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Abstract

Recent large scale simulations indicate that a powerful goodness-of-fit test for cop-
ulas can be obtained from the process comparing the empirical copula with a paramet-
ric estimate of the copula derived under the null hypothesis. A first way to compute
approximate p-values for statistics derived from this process consists of using the para-
metric bootstrap procedure recently thoroughly revisited by Genest and Rémillard.
Because it heavily relies on random number generation and estimation, the resulting
goodness-of-fit test has a very high computational cost that can be regarded as an
obstacle to its application as the sample size increases. An alternative approach pro-
posed by the authors consists of using a multiplier procedure. The study of the finite-
sample performance of the multiplier version of the goodness-of-fit test for bivariate
one-parameter copulas showed that it provides a valid alternative to the parametric
bootstrap-based test while being orders of magnitude faster. The aim of this work is to
extend the multiplier approach to multivariate multiparameter copulas and study the
finite-sample performance of the resulting test. Particular emphasis is put on elliptical
copulas such as the normal and the t as these are flexible models in a multivariate
setting. The implementation of the procedure for the latter copulas proves challenging
and requires the extension of the Plackett formula for the t distribution to arbitrary
dimension. Extensive Monte Carlo experiments, which could be carried out only be-
cause of the good computational properties of the multiplier approach, confirm in the
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multivariate multiparameter context the satisfactory behavior of the goodness-of-fit
test.

KEY WORDS: Normal copula; Plackett formula; Pseudo-likelihood; Pseudo-observation;
Rank; t copula.

1 Introduction

Let X = (X1, . . . , Xd)
> be a random vector with continuous marginal cumulative distribution

functions (c.d.f.s) F1, . . . , Fd. From the work of Sklar (1959), it is well-known that the c.d.f.
H of X can be expressed in a unique way as

H(x) = C{F1(x1), . . . , Fd(xd)}, x ∈ Rd, (1)

where C : [0, 1]d → [0, 1], called a copula, is a d-dimensional c.d.f. with standard uniform
margins. The above representation is at the origin of the increasingly frequent use of copulas
for the modeling of multivariate continuous distributions. Indeed, given a random sample
X1, . . . ,Xn from c.d.f. H, representation (1) suggests breaking the construction of a mul-
tivariate model for X into two independent parts: the estimation of the marginal c.d.f.s
and the fitting of an appropriate parametric copula (see e.g. Joe, 1997; Nelsen, 2006, for an
extensive review of parametric copula families). Applications of this modeling approach are
found in finance (Cherubini et al., 2004; McNeil et al., 2005) and increasingly in other fields
such as hydrology (Genest and Favre, 2007; Genest et al., 2007), public health (Cui and Sun,
2004) or actuarial sciences (Frees and Valdez, 1998).

Assuming that the unknown copula C belongs to a parametric copula family C0 = {Cθ :
θ ∈ O}, where O is an open subset of Rq for some integer q ≥ 1, the next step consists of
estimating the vector of parameters θ = (θ1, . . . , θq)

> from the random sample X1, . . . ,Xn.
When dealing with one-parameter bivariate copulas, a popular approach consists of using the
simple method of moments based on the inversion of Spearman’s rho or Kendall’s tau. In the
more general multivariate multiparameter case, such rank correlation-based methods become
less natural except maybe for elliptical copulas (Genest et al., 2007). Still, as discussed e.g.
in Demarta and McNeil (2005, §4.2) such approaches may lead to inconsistencies. The most
natural estimation method in the multivariate multiparameter case is therefore probably
the pseudo-likelihood approach studied in Genest et al. (1995), Shih and Louis (1995) and
Genest and Werker (2002) (see also Kim et al., 2007, for empirical arguments in favor of this
approach). It consists of maximizing the log pseudo-likelihood

logL(θ) =
n∑
i=1

log cθ(Ûi), (2)

where cθ denotes the density of a copula Cθ ∈ C0 assuming it exists, and where the Ûi =
(Ûi1, . . . , Ûid)

> are the pseudo-observations computed from the Xi = (Xi1, . . . , Xid)
> by
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Ûij = Rij/(n+1), with Rij being the rank ofXij amongX1j, . . . , Xnj. Note that, equivalently,

Ûij = nF̂j(Xij)/(n + 1), where F̂j is the empirical c.d.f. computed from X1j, . . . , Xnj. The
scaling factor n/(n+1) is classically introduced to avoid problems at the boundary of [0, 1]d.

A very important issue that is currently being actively investigated is whether the as-
sumption C ∈ C0 on which the previously discussed estimation step is based is actually valid
or not. More formally, one wants to test

H0 : C ∈ C0 against H1 : C 6∈ C0.

Among the relatively large number of procedures proposed in the literature (see Charpentier
et al., 2007; Genest et al., 2009, for extensive reviews), recent large scale simulations (Berg,
2009; Genest et al., 2009) indicate that powerful goodness-of-fit tests can be obtained from
the process √

n{Cn(u)− Cθn(u)}, u ∈ [0, 1]d, (3)

where Cn is the empirical copula (Deheuvels, 1981) of the data X1, . . . ,Xn defined by

Cn(u) =
1

n

n∑
i=1

1(Ûi ≤ u), u ∈ [0, 1]d, (4)

and Cθn is an estimation of C obtained assuming that H0 : C ∈ C0 holds. The latter
estimation is based on an estimator θn of θ such as the maximum pseudo-likelihood estimator
discussed earlier. In Genest et al. (2009), the following Cramér-von Mises statistic

Sn =

∫
[0,1]d

n{Cn(u)− Cθn(u)}2dCn(u) =
n∑
i=1

{Cn(Ûi)− Cθn(Ûi)}2

was found to yield the best results overall. To obtain approximate p-values for tests based on
statistics derived from the goodness-of-fit process (3), such as Sn, Genest et al. (2009) used
the parametric bootstrap procedure initially suggested in the univariate case by Stute et al.
(1993) and showed its asymptotic validity in the rank-based context under consideration
(Genest and Rémillard, 2008). The main inconvenience of this approach is its very high
computational cost as each bootstrap iteration requires both random number generation from
the hypothesized copula and estimation of the dependence parameters. In practice, as the
sample size increases, this very high computational complexity tends to become an obstacle
to the application of the parametric bootstrap, especially for so-called implicit copulas such
as the normal or the t. Inspired by the seminal work of Scaillet (2005) and Rémillard
and Scaillet (2009), a valid and much faster alternative approach was recently proposed
in Kojadinovic et al. (2011). The illustration presented in the latter paper for d = 2 and
q = 1 shows that for n ≈ 1500 the use of the multiplier approach instead of the parametric
bootstrap leads to a reduction in the computing time from about a day to a few minutes.

The aim of this paper is to extend the multiplier approach to multivariate multiparam-
eter copulas and study the finite-sample performance of the resulting goodness-of-fit test.
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Although for d > 2 the implementation of the multiplier goodness-of-fit procedure can be
regarded as rather straightforward in the case of copulas with explicit c.d.f.s, for popular
elliptical copulas such as the normal or the t it is much more challenging. For instance, for
the t copula, the implementation of the test required the extension of the so-called Plackett
formula for the t distribution (Genz, 2004) to the situation d ≥ 3. From a practical per-
spective, the case of the elliptical copulas is also probably the most interesting as these, not
necessarily satisfying the exchangeability property, are likely to better model multivariate
data than classical one-parameter exchangeable Archimedean copulas (see e.g. Genest et al.,
2007).

To the best of our knowledge, this is the first study of the finite-sample performance of
a goodness-of-fit test for multiparameter normal or t copulas. It is important to stress out
that such a study is made possible thanks to the computational efficiency of the multiplier
approach.

In the second section, we elaborate on the asymptotic representation of the pseudo-
likelihood estimator discussed earlier as it is probably the most natural way of estimating
the vector of dependence parameters θ when q > 1. The resulting asymptotic representation
is used in Section 3 in combination with the multiplier approach proposed by Rémillard
and Scaillet (2009), which yields a fast goodness-of-fit procedure. The fourth section is
devoted to the main implementation issues, while more technical details necessary for the
implementation of the test when the hypothesized copula family is the normal or the t
are relegated to the Appendices. The fifth section presents extensive simulation results for
n = 100, 300 and 500 and d = 2, 3 and 4, for five different copula families, viz. the Clayton,
Gumbel, Frank, normal and t copulas. For the latter two families, both one-parameter
exchangeable and multiparameter non-exchangeable dependence structures are considered.
The last section is devoted to a discussion and concluding remarks.

Finally, note that the proposed test is implemented in the copula R package (Yan and
Kojadinovic, 2010) available on the Comprehensive R Archive Network.

2 Maximum Pseudo-Likelihood Estimator

Let X1, . . . ,Xn be a random sample from c.d.f. Cθ{F1(x1), . . . , Fd(xd)}, where F1, . . . , Fd are
continuous c.d.f.s and Cθ ∈ C0 is an absolutely continuous copula. For any i ∈ {1, . . . , n},
let Ui = (F1(Xi1), . . . , Fd(Xid))

>. Furthermore, let θn be the maximum pseudo-likelihood
estimator of θ = (θ1, . . . , θq)

> computed from the pseudo-observations Û1, . . . , Ûn by maxi-
mizing (2), and let Θn =

√
n(θn − θ). Also, let

ċθ(u) =

(
∂cθ(u)

∂θ1
, . . . ,

∂cθ(u)

∂θq

)>
, u ∈ [0, 1]d.
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Assuming similar regularity conditions as for maximum likelihood estimation, from the work
of Genest et al. (1995), this estimator admits the following asymptotic representation:

Θn =
1√
n

[
ECθ

{
ċθ(U)ċ>θ (U)

cθ(U)2

}]−1 n∑
i=1

ċθ(Ûi)

cθ(Ûi)
+ oP (1).

From the work of Ruymgaart et al. (1972, §3) and Genest et al. (1995, §4 and Prop. A1),
this representation can be rewritten in terms of the Ui’s as

Θn =
1√
n

n∑
i=1

Jθ(Ui) + oP (1), (5)

where

Jθ(Ui) =

[
ECθ

{
ċθ(U)ċ>θ (U)

cθ(U)2

}]−1
Kθ(Ui),

and Kθ(Ui) is a q-dimensional random vector whose kth component is

∂ log cθ(Ui)

∂θk
+

d∑
j=1

∫
[0,1]d
{1(Uij ≤ uj)− uj}

∂2 log cθ(Ui)

∂θk∂uj
dCθ(u).

Upon integrating by parts with respect to uj, the integral in the summation above can be
expressed as

−
∫
[0,1]d
{1(Uij ≤ uj)− uj}

c
(j)
θ (u)

cθ(u)

∂cθ(u)

∂θk
du,

where c
(j)
θ (u) = ∂cθ(u)/∂uj. Hence, the Jθ(Ui)’s can be rewritten as

[
ECθ

{
ċθ(U)ċ>θ (U)

cθ(U)2

}]−1 [
ċθ(Ui)

cθ(Ui)
−

d∑
j=1

∫
[0,1]d
{1(Uij ≤ uj)− uj}

c
(j)
θ (u)

cθ(u)

ċθ(u)

cθ(u)
dCθ(u)

]
.

(6)

It is important to notice that the Jθ(Ui)’s are i.i.d. with expectation 0 and finite covariance.

As we shall see, the asymptotic representation (5) is a key element in the goodness-of-fit
test procedure to be presented in the next section.

3 Goodness-of-Fit Test Procedure

Let us assume that the unknown copula C appearing in (1) belongs to the family C0. Also,
suppose that the members Cθ of C0 have continuous partial derivatives with respect to each
uj, which will be denoted by C

(j)
θ , and that θ is estimated by the maximum pseudo-likelihood
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estimator θn considered in the previous section. Furthermore, let Θ denote the weak limit
of Θn =

√
n(θn − θ), and let

Ċθ(u) =

(
∂Cθ(u)

∂θ1
, . . . ,

∂Cθ(u)

∂θq

)>
, u ∈ [0, 1]d,

Then, from the work of Quessy (2005) (see also Berg and Quessy, 2009; Genest and Rémillard,
2008, and the references therein), we have that, under mild regularity conditions, the
goodness-of-fit process

√
n(Cn − Cθn) converges weakly in `∞([0, 1]d) to the tight centered

Gaussian process
Wθ(u) = Cθ(u)− Ċ>θ (u)Θ, u ∈ [0, 1]d, (7)

where

Cθ(u) = αθ(u)−
d∑
j=1

C
(j)
θ (u)αθ(1, . . . , 1, uj, 1, . . . , 1),

and where αθ is a tight centered Gaussian process on [0, 1]d with covariance function

E[αθ(u)αθ(v)] = Cθ(u ∧ v)− Cθ(u)Cθ(v), u,v ∈ [0, 1]d.

In order to obtain approximate p-values for goodness-of-fit tests based on the empirical
process

√
n(Cn − Cθn), Kojadinovic et al. (2011) have combined the approach proposed in

Rémillard and Scaillet (2009) for simulating Cθ with the asymptotic representation (5). Be-
fore describing the resulting fast goodness-of-fit procedure, we recall the key results justifying
the suggested approach.

Let N be a large integer and let Z
(k)
i , i ∈ {1, . . . , n}, k ∈ {1, . . . , N}, be i.i.d. random

variables with mean 0 and variance 1 independent of the data X1, . . . ,Xn. For any k ∈
{1, . . . , N}, let

α(k)
n (u) =

1√
n

n∑
i=1

Z
(k)
i

{
1(Ûi ≤ u)− Cn(u)

}
=

1√
n

n∑
i=1

(Z
(k)
i −Z̄(k))1(Ûi ≤ u), u ∈ [0, 1]d.

Furthermore, let `∞([0, 1]d) be the space of bounded, real-valued functions on [0, 1]d and let
the arrow  denote weak convergence. From Lemma A.1 in Rémillard and Scaillet (2009),
one has that (√

n(Hn − Cθ), α(1)
n , . . . , α(N)

n

)
 
(
αθ, α

(1)
θ , . . . , α

(N)
θ

)
in `∞([0, 1]d)⊗(N+1), where Hn is the empirical c.d.f. computed from the unobservable random

sample U1, . . . ,Un, and where α
(1)
θ , . . . , α

(N)
θ are independent copies of αθ. As a consistent

estimator of the jth partial derivative C
(j)
θ of Cθ, Rémillard and Scaillet (2009, Prop. A.2)

suggested using

C(j)
n (u) =

1

2n−1/2
{
Cn(u1, . . . , uj−1, uj + n−1/2, uj+1, . . . , ud)

−Cn(u1, . . . , uj−1, uj − n−1/2, uj+1, . . . , ud)
}
.
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Now, for any k ∈ {1, . . . , N}, let

C(k)
n (u) = α(k)

n (u)−
d∑
j=1

C(j)
n (u)α(k)

n (1, . . . , 1, uj, 1, . . . , 1), u ∈ [0, 1]d.

From the proof of Theorem 2.1 in Rémillard and Scaillet (2009), one obtains that(√
n(Cn − Cθ),C(1)

n , . . . ,C(N)
n

)
 
(
Cθ,C(1)

θ , . . . ,C(N)
θ

)
in `∞([0, 1]d)⊗(N+1), where C(1)

θ , . . . ,C(N)
θ are independent copies of Cθ. Next, by analogy

with the asymptotic representation (5), for any k ∈ {1, . . . , N}, let

Θ(k)
n =

1√
n

n∑
i=1

Z
(k)
i Jθ(Ui). (8)

From the multivariate central limit theorem, we immediately have that

(Θn,Θ
(1)
n , . . . ,Θ(N)

n ) (Θ,Θ(1), . . . ,Θ(N))

in R⊗N+1, where Θ(1), . . . ,Θ(N) are independent copies of Θ, the weak limit of Θn. Then,
under mild regularity conditions, one has that(√

n(Cn − Cθn),C(1)
n − Ċ>θnΘ

(1)
n , . . . ,C(N)

n − Ċ>θnΘ
(N)
n

)
converges weakly to (Wθ,W(1)

θ , . . . ,W(N)
θ ) in `∞([0, 1]d)⊗(N+1), where W(1)

θ , . . . ,W(N)
θ are in-

dependent copies of the process Wθ defined in (7).

As the n random vectors U1, . . . ,Un cannot be observed and Cθ is obviously unknown,
to compute the Jθ(Ui)’s appearing in (8), one can proceed as Genest et al. (1995, §3) for the
asymptotic variance of the maximum pseudo-likelihood estimator: the Ui’s can be replaced
by the available pseudo-observations Ûi, θ by θn and the integrals appearing in (6) can be
computed with respect to dCn instead of dCθ. This yields

Ĵθn(Ûi) = Σ−1n

[
ċθn(Ûi)

cθn(Ûi)
− 1

n

d∑
j=1

n∑
k=1

{
1(Ûij ≤ Ûkj)− Ûkj

} c(j)θn
(Ûk)

cθn(Ûk)

ċθn(Ûk)

cθn(Ûk)

]
,

where Σn is the sample covariance matrix of ċθn(Û1)/cθn(Û1), . . . , ċθn(Ûn)/cθn(Ûn). Now,
for any k ∈ {1, . . . , N}, let

Θ̂
(k)

n =
1√
n

n∑
i=1

Z
(k)
i Ĵθn(Ûi).

Then, under additional conditions, one has that(√
n(Cn − Cθn),C(1)

n − Ċ>θnΘ̂
(1)

n , . . . ,C(N)
n − Ċ>θnΘ̂

(N)

n

)
converges weakly to (Wθ,W(1)

θ , . . . ,W(N)
θ ). The previous developments thus suggest adopting

the following fast goodness-of-fit procedure:
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1. Compute Cn from Û1, . . . , Ûn using (4), and estimate θ = (θ1, . . . , θq)
> using the

maximum pseudo-likelihood estimator θn.

2. Compute the Cramér-von Mises statistic

Sn =

∫
[0,1]d

n{Cn(u)− Cθn(u)}2dCn(u) =
n∑
i=1

{Cn(Ûi)− Cθn(Ûi)}2.

3. Then, for some large integer N , repeat the following steps for every k ∈ {1, . . . , N}:

(a) Generate n i.i.d. random variates Z
(k)
1 , . . . , Z

(k)
n with expectation 0 and variance 1.

(b) Form an approximate realization of the test statistic under H0 by

S(k)
n =

∫
[0,1]d

{
C(k)
n (u)− Ċ>θn(u)Θ̂

(k)

n

}2

dCn(u) =
1

n

n∑
i=1

{
C(k)
n (Ûi)− Ċ>θn(Ûi)Θ̂

(k)

n

}2

.

4. An approximate p-value for the test is then given by N−1
∑N

k=1 1(S
(k)
n ≥ Sn).

The computational efficiency of the procedure is due to the fact that Step 3 (b) only

involves simple arithmetic operations between the Z
(k)
i ’s and terms that need to be computed

only once. Notice that, when the hypothesis H0 : C ∈ C0 is not true, the S
(k)
n , k ∈ {1, . . . , N},

cannot be regarded anymore as approximate independent copies of Sn under H0 because
X1, . . . ,Xn is not anymore a random sample from a c.d.f. Cθ{F1(x1), . . . , Fd(xd)}, where
Cθ ∈ C0. This does not however affect the consistency of the procedure as Sn will tend to
infinity in probability if H0 is false.

4 Implementation Issues

To implement the previous procedure for a given copula family C0, one needs to be able to
estimate the vector of dependence parameters θ from the available data. The corresponding
pseudo-likelihood is maximized using the well-designed general-purpose R optim routine
(R Development Core Team, 2011). Also, for every Cθ ∈ C0, one needs to be able to

compute, the quantities Ċθ, c
(j)
θ /cθ and ċθ/cθ, the latter two appearing in the expression of

the function Jθ defined by (6). For copula families whose c.d.f. can be explicitly written,
these expressions can be obtained by differentiation. In this work, we considered three such
explicit one-parameter copulas from the Archimedean family, namely the Clayton, Gumbel
and Frank copulas. For each copula, expressions for Ċθ, c

(j)
θ /cθ and ċθ/cθ were obtained

using symbolic computation software and were stored for future access. For the Clayton
and Gumbel copulas, calculations were performed up to dimension 10, whereas for the Frank
copula they were carried out only up to dimension 6 because of the complexity of the resulting
expressions.
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Other popular copulas such as the elliptical ones do not have explicit c.d.f. expressions.
In this study, two elliptical copulas were considered: the normal and the t copula with ν
degrees of freedom. The normal copula with correlation matrix Σ is defined as

CN
Σ (u) = ΦΣ{Φ−1(u1), . . . ,Φ−1(ud)}, u ∈ [0, 1]d,

where ΦΣ is the multivariate standard normal c.d.f. with correlation matrix Σ and where Φ
is the univariate standard normal c.d.f. Recall that the p.d.f. of the centered multivariate
normal with covariance matrix Σ is given by

φΣ(x) =
1

(2π)
d
2 |Σ| 12

exp

(
−1

2
x>Σ−1x

)
, x ∈ Rd. (9)

Similarly, the t copula with correlation matrix Σ and ν degrees of freedom is defined as

Ct
ν,Σ(u) = Tν,Σ{T−1ν (u1), . . . , T

−1
ν (ud)}, u ∈ [0, 1]d,

where Tν,Σ is the multivariate standard t c.d.f. with correlation matrix Σ and ν degrees of
freedom, and Tν is the univariate standard t c.d.f. with ν degrees of freedom. The p.d.f. of
the centered multivariate t with covariance matrix Σ and ν degrees of freedom is given by

tν,Σ(x) =
Γ
(
ν+d
2

)
(πν)

d
2 Γ
(
ν
2

)
|Σ| 12

(
1 +

1

ν
x>Σ−1x

)− ν+d
2

. (10)

In this work, following Genest et al. (2009) and Berg (2009), the number of degrees
of freedom ν is not regarded as a parameter to be estimated from the data. The more
complex situation where ν needs to be estimated (see e.g. Demarta and McNeil, 2005) will
be investigated in the future.

In our implementation, we considered four different ways of parameterizing the correlation
matrix Σ defining the dependence structure of the normal or the t copula:

• For a given θ in [−1, 1], the exchangeable dependence structure is obtained by defining
elements of Σ by ρi,j = θ for i 6= j. The resulting copulas thus depend only on one
parameter and satisfy the so-called exchangeability property.

• For a given θ in [−1, 1], the AR1 dependence structure is obtained by setting ρi,j = θ|i−j|

for i 6= j. The resulting copulas are again one-parameter copulas.

• For a given vector θ = (θ1, . . . , θd−1) in [−1, 1]d−1, the Toeplitz dependence structure
is obtained by defining elements of Σ by ρi,j = θ|i−j| for i 6= j. The resulting copulas
have therefore d− 1 parameters.

• Finally, the unstructured case corresponds to copulas defined by d(d−1)/2 parameters.
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As we continue, we shall therefore regard Σ as parameterized by q reals θ1, . . . , θq where
q = 1, d− 1 or d(d− 1)/2 depending on the underlying dependence structure.

The derivation of the quantities Ċθ, c
(j)
θ /cθ and ċθ/cθ for the normal and t copulas

is relegated to Appendix A. As we shall see, it is much more challenging than for explicit
copulas. For instance, the computation of Ċt

ν,Σ required the extension of the Plackett formula
for the t distribution (Genz, 2004) to the situation d ≥ 3. The proof of that very useful result
is given in Appendix B.

5 Finite-Sample Performance

The finite-sample performance of the goodness-of-fit procedure given in Section 3 is inves-
tigated in two simulation studies. The first one involves only one-parameter multivariate
copulas satisfying the exchangeability property, while the second one additionally involves
non-exchangeable, possibly multiparameter, multivariate copulas. In both studies, two char-
acteristics of interests are the empirical levels and the empirical powers of the proposed
testing procedure.

5.1 Exchangeable Copula Families

Five copula families are considered, namely the Clayton, Gumbel, Frank, normal, and t
with ν = 4 degrees of freedom. They will be abbreviated by the letters C, G, F, N and
t respectively in the forthcoming tables. Each copula family is used both as hypothesized
family and as data generating family. For generating data, four levels of dependence are
considered corresponding respectively to a Kendall’s tau of 0.2, 0.4, 0.6 and 0.8 in the
bivariate case. The dimension d is set to either 2, 3 or 4. In order to gain an idea on how large
a sample needs to be for the goodness-of-fit procedure discussed in Section 3 to work well,
three values for n are considered, viz. 100, 300 and 500. The number of multiplier iterations
N is set to 1000. For each combination of copula family, Kendall’s tau, dimension and sample
size, 10 000 samples are generated and are then used to estimate the rejection percentages
of the five null hypotheses under consideration. These empirical rejection percentages are
given in Tables 1, 2 and 3 for sample size 100, 300 and 500 respectively. The empirical levels
are italicized.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

By comparing the empirical levels to the 5% nominal level, one can see that the proposed
procedure globally appears to improve as the sample size n increases from 100 to 300 and
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then to 500, and as the dimension d decreases from 4 to 3 and 2. For n = 100, the range
of the empirical levels is 2.9–9.0% for d = 2, 0.2–7.2% for d = 3, and 0.0–7.4% for d = 4,
respectively. The levels are above 5% when the true copula is the Clayton or Frank for d = 2.
They are smaller than 5% in most other scenarios, especially for higher dimension and strong
dependence. For n = 300, the range of the empirical levels is 3.0–6.3% for d = 2, 1.3–5.6%
for d = 3, and 0.8–5.9% for d = 4. For n = 500, the ranges become 2.8–5.8% for d = 2,
1.7–5.5% for d = 3, and 1.1—5.3% for d = 4. Although the agreement with the 5% nominal
level appears to improve as the sample size increases, the procedure remains disappointingly
conservative for τ = 0.8 and d = 3 and 4.

Let us now comment on the power of the proposed testing procedure. As expected,
the empirical powers appear to increase as the sample size increases. As the dimension
increases, the empirical powers increase in most scenarios. Noticeable exceptions include
the cases where the null hypothesis involves the normal copula and the data are generated
from a Frank copula or a t copula. For n = 300 for example, when the data are generated
from the Frank copula with τ = 0.4, the rejection percentage of the normal family is 58.1
for d = 2, 41.0 for d = 3, and 23.7 for d = 4. When the data are generated from the t
copula with τ = 0.6, the rejection percentage of the normal family are is 7.9 for d = 2,
7.0 for d = 3, and 6.1 for d = 4. These exceptions are not surprising because the Frank
copula with moderate dependence and the t copula with high dependence are known to be
similar to normal copulas. Finally, notice that in some scenarios, as the dependence gets
stronger, the power increases first and then decreases, which may be explained by the fact
that the difference between the true copula and the hypothesized copula increases first and
then decreases.

5.2 Non-exchangeable Copulas

In the second study, copulas not satisfying the exchangeability property are considered in
addition to the previously used exchangeable copulas. The non-exchangeable copulas under
consideration are the normal and t with AR1, Toeplitz and unstructured correlation matrix
defined in Section 4. As they are very useful in practical multivariate applications, it is
important to assess the performance of the goodness-of-fit test for them. The four possible
dependence structures for the normal and t copulas will be abbreviated as ex, ar1, tp, and
un as we continue. Hence, overall, eleven copula families are used both as hypothesized and
as data generating families. For data generation, the value of the dependence parameter θ
for the exchangeable copulas is set to correspond to a τ of 0.4 in the bivariate case. For
the elliptical copulas having AR1 correlation matrix structure, the value of θ is set such
that Kendall’s tau for pairs of variables {Xi, Xi+1}, i ∈ {1, . . . , d − 1} is 0.4 as well. For
the Toeplitz dependence structure, the values of θ1, . . . , θd−1 parameterizing the correlation
matrix Σ are set to correspond to τ ’s equally spaced between 0.2 and 0.6 so that their mean is
0.4. Finally, in the unstructured case, the values of the d(d−1)/2 elements ρ2,1, ρ3,1, . . . , ρd,d−1
of Σ are also set to correspond to τ ’s equally spaced between 0.2 and 0.6. Note that the
dependence structures ex and ar1 are particular cases of both tp and un, and that tp is a
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special case of un. The dimension d is set to either 3 or 4 and sample sizes n = 100 and
n = 300 are considered. As in the previous study, 10 000 repetitions are used to obtain
empirical rejection percentages and N is set to 1000. The results are presented in Table 4.
As previously, the empirical levels are italicized.

[Table 4 about here.]

For the dimensions under consideration, the empirical levels overall appear to be quite
lower than the 5% nominal level for n = 100, but as expected, the agreement gets better for
n = 300. For every hypothesized copula family, the empirical powers of the goodness-of-fit
test increase with the sample size but not necessarily with the dimension. For example,
for n = 300, when the true copula is Gumbel, the rejection percentage of N-ex increases
from 70.7 for d = 3 to 84.1 for d = 4, while the rejection percentage of t-ex decreases from
51.6 for d = 3 to 33.8 for d = 4. The test seems to have quite good power when the true
copula and the hypothesized copula are dissimilar. It has no power when the true copula
is a special case of the hypothesized copula family, which is reassuring. For instance, when
N-tp is considered as a model for data generated from an N-ar1 copula, the empirical power,
which is also an empirical level, is below 5%. On the other hand, when the hypothesized
copula family is strictly contained in the true copula family, the test has substantial power.
For example, for n = 100 and d = 4, the empirical rejection percentage is 99.7 when N-un
is the true copula and the hypothesized family is N-ar1. When the hypothesized copula and
the true copula are not nested but belong to the same broader family, the test has also good
power. For instance, for n = 100 and d = 4, when N-ex is the true copula and N-ar1 is the
hypothesized family, the empirical rejection percentage is 98.1.

6 Discussion

From the extensive simulation results presented in the previous section, it seems sensible to
conclude that as soon as the sample size reaches 300, the multiplier approach can be safely
used in all circumstances. Its performance remains satisfactory even for non-exchangeable
multiparameter copulas such as the normal or the t. The fact that the proposed goodness-of-
fit procedure appears to be very conservative for very strongly dependent data sets may not
be of great practical importance as such situations seem rather rare in real world problems.
The results of the Monte Carlo experiments actually suggest that the proposed procedure
can be safely used even in the case of samples of size as small as 100, as long as the Clayton
dependence structure is not being tested.

The results of the experiments carried out in Kojadinovic et al. (2011) in the bivariate one-
parameter case for n = 150 suggest that the proposed multiplier procedure provides a valid
alternative to the corresponding parametric bootstrap-based procedure. The illustration
presented in the latter paper also demonstrates that the multiplier procedure is orders of
magnitude faster. The procedure actually remains extremely fast even for higher dimensions
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and larger sample size. For instance, for n = 500 and d = 4, to test whether N-un (resp. the
Clayton copula) may be considered as an appropriate model for the data, the procedure of
Section 3 takes approximately 1.73 seconds (resp. 0.20 seconds) on one Pentium M 2.2 GHz
processor with N = 1000. The computational efficiency of the multiplier approach does not
however prevent it from being rapidly affected by the increasing dimensionality of the data
for certain models. Indeed, if the dimension d is increased to 5 while all other parameters
remain unchanged, the procedure takes approximately 0.22 seconds if the Clayton copula is
hypothesized but 4.28 seconds if N-un is hypothesized. If d is increased to 6, the approximate
execution times become 0.26 and 9.34 seconds respectively. Note however that the previous
measures are based on our mixed R and C implementation which is not optimal in terms of
speed, especially when the hypothesized family is the normal or the t.
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A Expressions for normal and t copulas

A.1 Expressions of ċΣ/cΣ

Let fΣ stand for φΣ or tν,Σ, let F stand for Φ or Tν , and let f stand for the univariate
standard normal p.d.f. φ or for tν , the univariate standard t p.d.f. with ν degrees of freedom.
Then, it can be checked that

cΣ(u) =
fΣ {F−1(u1), . . . , F−1(ud)}
f {F−1(u1)} . . . f {F−1(ud)}

, u ∈ [0, 1]d,

where cΣ stands for the p.d.f. obtained from CN
Σ or Ct

ν,Σ. Furthermore, let

ḟΣ(u) =

(
∂fΣ(u)

∂θ1
, . . . ,

∂fΣ(u)

∂θq

)>
, u ∈ [0, 1]d,

and define ċΣ correspondingly. It follows that

ċΣ(u) =
ḟΣ {F−1(u1), . . . , F−1(ud)}
f {F−1(u1)} . . . f {F−1(ud)}

, u ∈ [0, 1]d,

and therefore that

ċΣ(u)

cΣ(u)
=
ḟΣ {F−1(u1), . . . , F−1(ud)}
fΣ {F−1(u1), . . . , F−1(ud)}

, u ∈ [0, 1]d. (11)
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In the normal case, starting from (9), we obtain

∂φΣ(x)

∂θi
= −1

2
φΣ(x)

(
1

|Σ|
∂|Σ|
∂θi

+ x>
∂Σ−1

∂θi
x

)
, x ∈ Rd. (12)

Similarly, in the t case, starting from (10), we get

∂tν,Σ(x)

∂θi
= −1

2
tν,Σ(x)

{
1

|Σ|
∂|Σ|
∂θi

+
(ν + d)x> ∂Σ−1

∂θi
x

ν + x>Σ−1x

}
, x ∈ Rd. (13)

From e.g. Seber (2008, Chap. 17), we have that

∂|Σ|
∂θi

= |Σ| trace

(
Σ−1

∂Σ

∂θi

)
and that

∂Σ−1

∂θi
= −Σ−1

∂Σ

∂θi
Σ−1.

We used the two latter expressions for the exchangeable, AR1 and Toeplitz dependence
structures. In the unstructured case, it is faster to use the fact that

∂|Σ|
∂ρi,j

= 2Kij and that
∂Σ−1

∂ρi,j
= −rir>j − rjr>i ,

where Kij is the cofactor of ρi,j, and where ri is the i-th column of Σ−1. Finally, combin-
ing (11) with (12) (resp. (13)), we obtain the desired expression for the normal (resp. t)
copula.

A.2 Expressions of c
(j)
Σ /cΣ

Using the same generic notation as in the previous subsection, it can be checked that

c
(j)
Σ (u)

cΣ(u)
=

f
(j)
Σ {F−1(u1), . . . , F−1(ud)}

f{F−1(uj)}fΣ{F−1(u1), . . . , F−1(ud)}
− f

′{F−1(uj)}
f{F−1(uj)}2

, j ∈ {1, . . . , d},u ∈ [0, 1]d.

In the normal case, starting from (9), we obtain

φ
(j)
Σ (x) = − x>Σ−1ej

(2π)
d
2 |Σ| 12

exp

(
−1

2
x>Σ−1x

)
= −x>Σ−1ejφΣ(x), x ∈ Rd,

where ej is the unit vector of Rd whose ith component is 1 if i = j and 0 otherwise. Hence,

cN
(j)

Σ (u)

cNΣ(u)
=
− (Φ−1(u1), . . . ,Φ

−1(ud)) Σ−1ej
φ{Φ−1(uj)}

+
Φ−1(uj)

φ{Φ−1(uj)}
, u ∈ [0, 1]d.

Similarly, in the t case, starting from (10), we get

t
(j)
ν,Σ(x) = −(ν + d)x>Σ−1ej

ν + x>Σ−1x
tν,Σ(x), x ∈ Rd,
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which, in the univariate case, gives

t′ν(x) = −(ν + 1)x

ν + x2
tν(x), x ∈ R.

Finally, we obtain that

ct
(j)

ν,Σ(u)

ctν,Σ(u)
= − (ν + d)x>Σ−1ej

(ν + x>Σ−1x)tν{T−1ν (uj)}
+

(ν + 1)T−1ν (uj)

{ν + T−1ν (uj)2}tν{T−1ν (uj)}
, u ∈ [0, 1]d,

where x = (T−1ν (u1), . . . , T
−1
ν (ud))

>.

A.3 Expressions of C
(j)
Σ

Let FΣ stand for ΦΣ or Tν,Σ and let X be a random vector with c.d.f. FΣ. It can then be
checked that

∂FΣ(F−1(u1), . . . , F
−1(ud))

∂uj
= FΣ|Xj=F−1(uj)

(
F−1(u1), . . . , F

−1(uj−1), F
−1(uj+1), . . . , F

−1(ud)
)
,

where FΣ|Xj=xj is the c.d.f. of X−j = (X1, . . . , Xj−1, Xj+1, . . . , Xd)
> given Xj = xj.

If X is multivariate standard normal with correlation matrix Σ, then, conditionally on
Xj = xj, it is well-known (see e.g. Fang et al., 1990) that the random vector X−j is multi-
variate normal with expectation xjΣ−j,j and covariance matrix

Λj = Σ−j,−j −Σ−j,jΣj,−j.

In the previous expression, Σ−j,−j is a (d − 1) × (d − 1) matrix obtained by removing the
jth row and the jth column of Σ, Σ−j,j is a (d − 1) × 1 matrix obtained by removing the
jth row and keeping only the jth column of Σ, and Σj,−j = Σ>−j,j. Hence,

CN(j)

Σ (u) = ΦΛj
(x−j − xjΣ−j,j), u ∈ [0, 1]d, (14)

where x = (Φ−1(u1), . . . ,Φ
−1(ud))

>.

Similarly, from Nadarajah and Kotz (2005, p 66), if X is standard multivariate t with ν
degrees of freedom and parameter correlation matrix Σ, then, conditionally on Xj = xj, we
have that √

ν + 1

ν + x2j
(X−j − xjΣ−j,j)

is multivariate standard t with ν + 1 degrees of freedom and parameter covariance matrix
Λj = Σ−j,−j −Σ−j,jΣj,−j. Hence,

Ct(j)

ν,Σ(u) = Tν+1,Λj

(√
ν + 1

ν + x2j
(x−j − xjΣ−j,j)

)
, u ∈ [0, 1]d, (15)

where x = (T−1ν (u1), . . . , T
−1
ν (ud))

>.
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A.4 Expressions of ĊΣ

For the normal copula, the expression of ĊN
Σ can be obtained from the so-called Plackett

formula (Plackett, 1954). In the bivariate case, it is given by

∂ΦΣ(x1, x2)

∂ρ
=

exp
{
−x21+x

2
2−2ρx1x2

2(1−ρ2)

}
2π
√

1− ρ2
, (x1, x2) ∈ R2.

For d > 2, the formula is

∂ΦΣ(x)

∂ρi,j
=

exp
{
−x2i−2ρi,jxixj+x2j

2(1−ρ2i,j)

}
2π
√

1− ρ2i,j
ΦSij (x−ij −Mijxij) , x ∈ Rd, (16)

where Mij = Σ−ij,ijΣ
−1
ij,ij and Sij = Σ−ij,−ij −Σ−ij,ijΣ

−1
ij,ijΣij,−ij. The matrix Σ−ij,ij in the

previous expressions is a (d− 2)× 2 matrix obtained from Σ by removing rows i and j and
by keeping only columns i and j. Similarly, the matrix Σij,ij is 2 by 2 and is obtained from
Σ by keeping only rows i and j and columns i and j, and Σij,−ij = Σ>−ij,ij. Note that the 2

by 2 matrix Σ−1ij,ij has the following simple form:

1

1− ρ2i,j

[
1 −ρi,j
−ρi,j 1

]
.

In the unstructured case, for any u ∈ [0, 1]d, ĊN
Σ (u) is the d(d − 1)/2-dimensional vector

defined by (
∂ΦΣ(x)

∂ρ2,1
, . . . ,

∂ΦΣ(x)

∂ρd,d−1

)>
,

where x = (Φ−1(u1), . . . ,Φ
−1(ud))

>. Its elements can be computed using (16). In case of the
exchangeable or AR1 dependence structure, the copula depends only on one parameter, θ1,
and therefore

ĊN
Σ (u) =

∂ΦΣ{Φ−1(u1), . . . ,Φ−1(ud)}
∂θ1

, u ∈ [0, 1]d.

The result then follows from the chain rule. In the exchangeable case (resp. in the AR1
case), we have

∂ΦΣ(x)

∂θ1
=
∑
i>j

∂ΦΣ(x)

∂ρi,j

(
resp.

∂ΦΣ(x)

∂θ1
=
∑
i>j

(i− j)θi−j−11

∂ΦΣ(x)

∂ρi,j

)
, x ∈ Rd,

Finally, for the Toeplitz dependence structure,

ĊN
Σ (u) =

(
∂ΦΣ(x)

∂θ1
, . . . ,

∂ΦΣ(x)

∂θd−1

)>
, u ∈ [0, 1]d,
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where x = (Φ−1(u1), . . . ,Φ
−1(ud))

>, and from the chain rule,

∂ΦΣ(x)

∂θk
=
∑
i>j
i−j=k

∂ΦΣ(x)

∂ρi,j
, k ∈ {1, . . . , d− 1}, x ∈ Rd.

For the t distribution, the analog of the Plackett formula has been obtained by Genz
(2004) in the bivariate and the trivariate case. For d = 2, it is given by

∂Tν,Σ(x1, x2)

∂ρ
=

{
1 +

x21+x
2
2−2ρx1x2

ν(1−ρ2)

}− ν
2

2π
√

1− ρ2
, (x1, x2) ∈ R2.

The following result, whose proof is given in Appendix B, extends the formulas obtained by
Genz (2004) to the situation d ≥ 3.

Proposition 1. For d ≥ 3 and any x ∈ Rd,

∂Tν,Σ(x)

∂ρi,j
=

{
1 +

x2i+x
2
j−2ρi,jxixj
ν(1−ρ2i,j)

}− ν
2

2π
√

1− ρ2i,j
Tν,Sij

[{
1 +

x2i + x2j − 2ρi,jxixj

ν(1− ρ2i,j)

}− 1
2

(x−ij −Mijxij)

]
.

where Mij = Σ−ij,ijΣ
−1
ij,ij and Sij = Σ−ij,−ij −Σ−ij,ijΣ

−1
ij,ijΣij,−ij.

The expression of Ċt
Σ(u), u ∈ [0, 1]d, for the different dependence structures can then be

obtained by proceeding as in the normal case.

To compute the normal and t c.d.f.s involved in the above expressions, we used the
algorithms proposed in Genz (1992, 1993) and Genz and Bretz (1999, 2002), and implemented
in the R package mvtnorm (Genz et al., 2011).

B Proof of Proposition 1

Proof. The proof generalizes the approach adopted in Genz (2004) for the trivariate case.
From the work of Cornish (1954), the c.d.f. of the standard multivariate t with correlation
matrix Σ can be alternatively expressed as

Tν,Σ(x) =
21− ν

2

Γ
(
ν
2

) ∫ ∞
0

sν−1 exp

(
−s

2

2

)
ΦΣ

(
s√
ν

x

)
ds.

Then, from Leibniz’ integral rule, we can write

∂Tν,Σ(x)

∂ρi,j
=

21− ν
2

Γ
(
ν
2

) ∫ ∞
0

sν−1 exp

(
−s

2

2

) ∂ΦΣ

(
s√
ν
x
)

∂ρi,j
ds.

17



As we continue, for any x ∈ Rd, xij will designate the vector of R2 whose components are
xi and xj while x−ij will designate the vector of Rd−2 obtained from x by removing xi and
xj. Using the Plackett formula (16), we obtain

∂Tν,Σ(x)

∂ρi,j
=

21− ν
2

Γ
(
ν
2

) ∫ ∞
0

sν−1 exp

(
−s

2

2

) exp

(
− s2

ν

x>ijΣ
−1
ij,ijxij

2

)
2π(1− ρ2i,j)

1
2

ΦSij

(
s√
ν

y−ij

)
ds. (17)

where y−ij = x−ij −Mijxij. Now,

ΦSij

(
s√
ν

y−ij

)
=

∫
u−ij≤ s√

ν
y−ij

1

(2π)
d−2
2 |Sij|

1
2

exp

(
−1

2
u>−ijS

−1
ij u−ij

)
du−ij.

Consider the change of variable u−ij = s√
ν
v−ij. Then,

ΦSij

(
s√
ν

y−ij

)
=

∫
v−ij≤y−ij

sd−2

(2πν)
d−2
2 |Sij|

1
2

exp

(
−1

2

s2

ν
v>−ijS

−1
ij v−ij

)
dv−ij.

Combining the previous equation with (17), we obtain

∂Tν,Σ(x)

∂ρi,j
=

21− ν
2

Γ
(
ν
2

) ∫ ∞
0

sν−1 exp

(
−s

2

2

) exp

(
− s2

ν

x>ijΣ
−1
ij,ijxij

2

)
2π(1− ρ2i,j)

1
2

×
∫

v−ij≤y−ij

sd−2

(2πν)
d−2
2 |Sij|

1
2

exp

(
−1

2

s2

ν
v>−ijS

−1
ij v−ij

)
dv−ij,

that is,

∂Tν,Σ(x)

∂ρi,j
=

21− ν
2

Γ
(
ν
2

) ∫ ∞
0

∫
v−ij≤y−ij

sν+d−3

(2πν)
d−2
2 |Sij|

1
2 2π(1− ρ2i,j)

1
2

× exp

{
−s

2

2

(
1 +

x>ijΣ
−1
ij,ijxij + v>−ijS

−1
ij v−ij

ν

)}
dv−ijds.

Next, consider the change of variable r = s

(
1 +

x>ijΣ
−1
ij,ijxij+v>−ijS

−1
ij v−ij

ν

) 1
2

. We then obtain

∂Tν,Σ(x)

∂ρi,j
=

21− ν
2

Γ
(
ν
2

) ∫
v−ij≤y−ij

(
1 +

x>ijΣ
−1
ij,ijxij+v>−ijS

−1
ij v−ij

ν

)− ν+d−2
2

(2πν)
d−2
2 |Sij|

1
2 2π(1− ρ2i,j)

1
2

∫ ∞
0

rν+d−3 exp

(
−r

2

2

)
drdv−ij.

Using the fact that∫ ∞
0

rν+d−3 exp

(
−r

2

2

)
dr = Γ

(
ν + d− 2

2

)
2
ν+d−2

2
−1,
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we obtain

∂Tν,Σ(x)

∂ρi,j
=

Γ
(
ν+d−2

2

)
Γ
(
ν
2

)
(πν)

d−2
2 |Sij|

1
2

∫
v−ij≤y−ij

(
1 +

x>ijΣ
−1
ij,ijxij+v>−ijS

−1
ij v−ij

ν

)− ν+d−2
2

2π(1− ρ2i,j)
1
2

dv−ij.

Next, it can be checked that(
1 +

x>ijΣ
−1
ij,ijxij + v>−ijS

−1
ij v−ij

ν

)
=

(
1 +

x>ijΣ
−1
ij,ijxij

ν

)(
1 +

v>−ijS
−1
ij v−ij

ν + x>ijΣ
−1
ij,ijxij

)
.

Then, we obtain

∂Tν,Σ(x)

∂ρi,j
=

Γ
(
ν+d−2

2

)(
1 +

x>ijΣ
−1
ij,ijxij

ν

)− ν+d−2
2

Γ
(
ν
2

)
(πν)

d−2
2 2π(1− ρ2i,j)

1
2

∫
v−ij≤y−ij

(
1 +

v>−ijS
−1
ij v−ij

ν + x>ijΣ
−1
ij,ijxij

)− ν+d−2
2

dv−ij.

Finally, consider the change of variable w−ij =

(
1 +

x>ijΣ
−1
ij,ijxij

ν

)− 1
2

v−ij. The quantity

∂Tν,Σ(x)/∂ρi,j is then equal to

Γ
(
ν+d−2

2

)(
1 +

x>ijΣ
−1
ij,ijxij

ν

)− ν
2

Γ
(
ν
2

)
(πν)

d−2
2 2π(1− ρ2i,j)

1
2

∫
w−ij≤

(
1+

x>
ij

Σ−1
ij,ij

xij

ν

)− 1
2

y−ij

(
1 +

w>−ijS
−1
ij w−ij

ν

)− ν+d−2
2

dw−ij,

and the desired result follows from (10).
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Table 4: Percentage of rejection of the null hypothesis for exchangeable and non-exchangeable
copulas obtained from 10 000 repetitions of the procedure given in Section 3 with N = 1000.

n d True C G F N-ex N-ar1 N-tp N-un t-ex t-ar1 t-tp t-un

100 3 C 6.7 96.9 74.5 52.5 88.9 52.8 52.9 59.9 93.7 59.6 59.0
G 98.9 2.9 48.8 22.1 62.9 22.4 22.9 17.2 66.2 17.1 17.1
F 96.6 40.9 5.0 5.3 75.8 5.4 5.5 31.8 90.7 31.3 30.7
N-ex 96.5 58.1 39.2 2.3 61.0 2.3 2.3 22.0 90.0 21.5 21.1
N-ar1 95.1 69.7 55.6 8.2 3.0 2.5 2.4 34.7 20.2 21.0 20.0
N-tp 99.4 96.4 95.2 77.3 100.0 2.1 2.0 83.9 100.0 13.7 13.9
N-un 99.7 95.1 93.5 54.6 99.5 56.3 1.9 67.3 99.4 68.1 12.4
t-ex 92.8 45.8 41.8 4.0 63.9 4.0 4.3 2.5 50.7 2.4 2.3
t-ar1 88.2 53.2 50.9 10.6 6.6 5.6 5.8 6.7 3.8 3.0 2.9
t-tp 97.1 85.5 87.8 65.8 100.0 5.2 5.6 47.7 100.0 2.3 2.3
t-un 98.5 82.1 85.5 44.6 98.3 46.3 5.2 26.2 84.2 27.4 2.5

4 C 5.5 97.5 77.5 57.8 99.3 57.4 56.9 57.9 99.8 56.6 54.8
G 99.3 2.2 52.8 24.3 91.6 24.4 24.6 9.8 86.0 9.2 8.8
F 97.4 33.2 4.4 2.1 97.7 2.0 2.2 26.2 99.4 25.3 24.6
N-ex 99.1 79.7 70.0 1.5 98.1 1.3 1.3 28.4 99.8 26.9 25.6
N-ar1 97.8 89.8 84.9 11.9 2.4 1.4 1.2 52.5 22.6 24.4 23.6
N-tp 99.9 99.3 98.9 59.5 100.0 0.8 0.8 82.3 100.0 16.5 15.6
N-un 99.8 94.8 92.6 27.2 99.7 25.2 1.1 52.3 99.8 50.1 16.8
t-ex 97.1 68.8 63.7 2.7 97.4 2.8 3.0 1.6 91.3 1.6 1.5
t-ar1 90.4 74.9 71.1 13.4 5.9 4.1 4.5 6.2 3.1 1.8 1.5
t-tp 98.8 92.7 92.9 47.0 100.0 3.7 3.8 22.8 100.0 1.0 1.1
t-un 98.4 84.9 82.5 21.3 98.8 20.7 3.2 12.1 89.8 11.2 1.0

300 3 C 5.4 100.0 100.0 99.5 100.0 99.6 99.7 99.9 100.0 99.9 99.9
G 100.0 4.0 93.5 70.7 98.9 70.9 71.2 51.6 98.8 51.6 51.5
F 100.0 97.2 4.6 40.9 100.0 41.0 41.1 93.0 100.0 92.9 93.2
N-ex 100.0 99.0 83.8 3.4 98.4 3.3 3.2 76.7 100.0 76.8 76.9
N-ar1 100.0 99.8 97.7 43.2 3.8 3.4 3.3 95.3 64.2 73.6 74.3
N-tp 100.0 100.0 100.0 100.0 100.0 3.1 3.2 100.0 100.0 63.1 63.2
N-un 100.0 100.0 100.0 100.0 100.0 100.0 3.4 100.0 100.0 100.0 58.0
t-ex 100.0 91.2 89.0 8.4 99.0 8.8 8.8 3.8 93.0 3.8 3.7
t-ar1 100.0 95.8 96.6 43.8 10.0 10.1 10.5 23.4 3.8 3.5 3.5
t-tp 100.0 100.0 100.0 99.9 100.0 10.7 10.7 99.3 100.0 3.2 3.3
t-un 100.0 100.0 100.0 99.7 100.0 99.7 9.8 97.4 100.0 97.7 3.4

4 C 5.1 100.0 100.0 99.9 100.0 99.9 99.9 100.0 100.0 100.0 100.0
G 100.0 3.5 95.8 84.1 100.0 84.0 84.2 33.8 100.0 33.5 32.8
F 100.0 96.9 5.3 23.4 100.0 23.5 23.8 91.7 100.0 91.4 91.4
N-ex 100.0 100.0 99.7 3.0 100.0 2.9 2.8 92.2 100.0 92.0 92.1
N-ar1 100.0 100.0 100.0 81.5 3.6 2.9 2.8 99.8 71.4 88.7 88.8
N-tp 100.0 100.0 100.0 100.0 100.0 2.8 2.9 100.0 100.0 83.7 84.1
N-un 100.0 100.0 100.0 99.6 100.0 99.6 3.1 100.0 100.0 100.0 83.8
t-ex 100.0 99.5 99.2 7.9 100.0 8.3 9.0 3.3 100.0 3.2 3.2
t-ar1 100.0 99.8 99.8 73.5 11.8 10.6 11.3 45.8 3.8 3.0 2.9
t-tp 100.0 100.0 100.0 99.9 100.0 9.9 10.2 96.1 100.0 2.5 2.5
t-un 100.0 100.0 100.0 96.5 100.0 96.9 9.8 92.6 100.0 92.2 2.5
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