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Introduction

Nowadays, robot manipulators have become increasingly 

important for automation, and a lot of researches have been 

disused and developed, such as painting, welding, machining and 

handling. Recently, robot manipulators are designed for more 

difficult and complicated tasks, such as rescuing task, cleaning in 
harsh environments, and training prosthesis. Therefore, redundant 

manipulators are needed to handle these complicated tasks. A robot 
is termed kinematically redundant as it possesses more degrees of 
freedom (DOF) than the required one to execute a given task. When 
the manipulator is not fully constrained for the trajectory planning, 

there are chaotic inner motions with unpredictable arm configuration 
if kinematic redundancy occurs. Most of the research on kinematic 
redundancy uses these extra degrees of freedom to deal with other 

task-priority problems; a functional constraint task is imposed to be 
satisfied along with the end-effector task; typical constraints include 
cost energy minimization,1–3 avoidance from obstacles,4–7 improved 

manipulability,8–9 singularity avoidance,10–12 and repetitive motion 

with joint-velocity limitations.13,14 In general, an analytical inverse 

kinematics relationship for redundant robots may not be obtained by 
a straight forward derivation. A class of techniques for solving the 
inverse kinematics of the redundant manipulators was suggested 
using the pseudo inverse of the Jacobian matrix through the rates at 

which the joints are driven. The pseudo-inverse method is also called 
the generalized inverse method and it is first introduced to the robot 
control problem by Whitney.15 

The pseudo-inverse of the Jacobian matrix guarantees an optimal 
reconstruction of the desired end-effector velocity with the minimum-

norm joint velocity in the least squares sense. Moreover, Klein et 
al.16 were the first to observe the other undesirable property of the 
pseudo-inverse method that the repetitive end-effector motions do 
not necessarily yield repetitive joint motions. Baillieul17 proposed 

an extended Jacobian matrix, which is a square matrix contains the 

additional information to optimize a specified cost function. The 
algorithms, which are based on the extended Jocobian matrix, have 

a locally cyclic property. Many researchers have been produced in 
the last few years in this topic. A large volume of research has been 
proposed in this topic in the last few years such as the quadratic-
programming method, optimal-perturbation method,4 Non-dominated 
Sorting Genetic Algorithm (NSGA-II) and Differential Evolution 
(DE) methods,18 a multi-objective genetic algorithm for obstacle 
avoidance,19 the closed-loop inverse kinematics algorithm with GA 
(CLGA) method20 and hybrid-motion planning method.21 These 

constrained optimization problems are very complicated, especially 

as the robot manipulator has hyper-redundant degrees of freedom. 
Therefore, how to increase the computation performance is a big 

challenge for the redundant robots in real-time implementation. To 
solve singularity of redundant robot with task priority problems, this 
paper proposed a CUDA evolution algorithm to implement real-time 
motion planning. Genetic algorithm (GA) is a stochastic optimization 
method for solving many practical problems in engineering, science 

and business domains, but its execution time may become a limiting 

factor for some huge optimization problems. Fortunately, the evolution 

of natural population is very suitable with a parallel architecture, 

because the most time-consuming fitness evaluations can be performed 
independently for each individual in population. There are various 

types of parallelization in GAs: master-slave models, coarse-grained 
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Abstract

Kinematic redundancies of robotic manipulator provide many benefits for motion 
planning, such as collision avoidance, improved manipulability, flexibility, and 

singularity avoidance. Based on the task priority, the motion planning of a redundant 
robot involves solving the associated optimization problem according to the desired 

criterion. Several kinematic techniques for redundant manipulators have been 
proposed. However, the computing time of solving the optimization problem with 

multiple optimization objectives is too large to implement the motion planning in 

real-time. Therefore, more efficient optimization algorithms are needed for motion 
planning of redundant robots. This paper presents a new technique to solve the inverse 

kinematics of redundant manipulators using a GPU-based evolution algorithm. This 
algorithm combines the optimal perturbation method with a multi-objective function 
to solve the obstacle avoidance and trajectory tracking at the same time. Simulations 
and implementations for a self-design manipulator with eight joints considering the 
optimization with multi-objectives with obstacle avoidance and trajectory tracking are 
developed. The results reveal that the proposed evolution algorithm based on compute 

unified device architecture (CUDA) has the much higher performance than the optimal 
perturbation method. Simulation results also show that the proposed EAMP is 398 
times faster than the perturbation method for this case study. Experimental results 
using NI Compact RIO® validate the proposed method feasible for real-time motion 
planning of the redundant robot. 
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models, fine-grained models, hierarchical models, island models, 
and hybrid models. The emergence of many-core architectures for 
GPGPU provides the opportunity to significantly reduce the runtime 
of many complicated bioinformatics algorithms, such as Sequence 

and Genome Analysis.22 Using CUDA supplies the system based on 
commonly available and inexpensive hardware (CPU and GPUs) 
with more powerful high-performance computing power, which are 
generally not provided by conventional general-purpose processors. 
To obtain the optimal inverse kinematic solution for motion planning 
of a redundant robot with obstacle avoidance, the computation load is 

very large if the grid search algorithm is used. The motivation of this 

work is to use a real-coded genetic algorithm (or called evolutionary 
algorithm, EA) to replace the grid search algorithm to speed up the 
computation. Genetic algorithm (GA) is a stochastic optimization 
technique based on the idea of natural evolution and its search 

process based on natural selection developed by Holland.23 Nowadays 

graphic processing units (GPU) is emerging as one of the most 
powerful parallel processing devices due to increasing requirements 

for real-time 3D rendering. GPU have evolved into very powerful 
processors, which are especially well suited to address problems that 

are expressed as data-parallel computations, and their price remained 
in the range of consumer market. GPUs are optimized especially 
for SIMD-type processing with massive parallelism. Additionally, a 
general-purpose computing on graphics processing units (GPGPU) is 
the means of using a GPU to perform computation in applications 
traditionally handled by the central processing unit (CPU). CUDA 
is the computing engine that is accessible to software developers 

through variants of industry standard programming languages, such 

as C with NVIDIA extensions and certain restrictions.24,25 CUDA has 
been enthusiastically received in the area of scientific research. For 
implementing the real-time motion planning of redundant robots, a 
CUDA-based evolution algorithm method is proposed to reduce the 
computing time and make the real-time computing possible. The paper 
is organized as follows. Section 2 introduces the inverse kinematics 
of redundant manipulators and the experimental equipment. Section 

3 presents the proposed EAMP based on compute unified device 
architecture (CUDA) programming to speed up real-time computation 
performance. Section 4 presents the experimental results for motion 

planning with obstacle avoidance in a workspace. Finally, Section 5 
draws the main conclusions.

Problem formulation 

A redundant manipulator possesses more degrees of freedom 
(DOF) than the required to execute a given task. Consider a redundant 
robot with n DOF and a vector of joint variables is denoted by 

1 2, ,...,
T

nq q q q =    

Dimensional task space, where the class of tasks are described by 

a vector with m variables, 1 2, ,...,
T

mr x x x =   . If the DOF of the joint 

space is more than the DOF of the task space, n>m, the manipulator is 

redundant and not fully constrained for the task. 

A redundancy for the redundant robot is defined as follows. 
,

r
N n m= − Where n>m however, the redundancy of a robot is not 

usually the same, but is determined with respect to a given task. For 
example, a planar robot with 3R joints (n=3) is redundant for the task 
of positioning its end-effector in the XY-plane (m=2), but not for the 
task of positioning and orienting the end-effector in the XY-plane 
(m=3). Another example is that the dimension of m-3 is required 
for a positioning task in 3D space. However, the dimension of m=6 

is required for this task where the robot performs the positioning 
and orienting task in 3D space, because there are 3 dimensions 
for positioning and 3 dimensions for orientation. Therefore, the 

redundancy of the robot is determined by the joint space’s and the 

task space’s dimensions. Consider the forward kinematic relation for 
a redundant robot defined as follows.

( )    :,
n m

r f q f R R→=                                                                (1)

The purpose of the inverse kinematics is to obtain q(t) that realizes 

the task: ( ) ( )( ) r t f q t= at all times t. In general, the inverse kinematic 
relation is nonlinear and an analytical inverse relationship may not be 

obtained easily. However, the redundant robot has infinite solutions 
even for r(t)=constant as the manipulator is not fully constrained. 

During the tracking task is executed via the end-effector motion, the 
redundant robot arm may have a self-motion that can be chosen so as 
optimize the specified cost function in some manipulator’s behaviors, 
such as obstacle avoidance or avoiding singularities. The meaning 

of the self-motion is defined as an arm reconfiguration in the joint 
space that does not affect the task variable r(t)= constant . The inverse 
kinematics problem with redundancies has historically been solved 
through the Moore-Penrose pseudo-inverse methods by Whitney.14 

By differentiating Equation (1) with respect to time, the differential 
relation between the andrq is as follows

.r J q=                                                                                             (2)

Where ( ) ( )( ) ( )  /J q f q t q t=∂ ∂  and J(q) is called the Jacobian 

matrix. For a redundant robot, the inverse kinematic relation of Eq. 
(2) can be obtained as follows.

q J r
+=                                                                                           (3)

Where is J
+ called the pseudo inverse or Moore-Penrose 

generalized inverse of J(q) always exists and is the unique matrix 

satisfying

( )
( )

T

T

JJ J J

J JJ J

JJ JJ

J J J J

+

+ +

+ +

+ +

=

=

=

=

                                                                                       (4)

If J is full (row) rank, the pseudo inverse can be obtained as 
follows.

( ) 1
T TJ J JJ

−+ =                                                                                   (5)

Else, it is computed numerically using the singular value 
decomposition (SVD) of J. However, q J r

+=  minimizes the norm 

of 
21

2
q and it is a particular solution of .J q r=  the general solution 

of .J q r=  is defined as follows.

( )
0

q J r I J J q
+ += + −                                                                           (6)

Where using ( )
0

I J J q+−  can obtain all homogeneous solutions 
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with respect to the associated homogeneous equation . 0J q = that 

causes self-motions. The matrix ( )I J J+− is the projection matrix 

with respect to 
0

q  in the null-space ( )Z J . Based on the null-

space method, the choice 
0

q can be obtained via a linear quadratic 

optimization and is computed based on a projected gradient as follows

( )
0 q

q H q= ∇                                                                                        (7)

where ( )
q
H q∇ is the projected gradient which realizes one step 

of a constrained optimization algorithm. For different task-priority 
problems, the objective function ( )H q can be designed based on the 

priority task.

( ) ( )( )det TH q J q=
                                                                        

 (8)

To solve this singularity problem, some researchers applied 

the Greville algorithm26 or the singular value decomposition SVD 

method27–29 to solve this singularity problem and the null-space 
methods are also used to solve this problem8,9,30 On the other hand, 

a redundant manipulator with degree-of-redundancy (DOR) is well 
suited to a multiple criteria problem besides the basic motion task, 
such as obstacles avoidance, torque minimization, dexterity measures, 

task priority control, energy minimization.1–13 

System description 

In this study, a robot manipulator with 8 DOFs is designed as 

shown in Figure1. (Tables 1) (Table 2) show the specification of the 
motors used for the system and the D-H parameters of the 8-DOF 
robot manipulator. Figure 2 shows the control architecture of this 

robot manipulator, where an NI Compact RIO 9074 is used as the 

real-time embedded controller for the whole system. The Compact 
RIO (cRIO) is a combination of a real-time controller, reconfigurable 
IO Modules (RIO), FPGA module and an Ethernet expansion chassis. 
The modules NI 9512, 9516 and 9505 are installed in the cRIO 

9074 for the purposes of controlling servo motors and DC motors 

in P-command, I-command drive and PWM-command. The motion 
commands, which are computed in the PC, are transmitted to cRIO via 
the internet. In this study, a real-time control code is developed in Lab 
VIEW and embedded in cRIO 9074 for the real-time implementation. 
The control architecture is divided into three parts, which are the 

supervisor control, the trajectory generator, and the hardware-in-
loop (HIL) control, and Figure 3 shows the block diagram of the 
whole system. The user can set the parameters into the system by the 

supervisor control block, such as the departure and destination, the 
increment or velocity constraints. After that, the supervisor control 
block transfers the command to the trajectory generator to produce the 
trajectory planning path. Finally, the HIL code in cRIO 9074 is used to 

make the robot manipulator track the desired trajectory and perform 
the priority task such as obstacle avoidance. 

Figure 1 Prototype of robot manipulator with 8DOF.

Table 1 The motor parameter of robot manipulator with 8DOF

 Motor type Gear reducer Related torque(Nm)

Joint 1 Servo motor 1:20 6

Joint 2 Servo motor 1:40 76

Joint 3 Servo motor 1:40 76

Joint 4 Servo motor 1:20 6

Joint 5 DC motor 0.09306 5.772

Joint 6 Smart servo 0.18056 6.4

Joint 7 Smart servo 0.16944 10.672

Joint 8 Smart servo 0.18056 6.4  

Table 2 The D-H parameters of the 8 DOF robot manipulator
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Figure 2 Controller architecture of robot manipulator with 8 DOF.

Figure 3 Software architecture of controller.

Cartesian trajectory tracking and motion planning 
with obstacles avoidance

To search the optimal motion planning of a predefined end-effector 
trajectory with obstacle avoidance, a multi objective optimization 

problem involves multiple objective functions and the optimization 

problem can be formulated as follows. 

( ) ( )
1

1 2

,...,
 

n

T
Minimize
q q

r r Φ Φ
∆


∆

                                                          (9)

Subject to ( )r t X∈  

where the set X is the feasible set of end-effectors’ coordinate 
points constrained by the desired trajectory in the Cartesian space. 

The first task is to minimize the tracking error and the cost function 

is chosen as ( ) ( )
21

2 refr t r t−  the optimization problem of motion 

planning for tracking is described as follows. 

( ) ( )
( ) ( )

2

1
1 ,..

1
 1 1

. 2, n

refMinimize
q k q k

r k r kΦ = + − +
∆ ∆

                                 (10)

( ) ( )
1

, ..., q
n

q k k∆ ∆ subject to ( ) ( ) ( ) ( )( )1 2, ,...., nr k f q k q k q k=  

and ( ) ( ) ,  1...., 1i i i
q M i nq k k− ≤ =  where ( )

ref
r k is the desired 

end-effector position, ( )r k is the actual end-effector position 
vector at the k-th sampling, and 

i
M is a positive scalar, which 

is used to limit the joint angle’s variation. The optimization is 

used to obtain the best inverse kinematic solution from the set 

( ) ( ){ ( ) }1 ,...., , 1...n i i iq k q k M q k M i n ∆ ∆ − ≤∆ ≤ =  so that the tracking 

error 
1

Φ  is minimized and the joint angle’s variation is limited in the 

permissible range in one sampling time. 

( ) ( )
( )

1

2
 min

,..., n

a q b
a robot

b obstacle

Minimiz

s

e
q k q k

 
 
 

− 
∈ 

 ∈ 

∆ ∆
                                         (11)

Eq. (10) describes the optimization problem to obtain the inverse 
kinematic solution for minimizing tracking error. To standardize the 
multi objective optimization problem, the second priority task of the 
obstacle avoidance in Eq. (11) is modified as follows. 

( ) ( ) ( )1
2 2

1
 

mi, . , n. . n a q b
a robot

b

Minimize
q k q

obst es

k

acl

Φ =
−

∈
∈

∆ ∆
                                 (12)

Solving a multi objective optimization problem is understood as 

a representative set of Pareto optimal solutions. One of the solving 
methods is formulating a single objective optimization problem to 

represent the multi objective optimization by linear scalarization such 

that optimal solutions to the single-objective optimization problem are 
Pareto optimal solutions to the multi objective optimization problem. 
In this study, the multi objective method using linear scalarization for 

the two task-priorities is described as follows

( ) ( )
( ) ( )

1

1 1 2 2

,...,
 

n

Minimize
q k q

w w
k

r r Φ + Φ
∆


∆

                                               (13)

Where the weighting factors of the objectives 0, 1, 2
i

w i> = the 

parameters of the secularization, and ε-constraint method is applied to 

this optimization as follows.

( ) ( )
( ) ( )

1

1 1 2 2

,...,
 

n

Minimize
q k q

w w
k

r r Φ + Φ
∆


∆

                                           (14)

Subject to ( )r t X∈ , ( )r
i i

εΦ ≤ For { }1,2i ∈

Where the parameters are the ε
i
 upper bounds of the objectives 

which are ( )
i

rΦ  to be minimized. Is the permissible zone for 

trajectory tracking tasks. X In this study, a multi objective genetic 

algorithm (MOGA) method is studied to solve this problem. First, the 
positioning error is defined as follows.

( ) ( )( ) ( )( ) ( )( )22 2

x y ze k e k e k e k= + +                                           (15)

Where ( ) ( ) ( ) ( )
T

r rr f re
x k y kr zk k  =

the trajectory references and the actual end-effectors’ 
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position are ( ) ( )( ) ( ) ( ) ( )   
T

x k y k z kr k f q k=   =

Therefore, the tracking for each direction can be defined 
as ( ) ( ) ( ) ( ) ( ) ( ),

x r y r
e k x k x k e k y k y k= − = − and 

( ) ( ) ( )
z r

e k z k z k= − . If the tracking error ( )e k is smaller than the 

permissible value ρ then the end-effectors’ position ( )r k is located 

in the permissible zone ( )( )r t X∈ . 

An evolution algorithm (EA) based motion planning method is 
proposed to produce the motion planning and trajectory tracking with 
obstacle avoidance. The processes for the proposed EA-based motion 
planning (EAMP) are described as follows. 

An initial population of EA is randomly composed of a large set 
of gene with chromosomes as described in Fig.4, where k is the time 
indexing, j is the joint indexing and i represents the index of the gene. 

The initial population is produced using the stochastic selection. The 

algorithm allocates a population of gene P
i
(0) using the stochastic 

selection from the permissible set at each step, where P
i
(0) is the 

ith gene, whose chromosomes are ( ) ( ) ( )1 20 0 ... 0i i niq q q 
  which is 

defined as the gene ( )0
i

p . The gene ( )0
i

p whose chromosomes are 

constrained in the permissible sets ( )0  ji j
q M∆ ≤ .

Filter the gene ( ) ( ) ( ) ( )1 2 ...i i nii
P k q k q k q k =   in this population 

to satisfy the following condition. 

( )( ) ( )( ) ( )( ) ( )( )22 2

0
    x y zr k e k e k e k ρΦ + ≤= +                              (16)

Subject to ( ) ( )( ) ( ) ( ) ( )( )1 2 ...i i i nir k f P k f q k q k q k = =    

( ) ( )1    11... , ...
 ,  ji i j

q k q k M j n i N− − ≤ = = where n is the number 

of joints, N is the number of the population and ρ is the radius of 
the permissible zone. After this filtering process, the permissible 
chromosomes should satisfy the condition where the end-effector 

positions are located in the region of ( )( )
0

r k ρΦ ≤ . 

The objective function ( ) ( )
2 21 1

w w r
r

+ ΦΦ
is used to evaluate the 

fitness of each individual in this population. The set of fitness values 

are used to sort the population, eliminate the badly-fitted individuals, 
mate the best-fitted chromosomes, and then propagate the “good” 
genes (parameter combinations) to the upcoming generation. These 

processes are repeated until reaching a certain number of generations. 

The procedures of the RGA are described as follows. 

Compute the fitness function: the fitness values are used to sort the 
population, eliminate the badly-fitted individuals; the individual with 
the higher fitness function has the better survival chance. In this case, 
the fitness function is defined as follows 

( )( ) ( )( ) ( )( )( )1 1 2 21 /i i iFit P k w P k w P k= Φ + Φ                                 (17)

a. Selection: determine pairs of genes for mating. The gene with 
higher fitness value has the higher priority to become the 
parents for the evolution. 

b. Crossover with the random selection: the genes after the 
selection operation can produce the next generation using the 

crossover operation. Whether the crossover operation performs 

is determined by the crossover rate and the crossover rate is 

defined as 0.8 in this study. The crossover method used in this 
study is a linear combination of two vectors (chromosomes) 

with two random weighting variables as follows. 

( )

( )
1 21

2 1 2

 . 1 .

 . 1 .

P P

C P

C

P

α α

β β

+ −

= + −

=
                                                        (18)

Where P
1
 and P

2
 are the gene of the parents; 1 C and 2 C are 

the gene of the children; , αβ are the uniformly distributed random 
variables between 0 and 1. 

c. Gaussian mutation operation: if the offspring are determined 
by the crossover and selection operations, the optimization 

may fall into local minimum. Using the mutation operation can 

maintain genetic diversity from one generation of a population 

to the next. Mutation occurs during evolution according to 
mutation probability. The mutation probability should be set 

low to avoid making the RGA turn into a primitive random 
search and the mutation probability is defined as 0.03 in this 
work. If the gene is chosen to perform the mutation operation, 
its chromosomes are obtained as follows.

( ) ( )1 .
ji ji j

q k q k Y M= − +                                                  (19)

Where Y is a random variable of the Gaussian probability 
distribution between -1 and 1 

j
M  is the upper bound of the angular 

change for the Joint j in one step. 

d. Reproduction with elitist strategy: after the above RGA 
operations, two elites in the parents’ generation are guaranteed 

to survive to the next generation.

Figure 4 Illustration of the i-th gene at the k-th sampling.

Ea-based motion planning for redundant 
robots based on cuda 

Genetic algorithm (GA) is a stochastic optimization method for 
solving many practical problems in engineering, science and business 

domains, but its execution time may become a limiting factor for 

some huge optimization problems. Fortunately, the evolution of 

natural population is very suitable with a parallel architecture, because 

the most time-consuming fitness evaluations can be performed 
independently for each individual in population. There are various 

types of parallelization in GAs: master-slave models, coarse-grained 
models, fine-grained models, hierarchical models, island models, 
and hybrid models. The emergence of many-core architectures for 
GPGPU provides the opportunity to significantly reduce the runtime 
of many complicated bioinformatics algorithms, such as Sequence 

and Genome Analysis.31 Using CUDA supplies the system based on 
commonly available and inexpensive hardware (CPU and GPUs) 
with more powerful high-performance computing power, which are 
generally not provided by conventional general-purpose processors. 
To obtain the optimal inverse kinematic solution for motion planning 
of a redundant robot with obstacle avoidance, the computation load is 

very large if the grid search algorithm is used. The motivation of this 

work is to use a real-coded genetic algorithm (or called evolutionary 
algorithm, EA) to replace the grid search algorithm to speed up the 
computation. Genetic algorithm (GA) is a stochastic optimization 
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technique based on the idea of natural evolution and its search process 

based on natural selection developed by Holland.29 The original GA 
operates using binary code of chromosomes, but RGA or evolutionary 
algorithm (EA) uses real-coded chromosomes.30,31 Figure 5 shows the 

procedure for the EA-based motion-planning method and the optimal 

solution ( ) ( ) ( )1 21 1 ... 1i i niq k q k q k
 • • •+ − +  

are determined at each 

tracking points in sequence. To implement real-time motion planning 

with obstacle avoidance, the EAMP is implemented on the CUDA 
target. Figure 6 shows the flowchart of CUDA for the proposed EAMP. 
In this study, the code is developed on Lab view IDE, but the CUDA 
code is performed in the GPU and only supported in C language. 
Therefore, the CUDA kernel code should be transferred into a DLL 

file first and then it can be executed in the GPU as the main code (in 
the host) calls the DLL function file. If the main code is executed 
in Labview to call the initializing population program (DLL file), 
then the DLL file would copy data from host memory to the global 
memory in the GPU, where the program is performed using CUDA 
kernel. After the CUDA code is finished in the GPU, the program 
would copy the result from the global memory to the host memory 

and finish the initial population process. Figure 7 shows the flowchart 
of the RGAMP in Lab view and the program from left to right are 
initial population, fitness function calculation, tournament selection, 
crossover and mutation. The main idea and the detail functions are 

described as follows. 

Figure 5 Procedure for the EAMP.

Initial population using CUDA 

The CUDA thread is different from PC thread. In order to generate 
the initial population in parallelism, the first thing is to determine 
how many core needed to use. In this study, the number of CUDA 
thread depends on the number of chromosomes as shown in Figure 

8. The main idea is to generate a lot of random value by M cores on 
CUDA target and each core generates random values using “FOR” 
loop where N is determined by the DOF of the redundant robot; MN 
× random values are generated finally. The pseudo random number 
generator (PRNG) is very important for the proposed Method, 
because the GPU cannot generate random seeds by time and random 
seeds are needed to be generated on host. There are many different 

ways for PRNG.32 Before 2010, CUDA libraries did not include the 
function for generating random numbers, so the kernel has to generate 
random numbers using an original process. CUDA SDK comes with a 
sample random number generator based on Messene twister proposed 
by Matsumoto et al.34–36 The process is to operate the random seed 

array in the global memory, and then an array of random numbers, 

based on the seed array, is produced to the shared memory. In 2010 

August, CUDA 3.2 released CURAND, a library for PRNG using 

Xorwow generator was selected as the PRNG standard of CUDA.36 

XORWOW PRNG is introduced by Marsaglia in 2003 to add xor-
shift with Weyl sequence.35 First, the PRNG is performed in the host 
for the proposed method, where the random numbers are produced 

by CPU. As shown in Figure 8, the random numbers are generated 
using standard C language routines in the host. This includes the set 

of random numbers, 
,random

N as follows.

_ _ _
, ,

random r xover r mutate r select
N N N N=  Where 

_ _ _
, ,

r xover r mutate r select
N N N are the sets of random numbers required 

by crossover, mutation, and selection stages. For each generation, the 

random numbers are generated in the host and they are copied to the 

device for the computation of the proposed method. Each core obtains 
the random seeds from the seed memory and produces the random 

numbers using the random seeds. The “for” loop generates N random 
values and transmits them to the chromosome memory by specific 
arrangement ( )*N ji + . The index i is the number of the current core, 

the index j is the number of the joint. 
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Figure 6 Flowchart of genetic algorithms based on CUDA.

Calculate fitness function using CUDA using CUDA 

The GPU with many cores could calculate the fitness values for 
each chromosome in parallelism. Figure 9 shows that the core number 

is determined by Number of chromosome. For each core, the first thing 
is to calculate fitness value of each chromosome from the memory 
space and the next step is to calculate the position of end-effort of 
robot manipulator. Then, the fitness values are transmitted to the GPU 
memory and the GPU returns M fitness values for each chromosome.

Selection and crossover for the selection operation

The tournament selection is used to choose the better chromosomes 

and put them into the crossover pool. The single-point crossover method 
is used for the EA. The main idea of CUDA code is shown in Figure 
10, where each core exchanges its genes from two chromosomes. 

Thus, this component only employs M/2 cores and each core obtains 
the joint parameters using the selection and crossover operations from 

the memories of chromosome1 and chromosome 2, respectively. 

The crossover rate is designed as 0.8 in this study. First, the program 

produces a random value and compares it with the crossover rate, 

where the random value is used to determinate whether the crossover 

process is performed or not. Second, if the crossover rate is bigger 

than the random number, then the crossover process is achieved. If 

the crossover condition is satisfied, the program produces a random 
crossover point. Then, the “for” loop function is used to perform 
the crossover operation, where the elements of chromosome 1 and 

chromosome 2 are exchanged before the index of the crossover point 

and they are remained as the same after the index of the crossover 

point. Finally, the GPU transfers the data back to new Chromosome1 
memory and the Host obtains M chromosomes. 

Mutation for the mutation operation

The component generates N random value for each thread and 

makes each gene have an opportunity to mutation. Figure 11 shows the 
main idea and the mutation rate is configured 0.03 in this study. First, 
a random value is generated by the program. Second, if the mutation 

rate is bigger than the random number, then the mutation process is 

achieved. As the mutation condition is satisfied, the GPU regenerates 
a new gene using ( )0ji j

q M∆ ≤ randomly and transmits the 

chromosome data into the chromosome memory. For each generation 

of the EAMP, the crossover, mutation, and selection operations are 
performed in parallel for the device. The parallel computing processes 

in the device are described as follows. 

i. Launch GPU Kernel to calculate the fitness of each individual 
in parallel and copy the fitness values from the GPU to the 
HOST for comparison. 

ii. Reproduction copies the random angular solution in the 

permissible range from the random pool to the device. 

iii. Launch GPU Kernel and generate the random numbers in 
parallel for the crossover and mutation operations. 

iv. Launch GPU Kernel to perform the crossover operation for the 
EAMP in parallel. 

v. Launch GPU Kernel to perform the mutation operation for the 
EAMP in parallel. 

vi. Initialize the offspring in the next generation and return to Step 

1. Finally, the host is used to receive the optimal result where 

the individual with the best fitness from the device.

Experimental result and discussions 

To check the feasibility of real-time motion planning, a trajectory 
planning task with obstacle avoidance is designed to discuss the 
positioning accuracy and computation performance for the proposed 

method. 

System description in this study

A robot manipulator with 8 DOFs is designed as shown in Figure1. 
Tables 1, Table 2 show the specification of the motors used for the 
system and the D-H parameters of the 8-DOF robot manipulator. Figure 
2 shows the control architecture of this robot manipulator, where an 

NI Compact RIO 9074 is used as the real-time embedded controller 
for the whole system. The Compact RIO (cRIO) is a combination of a 

real-time controller, reconfigurable IO Modules (RIO), FPGA module 
and an Ethernet expansion chassis. The modules NI 9512, 9516 and 
9505 are installed in the cRIO 9074 for the purposes of controlling 

servo motors and DC motors in P-command, I-command drive and 
PWM-command. The motion commands, which are computed in the 
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PC, are transmitted to cRIO via the internet. In this study, a real-time 
control code is developed in Lab VIEW and embedded in cRIO 9074 
for the real-time implementation. The control architecture is divided 
into three parts, which are the supervisor control, the trajectory 

generator, and the hardware-in-loop (HIL) control, and Figure 3 
shows the block diagram of the whole system. The user can set the 
parameters into the system by the supervisor control block, such as 
the departure and destination, the increment or velocity constraints. 

After that, the supervisor control block transfers the command to the 
trajectory generator to produce the trajectory planning path. Finally, 

the HIL code in cRIO 9074 is used to make the robot manipulator 
track the desired trajectory and perform the priority task such as 
obstacle avoidance. 4.2 Motion planning using CUDA architecture the 
proposed EAMP method is studied to solve this problem to implement 
Realtime motion planning. The fitness function of the RGA motion 
planning with avoidance obstacle method is shown in Eq. (14). Table 
3 describes the robot parameters for this experimental case study. The 

initial position of the end-effector is ( ) [ ]0 17.0,57.6.30.5
T

r = (mm) 

with ( ) 0 0 0 0 0 0 0 00 0 90 50 0 50 0 25 0
T

q  = − − − −   the 

first step is to make the end-effector follow a straight-line trajectory 
between [ ]17.0,57.6,30.5 and [ ]11,110,40 . Therefore, the reference 

tracking point in Cartesian space can be obtained by 

( ) 0

0
, 1..  . d

ref

r r
r k r k k N

N

−
= + × =                                                  (21)

where 
0

17 57.6 30.5 , 11 110 40
T T

d
r r   = =    and N is the 

number of the tracking reference. The second step is to make the robot 
away from an obstacle, which is a rectangular box. The coordinate 

of the four edges for the obstacle’s top plane are [15, 50, 50], [5, 

50, 50], [5, 100, 50] and [15, 100, 50]. The third step is to calculate 

the forward kinematic using the D-H matrix. For this 8-DOF robot, 
the parameters of the D-H matrix are described in Table 2, where qi 

denotes the joint angle between the incident normal of a joint axis, ai is 

offset distance between two adjacent joints axes, d
i
 is link offset along 

this common axis from ith link to the (i+1)th link, and α
i
 is twist angle 

between two adjacent joint axes. Hence, using the transformation 

of the DH matrixes, A
0
 to A

8
, the position of the end-effector at the 

ground coordinate system can be obtained as follows.

Figure 7 Flowchart of Lab view program based on CUDA.

Figure 8 Schematic diagram for population initialization.
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Figure 9 Schematic diagram for calculate the Fitness function.

Figure 10 Schematic diagram of crossover operation.
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Figure 11 Schematic diagram of mutation operation.

Table 3 Parameters setup for the perturbation method and the RGAMP

Initial angle of each link
q1=0.0 q2=-90.0 q3=-50.0 q4=0.0 q5=-
50.0 q6=0.0

q7=-25.0 q8=0.0 (deg)

Li, Ui +0.5~-0.5

+0.5~-0.5

+0.5~-0.5

+0.5~-0.5

+0.5~-0.5

+0.5~-0.5

+0.5~-0.5

+0.5~-0.5 (deg)

ni 4

Robot manipulator origin [0,0,0]

Tracking point 1000

Departure and destination of 
trajectory

Departure: [17.0, 57.6,30.5]

Destination: [11,110,40]

Obstacle coordination
[15,50,50],[5,50,50],[5,100,50],[15,1
00,50]

Parameters of GA Crossover=0.8

Mutation=0.03

Generation=10

Population=500,1000

Terminated condition: generation 
number

0 0 1 2 3 4 5 6 7 8 8

x

r y A A A A A A A A A r

z

 
 

= = 
  

Where

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1

1

cos cos sin sin sin cos

sin cos cos sin cos sin

0 sin cos

0 0 0 1

i i i i i i

i i i i i i

i
i i i

q q q a q

q q q a q
A

d

α α
α α

α α

 −
 

− =  
 
  

and ( )0,0,20,1
s

r = denotes the position of the end effector with 

respect to the 8th coordinate system and 
0

r  denotes the position of 

the end-effector, P0, which is relative to the base coordinate system. 

The fourth step is to obtain the inverse-kinematic solutions using the 
proposed EAMP method for the tracking task with the consideration 
of obstacle avoidance. To compare the computing performance 

for the serial and parallel RGAMP methods from the perturbation 
motion planning method,5 the designed parameters of perturbation 

are described in Table 3. In addition, the results for the CUDA-
based EAMP using GPU with the PRNG of the GPU are denoted 
as CEA. The experimental results for him EAMP using CPU only 
are denoted as GA. The parameters of GA for the proposed EAMP, 
which are the crossover rate, mutation rate, generation number, and 

population number, are also described in Table 3. From Figure 6, 

the communication needs 4 times to copy data in the crossover and 

mutation process, because the initial data is needed to copy to GPU 
from Host and then it is copied from GPU to Host as calculating 
finished. Therefore, the CUDA EA program is modified to combine 
crossover and mutation operator (as shown in Figure12) so that the 

number of copying can reduce to 2 times.
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Figure 12 Flowchart of the proposed CUDA-based EAmotion planning.

Experimental results and discussions 

For the CUDA-based EAMP method, it takes about 48 and 106 
seconds for the total computing time of motion planning in the 

trajectory tracking task with obstacle avoidance (1000 planning 
points). For each tracking point, the CEA spends 48 and 106 (ms) of 
computing time for the different GA parameters as shown in Table 
4. The computing performance of the proposed CEA (with 48/106 
ms) is much faster than the perturbation motion planning method 

(with 19083 ms). The speed up rate of the CEA is about 398 and 180 
with respect to the perturbation method; Figure 13 shows the inverse 
kinematic solution obtained by the CEA. As shown in Table 4, the 
GA has the speed up rate of 224 with respect to the perturbation 
method for the population number of 500 with the generation number 

of 10. Even the proposed method is implemented on PC only, the 
computation performance is much better than the past method. Table 

4 shows that using the perturbation method cannot achieve the real-
time motion planning, because it take a very large computing time, 
19.083 seconds per step, for the trajectory tracking with avoidance 
obstacle cost. However, the proposed CEA/GA methods only need 
48/78 (ms) per step for this task-priority task, so that there may 
be some chance to achieve the real-time motion planning for the 
redundant robot. To check the priority task of obstacle avoidance, 
Figure 14 shows the trajectory planning of robot manipulators with 

free-collision in simulation by openGL and Figure 15 shows the real-
time implementation of the 8 DOF robots for the trajectory tracking 
task with obstacle avoidance. These results show that the proposed 
method can perform the obstacle avoidance task with keeping the end-
effector on the desired trajectory at the same time.

Figure 13 Inverse kinematic solution using the proposed method.

Figure 14 Motion planning simulation of the tracking task with obstacle 
avoidance.
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Table 4 Computing time of the three methods

Population No. 
/Generation No.

Average Time 
(ms/step)

Speed up 
Rate

Perturbation 
method

n
i
 = 4 19083

CEA 500/10 48 398

1000/10 106 180

GA 500/10 78 244

1000/10 152 126

Figure 15 Implementation for the tracking task with obstacle avoidance.

Conclusion 

This paper proposed a CUDA- based EAMP method for a robot 
with 8DOF to track a trajectory with obstacle avoidance. According 
to the experimental results, the speed up rate for the proposed method 

is very significant. Moreover, the motion planning methods based on 
CEA/GA were also studied and the priority task with two main tasks 
has been achieved. The proposed RGAMP is 398 times faster than the 
perturbation method for this case study. Finally, experimental results 

using NI Compact RIO® validate the proposed method feasible for 

real-time motion planning of the redundant robot. 
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