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Abstract

We propose the first algorithm to compute the 3D Delaunay trian-
gulation (DT) on the GPU. Our algorithm uses massively parallel
point insertion followed by bilateral flipping, a powerful local op-
eration in computational geometry. Although a flipping algorithm
is very amenable to parallel processing and has been employed to
construct the 2D DT and the 3D convex hull on the GPU, to our
knowledge there is no such successful attempt for constructing the
3D DT. This is because in 3D when many points are inserted in par-
allel, flipping gets stuck long before reaching the DT, and thus any
further correction to obtain the DT is costly. In contrast, we show
that by alternating between parallel point insertion and flipping, to-
gether with picking an appropriate point insertion order, one can
still obtain a triangulation very close to Delaunay. We further pro-
pose an adaptive star splaying approach to subsequently transform
this result into the 3D DT efficiently. In addition, we introduce sev-
eral GPU speedup techniques for our implementation, which are
also useful for general computational geometry algorithms. On the
whole, our hybrid approach, with the GPU accelerating the main
work of constructing a near-Delaunay structure and the CPU trans-
forming that into the 3D DT, outperforms all existing sequential
CPU algorithms by up to an order of magnitude, in both synthetic
and real-world inputs. We also adapt our approach to the 2D DT
problem and obtain similar speedup over the best sequential CPU
algorithms, and up to 2 times over previous GPU algorithms.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modelling—Geometric algorithms I.3.1 [Com-
puter Graphics]: Hardware Architecture—Graphics processors

Keywords: Delaunay triangulation, incremental insertion, bilat-
eral flipping, star splaying, GPGPU

1 Introduction

The Delaunay triangulation (DT) has many desirable qualities that
make it useful in practical applications. Particularly, the DT is often
used to build quality meshes for the finite element method [Hueb-
ner et al. 2001]. In R

2, the DT avoids skinny triangles, while in
R

3 it minimizes the maximum radius of the minimum containment
spheres of the tetrahedra. These are useful properties for the starting
point of mesh generation. Therefore, many sequential algorithms
have been proposed to construct the DT in R

2 and R
3.
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Figure 1: At the end of the point insertion and flipping phase of our
algorithm, less than 0.05% of the facets, shaded in the figure, are
locally non-Delaunay .

To achieve higher performance, many parallel algorithms have been
designed, among which one popular approach is to use parallel in-
cremental insertion [Batista et al. 2010]. Starting from an initial
DT constructed from a subset of the input points, the rest of the
points are inserted and processed in parallel. To ensure correctness,
locking strategies are used, and more importantly when insertions
conflict with each other, all but one of them must roll back com-
pletely and try again later.

There are also attempts to use the GPU to speedup the construction
of the DT in particular, and of other fundamental geometric struc-
tures in general. The GPU uses a massively parallel architecture
with hundreds to thousands of processing elements to execute mil-
lions of threads simultaneously. Traditional parallel algorithms, in-
cluding the one mentioned in the previous paragraph, do not work
very well on this programming model, and instead a fine-grained
parallel algorithm with regularized work on localized data is pre-
ferred. Particularly, locking becomes very inefficient on the GPU,
while conflicts during point insertions become uncontrollable. A
recent work by Gao et al. [2013] uses massive parallel point inser-
tion followed by parallel flipping to obtain a data parallel algorithm,
but it only works for the 2D DT and the 3D convex hull problems.
As for the 3D DT, if many points are inserted before flipping, there
are two difficulties. First, there is no known approach to perform
flipping in 3D without getting stuck, or terminating with not too
many locally non-Delaunay and unflippable facets. Second, even if
only a small number of such facets remain, transforming the result
into the 3D DT is costly [Beyer and Meyer-Hermann 2006].

In this paper we show, to our knowledge, the first successful attempt
to address the two difficulties mentioned above to compute the DT
of a point set in R

3 using the GPU. Our algorithm consists of two
phases. In Phase 1, we perform parallel incremental insertion and
parallel flipping on the GPU to obtain a triangulation with very few
locally non-Delaunay facets; see Figure 1 for some examples. In
Phase 2, we adapt the star splaying algorithm by Shewchuk [2005]
on the CPU to obtain the DT. Our contributions are as follows:

• An approach of performing parallel point insertion and flip-
ping alternately, plus picking points nearest to the circumcen-
ters of the tetrahedra to insert, to significantly reduce the num-
ber of remaining locally non-Delaunay facets. This makes
further repairing practical.
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• An adaptive approach for the star splaying algorithm so that
the work performed is proportional to the amount of modifi-
cations needed in getting to the DT.

• Several key GPU techniques, such as handling exact compu-
tation and point location, to accelerate our implementation.
These are also of independent interest to implementing other
computational geometry algorithms on the GPU.

The implementation of our hybrid GPU-CPU algorithm outper-
forms all existing 3D DT implementations on the CPU by up to
an order of magnitude, for both synthetic and real-world data. By
adapting the approach of Phase 1 to solve the 2D DT problem on
the GPU, we also observe up to an order of magnitude speedup over
existing 2D DT implementations on the CPU, and up to 2–5 times
speedup over other GPU implementations.

In the following section, we first introduce some basic terminolo-
gies and a few related works. Section 3 and Section 4 detail our
algorithm and some implementation techniques. In Section 5 we
present the experimental analysis of our implementation, before
concluding the paper with the limitations and possible future works
in Section 6.

2 Preliminaries

In R
3, given a set S of points, the Delaunay triangulation (DT)

D(S) of S is a triangulation of S such that the circumsphere of any
tetrahedron in D(S) does not contain any other point in S. Given
a triangulation T of S, a triangle, or facet, f ∈ T is said to be
locally Delaunay if and only if it has only one link vertex, or each
circumsphere of the tetrahedron formed by f and one of its link
vertices does not contain the other vertex. Otherwise, the facet is
locally non-Delaunay. If every facet of T is locally Delaunay, then
T ≡ D(S) [Lawson 1987].

The bilateral flip in 3D is a generalization of the edge flip in
2D [Lawson 1977]; see Figure 2a. A 2-3 flip transforms two tetra-
hedra {acde, bcde} to three tetrahedra {abcd, abce, abde} while a
3-2 flip performs the reverse operation. We say that a configuration
is unflippable if the underlying space of the resulting tetrahedra is
larger than that of the original tetrahedra; see Figure 2b. Flipping a
locally non-Delaunay facet creates facets that are locally Delaunay.

There are several sequential approaches to construct the DT of
a given point set; among which the incremental insertion ap-
proach [Bowyer 1981; Watson 1981; Joe 1991] is the most popular
one since it has optimal time complexity, is easy to implement and
is extensible to higher dimensions. Most parallel DT algorithms,
particularly for multi-core systems, also follow this approach [Ko-
hout et al. 2005; Batista et al. 2010; Foteinos and Chrisochoides
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Figure 2: (a) Bilateral flips in 3D and (b) an unflippable configu-
ration.

2012]. For the GPU, there are also a few recent works to com-
pute the 2D DT [Qi et al. 2012] and the 3D convex hull [Gao et al.
2013]. However, the approach of using the digital Voronoi diagram
in Qi et al.’s work is not extensible to 3D due to the dualization be-
ing an invalid triangulation. The flipping approach used by Gao et
al. also does not work since flipping in 3D can get stuck as shown
by Joe [1989].

Guibas and Russel [2004] show that in practice, if vertices in a
DT move slightly, flipping to get back the Delaunay property sel-
dom gets stuck. On the other hand, flipping from a triangula-
tion constructed by first incrementally inserting all the input points
usually leads to a stuck configuration with a lot of locally non-
Delaunay facets. To solve the stuck configuration, Beyer and
Meyer-Hermann [2006] use an incremental destruction approach
to remove all the non-Delaunay tetrahedra, and use incremental
construction to patch the cavities. This requires a significant over-
head to build an acceleration structure for point search, and the ef-
ficiency is also dependent on the point distribution. Another way
to fix a stuck configuration of flipping is to use the star splaying
algorithm [Shewchuk 2005]. Unfortunately, directly using this ap-
proach leads to a lot of time spent constructing the convex stars of
all the vertices and checking for their consistencies.

3 Algorithm

From this section onward, point insertion refers to splitting the
tetrahedron containing the point, without any further modification
to the triangulation. Our algorithm for constructing the 3D DT con-
sists of two phases. In Phase 1, points are inserted in parallel in
batches, and parallel flipping is used to transform the triangulation
into a near-Delaunay triangulation. This phase is completely per-
formed on the GPU. In Phase 2, our adaptive star splaying algo-
rithm transforms the result of Phase 1 into the DT. This phase is
performed on the CPU since by using our algorithm, the work is
small.

3.1 Phase 1 – Parallel point insertion and flipping

Our algorithm constructs a triangulation of the point set S using in-
cremental insertion. A simple approach is to insert points in parallel
in multiple iterations. In each iteration, each tetrahedron with points
inside picks one of them to insert. After all the point insertions, the
facets in the triangulation are checked and locally non-Delaunay
facets that are flippable are flipped. This simple approach is similar
to that used by Gao et al. [2013] to construct the 3D convex hull.

This simple approach, however, leads to many locally non-
Delaunay facets in the triangulation after flipping, to the extent that
it is not practical to be corrected in Phase 2. Instead, we propose
to apply flipping after each iteration of point insertion. This has
two benefits. First, the earlier we flip, the easier to resolve the lo-
cally non-Delaunay facets, and thus less unflippable facets remain
when we get stuck, as shown in our experiment. Second, flipping
increases the number of tetrahedra significantly before the next it-
eration of point insertion. If no flipping is performed, before each
flipping iteration the number of tetrahedra in T is 3m where m
is the number of points inserted so far. By applying flipping after
each insertion iteration, the number of tetrahedra in T approaches
the expected value of 6.67m, the number of tetrahedra in the DT of
a uniformly distributed point set [Dwyer 1991]. This means that in
the next iteration we can insert more points in parallel, and thus less
iterations are needed. Besides, if we look at this problem as com-
puting the convex hull in lifted space, flipping in earlier iterations
increases the volume faster, so we expect that less flips are required.

Our proposed approach is detailed in Algorithm 1. In each itera-



Algorithm 1: Incremental insertion and flipping.

Data: A point set S
Result: D(S)

1 initialize T with a large enough tetrahedron t
2 for each p ∈ S do in parallel location[p]← t
3 while ¬Empty(S) do
4 for each p ∈ S do in parallel insert[location[p]]← p
5 for each t ∈ T with insert[t] 6= null do in parallel
6 split t using insert[t] and remove insert[t] from S
7 label all new facets to be checked

8 while there are facets to be checked do
9 for each facet f that needs to be checked do in parallel

10 if f is locally non-Delaunay and flippable then
11 flip f
12 label all updated facets to be checked

13 end
14 update the location of points in S

15 end
16 return T

tion, we first pick for each tetrahedron a point inside it to insert, if
any (line 4). Then we split the tetrahedron and update its neighbors
(line 5–7). We also label the new facets so that they are checked
in the subsequent flipping. The flipping is performed right after a
batch of points is inserted (line 8–13). We repeatedly check the
facets in T to find those locally non-Delaunay facets that are flip-
pable, flip them, and update the neighboring information. Finally,
we update the location of the points that are left in S if its old lo-
cation was split (line 14), to prepare for the next round of point
insertion.

In each iteration, when there are tetrahedra containing multiple
points, we need to pick one of them to insert. Typical options
are choosing randomly, or choosing one near the centroid of the
tetrahedron. Instead, we propose to insert the point that is nearest
to the circumcenter of that tetrahedron. The motivation is as fol-
lows. Constructing the DT is equivalent to constructing the lower
hull when the input points are lifted to R

4, i.e. the point (x, y, z) is
transformed into the point (x, y, z, x2+y2+z2). Inserting the point
nearest to the circumcenter of the tetrahedron is the same as insert-
ing the point furthest to the lifted face. In doing so, the volume of
the hull grows the most and is closer to that of the convex hull, thus
the number of flipping in the next phase can be reduced. Another
reason is that the point nearest to the circumcenter is also the fur-
thest from the vertices of the tetrahedron, i.e. the minimum distance
is maximum. Therefore, the facets created during the insertion are
of better quality and thus it is also easier for the subsequent flipping.
We show in our experiment that by applying this heuristic, not only
does the number of flips decrease, but the number of locally non-
Delaunay facets at the end of Phase 1 also decreases, thus reducing
the effort needed in Phase 2.

The result of this phase is a triangulation that is very close to the DT.
There are still facets that are not locally Delaunay but are all unflip-
pable. Using our strategy, this number is usually very small. Fig-
ure 1 shows the locally non-Delaunay facets at the end of Phase 1
during the DT construction of two 3D models.

3.2 Phase 2 – Adaptive star splaying

The star splaying algorithm used in this section to transform the
result of Phase 1 into the DT is adaptive, and is done sequentially
on the CPU. As we show in our experiment, the work needed here
is small and thus does not affect the performance of our algorithm.
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Figure 3: 2D illustration of adaptive star splaying. Only the
shaded region is modified.

There are three steps in our algorithm. Step 1 is to construct the
convex stars in R

4. Step 2 is to make the stars consistent by splay-
ing. Step 3 is to convert the stars into a triangulation. These three
steps are performed adaptively, with the goal that the work done
should be proportional to the actual changes needed.

The three key ideas of our adaptive star splaying algorithm are as
follows. First, consider a vertex s ∈ T and its star. If s is not in-
cident to any locally non-Delaunay facet, i.e. its star facets are all
locally Delaunay, then when lifted to R

4, its star is already convex.
Therefore, only stars of the vertices that are incident to some locally
non-Delaunay facets are not yet convex and need to be corrected.
Other stars can be derived directly from T without any modifica-
tion. Second, inside each star that is reconstructed, only the tetra-
hedra that do not appear in T need to be checked for consistency,
since those that are in T should already be consistent. Third, only
the stars that are modified need to be converted and patched back
into T . These ideas are illustrated in Figure 3. Applied correctly,
these three ideas help us achieve the goal mentioned earlier.

3.2.1 Building the initial stars

We only rebuild the stars of the vertices that are incident to some lo-
cally non-Delaunay facets. These vertices are called failed vertices.
Since the locally Delaunay checks on all facets have been done on
the GPU during the flipping, we use the GPU to collect those failed
vertices and pass it to the CPU.

A naı̈ve approach to construct the star of a vertex s is to find all
its neighbors in T and insert them one by one using the Beneath-
Beyond method. This, however, is very costly because a vertex may
have many neighbors. Also, it is wasteful since the star of s in T
should already be very close to be convex. Now consider the star
of T lifted to R

4. Since any vertex s is an extreme vertex, the star
of s is contained in a half-space. Thus, there exists a hyperplaneH
near s in R

4 that cuts through the star of s. This intersection is a
polyhedron P , and the problem of constructing the convex star for
s is equivalent to making this polyhedron the convex hull. Figure 4
illustrates this in R

2 lifted to R
3. In the following discussion, the

term “vertical” means along the lifting direction.

Claim 1. The polyhedron P onH is star-shaped w.r.t the intersec-
tion ofH and the vertical line through s.

Proof. We sweep each tetrahedron t in the star of s in R
3 along

the vertical direction, forming non-overlapping wedges in R
4. Note

that this is the same as sweeping the tetrahedra in the lifted star of s.
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Figure 4: Constructing the convex star of s in R
2 lifted to R

3.

Thus, these wedges intersectP at some non-overlapping tetrahedra,
while the vertical line through s intersects H at a point s′ that is
inside P and is a vertex of all these tetrahedra. The boundary of the
polyhedron P is actually the link of s′. Therefore, P is star-shaped
w.r.t to s′ onH.

This claim allows us to use the Flip-Flop algorithm [Gao et al.
2013] to compute the convex hull of P , which is equivalent to com-
puting the convex star of s. That is much more efficient than con-
structing the convex stars from scratch. We retrieve the link trian-
gulation of s from T , and apply Flip-Flop to transform it into a
convex star in R

4. The hyperplane H is used for explanation only,
and it needs not be explicitly computed. The actual orientation tests
can be done directly in R

4 with respect to the point s.

3.2.2 Adaptive splaying

The splaying step is done as described by Shewchuk [2005]. We
repeatedly check for each tetrahedron abcd in the star of a whether
it exists in the star of b (and similarly c and d). If not, we insert a,
c and d into b’s star using the traditional beneath-beyond method,
in an attempt to splay it wider to include the tetrahedron. If any
insertion fails, it implies that the corresponding point is enclosed
by the star of b, and some vertices on the link of b is inserted into
the star of a to splay that star further, thus removing tetrahedron
abcd. During this step, we may need to access some stars which
were not constructed in the previous step. We simply retrieve these
stars from T , since they are already convex.

If we check all the tetrahedra created in the previous step for consis-
tency, we need to pull in the stars of all the vertices incident to the
failed vertices. This might turn out to be unnecessary if these stars
are still consistent. We observe that if a tetrahedron already exists in
T then it need not be checked since any three of its vertices should
have already be on or inside the convex star of the fourth one. Thus,
during the Flip-Flop in the previous step, we only label the tetrahe-
dra that are modified, from which we start the consistency check in
this step. This reduces the number of checks as well as the number
of stars that need to be retrieved from T .

3.2.3 Patch the triangulation

After the stars are consistent, T needs to be updated. Consider the
set Tp of all tetrahedra in T we have previously used to build the
stars, and let Tn be the set of tetrahedra we can derive from the set
of new stars after splaying. During the star construction, we keep
a map between the tetrahedra in the stars and the corresponding
ones in T . From that, we find the set of newly created tetrahedra
T+ = Tn \Tp and the set of deleted tetrahedra T− = Tp \Tn. We
remove the tetrahedra in T− from T , and add those in T+ to T .

Next we update the connectivity between the tetrahedra. We do
not need to process those in Tp \ T

−, which are the old tetrahedra

that still survive. Instead, for each tetrahedron t in T+, we set its
4 neighbors and also update the neighbors to point to t using the
connectivity from the stars. This way, for the tetrahedra in Tp \T

−

that are adjacent to some new tetrahedra, the connectivity is updated
correctly. As a result, we only update the portions of T that are
changed. After this step, the resulting triangulation is the DT.

4 Implementation details

In this section, we highlight some implementation techniques for
our proposed algorithm. The discussion includes the following top-
ics: updating the location of each point during flipping, performing
each flipping iteration efficiently on the GPU, improving the mem-
ory access performance, and handling exact arithmetic.

4.1 Point location

The location of the points that are not yet inserted is updated at two
places: after we insert one batch of points, and after we perform
the flipping. The first case is simple, since each tetrahedron being
inserted is split into four tetrahedra, and points inside are relocated
into these new tetrahedra using the orientation predicate. This is
done right after point insertion.

For the update after flipping, a simple approach is to update after
each flipping iteration. This, however, is not GPU friendly, since
all the points need to participate in the relocation step but only few
of them are affected by the flips in this iteration. Instead, we record
all the flips done in the flipping loop into a directed acyclic graph
(DAG), and use this data structure to relocate the points; see Fig-
ure 5. This history DAG stores the evolution of the triangulation
during the flipping. Each node represents a flip, containing the in-
dices of the 5 vertices and the three tetrahedra involved. Note that
we reuse the tetrahedra indices, so a 2-3 flip transforms {t1, t2}
to {t1, t2, t3}, and vice versa. Each node has up to three point-
ers {n1, n2, n3} that point to the nodes corresponding to the future
flips that modify the tetrahedra created in this flip.

The history DAG is constructed as follows. During the flipping, we
record all the flips as nodes in the DAG, without pointing them to
each other. After that, we build the connectivity by processing the
flipping iterations bottom up; see Algorithm 2. We use last[t] to
store the last flip node that modifies t. From bottom up, the flips
in each iteration are processed in parallel. For each flip f creat-
ing tetrahedra t1, t2 (and possibly t3), we update the corresponding
node in the DAG. We point that node to the two (or three) nodes
that correspond to the future flips that modify its tetrahedra, using
the last array (line 6, 8). Then, we update the last array accordingly
(line 7, 9). By processing the flipping iterations from bottom up,
setting the pointers are coherent memory writes.

To update the point locations using the history DAG, each thread
processing a remaining point s starts from its location t and fol-
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Algorithm 2: Construct the history DAG from the list of flips.

1 let k be the number of flip iterations performed
2 initialize last[t] = null for all tetrahedra t
3 for i = k to 1 do
4 for each flip f performed in iteration i do in parallel
5 Let x be the corresponding node in the DAG
6 x.n1 = last[x.t1], x.n2 = last[x.t2]

7 last[x.t1] = last[x.t2] = x
8 if f is a 2-3 flip then x.n3 = last[x.t3]

9 else last[x.t3] = x

10 end

lows the nodes in the history DAG from last[t] till it reaches a null

pointer. At each flip node we use one (or two) orientation tests
to determine the new location after that flip. The last tetrahedron
recorded is the new location of s.

4.2 Flipping: Compaction or collection

Consider the flipping loop at line 8–13 of Algorithm 1. We assign
one thread per tetrahedron, checking its four facets if they are la-
beled. Any duplicate checks caused by two tetrahedra sharing a
facet can be avoided by comparing their indices. The problem is
that after a few iterations, many tetrahedra have no more facets to
be checked, so many threads are idle thus reducing the efficiency
due to thread divergence. Two solutions are possible.

The first solution is to compact the list of tetrahedra after each it-
eration. We label the tetrahedra that need to be checked in this
iteration; they are called active tetrahedra. We use parallel stream
compaction to compact all the active tetrahedra before launching
the kernel to check them. This is costly near the end of the flipping
where few tetrahedra are involved.

The second solution is to collect the tetrahedra to be checked in
the next iteration during the flipping. Each flip modifies at most 3
tetrahedra, so we pre-allocate an array of size 3 times the number
of active tetrahedra in this flipping iteration. Each flip writes down
the tetrahedra that it modified into this array. The array is then
compacted and used in the next flipping iteration. This strategy
scales well with the number of active tetrahedra in each iteration,
but it also shuffles the order of the tetrahedra to be checked, and
thus the memory access is not in order.

In our implementation, we combine these two approaches. In the
first few iterations when the number of active tetrahedra is still very
large, we use the first strategy. When this number drops to below a
certain threshold, we switch to the second strategy.

4.3 Memory access optimization

We use two approaches to rearrange the data so that the GPU cache
is better utilized during point insertion, point relocation, and flip-
ping. First, we observe that during point insertion and relocation,
each thread processing a point needs to access the tetrahedron con-
taining that point, including the coordinates. We sort the input
points along the Hilbert space filling curve. As a result, points in the
same tetrahedron tend to stay near each other in the point list and
are processed by adjacent threads, so the access by these threads
are cached. The same benefit applies to the point relocation, where
nearby threads tend to travel the same path in the history DAG.

Second, during flipping, each thread processing a tetrahedron also
accesses its neighbors. Ideally we also want the tetrahedra to be
spatially sorted. However, flipping modifies the tetrahedra, and to

sort again after each iteration is too costly. Instead, we sort the
tetrahedra after each point insertion iteration to benefit the next few
flipping iterations which are the most expensive ones. The sorting
is done using for each tetrahedron the smallest index of its vertices.

4.4 Exact arithmetic and robustness

Our algorithm relies on two predicates, the orientation predicate
and the insphere predicate, to make decisions. To deal with nu-
merical error, we adapt Shewchuk’s implementation of exact pred-
icates [Shewchuk 1996b] on the GPU. Each predicate consists of
two parts: a fast check, which uses floating point arithmetic, and
an exact check, which uses floating point expansion. Most of the
threads do not need to go into exact computation, so this causes
thread divergence. Besides, each exact computation requires a lot
more temporary memory, and hence the number of threads we can
launch is much smaller. If both checks are done in the same ker-
nel, the threads performing the fast checks will be slowed down.
Furthermore, we use the simulation of simplicity method [Edels-
brunner and Mücke 1990] to deal with degenerate input, and this
causes further load unbalance among the threads.

To handle this divergence, we split each kernel that performs a pred-
icate into two and launch one after the other. In the first kernel,
only fast checks are used, and threads that need exact checks are
marked. In the second kernel, the marked threads perform the exact
check. Moreover, we only use exact computation for flipping itera-
tions near the end of the algorithm, effectively pushing all the flips
that involve degenerate configurations to be processed together.

When launching the kernel to perform the exact checks, very few
threads actually have work to do. Instead of using stream com-
paction after the kernel performing the fast checks, we use on-the-
fly compaction on shared memory right in this kernel. Threads in
the same block do the compaction on shared memory, and then one
thread performs an atomicAdd to get a global offset to output the
compacted result to global memory. Since the number of exact
checks needed is usually not very large, global memory access is
reduced.

5 Experimental results

We implement our algorithm using the CUDA programming model
by NVIDIA [Nickolls et al. 2008]. All the experiments are con-
ducted on a PC with an Intel i7 2600K 3.4GHz CPU, 16GB of
DDR3 RAM and an NVIDIA GTX 580 Fermi graphics card with
3GB of video memory, unless otherwise stated. We first com-
pare the performance of our implementation, termed gDel3D, with
CGAL 4.2, the fastest sequential 3D DT library on the CPU. Sub-
sequently we analyze the effect of the techniques we propose. All
implementations used are compiled with optimization enabled.

5.1 Running time comparison

We create synthetic data by generating points randomly in the uni-
form, Gaussian, and three other distributions. In the thin sphere dis-
tribution, points lie in between the surface of two balls of slightly
different radius. In the grid distribution, points are on a grid of size
5123. In the sphere distribution, points are cospherical. The lat-
ter two distributions are degenerate cases. We also use points from
several models of real-world objects obtained from the Stanford 3D
Scanning Repository, the Georgia Tech Large Geometric Models
Archive, and the Princeton Suggestive Contour Library. In these
models, points are usually not well distributed, and the amount of
degeneracy ranges from moderate to high.
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Model # Points

Armadillo 172,974 0.4 6.1

Angel 237,018 0.5 6.7

Brain 294,012 0.5 7.6

Dragon 437,645 0.9 7.1

Happy Buddha 543,652 1.1 7.2

Blade 882,954 1.8 6.7

Asian Dragon 3,609,600 5.4 9.2
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Figure 6: The running time and speedup of gDel3D compared to CGAL on (a) synthetic point distributions and (b) real-world data.
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Figure 7: Time breakdown of gDel3D with different point distribu-
tions.

Synthetic data

Figure 6a shows the running time and speedup of gDel3D over
CGAL on different point distributions, with the input size ranging
from 105 to 15× 105. The running time increases linearly with the
input sizes, with the performance on the thin sphere and the grid
distribution being very close to that of the uniform and the Gaus-
sian distribution. This is the result of our careful handling of exact
arithmetic on the GPU. This also means that gDel3D is not much
affected by the distribution of points. The sphere distribution needs
more time since the amount of exact computation required is very
high. Nevertheless, for all distributions, the speedup compared to
CGAL starts at 4–6 times, and quickly rises to 8–10 times when the
number of points increases. Particularly for the two pathological
distributions, not only that gDel3D can handle them robustly, but
the speedup over CGAL is even higher.

Real-world data

Figure 6b shows the running time of gDel3D on some 3D models
and a comparison with that of CGAL. Clearly, even when the points
are non-uniformly distributed, gDel3D can handle them with ease.
The speedup ranges from 6 to 9 times, even for models that contain
a lot of degeneracies such as the Blade model.

5.2 Detailed analysis

Figure 7 shows the percentage of running time taken by different
tasks in our implementation, including Phase 1 and Phase 2, on
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Figure 8: The number of stars (in percentage of the number of
points) constructed in Phase 2.

different point distributions with 106 points. These tasks are insert-
ing points, flipping, relocating points, sorting, and splaying. As we
expect, in the uniform, the Gaussian and the grid distribution, ma-
jority of the running time is spent in flipping. Also, by using the
history DAG, although the number of flips is so high, the point re-
location task still takes quite a moderate amount of time. It would
take nearly two times longer if the DAG is not used.

In the thin sphere distribution we start seeing some difference. Be-
ing a very non-uniform point distribution, the flipping has more
difficulty reaching the DT, and thus more work remains to be done.
Therefore, the star splaying takes a bigger portion of the running
time. In the pathological case with points being cospherical, the
adaptive star splaying time dominates the total running time.

To further understand the behavior of our algorithm, we look at
the number of stars participating in the adaptive star splaying in
Phase 2. Figure 8 shows the number of stars constructed for the
failed vertices, as well as the number of additional stars taken from
the triangulation during the splaying. In this experiment we use
5 × 105 points for the synthetic inputs, and the Happy Buddha
model, which has approximately the same amount of points, as a
real-world input for comparison. As can be seen, on the first three
distributions, the number of stars initially constructed is very small,
only about 500 stars, and less than 200 additional stars are involved
in the splaying. On the thin sphere and the sphere distributions,
significantly more stars are involved, but still less than 1.5% of the
number of input points in total. The same applies to the real-world
test case. Note that the sphere distribution is an extreme case.
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Figure 9: Comparison between the InsFlip and the InsAll strategy.

5.3 InsFlip or InsAll

We analyze the advantage of using our strategy of alternating be-
tween point insertion and flipping (termed InsFlip) to the naı̈ve ap-
proach of inserting all points before flipping (termed InsAll). Points
are randomly generated from the uniform distribution. Instead of
focusing on the number of locally non-Delaunay facets remaining
after Phase 1, we analyze the number of failed vertices, whose stars
need to be constructed in Phase 2. This number directly affects the
running time of Phase 2. The chart in Figure 9a uses log-scale be-
cause the difference is too large. The InsFlip strategy significantly
reduces the number of unflippable facets at the end of Phase 1, and
thus the number of failed vertices reduces by nearly two orders of
magnitude. In addition, the number of flips is reduced by about
40%, as shown in Figure 9b. This is the main reason why our hybrid
approach is practical, as otherwise Phase 2 would take too long.

5.4 Point insertion

We also compare our choice of picking the point near the circum-
center of the tetrahedron to insert, with two strategies that are more
common: picking the point near the centroid of the tetrahedron,
and picking randomly. Our experiment shows that for points in a
uniform distribution, inserting near the circumcenter is similar to
inserting near the centroid, and it reduces the number of failed ver-
tices by more than 2 times compared to picking randomly. Whereas,
for points in the real-world models, our strategy reduces this num-
ber 2–4 times compared to both inserting near the centroid and
inserting randomly. It also reduces the number of flips by 20%.
Therefore, for these test cases, the total running time of gDel3D
decreases by around 2 times when using our strategy.

5.5 Scalability with different GPUs

We run gDel3D on several different GPUs to demonstrate its scal-
ability to the computation power of the hardware. Figure 10 shows
the running time with 106 input points in uniform distribution.
Clearly, gDel3D runs significantly faster on a better GPU, with a
speed up of 3x going from the GTS 450 to the GTX 580. When the
running time is normalized by the number of cores and their fre-
quencies, we notice similar performance for the GTS 450 and the
GTX 460, and slightly higher performance for the GTX 470 and
the GTX 580, which has a slightly different architecture. However,
the normalized time of the GTX Titan is significantly higher. This
is because on the Titan with very high computation power, gDel3D
is actually memory bound, hence there is only about 30% speedup
over the GTX 580.
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Figure 10: The running time of gDel3D on different GPUs.
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Figure 11: Speedup of gDel2D over GPU-DT, Triangle and CGAL.

5.6 2D Delaunay triangulation

Our algorithm can easily be adapted to compute the 2D DT. We only
need to use Phase 1 because flipping never gets stuck in R

2 [Law-
son 1977]. We compare our implementation, termed gDel2D, to
CGAL, Triangle [Shewchuk 1996a] and GPU-DT [Qi et al. 2012].
Figure 11a shows the speedup of gDel2D on the uniform point dis-
tribution. In general, gDel2D outperforms Triangle by up to 10
times, CGAL by more than 6 times, and this speedup increases as
the number of points increases. Also, it is 2 times faster than GPU-
DT. Similar behavior is observed with the Gaussian distribution.

We also look at the performance on the thin circle distribution,
which is similar to the thin sphere distribution; see Figure 11b. This
experiment highlights the advantage of gDel2D over GPU-DT. In
this distribution, it is very difficult for the digital Voronoi diagram
to accurately approximate the continuous one, thus GPU-DT is sig-
nificantly slower. Whereas, similar to the 3D case, gDel2D achieves
similar speedup over CGAL and Triangle, and is more than 5 times
faster than GPU-DT, even when GPU-DT uses a large grid of size
81922 to compute the digital Voronoi diagram.

Our algorithm in the 2D case is similar to the algorithm presented
in the work of Gao et al., except some techniques such as inter-
leaving the point insertion and the flipping and sorting the input
points and triangle list. Figure 12a compares the time breakdown of
gDel2D when using InsAll and InsFlip strategies respectively. The
InsFlip strategy reduces the flipping time by about 30%, with neg-
ligible overhead in the point insertion and relocation. Furthermore,
by using sorting, the performance of the point insertion increases
by more than 2 times, while that of the point relocation increases
nearly 4 times, as show in Figure 12b. The extra cost of sorting is
insignificant compared to the benefit.
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Figure 12: Time breakdown of gDel2D.

6 Conclusion

In this paper, we show that parallel bilateral flipping is practical to
construct the DT in 3D on the GPU. We propose two techniques, al-
ternating between parallel point insertion and flipping, and picking
points near the circumcenter of the tetrahedra to insert, to reduce the
number of locally non-Delaunay facets when flipping gets stuck.
This allows us to get very close to the DT while still enjoying the
benefit of a flipping algorithm being very GPU friendly. From the
result after flipping, we introduce a modification of the star splaying
algorithm to adaptively transform the triangulation into the DT. Fur-
thermore, we present several GPU implementation techniques, such
as using shared memory compaction when handling exact compu-
tation and constructing the history DAG for parallel point location
after flipping. Our implementation outperforms the best 3D DT im-
plementation on the CPU by up to an order of magnitude in both
synthetic and real-world data. It is also robust to degenerated in-
puts, as shown in our experiment.

We also adapt our approach to the 2D problem, and our experi-
ment shows that it is much better than the previous works, espe-
cially when handling non-uniform point distributions. We believe
our approach can also be used when moving to higher dimensions,
as well as when handling point set with weights (i.e. regular trian-
gulations). It is our future work to experiment with these problems.

One limitation of our algorithm is that for some pathological cases
such as when input points lie on two non-intersecting lines in 3D, or
on a circle in 2D, very few flips can be performed in parallel. This
is because in many places, one flip needs to be done before another
one can be discovered. This situation, however, rarely happens in
practice. Besides, our implementation is currently memory bound,
especially on some GPUs with very high computation power, so it
will benefit from improvements in the data structure and memory
access optimization.
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