is difficult to compare them. This is dealt with by the normalization of the
evaluation values, which is depicted in the graph on the right. Both ranges of
the two evaluation functions f1 and f2 cover exactly the unit interval and it is
possible to compare the normalized evaluation values ϕf

s . This is shown with
the same two services s1 and s2 from the left graph. It reveals that service s1
is rated differently by f1 and f2 while the two evaluation functions nearly agree
on the quality of service s2. The vertical distance of the normalized evalua-
tion values, averaged over all services, is defined to be the inconsistency of two
evaluation functions in a certain case study.
One shortcoming of this approach is that the normalized evaluation values de-
pend on the set of all considered services of a case study. As defined in Equa-
tions 9 and 10, all deviations in objective values between two services are com-
pared relatively to the largest differences between any services of the respective
case study. That means, in case all services are almost identical in quality,
different evaluation functions might be indicated as being inconsistent although
they hardly show considerable differences in the evaluation. However, when con-
sidering services that do show differences in quality, such an incorrect indication
of inconsistency cannot occur.
In the three case studies NS, GS and GL we derive the pairwise inconsisten-
cies between all 16 evaluation functions, which are tabulated in Appendix E.
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For better comprehensibility, the tables with inconsistencies are colored as heat
maps, quadratic 16×16 matrices where each entry displays the inconsistency of
two evaluation functions. To make differences in inconsistencies easily identifi-
able, high values are indicated by a dark shading and low values have a light
shading. Naturally, all diagonal values of the matrix are zero as each evalua-
tion function is fully consistent with itself and the matrices are symmetric since
iϕ(f1, f2) = iϕ(f2, f1) holds.
Altogether, we find qualitatively similar results, that means, the inconsistencies
of the studied evaluation functions are qualitatively alike in the different case
studies. Only for very few cells of the heat maps we observe a qualitative differ-
ence in the pattern of inconsistencies of evaluation functions between the case
studies. This indicates that the results are not dependent on the structure of the
case study but indeed on the structure of the evaluation functions. Therefore,
we discuss the findings independently of the case studies where this is applicable
and just highlight differences in the results.
For a collective discussion we compute the weighted average of the inconsisten-
cies between the evaluation functions over all case studies by

i(f1, f2) =
∑

I∈{GS,GL,NS}

∣SI ∣iIϕ(f1, f2)

∑
I∈{GS,GL,NS}

∣SI ∣
∀f1, f2 ∈ F,

where ∣SI ∣ is the number of services considered in case study I and iIϕ(f1, f2)
is the inconsistency of evaluation functions f1 and f2 derived in case study I.
The weighted average inconsistencies are tabulated in a heat map in Fig. 4.
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Fig. 4. Heat map showing the weighted average inconsistencies from all three
case studies. For better depiction, all values are multiplied with 100.
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The absolute values of the inconsistencies i allow an interpretation of the extent
to which the evaluation functions agree on the valuation of the services. For
example, an inconsistency of 19.36% between evaluation functions 1 and 16
can be found in the top right corner of Fig. 4. This inconsistency implies that
the normalized values of all services regarding these two evaluation functions
deviate by 19.36% on average. Visualized in Fig. 3, this would mean that the
differences ∣ϕ1

s − ϕ
16

s ∣ are on average over all services s approximately one fifth
of the total range of normalized evaluation values.
The heat map in Fig. 4 shows obvious patterns with dark and bright areas, indi-
cating large and small differences in the inconsistencies between the evaluation
functions. To provide a better intuition, we use multidimensional scaling to
visualize the inconsistencies in Fig. 5 as distances between the evaluation func-
tions. That means, we depict each evaluation function f as a point xf ∈ R

2 on
the plane such that the Euclidean distance d(xf1 , xf2) between each two points
is representative for the inconsistency i(f1, f2) of the corresponding evaluation
functions. This is ensured by minimizing the relative deviation of Euclidean
distance from the inconsistency, i.e., we solve

min
x∈R2∣F ∣

∑
f1,f2∈F

(d(xf1 , xf2) − i(f1, f2))2

∑
f1,f2∈F

i(f1, f2)2
.

More on multidimensional scaling can be found in Borg and Groenen (2005).
In general, the representation of inconsistencies as distances in Fig. 5 allows a
faster and easier interpretation but all observations can be confirmed with the
derived inconsistencies in Fig. 4.

Observations

It is obvious from Fig. 5 that the four utility based evaluation functions are
separated from the travel time based evaluation functions. This is independent
of the chosen parameter setting or passenger distribution model. Also the heat
map indicates by a dark shading in the upper right (or equivalently lower left)
part that the evaluation functions based on travel time are generally inconsistent
with those based on utility. Furthermore, both figures suggest that the utility
based evaluation functions are rather consistent with each other, visible from
low distances between pairs of utility based evaluation functions in Fig. 5 and
also from light shading in the lower right corner of Fig. 4. The utility based
evaluation functions are especially far from the functions of adapted journey
time although ETU and AJT are the only two quality measurements which
consider the adaption time besides other characteristics, see Table 2. This shows
that the shape of an evaluation function is in this case more relevant for the
inconsistency than the characteristics it takes into account in the evaluation.
A second group of evaluation functions that are consistent with each other
but a bit separate from other groups is formed by the evaluation functions
of absolute travel time. By design, this group of evaluation functions is least
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Fig. 5. The inconsistencies of pairs of evaluation functions visualized as dis-
tances on the plane. Each star corresponds to one evaluation function displaying
its id. The labels next to the stars explain how the evaluation function is con-
structed. The quality measurement ATT, PJT, AJT or ETU is written in the
labels. A round label shape indicates that passengers are distributed on the
shortest connections (sc), while squared labels indicate the use of a passenger
distribution model on multiple connections (mc). The used parameter setting
is distinguishable by solid (ps1) or dashed label edging (ps2).

affected by different parameter settings and therefore we did indeed expect that
evaluation functions from this group would be relatively consistent with each
other. In line with this, a close inspection also shows that in our case studies
the passenger distribution model has a higher impact on the inconsistency of
evaluation functions of absolute travel time than the parameter setting. The
group of evaluation functions of absolute travel time is far from the utility based
evaluation functions and closer to other travel time based evaluation functions.
The closest group to the evaluation functions of absolute travel time are the four
evaluation functions of perceived journey time and the two evaluation functions
of adapted journey time with the first parameter setting. Especially with the
first parameter setting this closeness is plausible since the first parameter setting
is very similar to the fixed parameters of absolute travel time, see Equation 7.

25



That the two evaluation functions of perceived journey time with the second pa-
rameter setting are a little further away indicates that the penalties for transfers
and the weighting of transfer wait time have a measurable effect on the incon-
sistency of the evaluation functions.
In the top left corner of Fig. 5 we find the stars of both evaluation functions based
on adapted journey time with the second parameter setting, separate from the
other evaluation functions and also relatively far from each other. This is also
reflected in the inconsistencies in the heat map in Fig. 4 where both evaluation
functions 11 and 12 show fairly high inconsistencies with all other evaluation
functions. A plausible explanation for this is the adaption time. The adapted
journey time is the only travel time based quality measurement comprising the
adaption time, and with the second parameter setting the adaption is penalized
much higher than when using the first parameter setting.
A possible reason for the high inconsistency between the two evaluation func-
tions of adapted journey time with the second parameter setting can be found
in the set of services in our case studies; One kind of service provides no rea-
sonably good alternative to the best connection(s) whereas the second kind of
service additionally offers such alternatives. The evaluation of these two kinds
of services is similar when considering the shortest connection since both offer
comparable shortest connections. However, the adaption time in the second
kind of service, which provides many comparably good connections for each OD
pair, is drastically lower when considering multiple connections which leads to
a different rating of the two kinds of services. The presence of both kinds of
services in the case studies might account for the visible inconsistency between
the two outliers for different passenger distribution models.
To summarize, Fig. 5 suggests that there are three groups of evaluation func-
tions that are close to each other, but far from functions of other groups. One
group is formed by the four utility based evaluation functions, one by the four
evaluation functions of absolute travel time and one by the evaluation functions
of perceived journey time and adapted journey time with the first parameter
setting. Additionally, the remaining two evaluation functions of adapted jour-
ney time with the second parameter setting seem to be two outliers apart from
the three groups.
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5.2 Cluster analysis

In addition to an investigation of the inconsistencies, we perform cluster analyses
of the evaluation functions in each of the three case studies. These help to
determine which of the evaluation functions are similar to each other and which
are fundamentally different. With the cluster analyses we can, on the one hand,
verify the group formation that is apparent in Fig. 5 and, on the other hand,
identify individual variations of the inconsistencies in the different case studies.
The evaluation functions f ∈ F are clustered based on the normalized evaluation
values ϕf

s of all considered services s ∈ S. For a given k ∈ N, each evaluation
function is assigned to exactly one of k clusters such that the sum of all distances
between the evaluation functions and their cluster center is minimal. As distance
measure between an evaluation function f and a cluster center m we use the
rectilinear distance of the normalized evaluation values ϕ to the cluster center,

d(m,f) = 1

∣S∣ ∑s∈S
∣ϕf

s −ms∣. (11)

Note, that this distance d(m,f) is consistent with the definition of inconsis-
tency iϕ(f,m), in the sense that

d(f1, f2) = iϕ(f1, f2).

The complete mixed integer program we use to solve the clustering problem is
specified in Appendix F. In each case study we cluster the set of 16 evaluation
functions F into k clusters, for k ∈ {2, . . . ,5}. Varying the number of clusters k

helps to get a better understanding of the inconsistency of evaluation functions.
In Appendix G we provide all four clusterings for each of the three case studies.
These 12 clusterings are summarized in Fig. 6, each clustering represented by
lines grouping several points. As before, each point corresponds to one evalua-
tion function and for each cluster of evaluation functions there is a line surround-
ing the corresponding points. The thickness of a line depends on the cumulative
frequency of appearance of the cluster. Hence, the number and thickness of the
lines separating two evaluation functions visualize how often these two functions
were separated into different clusters. Note, that in Fig. 6 the distances between
evaluation functions are not representative for the inconsistencies.
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4

5 6 7

89 10

11

12

13

14

15

16

Fig. 6. The accumulated clusterings of all evaluation functions
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Observations

In general, the cluster analysis confirms the observations made from a direct
interpretation of the inconsistencies in Fig. 5. Additionally, it contributes some
kind of ranking of which inconsistencies are more substantial.
It can be seen that the strongest separation is between the utility based eval-
uation functions and the travel time based evaluation functions. In no case
study two evaluation functions from the two different bases were found in the
same cluster. This gives evidence that the decision whether to use a travel time
based or a utility based evaluation is most crucial in this setting. Also within
the group of travel time based evaluation functions, we observe that the visible
inconsistencies in Fig. 5 get confirmed by the cluster analysis. For the grouping
of evaluation functions it seems to be important whether the absolute travel time
or a weighted travel time equivalent is used. In combination with the different
passenger distribution models and assumptions on the passenger preferences,
this can significantly influence how the evaluation functions are separated into
different clusters. This is especially visible when comparing evaluation functions
of the adapted journey time in combination with the second parameter setting
to other travel time based evaluation functions.
In addition to that, the cluster analysis adds a refinement of the previous obser-
vations and reveals coherences that are not or less visible in Fig. 5. For example,
the cluster analysis shows that there is a difference between utility based eval-
uation functions for the different passenger distribution models. Functions of
evaluated total utility are always clustered together when they use the same
distribution model, but are occasionally separated from each other when us-
ing different distribution models. This effect is mainly found in the NS case
study and only visible in the cluster analysis since the three case studies are
examined individually in contrast to an investigation of averaged values as in
Fig. 4. A probable explanation is that the services in this case study offer good
alternative connections to the shortest connection for the main demand pairs.
This affects the evaluation when considering all reasonable connections or the
shortest connection only.
Fig. 6 also shows that neither the parameter setting nor the choice of the distri-
bution model is solely decisive for a clustering of the evaluation functions across
the case studies. For some combinations of parameter settings and distribution
models, evaluation functions of the different quality measurements are clustered
together.

6 Implications

It is interesting to see that there are structural differences in the consistency of
timetable evaluation functions. In addition to a mere statement that different
evaluation function might not agree on what is a good or a bad timetable, this
structure can identify and explain reasons for these differences. The analysis in
Section 5 helps to determine which components of the functions are responsible
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for the found inconsistencies. In this section, we give a brief indication how this
can be used for further research dealing with the evaluation of timetables.
Often, the design of evaluation functions is restricted by different reasons, such
as unavailable data, imperfect knowledge about passenger behavior or compu-
tational complexity. The observations from the inconsistencies and the cluster
analysis allow implications on how to deal with these restrictions and which de-
sign element to focus on during the design or choice of an evaluation function.
On the one hand, the analysis can help to identify which simplifications of
an evaluation function are justifiable. That means, it is possible to determine
which simplifications have only a minor effect on the result of the evaluation.
A simplification is justified if the desired evaluation function and its simplified
version are rather consistent with each other, visible by not being separated into
different clusters or by low values of inconsistency. For example, when designing
an evaluation function based on absolute travel time without being aware of the
precise parameters of the passenger preferences, approximate parameters will
not drastically change the evaluation according to our case studies. This holds
for both distribution models we tested, obvious from the low inconsistencies
between evaluation functions 1 and 3, as well as between evaluation functions
2 and 4. Since the parameter settings for the passenger preferences affect in
the case of absolute travel time only the connection choice, the validity of this
simplification is expected and the analysis gives confirmation to that. This
implies for the case of absolute travel time as quality measurement that the
negative impact of a non-reflected modeling of passenger preferences can be
disregarded as the resulting error is rather negligible.
On the other hand, this research helps to identify possibilities for improving a
currently used evaluation function most effectively. Knowing that the evalua-
tion function in use does not fully depict reality, it can be improved in various
ways. The main categories of improvement are the quality measurement includ-
ing which characteristics are considered, the modeling of passenger preferences
and behavior, as well as the connection choice. Since modifying an evaluation
function often involves elaborate data acquisition or expensive remodeling, it
is desirable to make an estimate of the effects of possible modifications before-
hand. For example, assume that a public transport operator applies the adapted
journey time on a logit distribution for the evaluation of their services. For mod-
eling passenger preferences they use estimated parameters. In this case, it is
highly recommended to identify the correct parameters for modeling preferences
and behavior of their customers properly. Using wrong parameters can lead to
very different evaluation results as this research identified a high inconsistency
between evaluation functions 10 and 12.
As mentioned, simplifying evaluation functions can be useful or necessary for
several reasons. However, it is only reasonable if the evaluation results are con-
sistent. It is therefore of utter importance to estimate the impact of a simplifi-
cation on the evaluation. While this is important for any evaluation application,
it is especially relevant at the design of timetables. Using a wrong evaluation
function might not only give a wrong indication of what is a good or a bad
timetable but can even misdirect the search for good solutions.
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7 Conclusion

In this paper, we structured evaluation functions for public transport timeta-
bles that are commonly used in the literature and identified three components
in which the functions differ from each other. Based on this, we designed a
set of evaluation functions representing a wide range of commonly used evalua-
tion functions used in mathematical models, evaluation applications, and choice
models.
Furthermore, we introduced a novel methodology to quantify the inconsistency
between evaluation functions. This is, unlike existing comparisons, an empirical
approach based on the evaluation values of multiple timetables. Therefore, this
definition is generally applicable for comparing evaluation functions and is not
limited to the set of evaluation functions presented in this paper.
With this methodology, we provided an analysis of the inconsistency of the
designed evaluation functions. This analysis was conducted on three sets of
timetables for an artificial grid network and the real-world network of Nether-
lands Railways. The findings are qualitatively similar for both infrastructures
even though the networks and the timetables considered are structurally differ-
ent. This suggests that a generalization of the results is possible.
In our experiments, we found that there are high inconsistencies between differ-
ent evaluation functions although they are all designed to measure the same - the
quality of timetables from passengers’ perspective. In all case studies it appears
most crucial whether a travel time based or a utility based evaluation is used,
which raises the question why utility based evaluation functions are commonly
accepted for choice models but hardly used for evaluation. Furthermore, we ob-
served that also within the group of travel time based evaluation functions high
inconsistencies can appear. It seems most important which quality measure-
ment is used but also different parameter settings and passenger distributions
can significantly impact the inconsistency between evaluation functions. These
inconsistencies can be used to validate simplifications of evaluation functions or
to identify aspects of an evaluation function that need to be incorporated for a
valid evaluation.
This research confirms the impression that even within a set of evaluation func-
tions which are all meant to evaluate the quality of timetables for passengers, the
choice of the evaluation function can have a significant impact on the assessed
quality of timetables, and thus also on which timetable is considered optimal.
This observation is particularly crucial for Operations Research models in public
transport as optimizing on the wrong objective function could make the world
worse rather than better.
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Appendices

A Notation

Greek letters

α Scaling parameter for passenger preferences
β Scaling parameter for logit model
γ Scaling parameter for departure time tolerance
δ Filter coefficient for ATT and PJT
ε Filter parameter for ATT, PJT and NTR
ϕ Normalized value of a service w.r.t. an evaluation function

Latin capitals

ADT Adaption time
AJT Adapted journey time
ATT Absolute travel time

C Set of connections
DEP Departure time
ETU Evaluated total utility

F Set of evaluation functions
GL Case study on grid infrastructure
GS Case study on grid infrastructure
I Index for case studies

IVT In-vehicle time
NS Case study on infrastructure of Netherlands Railways

NTR Number of transfers
OD Set of OD pairs
PJT Perceived journey time

S Set of public transport services
T Analysis period

TWT Transfer wait time
WKT Walk time
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Latin lower case letters

c Index for connection
f Index for evaluation function
i Inconsistency
k Number of clusters

mc Distribution model on multiple connections
o Passenger load

od Index for OD pair
p Probability for connection choice
ps Parameter setting
s Index for public transport service
sc Distribution model on shortest connection
t Index for time slice
v Value of a service w.r.t. an evaluation function

B Public transport service names for grid instance

The public transport services for the grid infrastructure are available on a repos-
itory, see Section 4.1. We provide a table with all names of the services as used
in this paper and their corresponding name as used in the repository.
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name paper name repository

GL1 Solution_NDP_S001

GL2 Solution_NDP_S002

GL3 Solution_NDP_S003

GL4 Solution_NDP_S018

GL5 Solution_NDP_S019

GL6 Solution_NDP_S020

GL7 Solution_NDP_S021

GL8 Solution_NDP_S022

GL9 Solution_NDP_S024

GL10 Solution_NDP_S025

GL11 Solution_NDP_S026

GL12 Solution_NDP_S027

GL13 Solution_NDP_S028

GL14 Solution_NDP_S029

GL15 Solution_NDP_S030

GL16 Solution_NDP_S031

GL17 Solution_NDP_S032

GL18 Solution_NDP_S035

GL19 Solution_NDP_S036

GL20 Solution_NDP_S037

GL21 Solution_NDP_S038

GL22 Solution_NDP_S039

GL23 Solution_NDP_S040

GL24 Solution_NDP_S041

GL25 Solution_NDP_S042

GL26 Solution_NDP_S043

GL27 Solution_NDP_S044

name paper name repository

GS1 Solution_NDP_S004

GS2 Solution_NDP_S005

GS3 Solution_NDP_S006

GS4 Solution_NDP_S007

GS5 Solution_NDP_S008

GS6 Solution_NDP_S009

GS7 Solution_NDP_S010

GS8 Solution_NDP_S011

GS9 Solution_NDP_S012

GS10 Solution_NDP_S013

GS11 Solution_NDP_S014

GS12 Solution_NDP_S015

GS13 Solution_NDP_S016

GS14 Solution_NDP_S017

GS15 Solution_NDP_S023

GS16 Solution_NDP_S033

GS17 Solution_NDP_S034

GS18 Solution_NDP_S045

GS19 Solution_NDP_S046

GS20 Solution_NDP_S048

GS21 Solution_NDP_S049

GS22 Solution_NDP_S050

GS23 Solution_NDP_S051

GS24 Solution_NDP_S052

GS25 Solution_NDP_S053

GS26 Solution_NDP_S054

GS27 Solution_NDP_S055

GS28 Solution_NDP_S056

Table 7: Service names as used in this paper and corresponding names in the
repository

C Medal counts

The tables 8 and 9 show how often each public transport service in the case
studies GS and GL was ranked on the nth rank. Similar to the medal count
for the case study NS in Table 6, at a first glance it appears to be possible to
decide on a ranking of all services in the case study GL in Table 8. However,
since many services span over a large range of ranks, the evaluation with a single
evaluation function is likely to show a different result. In the GS case study,
it is less easy to derive a ranking between most services by visual inspection of
Table 9.
It is apparent in both case studies, especially in GS, that the evaluation functions
are more or totally consistent when ranking the best and worst public transport
services. This can be explained by the choice of services in the set S. All
services are designed to meet the demand, however, with respect to different
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

GL24 16

GL23 14 2

GL1 4 1 4 6 1

GL22 11 1 4

GL5 1 1 2 2 1

GL7 4 4 4 2 2

GL21 11 1 4

GL2 5 3 3 4 1

GL4 1 3 4 5 2 1

GL13 2 5 1 3 4 1

GL15 2 2 1 2 4 1 3 1

GL12 4 7 4 1

GL10 4 1 4 4 2 1

GL11 1 9 4 2

GL14 4 9 2 1

GL9 4 1 4 4 1 2

GL6 2 3 1 6 2 1 1

GL17 1 1 4 4 2 4

GL3 1 1 4 2 8

GL16 1 7 4 4

GL8 1 2 9 4

GL19 5 1 4 6

GL27 1 2 4

GL26 1 2 2 2

GL18 1 5 6 4

GL20 4 2 1

GL25 16

Table 8: ’Medal count’ from GL case study showing the number of times a
public transport service is ranked on the nth rank. Zeros are omitted for better
visibility.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

GS16 10 5 1

GS15 5 5 2 4

GS25 1 2 13

GS28 4 1 2 4 1 2 1 1

GS9 2 4 1 3 1 1 1 1 2

GS8 2 2 2 2 1 1 2 3 1

GS1 2 4 1 3 1 1 1 1 2

GS27 1 1 5 2 4 1 1 1

GS26 2 2 4 2 1 1 3 1

GS2 2 1 3 4 2 3 1

GS17 4 3 1 2 1 1 1 1 1 1

GS12 2 2 2 1 2 1 1 2 1 1 1

GS3 3 2 4 1 3 1 1 1

GS22 2 2 1 1 1 1 1 1 2 1 1 1 1

GS18 2 1 1 2 2 1 3 3 1

GS20 1 1 5 1 1 2 3 1 1

GS14 1 1 1 1 1 1 4 2 1 2 1

GS7 2 4 1 4 5

GS10 2 1 1 1 1 1 1 2 1 5

GS11 2 1 1 1 1 1 1 2 1 5

GS5 4 1 1 2 3 3 2

GS6 1 2 5 1 3 1 2 1

GS4 1 1 1 1 1 2 1 1 4 3

GS13 1 1 6 2 1 1 4

GS24 1 2 2 4 4 1 2

GS21 1 1 5 4 2 1 2

GS23 2 6 5 3

GS19 1 2 1 3 9

Table 9: ’Medal count’ from GS case study showing the number of times a
public transport service is ranked on the nth rank. Zeros are omitted for better
visibility.

objectives. While most services are designed with the aim to maximize quality
for the passengers in one way or another while respecting a reasonable budgetary
restrictions, some services aim to be as cheap as possible, usually at the expense
of quality for passengers, and others had no cap on costs which would not be
feasible in practice. This would eliminate at least the best services from the list
of alternatives, making it hard to decide on a ranking of the remaining services.
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D Values

The tables in this section show the normalized evaluation values of all public
transport services with respect to all 16 evaluation functions from each of the
three case studies.

ATT PJT AJT ETU

ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GL1 0,38 0,35 0,38 0,34 0,44 0,40 0,49 0,45 0,41 0,41 0,34 0,21 0,44 0,46 0,39 0,39

GL2 0,40 0,37 0,40 0,37 0,46 0,42 0,50 0,46 0,43 0,43 0,34 0,22 0,46 0,47 0,40 0,40

GL3 0,63 0,61 0,63 0,61 0,67 0,64 0,63 0,60 0,64 0,65 0,50 0,29 0,69 0,69 0,72 0,72

GL4 0,39 0,37 0,39 0,37 0,43 0,41 0,45 0,42 0,44 0,42 0,62 0,21 0,52 0,53 0,51 0,51

GL5 0,34 0,33 0,34 0,33 0,39 0,37 0,40 0,38 0,41 0,38 0,68 0,18 0,50 0,51 0,51 0,51

GL6 0,51 0,47 0,51 0,47 0,54 0,50 0,63 0,60 0,54 0,51 0,73 0,34 0,64 0,65 0,60 0,60

GL7 0,38 0,35 0,37 0,34 0,44 0,40 0,50 0,47 0,42 0,41 0,45 0,23 0,55 0,56 0,50 0,50

GL8 0,64 0,63 0,65 0,62 0,69 0,66 0,69 0,66 0,65 0,67 0,49 0,40 0,84 0,85 0,88 0,88

GL9 0,50 0,47 0,50 0,47 0,61 0,58 0,71 0,68 0,58 0,58 0,46 0,36 0,48 0,49 0,42 0,42

GL10 0,47 0,44 0,47 0,44 0,53 0,49 0,61 0,57 0,51 0,50 0,45 0,30 0,45 0,46 0,39 0,39

GL11 0,41 0,38 0,41 0,38 0,47 0,44 0,55 0,51 0,46 0,45 0,49 0,26 0,64 0,65 0,60 0,61

GL12 0,41 0,38 0,40 0,37 0,46 0,43 0,52 0,49 0,45 0,44 0,51 0,25 0,62 0,63 0,60 0,60

GL13 0,40 0,37 0,40 0,37 0,45 0,42 0,53 0,50 0,45 0,43 0,54 0,26 0,64 0,65 0,60 0,60

GL14 0,44 0,41 0,44 0,41 0,49 0,45 0,55 0,52 0,47 0,46 0,55 0,27 0,60 0,61 0,59 0,59

GL15 0,45 0,44 0,46 0,45 0,53 0,50 0,54 0,51 0,53 0,51 0,63 0,19 0,37 0,38 0,35 0,35

GL16 0,54 0,52 0,54 0,52 0,58 0,55 0,63 0,60 0,56 0,54 0,56 0,32 0,79 0,79 0,79 0,80

GL17 0,50 0,48 0,50 0,48 0,54 0,51 0,59 0,55 0,52 0,51 0,51 0,29 0,77 0,78 0,79 0,79

GL18 0,82 0,80 0,81 0,80 0,86 0,84 0,88 0,86 0,83 0,85 0,78 0,67 0,93 0,93 0,94 0,94

GL19 0,81 0,80 0,81 0,80 0,87 0,86 0,94 0,92 0,83 0,86 0,71 0,71 0,83 0,83 0,82 0,82

GL20 0,98 0,98 0,98 0,97 0,98 0,98 0,98 0,96 0,94 0,97 0,79 0,78 0,94 0,94 0,95 0,95

GL21 0,26 0,24 0,26 0,24 0,29 0,27 0,32 0,29 0,28 0,28 0,29 0,30 0,76 0,75 0,76 0,76

GL22 0,22 0,21 0,22 0,21 0,24 0,23 0,26 0,25 0,23 0,24 0,21 0,21 0,66 0,65 0,67 0,67

GL23 0,11 0,10 0,11 0,10 0,14 0,12 0,16 0,14 0,12 0,13 0,08 0,09 0,37 0,37 0,36 0,36

GL24 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

GL25 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

GL26 0,74 0,77 0,74 0,77 0,78 0,80 0,81 0,85 0,76 0,78 0,80 0,84 0,98 0,98 0,94 0,94

GL27 0,66 0,68 0,66 0,69 0,70 0,71 0,72 0,75 0,74 0,70 0,90 0,87 0,97 0,97 0,97 0,97

Table 10: Normalized evaluation values ϕ in GL case study

ATT PJT AJT ETU

ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GS1 0,67 0,64 0,64 0,58 0,53 0,52 0,50 0,48 0,45 0,48 0,24 0,29 0,70 0,73 0,68 0,68

GS2 0,61 0,64 0,58 0,60 0,50 0,52 0,46 0,49 0,43 0,49 0,29 0,33 0,84 0,84 0,83 0,80

GS3 0,62 0,64 0,59 0,61 0,51 0,52 0,47 0,50 0,45 0,49 0,36 0,36 0,88 0,87 0,87 0,83

GS4 0,93 0,95 0,89 0,88 0,96 1,00 0,95 0,98 0,81 0,91 0,44 0,61 0,79 0,82 0,78 0,79

GS5 0,93 0,88 0,89 0,81 0,96 0,95 0,97 0,96 0,79 0,87 0,36 0,57 0,61 0,65 0,60 0,61

GS6 0,71 0,84 0,69 0,88 0,62 0,72 0,54 0,61 0,57 0,66 0,43 0,45 1,00 0,96 0,97 0,91

GS7 0,66 0,73 0,63 0,76 0,55 0,62 0,48 0,54 0,50 0,58 0,42 0,43 0,88 0,91 0,86 0,87

GS8 0,48 0,52 0,46 0,50 0,38 0,43 0,33 0,37 0,35 0,40 0,38 0,38 0,92 0,95 0,89 0,89

GS9 0,50 0,52 0,48 0,51 0,39 0,41 0,32 0,35 0,36 0,39 0,30 0,44 0,88 0,92 0,85 0,86

GS10 0,91 0,87 0,87 0,80 0,68 0,67 0,56 0,55 0,57 0,62 0,31 0,34 0,84 0,87 0,86 0,86

GS11 0,91 0,87 0,87 0,80 0,68 0,67 0,56 0,55 0,57 0,62 0,31 0,34 0,84 0,87 0,86 0,86

GS12 0,32 0,53 0,30 0,47 0,48 0,62 0,52 0,66 0,81 0,57 0,71 0,34 0,83 0,79 0,77 0,78

GS13 0,80 0,85 0,81 0,87 0,64 0,70 0,51 0,57 0,57 0,66 0,43 0,54 0,98 0,98 0,98 0,97

GS14 0,65 0,71 0,63 0,71 0,49 0,54 0,39 0,45 0,44 0,50 0,39 0,42 1,00 1,00 0,99 0,96

GS15 0,00 0,02 0,00 0,02 0,00 0,03 0,00 0,04 0,00 0,04 0,10 0,29 0,54 0,55 0,53 0,54

GS16 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,34 0,00 0,00 0,00 0,00

GS17 0,48 0,47 0,46 0,45 0,39 0,39 0,39 0,40 0,36 0,37 0,42 0,67 0,93 0,98 0,92 0,93

GS18 0,70 0,67 0,67 0,62 0,55 0,55 0,51 0,49 0,48 0,51 0,45 0,40 0,79 0,79 0,80 0,77

GS19 1,00 0,96 0,95 0,89 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,92 0,97 0,94 0,96

GS20 0,66 0,63 0,63 0,59 0,53 0,52 0,50 0,48 0,56 0,54 0,65 0,56 0,82 0,83 0,83 0,81

GS21 0,97 0,94 0,93 0,88 0,71 0,72 0,58 0,58 0,77 0,74 0,69 0,64 0,97 1,00 1,00 1,00

GS22 0,38 0,51 0,36 0,47 0,51 0,61 0,55 0,65 0,61 0,59 0,71 0,51 0,82 0,81 0,81 0,82

GS23 0,98 1,00 1,00 1,00 0,77 0,82 0,64 0,67 0,82 0,83 0,78 0,76 0,94 0,97 0,97 0,98

GS24 0,94 0,91 0,90 0,84 0,70 0,69 0,58 0,57 0,67 0,67 0,56 0,52 0,91 0,95 0,93 0,94

GS25 0,01 0,06 0,01 0,03 0,02 0,09 0,02 0,05 0,04 0,10 0,10 0,00 0,19 0,13 0,13 0,13

GS26 0,48 0,48 0,46 0,45 0,43 0,45 0,41 0,43 0,43 0,43 0,50 0,52 0,87 0,90 0,87 0,88

GS27 0,59 0,56 0,57 0,51 0,48 0,47 0,45 0,44 0,46 0,46 0,44 0,38 0,78 0,82 0,78 0,79

GS28 0,56 0,52 0,53 0,48 0,47 0,45 0,44 0,42 0,45 0,45 0,47 0,28 0,15 0,17 0,12 0,12

Table 11: Normalized evaluation values ϕ in GS case study
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ATT PJT AJT ETU

ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NS12 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,34 0,57 0,20 0,51

NS13 0,43 0,35 0,44 0,35 0,35 0,23 0,14 0,10 0,34 0,22 0,49 0,57 1,00 1,00 1,00 1,00

NS14 0,43 0,31 0,43 0,29 0,35 0,22 0,19 0,13 0,29 0,20 0,02 0,31 0,58 0,48 0,56 0,34

NS15 0,34 0,27 0,35 0,26 0,26 0,17 0,09 0,00 0,23 0,15 0,02 0,17 0,60 0,52 0,60 0,49

NS16 0,35 0,28 0,38 0,24 0,28 0,16 0,10 0,01 0,25 0,14 0,03 0,15 0,35 0,58 0,24 0,66

NS17 0,12 0,08 0,11 0,11 0,13 0,11 0,15 0,23 0,11 0,11 0,00 0,18 0,00 0,27 0,00 0,29

NS18 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,07 0,00 0,00 0,07 0,00 0,12 0,00 0,10 0,00

Table 12: Normalized evaluation values ϕ in NS case study

E Heat maps

The tables in this section show the pairwise inconsistencies of two evaluation
functions. For better comprehensibility, low values are indicated by a light
shading and high values by a dark shading. All values are multiplied with 100
for better depiction.
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Fig. 7. Heat map showing inconsistencies in the normalized value iϕ(f1, f2) in
NS case study
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Fig. 8. Heat map showing inconsistencies in the normalized value iϕ(f1, f2)
GS case study
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Fig. 9. Heat map showing inconsistencies in the normalized value iϕ(f1, f2) in
GL case study

F Mixed integer program for clustering problem

Let ϕf
s be the normalized evaluation values of a public transport service s ∈ S

with respect to evaluation function f ∈ F . Then, an optimal clustering of the set
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of evaluation functions F into k clusters can be found by solving the program

min ∑
f∈F

d(f)

s.t.
k

∑
j=1

bj,f = 1 ∀f ∈ F

d(f) =
k

∑
j=1

d(mj , f) ⋅ bj,f ∀f ∈ F

d(mj , f) = 1

∣S∣ ∑s∈S
∣ϕf

s −mj,s∣ ∀f ∈ F, ∀j = 1, . . . , k

mj,s =
1

∑f∈F bj,f
∑
f∈F

ϕf
s ⋅ bj,f ∀s ∈ S, ∀j = 1, . . . , k

mj,s ∈ R ∀s ∈ S, ∀j = 1, . . . , k

bj,f ∈ {0,1} ∀f ∈ F, ∀j = 1, . . . , k

d(mj , f) ∈ R ∀f ∈ F, ∀j = 1, . . . , k

d(f) ∈ R ∀f ∈ F

The binary variable bj,f links the evaluation functions f to the clusters j and
the first constraint ensures that each function is assigned to exactly one cluster.
The second constraint assigns the distance of each evaluation function f to its
cluster center mj to the variable d(f). The distance between the functions f and
the cluster centers mj are computed in the third constraint using the distance
function d(m,f) as defined in Equation 11. With the fourth constraint the
cluster centers are computed as arithmetic mean of all evaluation functions that
are assigned to the cluster. The objective is to minimize the total distance of
all evaluation functions to their respective cluster center. We solve a linearized
version of this clustering problem.

G Clusterings

The tables in this section show the clusterings of the 16 evaluation functions
in each of the three case studies. The clusterings were found with the mixed
integer program described in Appendix F. In the first column of each table is
stated how many clusters are used. An asterisk indicates that the clustering
is not proven to be optimal. The remaining columns contain the clusterings.
The clusterings are separated by horizontal lines and in each row one cluster is
represented by the ids of the evaluation functions contained in the cluster.
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ATT PJT AJT ETU

ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16

3

1 2 3 4 5 9 12

6 7 8 10 11

13 14 15 16

4

1 2 3 4 5 9 12

6 7 8 10 11

13 15

14 16

5

1 2 3 4 5 9 12

6 7 8 10

11

13 15

14 16

Table 13: Optimal clustering of the set of evaluation functions F into k clusters
in the NS case study

ATT PJT AJT ETU

ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16

3

1 2 3 4

5 6 7 8 9 10 11 12

13 14 15 16

4

1 2 3 4

5 6 7 8 9 10

11 12

13 14 15 16

5
∗

1 2 3 4

5 6 7 8 9 10

11

12

13 14 15 16

Table 14: Optimal clustering of the set of evaluation functions F into k clusters
in the GS case study. The asterisk indicates that the clustering is not proven
to be optimal.

ATT PJT AJT ETU

ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16

3

1 2 3 4 5 6 7 8 9 10 11

12

13 14 15 16

4

1 2 3 4 5 6 7 8 9 10

11

12

13 14 15 16

5

1 2 3 4

5 6 7 8 9 10

11

12

13 14 15 16

Table 15: Optimal clustering of the set of evaluation functions F into k clusters
in the GL case study
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