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Abstract

Our primary objective of this work was to extend a previously published 2D coupled sub-sample 

tracking algorithm for 3D speckle tracking in the framework of ultrasound breast strain 

elastography. In order to overcome heavy computational cost, we investigated the use of a graphic 

processing unit (GPU) to accelerate the 3D coupled sub-sample speckle tracking method. The 

performance of the proposed GPU implementation was tested using a tissue-mimicking (TM) 

phantom and in vivo breast ultrasound data. The performance of this 3D sub-sample tracking 

algorithm was compared with the conventional 3D quadratic sub-sample estimation algorithm. On 

the basis of these evaluations, we concluded that the GPU implementation of this 3D sub-sample 

estimation algorithm can provide high-quality strain data (i.e. high correlation between the pre- 

and the motion-compensated post-deformation RF echo data and high contrast-to-noise ratio strain 

images), as compared to the conventional 3D quadratic sub-sample algorithm. Using the GPU 

implementation of the 3D speckle tracking algorithm, volumetric strain data can be achieved 

relatively fast (approximately 20 seconds per volume [2.5 cm × 2.5 cm × 2.5 cm]).

Index Terms

Speckle Tracking; Motion Tracking; Ultrasound Elastography; Graphic Processing Unit; Strain 

Elastography

I. Introduction

Ultrasound strain elastography (SE) [1] is an imaging method that can be used to non-

invasively estimate tissue strains. Strain images can be formed by acquiring a frame (in 2D; 
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volume in 3D) of radio-frequency (RF) echo signal data before and after a small deformation 

of the tissue and tracking the motion that occurred between the acquisitions. If the stress 

distribution is relatively uniform, local strain is largely inversely proportional to tissue 

stiffness. Ultrasound SE has shown promise in differentiating breast tumors [2], [3]. Recent 

advancements in SE can be found in recent review articles [4], [5]. The potential of 

elastography has resulted in several major vendors (e.g., General Electric, Siemens, Philips, 

Hitachi, Toshiba, Samsung Medison etc.) releasing commercially-available SE packages. 

The majority of speckle tracking algorithms that are used to estimate tissue deformation is 

correlation-based and therefore, motion tracking suffers from tracking errors due to echo 

signal de-correlation. A major source of signal de-correlation in 2D SE is out-of-plane 

motion (motion that is perpendicular to the imaging plane) because only 2D ultrasound data 

are available. Strain artifacts due to tracking errors have been a major confounding factor in 

the interpretation of strain images [6].

Consequently, tracking tissue deformation through 3D ultrasound data to obtain 3D strain 

data is highly desirable. Reports in the literature have clearly demonstrated that 3D tracking 

minimizes motion tracking errors due to out-of-plane motion, as compared to results 

obtained from 2D speckle tracking [7]–[13]. Furthermore, during radiological evaluation, 

viewing 3D strain data in multiple parallel planes and/or perpendicular planes can often 

further aid diagnosis.

3D ultrasound data are becoming readily available [14]. Developments of plane wave 

ultrasound data acquisition [15], [16] may further accelerate this process. As well articulated 

by Yang et al. [17], there are great needs to preserve image quality in clinical workflow 

while achieving high frame rates for real-time or nearly real-time ultrasound SE. This study 

investigates whether or not a more sophisticated sub-sample estimation algorithm [18] 

extended to 3D data can further enhance the image quality of SE.

Toward this end, our main objectives of this study were twofold. First, we intended to 

demonstrate whether, in addition to tracking in 3D, the quality of strain data could be further 

improved by adoption of an accurate sub-sample displacement estimation algorithm. 

Second, we wanted to realistically assess the feasibility of introducing this high-quality sub-

sample estimation algorithm, which is computationally expensive, into the clinical 

workflow. In order to do so, a graphic processing unit (GPU) was chosen to improve its 

computational efficiency through massive parallelization. It is worth noting that GPU-based 

elastography has drawn interests in recent years, through prior work was concentrated on 2D 

SE applications [17], [19]–[21] or accumulation of fairly small echo strain due to thermal 

expansion [22], [23]. The work reported here is the first to use a GPU card to accelerate 3D 

strain imaging formation in breast applications where the tissue volume underwent modest 

(1–2%) average strain from frame/volume to frame/volume. In this study, the performance of 

the 3D coupled sub-sampled tracking algorithm was compared to that of a conventional 3D 

quadratic sub-sample tracking strategy. Different GPU implementation strategies of the 

proposed 3D sub-sample speckle tracking were also compared against each other. Those 

performance evaluations included assessments of both accuracy of the displacement 

estimates and computational efficiency.
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II. Materials and Methods

A. Computer Hardware and Software

Implementation and subsequent testing of the 3D speckle tracking algorithm in this work 

were performed on a professional Tesla K20 GPU card (Nvidia Corp., Santa Clara, CA). The 

K20 card has 13 Stream Multiprocessors (SMs), each containing 192 cores for a total of 

2496 cores operating at 0.706GHz. This GPU card was installed in a WINDOWS 

workstation with a 3.10-GHz Xeon CPU E3-1220 V2 and 16GB memory (Intel Corp.; Santa 

Clara, CA). The K20 card had 5 GB of on-board global memory.

Compute Unified Device Architecture (CUDA, NVIDIA Inc., Santa Clara, CA) was used to 

program the K20 card. All GPU codes were compiled using the nvcc compiler from CUDA 

7.0 (Nvidia Corp., Santa Clara, CA) with the aid of the CUDA Toolkit 7.0 (Nvidia Inc.). All 

GPU codes were called from MATLAB (version 2015a, Mathworks Inc., MA, USA) using a 

mex-interface. Throughout this paper, we attempted to make technical terms related GPU 

consistent with CUDA manuals. These GPU terms were capitalized for clarity.

B. Introduction to GPU

In CUDA, a KERNEL is a (computing) function that executes on the GPU and, tasks 

defined within the KERNEL can be performed in parallel through multi-threading. As 

shown in Fig. 1, each KERNEL can invoke one GRID typically consisting of several (e.g. n) 

BLOCKs; each BLOCK can initiate a number of THREADs.

In order to further grasp how massive parallel computing is being executed on the GPU, it is 

important to note that the basic programming unit here is a streaming multi-processor (SM). 

Each SM is a collection of many streaming processors (SPs; also known as CUDA cores). 

Although a single THREAD is executed on a SP, memory access and GPU scheduling are 

largely managed at the SM level. As shown in Fig. 2, a GPU has its own on-board memory, 

which can be divided into two categories: off-chip memory and on-chip memory. On the one 

hand, the off-chip memory includes global memory, TEXTURE and L2 cache on the device 

and accessible for all SMs. The difference between the global memory and TEXTURE is 

that TEXTURE is read-only while global memory can be used both for read and write. The 

global memory is the main data storage but has high latency for data access. Latency of 

TEXTURE is lower than the global memory but higher than any on-chip memory described 

below.

On the other hand, the on-chip memory is integrated into SMs and private to each SM. 

Consequently, each SM can only access to a small amount of on-chip memory, though the 

latency for data access (both read or write) is low. On-chip memory is designed to reduce 

demands for the global memory in order to achieve rapid data access. As also shown in Fig. 

2, in each SM, there are four types of on-chip memory: register, shared memory, L1 cache 

and read-only memory. The actual configuration of on-chip memory may be hardware-

dependent. The fastest on-chip memory is the register while the other three types have 

similar latency values. For instance, on the K20 card, the combination of shared memory and 

L1 cache is 64 KB for each SM: 48 KB shared memory + 16 KB L1 cache or 16 KB shared 
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memory + 48 KB L1 cache. Each SM can access to 65536 (32-bit) registers and the amount 

of registers is equivalent to 262KB data storage.

C. Need for Optimization of On-chip Memory Access

As well understood in the literature [17], [24], the most time-intensive component of a 

correlation-based speckle tracking algorithm, such as the Block-Matching Algorithm (BMA) 

[25], [26], is the calculation of correlation values. Fortunately, this process can be massively 

parallelized using GPUs [17], [19]–[21]. Typically, such a parallelization is done using a 

single instruction, multiple thread (SIMT) mode. This mode in the context of speckle 

tracking is referred as to an execution style in which a single BLOCK within a KERNEL 

function (see Fig. 1) can call a large number SPs (within a SM) to simultaneously calculate 

correlation values. In order to do so, each SM has to load two large chunks of RF data 

segments so that a large number of THREADs (e.g. 192 SPs in one SM for the K20) can use 

them to calculate correlation values. Considering the following scenario: If all RF data are 

not loaded onto on-chip memory private to the SM, either reloading RF data or using RF 

data in the off-chip memory would significantly increase wait-time.

One concrete but simplified example is provided below so that the memory requirement for 

3D speckle tracking can be better put into perspective. In order to avoid potential confusion, 

it is important to make a distinction between the block matching patch of data for correlation 

analysis (the motion tracking “kernel”) and the CUDA executable function (a KERNEL; 

capitalized). Under the framework of a 3D BMA, one direction search ranges are A, B and C 

for axial, lateral and elevational directions, respectively. Of note, the one direction search 

range above was defined as the maximal translation of the center of the tracking kernel along 

one given direction (e.g. upward or downward). Given a 3D tracking kernel with a size of 

I(axial) × J(lateral) × K(elevation) samples, we need to get access to RF data whose size is at 

least (2A+I+1) × (2B+J+1) × (2C+K+1) RF samples for a single THREAD. Simply put, 

such a RF segment is approximately 40 Kilobytes (KB) if we assume the following: A = 20 

samples, B = 5 samples, C = 5 samples, I = 40 samples, J = 5 samples, K = 5 samples and, 

RF echo data are digitized in at least 12 bits. To our knowledge, several high-end clinical or 

research scanners provide 2 byte digitized RF data [27], [28]. The above-chosen parameters 

lead to a tracking kernel whose axial length is roughly 4 wavelengths long at 7.5 MHz, 

which are appropriate for tracking 1% strain for breast tissue at the 3-cm depth. Recall that 

the calculated 40KB above was only for one THREAD. Thus, it is difficult to deal with the 

memory requirement using the limited on-chip memory for 100+ THREADs which can 

simultaneously execute on a single SM. Recall that, as described in Section II-B, the total 

on-chip memory for each SM is approximately 300KB. Under the same conditions for 2D 

tracking (a 2D kernel and a 2D search region), the memory requirement reduces to 2 KB per 

THREAD, which can be easily managed by the private on-chip memory of a single SM.

D. Description of the 3D Speckle Tracking Method Using GP-GPU

The 3D speckle tracking algorithm follows the framework of BMA [25], [26]. Basically, one 

tracking kernel is selected in the pre-deformation RF echo data (i.e. reference data) for each 

location. The motion tracking process finds the most similar data in the post-deformation 

echo data (i.e. target data), given a pre-determined search region. As stated above, this 3D 
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motion tracking strategy uses a 3D kernel and a 3D search region. It is worth noting, 

however, that the pre-deformation field is defined by a 3D Cartesian grid of kernel location 

centers, and the 3D displacement estimates are estimated one plane at a time. Therefore, we 

first obtain 3D displacement vectors in a frame by frame fashion and, then form a volume of 

3D displacement vectors by stacking all frames of displacement data. Consequently, the 

overall algorithm design is similar to what has been presented in an early publication for 2D 

coupled speckle tracking [18]. In order to keep our presentation concise, our emphasis here 

is on GPU-implementation. As shown in Fig. 3, in order to estimate displacements on an 

image plane, the proposed algorithm executes the following five major steps. Tracking 

parameters (e.g. search range and median filter size) in each step are summarized in Table I. 

Those five steps will continue until displacement estimates from all image planes of interest 

are completed.

In the first step, tracking in multiple locations first determined a gross direction of the tissue 

motion — downward or upward. Then, a brute-force BMA was used to obtain integer 

displacements along the center line of this region of interest (ROI) [26]. The size of the 

search region was determined by the deformation of the tissue being imaged (e.g. 1 or 2%). 

Once all displacement vectors were obtained along the center line, a predictive search 

scheme [25], [26] was then be used to track integer displacement on a 2D computing grid 

(M (axial) × N(lateral)) that covered a region of interest (ROI) on an image plane. The 

predictive search reduced the search region to a small size (see Table I) based on the 

displacement estimates around the center line.

Given a 3D search range of A(axial) × B(lateral) × C(elevation) samples, we needed to 

calculate (2A+1) × (2B+1) × (2C+1) cross-correlation values for each displacement vector. 

Consequently, (2A+1) × (2B+1) × (2C+1) × M × N computing THREADs were needed to 

compute all required correlation values. As discussed in Section II-E, once the search region 

was reduced, we could possibly load all data into the on-chip memory to improve 

computational efficiency. At that point, our GPU program invoked a number of KERNELs. 

Because each KERNEL contained 8 BLOCKs and each BLOCK started 256 THREADs, our 

GPU program initiated 2048 THREADs for each KERNEL. The total number of THREADs 

used per KERNEL was based on the available SPs (i.e. 2496) on the K20 so that a good 

occupancy of the GPU could be achieved. The occupancy was typically 80%, meaning that 

the GPU was utilized for computing about 80% of the time. Recall that the GPU can only 

execute one physical THREAD at a given time on a single SP. CUDA automatically passes 

the requested THREADs counts to the GPU for execution; there is no need for user 

interventions.

In the second step, a simple median filter was used to remove large outliers (also known as 

peak-hopping errors [29]) from the initial (integer) displacement field. This process requires 

only M × N THREADS — one THREAD for each displacement vector. After large errors 

were removed for each location on the M×N computing grid, motion compensation was first 

performed using the corrected integer displacements. Then, a re-tracking was performed in a 

reduced search region (3 samples in each direction; see Table I), eliminating potential biases 

induced by the median filter. Consequently, normalized correlation coefficient (NCC) values 
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are estimated on a 7 × 7 × 7 grid. The same parallelization using on-chip memory described 

in Step 1 is used in this step to calculate this 7 × 7 × 7 correlation map.

In the fourth step, the 3D correlation map was first up-sampled through spline interpolations 

to increase its resolution. Then, a pre-determined threshold 0.95ρmax, where ρmax was the 

maximum of the local correlation map and used to extract an iso-surface. Extraction of an 

iso-surface on the correlation map falls into image segmentation and the classic Marching-

cubes method [30] was used.

In the fifth step, the coordinates of all points located on the iso-surface were fit to an 

ellipsoid model, as follows,

(1)

In Eqn. 1, six constants (Δx, Δy, Δz, C1, C2 and C3) were solved in a least-squares fashion. 

Validity of Eqn. 1 can be mathematically proved based on theory of linear medical 

ultrasound systems [31]. The 2D case was formally proved by Jiang and Hall [18] and an 

extension to 3D tracking is straightforward. In short, through the surface fitting [32], the 

fitted center of the ellipsoid (Δx, Δy and Δz) represents the unknown displacement vector. 

Finally, three “corrected” integer displacements and three sub-sample estimates were 

combined to obtain the full displacement vector for each point on the M × N computing grid.

In Steps 4–5, only M × N THREADs were needed and thus, the level of parallelization was 

significantly lower, as compared to that in Steps 1 and 3.

For the sake of completeness, two additional CUDA programming strategies were employed 

to improve computational efficiency across all five steps when applicable. First, in order to 

increase memory bandwidth of GPUs, TEXTURE (memory) access [33] was used for 

storing 3D RF volumes prior to the calculation of cross-correlation. The TEXTURE 

technique (NVIDIA Inc., Santa Clara, California, USA) utilizes hardware to accelerate 

interpolations which are required to calculate the correlation function beyond the sampling 

rate of the original RF echo data in Step 3. Second, programming variables that require 

frequent access (e.g. axial and lateral search ranges) were locked in read-only memory (see 

Fig. 2) for rapid access.

E. Strategies toward Improvement of On-chip Memory Access

As discussed in Section II-C, if the search region is large (e.g. a brute-force search for 1–2% 

strain), the RF data requirements become too large to be accommodated within the on-chip 

memory (see Section II-B). Referring to Steps 1 and 3 in Section II-D, the search region of 

the guided search (see Table I) can be significantly reduced (e.g. to a 5 × 5 × 5 grid). Given 

that and compression of RF data to 1-byte, the memory requirement for the RF data was 

reduced to 5.5 KB, thereby becoming manageable for on-chip memory access. Four 
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variations have been implemented to test how the memory access may influence the 

computational efficiency. All RF data are compressed into 1 byte data in all four versions.

1. GPU-Version 1: In Steps 1 and 3, RF echo data were only stored and accessed 

using global memory. As noted before, global memory has the largest amount 

among the off-chip memory and can be used both for read and write.

2. GPU-Version 2: In Steps 1 and 3, RF echo data were stored and accessed only 

using TEXTURE. As noted, TEXTURE is a special type of global memory 

because hardware accelerations are available [33].

3. GPU-Version 3: In Steps 1 and 3, we loaded RF data from the target echo 

frames to the shared memory, while the RF data from the reference echo frames 

were left in TEXTURE. Of note, shared memory belongs to on-chip memory.

4. GPU-Version 4: In Steps 1 and 3, all required RF echo data were loaded into the 

shared memory.

F. Comparative Tracking Implementations

In order to demonstrate the performance (both in computational efficiency and strain/

displacement quality), the proposed 3D sub-sample estimation algorithm was compared to a 

3D quadratic sub-sample estimation algorithm [34]. Mathematically, 3D quadratic sub-

sample estimates can be calculated by using correlation values on a 3×3×3 grid to fit the 

following quadratic function [34]:

(2)

where ρ(x, y, z) is a discrete correlation function estimated through the BMA as described 

above. Eqn. 2 can be solved in a least-squares approach.

This quadratic sub-sample displacement estimation algorithm [34] has also been 

implemented on the K20 GPU and is hereafter referred to as GPU-Version Quadratic. The 

implementation details from Steps 1–3 were identical to those illustrated in Fig. 3. Then, 

Steps 4–5 were replaced by the solution of Eqn. 2. Data available in the literature [34] and 

our unpublished testing results suggested that this 3D quadratic algorithm out-performed 

both 1D and 2D quadratic sub-sample displacement estimation algorithms used in [13]. 

Consequently, comparisons of the proposed 3D sub-sample algorithm with inferior 1D and 

2D sub-sample algorithms [34] are not included.

The coupled sub-sample displacement estimation algorithm [18] as illustrated in Fig. 3 has 

also been implemented as a standalone CPU version using standard C to verify all versions 

of GPU implementation and was used as a benchmark. Hereafter, we refer the CPU 

implementation as to CPU-version.

In GPU-Versions 1–4 and the CPU-Version, the speckle tracking parameters used are 

summarized in Table I. Other tracking kernels were also used but were solely for the purpose 

of assessments of computational efficiency.
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G. Validation Experiments

The GPU implementation was tested using a tissue-mimicking phantom and one set of in 

vivo breast tissue data. Details of the phantom experiment have been reported elsewhere [13] 

and a brief description is included for the sake of completeness. In both the phantom 

experiment and in vivo breast scan, Axius Direct Ultrasound Research Interface software 

[28] was used for data acquisition. The RF echo sampling frequency was 40MHz, and 

ultrasound data was downloaded for off-line analysis.

During the phantom experiment, a prototype 9-MHz 2D CMUT array connected to a 

Siemens SONOLINE Antares (Siemens Health Care, Inc. Ultrasound Division, Mountain 

View, CA) was used to acquire RF echo data from a 100mm × 100mm × 70mm oil-in-

gelatin phantom containing two 10mm diameter spherical inclusions (one center target and 

one corner target) that have a 5:1 elastic contrast with the background [35]. The CMUT 

transducer manufacture has been described by Daft et al. [36]. Ultrasound data was acquired 

using a robotic arm. Dimensions of acquired ultrasound data were 40mm (axial) × 37mm 

(lateral) × 30mm (elevation), resulting in 140 image planes. In each image plane, there were 

312 lines. Overall, voxel size of volumetric ultrasound data was 19 μm (axial) × 119 μm 

(lateral) × 214 μm (elevation). There was approximately 1% strain between two sequential 

volumes of RF echo data.

Under a protocol approved by the institutional review board (IRB) at the University of 

Wisconsin, 3D volumetric ultrasound data were collected from a human subject using a 

Siemens S2000 automated breast volume scan system (ABVS; Siemens Medical (USA) 

Solution Inc., Mountain View, California). The ABVS system included a high-frequency 1D 

array ultrasound transducer (14L5) that was excited with an 11MHz pulse. The ultrasound 

transducer moved along elevation direction with a stepper-motor to obtain a sequence of 2D 

ultrasound echo frames. More details about this modified ABVS system can be found in 

[37]. The human subject had a biopsy-confirmed fibroadenoma (FA). During the ultrasound 

scan, the subject was instructed to hold her breath so that unintended physiological motion 

was minimal. Two volumes of ultrasound data were acquired; each volume covered 6cm 

(axial)×7.6cm (lateral)×4cm (elevation). Volume-averaged strain estimated from the distance 

the ABVS arm dropped was approximately 2.5%. The correlation cell size (full width at half 

maximum) for the ABVS (roughly 0.25 mm [axial]× 0.9 mm [lateral] × 2.0 mm 

[elevational]) was approximated with the auto-correlation of the echo signals from a uniform 

phantom with a high concentration of sub-wavelength spherical scatterers [37].

H. Data Analysis

In addition to assessments of computational efficiency, two metrics were chosen to compare 

the performance among six implementation strategies, namely, GPU-Versions 1–4, GPU-

Version Quadratic and CPU-Version. The first metric was adopted from the “displacement 

quality metric” (DQM) method [6]. We use the normalized cross correlation (NCC) between 

the pre-deformation and motion-compensated post-deformation RF echo fields as a 

quantitative measure of motion tracking accuracy. The NCC gives a single summary 

measurement for the entire region of interest, with 1 indicating the best motion tracking 

accuracy.
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The second metric was the weighted contrast-to-noise ratio (CNR) [38]:

(3)

where I and σ denote means and variances of signals, and subscripts b and t represent the 

background and target, respectively. The CNR (Eqn. 3) is weighted by areas of the 

background wb and the target wt, respectively. In each strain image, the lesion was manually 

segmented (representing the target) and the rest of strain image represented the background. 

Song et al. [38] demonstrated that consideration of the weighted area is necessary because 

the target and the background contribute differently to the noise estimates.

III. Results

In Subsections III-A, III-B and III-C, phantom data acquired by the CMUT transducer were 

used to evaluate computational efficiency. Results (Subsection III-D) obtained from the in 

vivo breast data were intended to demonstrate that the proposed GPU implementation can 

potentially be used in a clinical workflow. Both the phantom and in vivo breast data were 

used for image quality analysis (NCC and CNR).

A. Tests of Computational Efficiency

The influence of RF data formats was investigated using four different tracking kernels as 

shown in Fig. 4. All tracking parameters were identical to those shown in Table I except that 

the size of tracking kernel varied as stated in those figures. For reference, 61 and 69 axial 

samples are equivalent to 1.16 mm and 1.35 mm, respectively, while 7,9 and 11 beam lines 

are 1.05 mm, 1.35 mm and 1.65 mm, respectively. 3 elevation planes equal to 0.87 mm in 

space. Using the computing time required for Step 3 as an example, we found that using 4 

byte RF data significantly increased (by roughly 50%) the required computing time, while 

the computing time for 1 byte and 2 byte RF data was comparable.

Overhead needed for transferring data between the computer CPU and GPU were also 

analyzed. In general, the overhead of data transferring (i.e. RF data from CPU to GPU and 

displacement estimates from GPU back to CPU) were similar among four GPU versions and 

only the results related to GPU Version 2 are shown in Table II. As compared to the 

computational costs for cross-correlation calculations (see Fig. 4), the overhead involving 

data transfer were considerably small (approximately 2–4%).

The computational efficiency of GPU-Versions 1–4 were examined using 1 byte RF data. 

As explained in Section II-C, RF data with high bit-depth (2 bytes and 4 bytes) are too large 

to be loaded into the shared memory so that implementation to GPU-Versions 3&4 was not 

feasible for the current mainstream GPU cards (e.g. Nvidia K20 and K40). As shown in Fig. 

5, the required time to complete Step 3 of the proposed speckle tracking algorithm (see Fig. 

3) increased from GPU-Version 1 to GPU-Version 4. We also compared the performance 

between the CPU-version and the GPU-version 4 for the entire speckle tracking process 

and the Step 3, respectively. Fig. 6 clearly suggested that GPU-Version 4 accelerated 
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speckle tracking process roughly by a factor of 100. This observation was also valid both for 

the entire speckle tracking process and Steps 3 – 5.

(GPU-Version 4) was also compared to GPU-Version Quadratic for each step in the 

process of speckle tracking. The results are summarized in Table III. It is interesting to note 

that, in our implementation, the 3D quadratic sub-sample estimation (i.e. step 4 in Table III) 

requires neglectable time to complete. However, the computational load required for Step 4 

was generally small (approximately 10% of the total time).

B. Comparisons Among Different Implementations

Using the same configuration, displacement estimates obtained from using the CPU-Version 

of the proposed algorithm were compared to GPU-Versions 1–4. Differences among those 

five versions of the same algorithm are neglectable, as shown by one example in Fig. 7. 

Consequently, the differences between the CPU version and any of GPU versions in terms of 

DQM and CNR were very small (< 0.1%) both for the TM phantom and in vivo breast data 

investigated.

C. Results from A Tissue Mimicking Phantom

Results from the center target contained in the tissue-mimicking (TM) phantom under an 

approximately 1.0% axial strain obtained with GPU-Version 4 are shown in Fig. 8. Visually, 

estimated displacements obtained with the coupled sub-sample displacement estimation 

algorithm, particularly, the lateral and elevation displacements, appeared to be smoother and 

contained fewer tracking errors (see arrows in Fig. 8), as compared to their counterparts 

estimated by the GPU-Version Quadratic. Consequently, as shown in Fig. 8, the axial 

strain image obtained by the coupled sub-sample method contained slightly lower noise. The 

CNR values from axial strain images obtained from both methods for 40+ frames covering 

both the corner target (P#1) and the center targets (P#2) are displayed in Fig. 9(a). Similarly, 

we examined the NCC for motion tracking accuracy for both methods. Overall, the coupled 

sub-sample displacement estimation method outperformed the 3D quadratic sub-sample 

estimation algorithm both in terms of CNR and NCC, though differences are relatively 

small. Results are summarized in Table IV.

D. Results from One Set of in vivo Breast Data

Representative results from an in vivo fibroadenoma (FA) were used to demonstrate the 

performance of the 3D coupled tracking method. The volume-average strain was 

approximately 1%. Fig. 10 clearly showed that the 3D quadratic sub-sample method (i.e. 

GPU-Version Quadratic) made some suspected errors (see arrows in Fig. 10), while the 3D 

coupled tracking method was able to avoid them. The general appearance of the axial, lateral 

and elevation displacement images obtained using the 3D coupled tracking method is 

smoother as compared to results from the 3D quadratic method.

The NCC and CNR values were also calculated for this breast data set as shown in Fig. 11. 

Similar to results obtained with the TM phantom, the coupled 3D sub-sample speckle 

tracking algorithm outperformed the 3D quadratic sub-sample estimation algorithm in terms 
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of CNR (0.86 ± 0.13 vs. 0.85 ± 0.13; mean ± one standard deviation) and NCC values (0.78 

± 0.09 vs. 0.76 ± 0.09).

IV. Discussion

An important contribution of this work is the extension of a 2D algorithm [18] to 3D 

coupled sub-sample estimation. The initial results (see Fig. 10) showed that the coupled 

tracking method can further enhance strain image quality (i.e. lower noise and higher motion 

tracking accuracy) using conventional ultrasound signals. Furthermore, this advantage can 

be achieved with only slightly higher computational demands, i.e., an approximately 10% 

increase based on the data shown by Table III. We expect that the benefits of using a high-

quality sub-sample estimation algorithm will be even more pronounced if a displacement 

accumulation scheme (also known as multiple compression technique [6], [18], [39]) is used 

to estimate large tissue deformation. Recall that, in the framework of multi-compression 

tracking, we first track tissue deformations through a long sequence of echo data and then 

map all deformations back to the initial reference state through interpolations before 

accumulation. It is easy to see that lower quality displacements from the previous step affect 

the quality of the current step and, this effect will carry forward. Hence, we anticipate that 

the availability of the 3D coupled sub-sample tracking algorithm may help for estimating 

nonlinear elastic parameters in breast tissues [40], [41] and tissue-mimicking materials [42], 

potentially in 3D. Algorithmic optimization for tracking 3D large tissue deformation is on-

going.

In this work, GPU-accelerated motion tracking was applied to analysis of relatively large 

tissue deformation (e.g. 1–2%), while early work focused on either 2D SE [17], [19]–[21] or 

tracking thermal expansion [22], [23]. Particularly, we explored the utility of on-chip 

memory to further accelerate motion tracking. Recall that the storage capacity of on-chip 

memory is fairly limited (e.g. approximately 300KB for the K20 GPU). Thus, in order to do 

so, we chose two strategies: (1) bit compression for RF data and (2) reduction of the search 

range by a predictive search, similar to that described by Jiang and Hall [26]. By the 

combination of the bit compression and predictive search, we have achieved 5–8 frames/

second as indicated by Table III, equivalent to 1 volume of strain data in 20–30 seconds for 

an approximately 2.5 cm × 2.5cm × 2.5cm volume of interest. We stipulate that the above-

mentioned frame/volume rate is probably sufficient so that the proposed method may be 

used as an on-line post-processing method in a clinical setting: 20–30 seconds are on par 

with the time required to reconstruct a 3D ultrasound volume for visualization in the clinical 

workflow. The computational timing results of GPU-Versions 1–4 provided in Section III-A 

were based on a specific computer workstation configuration described in Section II-A. We 

repeated same calculations reported in Section III-A using a different computer workstation 

(NVIDIA K40 under a Dell 5600 workstation with 64GB memory and an INTEL E2560 12-

core CPU). Because the K40 GPU has 15% more SPs, the computational efficiency 

improved roughly by 10–20%, indicating our implementation can run faster given a GPU 

with higher clock speed, greater memory bandwidth, and more RAM.

In this work, we described the options chosen related to the construction of the GPU-

accelerated 3D sub-sample estimation algorithm (see Fig. 3) and provided justification for 
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our choices as a part of this feasibility study. However, the current GPU implementation can 

be further optimized. First, a well-known multi-resolution (coarse-to-fine) approach can be 

adopted to further reduce the computational cost, while maintaining the low rate of peak-

hopping errors. Second, our current approach was built on the single instruction, multiple 

data (SIMD) mode. Currently, a multiple instructions, multiple data (MIMD) mode is 

available. In the MIMD mode, additional instructions can be executed while one instruction 

is waiting for data loading to be completed. Therefore, MIMD mode may further improve 

the computational efficiency as demonstrated by others [19]. Third, a sum-table scheme 

developed by Luo and Konofagou [43] showed a significant speedup of 1D correlation 

calculation. If their work can be extended to the 3D correlation analysis on GPU our 

algorithm can benefit from such a sum-table scheme.

Since speckle tracking is a common element in ultrasound elastography methods, the 3D 

sub-sample algorithm may be applicable to other elastography methods such as the shear 

wave elastography (SWE) and acoustic radiation force impulse (ARFI) [1], [44]. 

Incorporation of a more accurate 3D sub-sample estimation method like ours will, perhaps, 

improve the estimation accuracy of shear wave speed or ARFI parameters (e.g. peak-

displacement).

It is also interesting to note that we used a median filter combining with a relatively large (6 

wavelengths long) tracking kernel for motion tracking. This is a reasonable choice because, 

with the increase of kernel length, the probability of peak-hopping errors became low [29], 

[45]. Thus, those sparse peak-hopping errors can be corrected using a median filter. 

Particularly, results by Chen, Shi and Varghese [45] have already shown that peak-hopping 

errors were minimal after a large (10 wavelengths long) window had been applied to track 

1D displacements. Certainly, general applicability of this approach requires more 

investigations.

Median filter has also been used for speckle tracking by Boctor et al. [22]. One notable 

distinction between theirs and ours is that the method by Boctor et al. applied the median 

filter after the sub-sample estimation had been completed. Consequently, the median filter 

was used to remove noise with a possibility of introducing biases to the resultant 

displacement estimates. Our method removes large errors at the integer level, as shown in 

Fig. 3. In order to avoid the potential biases after applying the median filter, the speckle 

tracking was redone at a reduced but still adequately large (i.e. a 7 × 7 × 7) grid in the Step 3 

(see Fig. 3 and Table I). Our observation was that, without this “re-tracking” process, 

displacement estimation errors will likely occur, particularly, in in vivo data where tissue 

motion is complex. As an example shown in Fig. 12, noticeable displacement estimation 

errors would have occurred (see the left column) if the the re-tracking process was not 

implemented. Furthermore, the errors were more pronounced in the lateral and elevation 

displacements (see Fig. 12).

V. Conclusion and Future Work

We have demonstrated that the improvement in speckle tracking can be accomplished by the 

adoption of a more accurate 3D sub-sample estimation method, as compared to the 
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conventional 3D quadratic sub-sample estimation algorithm. Significant accelerations (as 

much as a factor of 100) were achieved after we had migrated the coupled 3D sub-sample 

estimation method from CPU to GPU. Consequently, this work demonstrated that 3D data 

acquisition using an ABUS system can be used to generate SE data, potentially in a clinical 

workflow, given the reasonably high volume rate (20 seconds per volume covering a 2.5 cm 

× 2.5 cm × 2.5 cm volume of interest.

We also found that, among all four GPU implementations, computational efficiency was the 

highest once we loaded all required RF data into the shared memory space of the GPU (i.e. 

GPU-Version 4). Furthermore, such computational efficiency came with no compromise in 

strain image quality for data tested. Further developments will be focused on strategies for 

accumulations of large tissue deformation so that reliable nonlinear modulus inversion can 

be tested and, hopefully, validated in clinical studies.
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Fig. 1. 

An graphic illustration of the relationship among KERNEL, BLOCK and THREAD in 

CUDA. BLOCK(X) and T(X) stand for the Xth BLOCK and THREAD, respectively.
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Fig. 2. 

An pictorial illustration of memory hierarchy of typical GPU cards. SM-X denotes the Xth 

streaming multiprocessor and SMEM means the shared memory. L1 and L2 are Levels 1 and 

2 caches following standard definitions in computer architecture, respectively.
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Fig. 3. 

An illustration of the proposed speckle tracking estimation for estimating a plane of 3D 

displacements
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Fig. 4. 

A plot comparing computational time needed for Step 3 in the GPU-Version 2 algorithm. 

Four different tracking kernels were used and their sizes were in RF samples. Timing 

information was based on estimation of a single plane of (100 × 100) 3D displacements and 

RF samples were represented in three formats: 1, 2, and 4 bytes.
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Fig. 5. 

A plot comparing computational time needed for Step 3 using four different GPU-based 

variations: GPU-Versions 1–4. Testing was done to estimate a single plane of 3D 

displacements and four different tracking kernel sizes.
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Fig. 6. 

Plots comparing computational time between CPU-version and GPU-Version 4 for: (a) the 

entire speckle tracking process and (b) Steps 3–5 of the proposed algorithm (see Fig. 3). 

Testing was done using four different tracking kernel sizes and the computational time was 

estimated for 100×100 displacement vectors on the TM phantom under an 1% compression.
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Fig. 7. 

Axial displacement results from a TM phantom using (a) CPU-Version. (b)-(e) shows the 

displacement estimate difference (in micrometer) between the CPU-Version and the 4 GPU-

Versoins: (b)GPU-Version 1, (c)GPU-Version 2, (d)GPU-Version 3; and (e) GPU-Version 4.
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Fig. 8. 

Elastographic results from a TM phantom using two different sub-sample estimation 

algorithms (3D coupled [left column] vs. 3D quadratic [right column]): (a) A B-mode 

image; (b) and (f) are lateral displacement images, (c) and (g) are axial displacement images; 

(d) and (h) are elevation displacement images; (e) and (i) are axial strain elastograms. The 

white box in (a) indicates the ROI for displacement and strain estimation and, is the same as 

the image size in (B–I). Arrows point to visible displacement estimation errors and their 

impact on strain images. The manually-segmented contour in (e) was used to calculate CNR 

values based on Eqn. 3.
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Fig. 9. 

Estimated (a) NCC and (b) CNR values from the TM phantom using two different sub-

sample estimation algorithms: 3D coupled vs. 3D quadratic. The estimated NCC and CNR 

values (y-axis) were displayed with respect to frame numbers (x-axis). P#1 and P#2 stand 

for the corner target and the center target, respectively.
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Fig. 10. 

Elastographic results from a biopsy-confirmed breast fibroadenoma using two different sub-

sample estimation algorithms (3D coupled [left column] vs. 3D quadratic [right column]): 

(a) A B-mode image; (b) and (f) are lateral displacement images, (c) and (g) are axial 

displacement images; (d) and (h) are elevation displacement images; (e) and (i) are axial 

strain elastograms. The white box in (a) indicates the area from which displacements and 

strains were estimated and has the same size as sizes of plots (b) (i). Arrows on (a) point to 

the FA, while arrows on other plots point to visible tracking noise. The manually-segmented 

contour in (e) was used to calculate CNR values based on Eqn. 3.
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Fig. 11. 

Estimated (a) NCC and (b) CNR values from the FA breast lesion using two different sub-

sample estimation algorithms: 3D coupled vs. 3D quadratic. The estimated NCC and CNR 

values (y-axis) were displayed with respect to frame numbers (x-axis).
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Fig. 12. 

Displacement results from the in vivo FA using the 3D coupled tracking with and without 

the re-tracking strategy in Step 3: (a) and (d) are lateral displacement images, (b) and (e) are 

axial displacement images; and (c) and (f) are elevation displacement images. Images in the 

left and right columns are results with and without the re-tracking strategy. The tracking 

parameters used were same as those shown in Table I. Arrows point to visible tracking noise.
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TABLE I

Tracking parameters used in the tissue-mimicking and in vivo breast data. AL = axial length of the tracking 

kernel; LL = lateral length of the tracking kernel; EL = elevation length of the tracking kernel; ASR = axial 

search range; LSR = lateral search range; ESR = elevation search range; All numbers are in samples. “ASR=

−4~3” means that we searched 4 samples downward and 3 samples upward along the axial direction. Search 

regions in the other two directions followed the same convention, except different search directions.

Data Set

Phantom Data In Vivo Data

Tracking Kernel

AL=69 AL=69

LL=9 LL=9

EL=3 EL=3

Step 1

Centerline Tracking

ASR=−43~0 ASR=−51~0

LSR=−2~2 LSR=−2~2

ESR=−2~2 ESR=−2~2

Predictive Tracking

ASR = −5~5 ASR=−5~5

LSR=−2~2 LSR=−2~2

ESR=−2~2 ESR=−2~2

Step 2 Median Filter 7 samples in each direction 7 samples in each direction

Step 3 Search Range

ASR=−3~3 ASR=−3~3

LSR=−3~3 LSR=−3~3

ESR=−3~3 ESR=−3~3
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TABLE II

A summary of computational overhead (in millisecond) comparing 3 different data formats. GPU Version 2 

was used for the testing and the tracking kernel size was 69 samples×9 samples×3 samples.

Data Format CPU to GPU (millisecond) GPU to CPU (millisecond)

1 byte 3.6 <0.1

2 bytes 7.1 <0.1

4 bytes 14.0 <0.1
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TABLE IV

A Summary of CNR and NCC values (mean ± one standard deviation) comparing the 3D quadratic sub-

sample estimation (GPU-Version Quadratic) and the proposed 3D coupled sub-sample tracking method 

(GPU-Version 4) in the tissue-mimicking phantom

Corner Target Center Target

Quadratic Coupled Quadratic Coupled

CNR 1.27±0.29 1.33±0.27 3.43±0.61 3.61±0.57

NCC 0.889±0.017 0.893±0.017 0.940±0.027 0.944±0.031
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