
A GPGPU Implementation of Approximate String Matching
with Regular Expression Operators

and Comparison with Its FPGA Implementation

Yuichiro Utan, Masato Inagi, Shin’ichi Wakabayashi, and Shinobu Nagayama
Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan

Abstract— In this paper, we propose an efficient GPGPU
implementation of an algorithm for approximate string
matching with regular expression operators, originally im-
plemented on an FPGA, and compare the GPGPU, FPGA
and CPU implementations by experiments. Approximate
string matching with regular expression operators is used in
various applications, such as full text database search and
DNA sequence analysis. To efficiently handle a long text in
the matching, a hardware algorithm for FPGA implemen-
tation has been proposed. However, due to the limitation of
FPGAs’ capacity, it cannot handle long patterns. In contrast,
our proposed GPGPU implementation is able to handle
long patterns efficiently, utilizing the scalability of GPGPU
programming. Experimental results showed that the GPU
implementation is more than 18 times as fast as the CPU
one when the pattern length is greater than 3200, while the
FPGA one could not handle such a long pattern.

Keywords: approximate string matching, regular expression,
GPGPU, FPGA, CUDA

1. Introduction
Approximate string matching [1] is the problem to find

substrings in a given string (text) which are similar to another
given string, called a pattern. The degree of similarity
between two strings, called edit distance, is obtained by
deriving the edit distance matrix. Approximate string match-
ing is one of the major problems in information science,
and used in keyword search in databases, DNA sequence
analysis in bioinformatics, and network intrusion detection,
etc. Since the problem size is exponentially increasing, some
efficient algorithms using special hardware [2] or a graphics
processing unit (GPU) [3] have been proposed.

Although approximate string matching is more flexible
than exact string matching, both kinds of matching deal
with only simple patterns which consist of only alphabet
characters. Such simple descriptions lead unacceptably long
patterns in some applications in which the target substrings
vary under certain rules (e.g., network intrusion detection).
Thus, matching that can deal with more efficiently described
patterns is being required. One of the methods for efficiently
describing patterns is regular expression. In this paper, we
call a variant of approximate string matching in which

patterns can include some regular expression operators,
approximate regular expression matching. A systolic hard-
ware algorithm for approximate regular expression matching
has already been proposed and implemented on an FPGA
in [4]. However, in this algorithm, the acceptable pattern
length is limited by the amount of hardware resources (i.e.,
the FPGA’s capacity), and thus only short patterns can be
handled.

Recently, parallel processing methods using GPUs are
attracting attention. GPUs are originally application specific
processors for graphics processing. However, since GPUs
have highly parallel architectures to render pixel images in
real-time, general-purpose computation on GPUs (GPGPU)
[5] has been actively being studied to utilize GPUs’ high
performance. As a development environment for GPGPU,
compute unified device architecture (CUDA) is provided by
NVIDIA Corporation to facilitate the utilization of GPUs
for general-purpose computing. GPGPU is based on homo-
geneous multithreading, and threads more than hardware
resources (e.g., ALUs) are automatically scheduled and
allocated to the resources. Thus, GPGPU programming is
scalable in terms of the number of threads.

Utilizing the high parallelism of GPUs, a GPGPU imple-
mentation of approximate string matching has been proposed
in [3]. This method enhances the degree of data parallelism
by handling multiple texts in parallel. Thus, it cannot fully
utilize a GPU’s parallelism when performing matching with
a single text and a long pattern.

In this paper, we propose an efficient GPGPU implemen-
tation of approximate regular expression matching for long
patterns. Our method is based on the FPGA implementation
[4]. Comparing to the FPGA implementation, the main
advantages of the GPGPU implementation are:

1) our method can handle much longer patterns, and
2) it requires no special hardware, like FPGAs.

The main differences of our proposed method from [3] are:
1) it can handle some regular expression operators, and
2) it is suitable to high-speed matching with a single text.

The method proposed in [3] divides the edit distance matrix
into parallelogram regions. In the method, when only a single
text is given, up to 32 elements in a region are calculated
in parallel, and the regions are sequentially handled. Our

method divides the matrix into parallelogram regions in the
same way. In our method, however, up to 32 elements in
a region are calculated in parallel, and up to 16 regions
are calculated in parallel, considering the data dependencies
among regions. (The degrees of parallelism depend on the
GPU.) This makes our method more efficient for matching
with a single text than [3].

In addition, we evaluate the GPGPU implementation
comparing to the FPGA implementation by experiments.
The experimental results showed that the FPGA and GPU
implementations were 8.3 and 2.9 times as fast as a CPU
implementation when the pattern length is 320, respectively.
Furthermore, the GPU implementation was more than 18
times as fast as the CPU one when the pattern length is
greater than 3200, while the FPGA one could not handle
such a long pattern.

The rest of this paper is organized as follows. In Sec-
tion 2, the definitions of approximate string matching and
approximate regular expression matching are described, and
GPGPU is explained. Section 3 shortly describes the existing
FPGA implementation of approximate regular expression
matching [4]. Section 4 presents our GPGPU implementation
of approximate regular expression matching. In Section 5,
we compare the GPGPU, FPGA and CPU implementations
by experiments. Finally, conclusions are given in Section 6.

2. Preliminaries
2.1 Approximate String Matching

Here, we define the approximate string matching prob-
lem and explain an algorithm for the problem. Given two
strings P (pattern) and T (text), and a non-zero integer k
(threshold), the approximate string matching problem is to
find a substring of T whose edit distance [6] from P is
less than or equal to k. Now, let us consider transforming a
string S1 to another string S2 by iteratively applying single-
character deletions, insertions and substitutions. When the
costs of deletions, insertions and substitutions are given, the
edit distance between S1 and S2 is the minimum total cost
required to transform S1 to S2. Thus, the calculation of
edit distance is essential to the approximate string matching
problem.

Next, we explain how to calculate the edit distance. The
edit distance between S1 and S2 is calculated as D(m,n)
defined in the following by using dynamic programming
(DP), where m = |S1| and n = |S2|.

D(i, j) = min{ D(i − 1, j) + del,
D(i, j − 1) + ins,
D(i − 1, j − 1) + s(i, j) },

(1)

where

s(i, j) =
{

sub(S1[i], S2[j]) 1 ≤ i ≤ m, 1 ≤ j ≤ n
∞ otherwise,

S1[i] and S2[j] are the i-th character of S1 and the j-th
character of S2, respectively, D(0, 0) = 0, and D(i, j) = ∞
if i < 0 or j < 0. ins and del in the formula are constants
and denote the insertion and deletion costs, respectively.
sub(a, b) is the substitution cost of two characters a and b.
sub is represented as an α×α two-dimensional array, where
α is the number of alphabet characters. For discussion, let
D be an (m + 1)× (n + 1) two-dimensional array such that
D[i, j] = D(i, j). D is called the edit distance matrix.

2.2 Approximate Regular Expression Matching
Here, we explain how to introduce regular expression op-

erators and other operators into approximate string matching.
Hereinafter, “a string P matches a string S” means that the
edit distance between P and S is zero. The definitions of
the main target operators are as follows.

1) Single-character don’t care (SCDC) (?)
The pattern “?” matches any single character.

2) Variable-length don’t care (VLDC) (?∗)
The pattern “?∗” matches any string, including the
zero-length string “ε”, where ε is the empty character.

3) Negation (p̄)
A pattern “p̄” matches any single character other than
p.

4) Empty character matching (p@)
A pattern “p@” matches p and the empty character ε.

5) Character-by-character matching (CC matching)
([p1p2 · · · pl])
A pattern P = “[p1p2 · · · pl]” matches only the string
“p1p2 · · · pl”. If P and S have different lengths, the
edit distance between P and S is ∞. Otherwise, the
edit distance between P and S is the same as that
between “p1p2 · · · pl” and S.

6) Exact matching (〈[p1p2 · · · pl]〉)
A pattern P = “〈[p1p2 · · · pl]〉” matches only the string
“p1p2 · · · pl”. If S is not “p1p2 · · · pl”, the edit distance
between P and S is ∞.

7) Kleene operator (p∗)
A pattern “p∗” matches any strings that do not include
any character other than p.

The other target operators are shown in [4].
Due to space limitations, we here explain only the DP

formulation of exact matching. Assume P = 〈[p1p2 · · · pl]〉.
Let ins(i) be the insertion cost of a character between pi

and pi+1. Also, let sub(p, t) be the substitution cost from
a pattern character p to a text character t. Exact matching
is realized by setting the deletion, insertion and substitution
costs as defined in Expressions (2), (3) and (4), respectively.
Note that although insertions right after pi (1 ≤ i < l) are
not allowed, insertion right after pl is allowed if some pattern
characters follow the exact match (e.g., “〈[abc]〉e” matches
“abcde”). Thus, the constant insertion cost ins(= k) in the
original DP formulation is replaced by the function ins(i).

del = ∞ (2)

Table 1: Definitions of del, ins, and sub for each operator
operator del ins sub

w/o operator
p del ins sub(p, t)

1. SCDC
? del ins 0

2. VLDC
?∗ 0 0 0

3. Negation
p̄ del ins sub(p̄, t)

4. Empty character
p@ 0 ins sub(p, t)

5. CC matching
[p1p2 · · · pl]
1 ≤ i < l ∞ ∞ sub(p, t)

i = l ∞ ins sub(p, t)
6. Exact matching
〈[p1p2 · · · pl]〉

1 ≤ i < l, p = t ∞ ∞ 0
1 ≤ i < l, p 6= t ∞ ∞ ∞

i = l, p = t ∞ ins 0
i = l, p 6= t ∞ ins ∞

7. Kleene operator
p∗ 0 min{ins, sub(p, t)} sub(p, t)

ins(i) =
{

∞ 1 ≤ i < l
k i = l

(3)

sub(p, t) =
{

0 p = t
∞ p 6= t

(4)

The other operators can be realized by similarly replacing
the deletion cost del, insertion cost ins and substitution cost
sub. The definitions of del, ins and sub for each operation
are shown in Table 1.

2.3 GPU
A graphics processing unit (GPU) is an application spe-

cific processor for graphics processing and one of the main
components of PCs. Utilizing GPUs for general-purpose
computing is called GPGPU (general-purpose computation
on GPUs) [5]. In recent years, GPUs without video outputs
were developed for general-purpose computing by some
semiconductor companies (e.g., Tesla C2070 by NVIDIA
Corporation and FireStream 9350 by Advanced Micro De-
vices, Inc.).

2.3.1 GPU Architecture
Fig.1 illustrates an architecture of NVIDIA’s GPUs, called

Fermi. It is composed of two LSIs, a GPU itself and
a memory chip, called device memory. A GPU has up
to 16 streaming multi-processors (SMs), each of which
corresponds to a core in a multicore CPU. An SM has 32
streaming processors (SPs), each of which corresponds to an
arithmetic logic unit in a CPU core. An SP has only limited
functions such as arithmetic operations, and SPs execute
instructions decoded by an SM in a SIMD fashion. That
is, all the SPs in an SM simultaneously execute the same
instruction. In addition, an SM has a memory shared by all

...

...

...

...

Shared Memory

SP SP SP

Unified Cache

.
.
.

.
.
.

.
.
.

.
.
.

SM

Device
Memory

GPU

CPU

SM

SM

SM

SM

SM

SM

SM

SM

SP

SP SP SPSP

Figure 1: Architecture of NVIDIA Tesla series GPU

the SPs in the SM and some memories to cache data from
and to the device memory.

GPUs have a hierarchical memory architecture. The mem-
ory architecture of the Fermi GPUs is as follows:

1) Global memory
Global memory is a high-capacity memory realized by
the device memory. It is accessible from any SPs in
the GPU. The size of the memory is up to several
giga-bytes. On the other hand, its latency is high
and it requires 400 to 600 clock cycles to access.
Accesses from SPs to the memory are cached in the
SM to which the SP belongs. It is the only memory
readable/writable from both the GPU and CPU.

2) Shared memory
Each SM has a 64KB on-chip memory, and 16KB or
48KB of the memory is used as its shared memory.
The rest of the on-chip memory is used as the L1 cache
of global memory. All the SPs in an SM are quickly
accessible to the memory.

3) Register
Each SP has its own registers. Registers are the mem-
ory most quickly accessible from SPs. Registers in an
SP is not accessible from the other SPs. Each SM has
8K to 32K registers, depending on the GPU.

4) Constant and texture memories
Constant and texture memories are read-only memo-
ries realized by the device memory. They are accessi-
ble from any SPs in the GPU. Accesses from an SP
to the memories are cached in the SM to which the
SP belongs. They are writable from the CPU. In ad-
dition, texture memory has some additional functions,
such as address space normalization to [0,1] and data
interpolation between adjacent data points. Since the
proposed method does not use those memories, we
omit the detailed explanation of them.

2.3.2 CUDA

CUDA is a programming environment for developing and
executing general-purpose applications on NVIDA’s GPUs.

It makes multi-thread applications run on GPUs efficiently.
An extended C/C++ is used as the programming language
in CUDA.

In CUDA, concepts to manage threads, called grid and
thread block, are introduced. A group of threads is called a
thread block. The maximum number of threads in a thread
block is 512. A group of thread block is called a grid.
Each thread block in a grid is managed by adding a two-
dimensional ID. The maximum number in each dimension
of a thread block ID is 65,535.

Each thread executes a code, called a kernel. Each thread
has a unique ID, by which threads handle different data,
executing the same code. Threads in the same thread block
shares data in the high-speed shared memory. On the other
hand, a thread cannot access to shared memories in different
thread blocks. Thus, codes need to be written so that there
are as few data dependencies between thread blocks as
possible. In addition, although threads in different thread
blocks cannot be synchronized during a kernel execution,
threads in the same thread block can be synchronized using
a command and keep data consistency.

3. FPGA Implementation of Approxi-
mate String Matching with Regular Ex-
pression Operators

In this section, a hardware algorithm for approximate
regular expression matching proposed in [4] is explained.
Our proposed method is based on the same idea and adjusted
to GPUs.

3.1 Architecture

The architecture for the hardware algorithm is shown in
Fig. 2. Let m = |P | and n = |T |. Then, it is a one-
dimensional array of m+1 units, called cells, each of which
compares a pattern character and a text character. That is,
each cell calculates the elements in a row of the edit distance
matrix D, shown in Fig. 3. Note that each dimension of
D is expanded by one element in order to calculate the
edit distances between the pattern and substrings of the text
(please refer to [4] for more detail). The m+1 cells calculate
the elements on a diagonal line in parallel and the calculation
proceeds from the top-left corner to the bottom-right corner
as shown in Fig. 3. Thus, its calculation time is O(m + n).
The resultant edit distances are output from the right-most
cell and input to a comparator. The comparator compares
the user-defined threshold k and an edit distance. If the edit
distance is less than or equal to k, the comparator outputs
a match signal. Since each cell handles one character in a
pattern, the length of patterns is limited to the number of
cells.

PPPPPPP out outout in in in k

S S S S S Sin in inout out out

D1 D1 D1
D2 D2 D2

in

in

in

in

in

in

D1
D2out

out D1
D2

D1
D2

out

out

out

out

T

Cell 0 Cell 1 Cell m

Clock

compare

Match

Figure 2: Architecture of Hardware Engine

0 0 0 0 0

01 1 1 1

111

1

2 2

2 2

2 22

23

34

P

T b c a d

a

b

c

d

n+1

m
+
1

i

j

edit distance matrix

Figure 3: Order of Calculation in D

3.2 Basic Structure and Behavior of Cell
Fig. 4 shows the structure of a cell. Cp and Ct are registers

and store one character in the pattern and one character in
the text, respectively. DM is a memory to store the table
of substitution costs. DM is a two-dimensional array of
substitution cost from alphabet α1 to α2, called a distance
matrix. That is, DM[α1, α2] stores the value of sub(α1, α2).
The distance matrix DM is set before starting matching. (In
our experiment, the substitution costs of any two characters
are set to 1 and DM is omitted.) D1 and D2 are registers
to temporarily store elements of D. D1 stores the newest
element the cell calculated, and D2 stores the second newest
element.

Next, we explain the behavior of the cell. A cell i handles
one character of the pattern, pi, and calculates D[i, ∗]. When
the cell i calculates D[i, j] at a clock cycle Tk, D[i, j − 1],
D[i−1, j] and D[i−1, j−1] are necessary. D[i, j−1] was
calculated at the cell i at the clock cycle Tk−1 and currently
stored in D1. D[i−1, j] was also calculated at the cell i−1
at the clock cycle Tk−1 and currently stored in D1 of the
cell i− 1. D[i− 1, j − 1] was calculated at the cell i− 1 at
the clock cycle Tk−2 and currently stored in D2 of the cell
i − 1. Thus, all the elements necessary to calculate D[i, j]
are stored in the cells i and i − 1.

4. GPGPU Implementation of Approxi-
mate Regular Expression Matching

In this paper, we propose an efficient GPGPU implemen-
tation method of the hardware algorithm for approximate

P P

S Sin

inout

out

in outD1

D2out

D1
D2in

D1 D2

ALU

DM

Cp

Ct

Figure 4: Structure of Cell

regular expression matching [4]. Although GPUs are pro-
cessors specific to graphics processing, some studies have
been conducted to utilize their highly parallel architecture
for string matching (e.g., [3]).

In [4], the hardware algorithm is implemented on an
FPGA. However, since the length of patterns is limited to
the number of cells and the number of cells is limited by the
capacity of the FPGA, long patterns cannot be handled by the
FPGA implementation. For example, the one implemented
in the experiments in [4] can handle no more than 250
pattern characters. In contrast, since in a GPU an SM can
handle multiple thread blocks in a time-division manner
(i.e., an SP handles multiple threads), a GPU can handle
patterns whose length is greater than the number of SPs by
allocating the function of each cell to a thread. This fact
makes approximate regular expression matching applicable
to the applications with long patterns (e.g., analysis of DNA
sequences).

In the following, we first show the overview of our method
for approximate string matching (without regular expression)
on GPUs. Then, we explain the effective memory access
method for our matching method. Finally, we introduce
regular expression operators to the method.

4.1 Division of Edit Distance Matrix D

In this paper, we propose an efficient approximate regular
expression matching method that can handle long patterns
utilizing a GPU. In our method, we divide the edit distance
matrix D into multiple parts and effectively dispatch them
to SMs.

First, we divide the edit distance matrix into the par-
allelogram regions so that the length of each side of the
regions is 32, as shown in Fig. 5. This is because each SM
handles 32 threads as one executable unit, called a warp.
Then, we dispatch the calculations in parallelogram regions
to SMs in a GPU. Since SPs in different SMs cannot be
synchronized, the parallelogram regions are calculated in the
order shown in Fig. 5 to maintain data dependencies. The
parallelogram regions with the same number are calculated
by multiple SMs in parallel. The calculations of the paral-
lelogram regions with each number are started by calling a
kernel and thus synchronized. The elements on a line parallel
to the right and left sides of a parallelogram are calculated

1 2

3

3

4

4

5 6

calculated in parallel
32 elements

Text

32 elem
ents

P
attern

edit distance matrix

Figure 5: Parallel Calculation on GPU

0 0 0 0 4

0 0 0 3 2

0 0 2 1 0

0 1 0 1 1

0 0 0 0 0

3 2 1 0 1

1 0 1 2 3

1 2 2 2 2

1 1 1 1 1

0 0 0 0 0

p1

p2

p3

p4

t1 t2 t3 t4 t5 t6 t7 t8 t9

calculated in parallel

Figure 6: Calculation in Parallelogram Region

in parallel by the SPs in a SM. This division realizes an
effective use of SMs and SPs in a GPU for the calculation
of the edit distance matrix with a long pattern.

Fig. 6 shows the calculation in each parallelogram region.
The elements in a region have the same data dependencies
as that of Fig. 3. Thus, we allocate the function of a cell to
a thread to calculate the elements on a line parallel to the
right and left sides of the parallelogram region in parallel.

In summary, in our proposed method, the edit distance
matrix is divided into parallelogram regions, and the regions
are calculated in the order shown in Fig. 5 in parallel. In each
region, the elements on a line parallel to the right and left
sides of the parallelogram region are allocated to SPs and
calculated in parallel.

4.2 Calculation of Edit Distance on Shared
Memory

Here, we describe how to calculate the edit distance using
shared memories. The calculation of the edit distance is
easily implemented by placing whole the edit distance matrix
D to the global memory. However, the cost to access to
the global memory is very high and the latency is 400 to
600 clock cycles. Therefore, we utilize shared memories to
calculate the matrix.

To calculate the value of elements in a parallelogram
region, the calculation results of other regions are necessary.
Since different regions are handled by different SMs, it
is necessary for SMs to access the global memory to
communicate each other. On the other hand, since SMs do
not need to communicate each other when calculating inner

4

1 1 1 1

2 2 2 2 2

2 3 3 3 3 3

0 1 2 3 4 4 4

2 1 0 1 2 3 4 5

4 3 2 1 0 1 2 3

5 4 3 2 1 0 1

6 5 4 3 2 1

1 1 1 1

2 2 2

3 3

8 7

6
target region

necessary data

Figure 7: Data Dependencies among Parallelogram Regions

elements of regions, shared memories can be used to quickly
calculate the elements. To calculate the elements on the i-th
line parallel to the right and left sides of the parallelogram
region, only the elements on the (i−1)-th and (i−2)-th lines
need to be stored in the shared memory of the corresponding
SM.

The data dependencies among parallelogram regions are
shown in Fig. 7. The calculation in the parallelogram region
enclosed by a heavy line requires only the shaded elements.
Thus, in our method, only those elements are stored in the
global memory. In other words, only the elements on the last
two lines parallel to the right and left sides of a parallelogram
region and those in the bottom row in the region are stored
in the global memory.

Fig. 8 shows the pseudo code of the kernel. In the code,
r_D is a register to temporarily store an element of the edit
distance matrix, D[i, j]. r_left, r_top, and r_diag are registers
to temporarily store the elements D[i−1, j], D[i, j−1], and
D[i − 1, j − 1], respectively. The register r_left is used to
send the value of D[i − 1, j] for the calculation of D[i +
1, j] without using shared memories. The registers r_top and
r_diag are used to shorten the then and else statements in the
if-then-else statement. This is because a GPU executes both
of then and else statements to execute threads in a SIMD
fashion. Without r_top and r_diag, both of the then and
else statements need to include similar codes (corresponding
to the 18th line, which becomes more complicated when
regular expression operators are introduced), and it degrades
the performance. idx is the ID number of the thread in the
grid, tid is the ID number of the thread block, and b_id is
the ID number of the thread block. text, top, and down are
arrays located in the shared memory to store text characters,
the elements on the region, and the elements in the bottom
row in the region, respectively.

In the 1st to 7th lines of the code, the data needed by the
thread block are read from the global memory to the shared
memory. Note that the data are read in parallel by using all
the thread in the thread block. In the 8th to 24th lines, the
elements in a row are calculated. Note that different threads
in a thread block handle different rows, and the elements
in the rows are calculated in parallel. In the 9th line, a text
character is read to the register t. DM in the 10th line is a

01. text[tid] = T[tid+(a-1)*SIZE];
02. text[SIZE+tid] = T[tid+(a)*SIZE];
03. top1[tid+1] = D[(b_id)*(SIZE+n+1)+tid+(a+1)*SIZE];
04. s1[tid] = D[(idx+1)*(SIZE+n+1)+a*SIZE];
05. s2[tid] = D[(idx+1)*(SIZE+n+1)+a*SIZE-1];
06. r_E = D[(idx+1)*(SIZE+n+1)+a*SIZE];
07. p = P[idx];
08. for(i=0; i<SIZE; i++){
09. t = text[tid];
10. sub = DM[p*128+t];
11. if(tid==0){
12. r_top = top[i+1];
13. r_diag = top[i];
14. }else{
15. r_top = s1[tid-1];
16. r_diag = s2[tid-1];
17. }
18. r_D=min(r_top+del, r_left+ins, r_diag+sub);
19. s1[tid] = r_D;
20. s2[tid] = r_top;
21. r_left = r_D;
22. down[i] = r_D;
23. __syncthreads();
24. }
25. D[(idx+1)*(SIZE+n+1)+SIZE+a*SIZE] = r_D;
26. D[(idx)*(SIZE+n+1)+SIZE-1+a*SIZE] = r_top;
27. D[(b_id*SIZE)*(SIZE+n+1)+tid+(a*SIZE)] = down[tid];

Figure 8: Pseudo Code of Kernel

two-dimensional array to store the substitution costs. In this
line, the substitution cost of the pattern character and text
character is obtained. In the 11th to 17th lines, D[i − 1, j]
and D[i − 1, j − 1] are read from the shared memory to
registers. In the 18th line, D[i, j] is calculated. In the 19th
to 22nd lines, D[i, j] and D[i, j − 1] in the shared memory
are updated. Note that only the newest and second newest
lines of elements are stored in the shared memory. In the
23rd line, all the threads in the thread block are synchronized
(because each SP handles multiple threads). In the 25th to
27th lines, the date necessary to calculate the next regions
are sent from the shared memory to the global memory.

4.3 Introduction of Regular Expression Oper-
ators

As shown in Section 2, our target regular expression
operators can be realized by replacing del, ins and sub in
the DP formula of the edit distance calculation. To input
patterns with the regular expression operators to the kernel,
we introduce an array of characters OP (|OP| = |P |) for rep-
resenting operators to the corresponding pattern characters,
and an array of integers e (|e| = |P |) for representing the
first and last characters of the target substring of an operator,
as input data to the kernel. In the kernel, OP and e are copied
from the global memory to the shared memory like as pattern
P.

5. Comparison of GPGPU and FPGA
Implementations

To compare FPGA, GPGPU and CPU implementations,
we conducted some experiments. For those implementations,

we used a PC equipped with an Intel Core i7 950 CPU
(3.06GHz), 24GB main memory, CentOS, an NVIDIA Tesla
C2070 (1.15GHz) GPU with 4GB device memory, and an
FPGA board with a Xilinx Virtex-4 FPGA. The GPU and
the FPGA board are connected to the PC with PCIe 2.0
x16 and conventional PCI buses, respectively. The FPGA
implementation is written in Verilog HDL and mapped using
Xilinx ISE 13.1.

In our GPGPU implementation, one thread block consists
of 32 threads. Thus, each thread block uses 1060bytes of
the shared memory. Each thread uses 42 registers. Since in
the Tesla C2070 each SM has a 48KB shared memory, each
SM can handle up to 45 thread blocks (45 × 1060 < 48K).
Therefore, our GPGPU implementation can handle long
patterns whose length is less than or equal to 20,160 =
14 × 45 × 32 = (the number of SMs) × (the maximum
number of thread blocks per SM) × (the number of threads
in one thread block). In contrast, since only 250 cells can be
implemented on the target FPGA, the FPGA implementation
can handle only patterns whose length does not exceed 250.
The maximum clock frequency was 140MHz.

Table 2 shows the execution times of the GPGPU and CPU
implementations when |T | = 3, 200, 000 and |P | = 320, and
that of the FPGA implementation when |T | = 3, 200, 000
and |P | = 250. Note that the execution times include data
transfer time from the main memory. As a result, the FPGA
and GPGPU implementations were 8.3 and 2.9 times as fast
as the CPU implementation, respectively.

Table 3 and Fig. 9 show the results in the cases of long
patterns. We found that 1) the execution time of the CPU
implementation is proportional to the pattern length, 2) that
of the GPGPU implementation is stepwise in terms of the
pattern length (there is a gap between |P | = 3200 and
|P | = 4800). In addition, the GPGPU implementation when
|P | ≥ 3200 was more than 18 times as fast as the CPU
implementation.

These results indicate that the FPGA implementation is
the fastest and suitable to the cases of short patterns, and
the GPGPU implementation is scalable and suitable to the
cases of long patterns, such as analysis of DNA sequences.

Table 2: Execution Time when |T | = 3, 200, 000
Method |P | Time

CPU 320 23.60 [s]
GPGPU 320 8.23 [s]
FPGA 250 2.89 [s]

Table 3: Execution Time when |T | = 320, 000 [ms]
|P | 320 640 1280 3200 4800 6400

CPU 2399 4803 9612 24020 36030 47960
GPU 1079 1102 1131 1212 1922 2031

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 1000 2000 3000 4000 5000 6000 7000

ex
ec

ut
io

n
tim

e
[m

s]

pattern length

CPU
GPU

Figure 9: Execution Time of CPU and GPU Implementations

6. Conclusions
In this paper, we proposed an efficient GPU-based method

for approximate regular expression matching with long pat-
terns. Experimental results showed that 1) our proposed
method and an FPGA-based method [4] are 2.9 and 8.3
times as fast as a CPU implementation, respectively, when
the length of patterns is 320; 2) our method is more than 18
times as fast as the CPU implementation when the length of
patterns is more than 3200. Our future work includes further
improvement of memory access efficiency in our GPU-based
method.

References
[1] J. Aoe (Ed.), Computer Algorithms: String Pattern Matching Strategies,

IEEE Computer Society Press, 1994.
[2] S. Mikami, Y. Kawanaka, S. Wakabayashi, and S. Nagayama, “Effi-

cient FPGA-based hardware algorithms for approximate string match-
ing,” in Proc. the 23rd International Technology Conference on Cir-
cuits/Systems, Computers and Communications (ITC-CSCC 2008), July
2008, pp.201–204.

[3] K. Dohi, K. Benkridt, C. Ling, T. Hamada, and Y. Shibata, “Highly
Efficient Mapping of the Smith-Waterman algorithm on CUDA-
compatible GPUs,” in Proc. the 21st IEEE International Conference on
Application-specific System Architecture and Processors (ASAP 2010),
July 2010, pp. 29–36.

[4] Y. Utan, S. Wakabayashi, and S. Nagayama, “An FPGA-Based Text
Search Engine for Approximate Regular Expression Matching,” in
Proc. the 2010 International Conference on Field-Programmable Tech-
nology (FPT’10), Dec. 2010, pp. 69–74.

[5] E. Kandrot and J. Sanders, CUDA by Example: An Introduction to
General-Purpose GPU Programming, Addison-Wesley Professional,
July 2010.

[6] R. A. Wagner and M. J. Fischer, “The string-to-string correction
problem,” Journal of the ACM, vol. 21, no.1, pp. 168–178, 1974.

