
Submit Manuscript | http://medcraveonline.com

Introduction

Nowadays, robot manipulators have become increasingly

important for automation, and a lot of researches have been

disused and developed, such as painting, welding, machining and

handling. Recently, robot manipulators are designed for more

difficult and complicated tasks, such as rescuing task, cleaning in
harsh environments, and training prosthesis. Therefore, redundant

manipulators are needed to handle these complicated tasks. A robot
is termed kinematically redundant as it possesses more degrees of
freedom (DOF) than the required one to execute a given task. When
the manipulator is not fully constrained for the trajectory planning,

there are chaotic inner motions with unpredictable arm configuration
if kinematic redundancy occurs. Most of the research on kinematic
redundancy uses these extra degrees of freedom to deal with other

task-priority problems; a functional constraint task is imposed to be
satisfied along with the end-effector task; typical constraints include
cost energy minimization,1–3 avoidance from obstacles,4–7 improved

manipulability,8–9 singularity avoidance,10–12 and repetitive motion

with joint-velocity limitations.13,14 In general, an analytical inverse

kinematics relationship for redundant robots may not be obtained by
a straight forward derivation. A class of techniques for solving the
inverse kinematics of the redundant manipulators was suggested
using the pseudo inverse of the Jacobian matrix through the rates at

which the joints are driven. The pseudo-inverse method is also called
the generalized inverse method and it is first introduced to the robot
control problem by Whitney.15

The pseudo-inverse of the Jacobian matrix guarantees an optimal
reconstruction of the desired end-effector velocity with the minimum-

norm joint velocity in the least squares sense. Moreover, Klein et
al.16 were the first to observe the other undesirable property of the
pseudo-inverse method that the repetitive end-effector motions do
not necessarily yield repetitive joint motions. Baillieul17 proposed

an extended Jacobian matrix, which is a square matrix contains the

additional information to optimize a specified cost function. The
algorithms, which are based on the extended Jocobian matrix, have

a locally cyclic property. Many researchers have been produced in
the last few years in this topic. A large volume of research has been
proposed in this topic in the last few years such as the quadratic-
programming method, optimal-perturbation method,4 Non-dominated
Sorting Genetic Algorithm (NSGA-II) and Differential Evolution
(DE) methods,18 a multi-objective genetic algorithm for obstacle
avoidance,19 the closed-loop inverse kinematics algorithm with GA
(CLGA) method20 and hybrid-motion planning method.21 These

constrained optimization problems are very complicated, especially

as the robot manipulator has hyper-redundant degrees of freedom.
Therefore, how to increase the computation performance is a big

challenge for the redundant robots in real-time implementation. To
solve singularity of redundant robot with task priority problems, this
paper proposed a CUDA evolution algorithm to implement real-time
motion planning. Genetic algorithm (GA) is a stochastic optimization
method for solving many practical problems in engineering, science

and business domains, but its execution time may become a limiting

factor for some huge optimization problems. Fortunately, the evolution

of natural population is very suitable with a parallel architecture,

because the most time-consuming fitness evaluations can be performed
independently for each individual in population. There are various

types of parallelization in GAs: master-slave models, coarse-grained

Int Rob Auto J. 2017;2(2):45‒57. 45

© 2017 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and build upon your work non-commercially.

A GPU-based evolution algorithm for motion
planning of a redundant robot

Volume 2 Issue 2 - 2017

Chih Jer Lin, Chin Sheng Chen, Shen Kai Yu
Institute of Automation Technology, National Taipei University of

Technology, Taiwan

Correspondence: Chih Jer Lin, Institute of Automation

Technology, National Taipei University of Technology, Taiwan, Tel

886-2-2771-2171#4328, Fax 886-2-2711-1401,

Email cjlin@ntut.edu.tw

Received: March 18, 2017 | Published: April 17, 2017

Abstract

Kinematic redundancies of robotic manipulator provide many benefits for motion
planning, such as collision avoidance, improved manipulability, flexibility, and

singularity avoidance. Based on the task priority, the motion planning of a redundant
robot involves solving the associated optimization problem according to the desired

criterion. Several kinematic techniques for redundant manipulators have been
proposed. However, the computing time of solving the optimization problem with

multiple optimization objectives is too large to implement the motion planning in

real-time. Therefore, more efficient optimization algorithms are needed for motion
planning of redundant robots. This paper presents a new technique to solve the inverse

kinematics of redundant manipulators using a GPU-based evolution algorithm. This
algorithm combines the optimal perturbation method with a multi-objective function
to solve the obstacle avoidance and trajectory tracking at the same time. Simulations
and implementations for a self-design manipulator with eight joints considering the
optimization with multi-objectives with obstacle avoidance and trajectory tracking are
developed. The results reveal that the proposed evolution algorithm based on compute

unified device architecture (CUDA) has the much higher performance than the optimal
perturbation method. Simulation results also show that the proposed EAMP is 398
times faster than the perturbation method for this case study. Experimental results
using NI Compact RIO® validate the proposed method feasible for real-time motion
planning of the redundant robot.

Keywords: redundant robots, motion planning, genetic algorithm, singularity

problem, parallel processing, CUDA

International Robotics & Automation Journal

Research Article Open Access

https://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.15406/iratj.2017.02.00015&domain=pdf

A GPU-based evolution algorithm for motion planning of a redundant robot 46
Copyright:

©2017 Lin et al.

Citation: Lin CJ, Chen CS, Yu SK. A GPU-based evolution algorithm for motion planning of a redundant robot. Int Rob Auto J. 2017;2(2):45‒57.
DOI: 10.15406/iratj.2017.02.00015

models, fine-grained models, hierarchical models, island models,
and hybrid models. The emergence of many-core architectures for
GPGPU provides the opportunity to significantly reduce the runtime
of many complicated bioinformatics algorithms, such as Sequence

and Genome Analysis.22 Using CUDA supplies the system based on
commonly available and inexpensive hardware (CPU and GPUs)
with more powerful high-performance computing power, which are
generally not provided by conventional general-purpose processors.
To obtain the optimal inverse kinematic solution for motion planning
of a redundant robot with obstacle avoidance, the computation load is

very large if the grid search algorithm is used. The motivation of this

work is to use a real-coded genetic algorithm (or called evolutionary
algorithm, EA) to replace the grid search algorithm to speed up the
computation. Genetic algorithm (GA) is a stochastic optimization
technique based on the idea of natural evolution and its search

process based on natural selection developed by Holland.23 Nowadays

graphic processing units (GPU) is emerging as one of the most
powerful parallel processing devices due to increasing requirements

for real-time 3D rendering. GPU have evolved into very powerful
processors, which are especially well suited to address problems that

are expressed as data-parallel computations, and their price remained
in the range of consumer market. GPUs are optimized especially
for SIMD-type processing with massive parallelism. Additionally, a
general-purpose computing on graphics processing units (GPGPU) is
the means of using a GPU to perform computation in applications
traditionally handled by the central processing unit (CPU). CUDA
is the computing engine that is accessible to software developers

through variants of industry standard programming languages, such

as C with NVIDIA extensions and certain restrictions.24,25 CUDA has
been enthusiastically received in the area of scientific research. For
implementing the real-time motion planning of redundant robots, a
CUDA-based evolution algorithm method is proposed to reduce the
computing time and make the real-time computing possible. The paper
is organized as follows. Section 2 introduces the inverse kinematics
of redundant manipulators and the experimental equipment. Section

3 presents the proposed EAMP based on compute unified device
architecture (CUDA) programming to speed up real-time computation
performance. Section 4 presents the experimental results for motion

planning with obstacle avoidance in a workspace. Finally, Section 5
draws the main conclusions.

Problem formulation

A redundant manipulator possesses more degrees of freedom
(DOF) than the required to execute a given task. Consider a redundant
robot with n DOF and a vector of joint variables is denoted by

1 2, ,...,
T

nq q q q =

Dimensional task space, where the class of tasks are described by

a vector with m variables, 1 2, ,...,
T

mr x x x = . If the DOF of the joint

space is more than the DOF of the task space, n>m, the manipulator is

redundant and not fully constrained for the task.

A redundancy for the redundant robot is defined as follows.
,

r
N n m= − Where n>m however, the redundancy of a robot is not

usually the same, but is determined with respect to a given task. For
example, a planar robot with 3R joints (n=3) is redundant for the task
of positioning its end-effector in the XY-plane (m=2), but not for the
task of positioning and orienting the end-effector in the XY-plane
(m=3). Another example is that the dimension of m-3 is required
for a positioning task in 3D space. However, the dimension of m=6

is required for this task where the robot performs the positioning
and orienting task in 3D space, because there are 3 dimensions
for positioning and 3 dimensions for orientation. Therefore, the

redundancy of the robot is determined by the joint space’s and the

task space’s dimensions. Consider the forward kinematic relation for
a redundant robot defined as follows.

() :,
n m

r f q f R R→= (1)

The purpose of the inverse kinematics is to obtain q(t) that realizes

the task: () ()() r t f q t= at all times t. In general, the inverse kinematic
relation is nonlinear and an analytical inverse relationship may not be

obtained easily. However, the redundant robot has infinite solutions
even for r(t)=constant as the manipulator is not fully constrained.

During the tracking task is executed via the end-effector motion, the
redundant robot arm may have a self-motion that can be chosen so as
optimize the specified cost function in some manipulator’s behaviors,
such as obstacle avoidance or avoiding singularities. The meaning

of the self-motion is defined as an arm reconfiguration in the joint
space that does not affect the task variable r(t)= constant . The inverse
kinematics problem with redundancies has historically been solved
through the Moore-Penrose pseudo-inverse methods by Whitney.14

By differentiating Equation (1) with respect to time, the differential
relation between the andrq is as follows

.r J q= (2)

Where () ()() () /J q f q t q t=∂ ∂ and J(q) is called the Jacobian

matrix. For a redundant robot, the inverse kinematic relation of Eq.
(2) can be obtained as follows.

q J r
+= (3)

Where is J
+ called the pseudo inverse or Moore-Penrose

generalized inverse of J(q) always exists and is the unique matrix

satisfying

()
()

T

T

JJ J J

J JJ J

JJ JJ

J J J J

+

+ +

+ +

+ +

=

=

=

=

 (4)

If J is full (row) rank, the pseudo inverse can be obtained as
follows.

() 1
T TJ J JJ

−+ = (5)

Else, it is computed numerically using the singular value
decomposition (SVD) of J. However, q J r

+= minimizes the norm

of
21

2
q and it is a particular solution of .J q r= the general solution

of .J q r= is defined as follows.

()
0

q J r I J J q
+ += + − (6)

Where using ()
0

I J J q+− can obtain all homogeneous solutions

https://doi.org/10.15406/iratj.2017.02.00015

A GPU-based evolution algorithm for motion planning of a redundant robot 47
Copyright:

©2017 Lin et al.

Citation: Lin CJ, Chen CS, Yu SK. A GPU-based evolution algorithm for motion planning of a redundant robot. Int Rob Auto J. 2017;2(2):45‒57.
DOI: 10.15406/iratj.2017.02.00015

with respect to the associated homogeneous equation . 0J q = that

causes self-motions. The matrix ()I J J+− is the projection matrix

with respect to
0

q in the null-space ()Z J . Based on the null-

space method, the choice
0

q can be obtained via a linear quadratic

optimization and is computed based on a projected gradient as follows

()
0 q

q H q= ∇ (7)

where ()
q
H q∇ is the projected gradient which realizes one step

of a constrained optimization algorithm. For different task-priority
problems, the objective function ()H q can be designed based on the

priority task.

() ()()det TH q J q=

 (8)

To solve this singularity problem, some researchers applied

the Greville algorithm26 or the singular value decomposition SVD

method27–29 to solve this singularity problem and the null-space
methods are also used to solve this problem8,9,30 On the other hand,

a redundant manipulator with degree-of-redundancy (DOR) is well
suited to a multiple criteria problem besides the basic motion task,
such as obstacles avoidance, torque minimization, dexterity measures,

task priority control, energy minimization.1–13

System description

In this study, a robot manipulator with 8 DOFs is designed as

shown in Figure1. (Tables 1) (Table 2) show the specification of the
motors used for the system and the D-H parameters of the 8-DOF
robot manipulator. Figure 2 shows the control architecture of this

robot manipulator, where an NI Compact RIO 9074 is used as the

real-time embedded controller for the whole system. The Compact
RIO (cRIO) is a combination of a real-time controller, reconfigurable
IO Modules (RIO), FPGA module and an Ethernet expansion chassis.
The modules NI 9512, 9516 and 9505 are installed in the cRIO

9074 for the purposes of controlling servo motors and DC motors

in P-command, I-command drive and PWM-command. The motion
commands, which are computed in the PC, are transmitted to cRIO via
the internet. In this study, a real-time control code is developed in Lab
VIEW and embedded in cRIO 9074 for the real-time implementation.
The control architecture is divided into three parts, which are the

supervisor control, the trajectory generator, and the hardware-in-
loop (HIL) control, and Figure 3 shows the block diagram of the
whole system. The user can set the parameters into the system by the

supervisor control block, such as the departure and destination, the
increment or velocity constraints. After that, the supervisor control
block transfers the command to the trajectory generator to produce the
trajectory planning path. Finally, the HIL code in cRIO 9074 is used to

make the robot manipulator track the desired trajectory and perform
the priority task such as obstacle avoidance.

Figure 1 Prototype of robot manipulator with 8DOF.

Table 1 The motor parameter of robot manipulator with 8DOF

 Motor type Gear reducer Related torque(Nm)

Joint 1 Servo motor 1:20 6

Joint 2 Servo motor 1:40 76

Joint 3 Servo motor 1:40 76

Joint 4 Servo motor 1:20 6

Joint 5 DC motor 0.09306 5.772

Joint 6 Smart servo 0.18056 6.4

Joint 7 Smart servo 0.16944 10.672

Joint 8 Smart servo 0.18056 6.4

Table 2 The D-H parameters of the 8 DOF robot manipulator

i
θ

i
d

i
a

i
α

A
0

0 28 0
0
o

A
1

q
1

15 0 −76o

A
2

q
2

27.5 0 90o

A
3

q
3

0 0 −90o

A
4

q
4

40 0 −90o

A
5

q
5

17 0 −90o

A
6

q
6

34 0 90o

A
7

q
7

0 0 −90o

A
8

q
8

24 0 0o

https://doi.org/10.15406/iratj.2017.02.00015

A GPU-based evolution algorithm for motion planning of a redundant robot 48
Copyright:

©2017 Lin et al.

Citation: Lin CJ, Chen CS, Yu SK. A GPU-based evolution algorithm for motion planning of a redundant robot. Int Rob Auto J. 2017;2(2):45‒57.
DOI: 10.15406/iratj.2017.02.00015

Figure 2 Controller architecture of robot manipulator with 8 DOF.

Figure 3 Software architecture of controller.

Cartesian trajectory tracking and motion planning
with obstacles avoidance

To search the optimal motion planning of a predefined end-effector
trajectory with obstacle avoidance, a multi objective optimization

problem involves multiple objective functions and the optimization

problem can be formulated as follows.

() ()
1

1 2

,...,

n

T
Minimize
q q

r r Φ Φ
∆

∆

 (9)

Subject to ()r t X∈

where the set X is the feasible set of end-effectors’ coordinate
points constrained by the desired trajectory in the Cartesian space.

The first task is to minimize the tracking error and the cost function

is chosen as () ()
21

2 refr t r t− the optimization problem of motion

planning for tracking is described as follows.

() ()
() ()

2

1
1 ,..

1
 1 1

. 2, n

refMinimize
q k q k

r k r kΦ = + − +
∆ ∆

 (10)

() ()
1

, ..., q
n

q k k∆ ∆ subject to () () () ()()1 2, ,...., nr k f q k q k q k=

and () () , 1...., 1i i i
q M i nq k k− ≤ = where ()

ref
r k is the desired

end-effector position, ()r k is the actual end-effector position
vector at the k-th sampling, and

i
M is a positive scalar, which

is used to limit the joint angle’s variation. The optimization is

used to obtain the best inverse kinematic solution from the set

() (){ () }1 ,...., , 1...n i i iq k q k M q k M i n ∆ ∆ − ≤∆ ≤ = so that the tracking

error
1

Φ is minimized and the joint angle’s variation is limited in the

permissible range in one sampling time.

() ()
()

1

2
 min

,..., n

a q b
a robot

b obstacle

Minimiz

s

e
q k q k

−
∈

 ∈

∆ ∆
 (11)

Eq. (10) describes the optimization problem to obtain the inverse
kinematic solution for minimizing tracking error. To standardize the
multi objective optimization problem, the second priority task of the
obstacle avoidance in Eq. (11) is modified as follows.

() () ()1
2 2

1

mi, . , n. . n a q b
a robot

b

Minimize
q k q

obst es

k

acl

Φ =
−

∈
∈

∆ ∆
 (12)

Solving a multi objective optimization problem is understood as

a representative set of Pareto optimal solutions. One of the solving
methods is formulating a single objective optimization problem to

represent the multi objective optimization by linear scalarization such

that optimal solutions to the single-objective optimization problem are
Pareto optimal solutions to the multi objective optimization problem.
In this study, the multi objective method using linear scalarization for

the two task-priorities is described as follows

() ()
() ()

1

1 1 2 2

,...,

n

Minimize
q k q

w w
k

r r Φ + Φ
∆

∆

 (13)

Where the weighting factors of the objectives 0, 1, 2
i

w i> = the

parameters of the secularization, and ε-constraint method is applied to

this optimization as follows.

() ()
() ()

1

1 1 2 2

,...,

n

Minimize
q k q

w w
k

r r Φ + Φ
∆

∆

 (14)

Subject to ()r t X∈ , ()r
i i

εΦ ≤ For { }1,2i ∈

Where the parameters are the ε
i
 upper bounds of the objectives

which are ()
i

rΦ to be minimized. Is the permissible zone for

trajectory tracking tasks. X In this study, a multi objective genetic

algorithm (MOGA) method is studied to solve this problem. First, the
positioning error is defined as follows.

() ()() ()() ()()22 2

x y ze k e k e k e k= + + (15)

Where () () () ()
T

r rr f re
x k y kr zk k =

the trajectory references and the actual end-effectors’

https://doi.org/10.15406/iratj.2017.02.00015

A GPU-based evolution algorithm for motion planning of a redundant robot 49
Copyright:

©2017 Lin et al.

Citation: Lin CJ, Chen CS, Yu SK. A GPU-based evolution algorithm for motion planning of a redundant robot. Int Rob Auto J. 2017;2(2):45‒57.
DOI: 10.15406/iratj.2017.02.00015

position are () ()() () () ()
T

x k y k z kr k f q k= =

Therefore, the tracking for each direction can be defined
as () () () () () (),

x r y r
e k x k x k e k y k y k= − = − and

() () ()
z r

e k z k z k= − . If the tracking error ()e k is smaller than the

permissible value ρ then the end-effectors’ position ()r k is located

in the permissible zone ()()r t X∈ .

An evolution algorithm (EA) based motion planning method is
proposed to produce the motion planning and trajectory tracking with
obstacle avoidance. The processes for the proposed EA-based motion
planning (EAMP) are described as follows.

An initial population of EA is randomly composed of a large set
of gene with chromosomes as described in Fig.4, where k is the time
indexing, j is the joint indexing and i represents the index of the gene.

The initial population is produced using the stochastic selection. The

algorithm allocates a population of gene P
i
(0) using the stochastic

selection from the permissible set at each step, where P
i
(0) is the

ith gene, whose chromosomes are () () ()1 20 0 ... 0i i niq q q
 which is

defined as the gene ()0
i

p . The gene ()0
i

p whose chromosomes are

constrained in the permissible sets ()0 ji j
q M∆ ≤ .

Filter the gene () () () ()1 2 ...i i nii
P k q k q k q k = in this population

to satisfy the following condition.

()() ()() ()() ()()22 2

0
 x y zr k e k e k e k ρΦ + ≤= + (16)

Subject to () ()() () () ()()1 2 ...i i i nir k f P k f q k q k q k = =

() ()1 11... , ...
 , ji i j

q k q k M j n i N− − ≤ = = where n is the number

of joints, N is the number of the population and ρ is the radius of
the permissible zone. After this filtering process, the permissible
chromosomes should satisfy the condition where the end-effector

positions are located in the region of ()()
0

r k ρΦ ≤ .

The objective function () ()
2 21 1

w w r
r

+ ΦΦ
is used to evaluate the

fitness of each individual in this population. The set of fitness values

are used to sort the population, eliminate the badly-fitted individuals,
mate the best-fitted chromosomes, and then propagate the “good”
genes (parameter combinations) to the upcoming generation. These

processes are repeated until reaching a certain number of generations.

The procedures of the RGA are described as follows.

Compute the fitness function: the fitness values are used to sort the
population, eliminate the badly-fitted individuals; the individual with
the higher fitness function has the better survival chance. In this case,
the fitness function is defined as follows

()() ()() ()()()1 1 2 21 /i i iFit P k w P k w P k= Φ + Φ (17)

a. Selection: determine pairs of genes for mating. The gene with
higher fitness value has the higher priority to become the
parents for the evolution.

b. Crossover with the random selection: the genes after the
selection operation can produce the next generation using the

crossover operation. Whether the crossover operation performs

is determined by the crossover rate and the crossover rate is

defined as 0.8 in this study. The crossover method used in this
study is a linear combination of two vectors (chromosomes)

with two random weighting variables as follows.

()

()
1 21

2 1 2

 . 1 .

 . 1 .

P P

C P

C

P

α α

β β

+ −

= + −

=
 (18)

Where P
1
 and P

2
 are the gene of the parents; 1 C and 2 C are

the gene of the children; , αβ are the uniformly distributed random
variables between 0 and 1.

c. Gaussian mutation operation: if the offspring are determined
by the crossover and selection operations, the optimization

may fall into local minimum. Using the mutation operation can

maintain genetic diversity from one generation of a population

to the next. Mutation occurs during evolution according to
mutation probability. The mutation probability should be set

low to avoid making the RGA turn into a primitive random
search and the mutation probability is defined as 0.03 in this
work. If the gene is chosen to perform the mutation operation,
its chromosomes are obtained as follows.

() ()1 .
ji ji j

q k q k Y M= − + (19)

Where Y is a random variable of the Gaussian probability
distribution between -1 and 1

j
M is the upper bound of the angular

change for the Joint j in one step.

d. Reproduction with elitist strategy: after the above RGA
operations, two elites in the parents’ generation are guaranteed

to survive to the next generation.

Figure 4 Illustration of the i-th gene at the k-th sampling.

Ea-based motion planning for redundant
robots based on cuda

Genetic algorithm (GA) is a stochastic optimization method for
solving many practical problems in engineering, science and business

domains, but its execution time may become a limiting factor for

some huge optimization problems. Fortunately, the evolution of

natural population is very suitable with a parallel architecture, because

the most time-consuming fitness evaluations can be performed
independently for each individual in population. There are various

types of parallelization in GAs: master-slave models, coarse-grained
models, fine-grained models, hierarchical models, island models,
and hybrid models. The emergence of many-core architectures for
GPGPU provides the opportunity to significantly reduce the runtime
of many complicated bioinformatics algorithms, such as Sequence

and Genome Analysis.31 Using CUDA supplies the system based on
commonly available and inexpensive hardware (CPU and GPUs)
with more powerful high-performance computing power, which are
generally not provided by conventional general-purpose processors.
To obtain the optimal inverse kinematic solution for motion planning
of a redundant robot with obstacle avoidance, the computation load is

very large if the grid search algorithm is used. The motivation of this

work is to use a real-coded genetic algorithm (or called evolutionary
algorithm, EA) to replace the grid search algorithm to speed up the
computation. Genetic algorithm (GA) is a stochastic optimization

https://doi.org/10.15406/iratj.2017.02.00015

A GPU-based evolution algorithm for motion planning of a redundant robot 50
Copyright:

©2017 Lin et al.

Citation: Lin CJ, Chen CS, Yu SK. A GPU-based evolution algorithm for motion planning of a redundant robot. Int Rob Auto J. 2017;2(2):45‒57.
DOI: 10.15406/iratj.2017.02.00015

technique based on the idea of natural evolution and its search process

based on natural selection developed by Holland.29 The original GA
operates using binary code of chromosomes, but RGA or evolutionary
algorithm (EA) uses real-coded chromosomes.30,31 Figure 5 shows the

procedure for the EA-based motion-planning method and the optimal

solution () () ()1 21 1 ... 1i i niq k q k q k
 • • •+ − +

are determined at each

tracking points in sequence. To implement real-time motion planning

with obstacle avoidance, the EAMP is implemented on the CUDA
target. Figure 6 shows the flowchart of CUDA for the proposed EAMP.
In this study, the code is developed on Lab view IDE, but the CUDA
code is performed in the GPU and only supported in C language.
Therefore, the CUDA kernel code should be transferred into a DLL

file first and then it can be executed in the GPU as the main code (in
the host) calls the DLL function file. If the main code is executed
in Labview to call the initializing population program (DLL file),
then the DLL file would copy data from host memory to the global
memory in the GPU, where the program is performed using CUDA
kernel. After the CUDA code is finished in the GPU, the program
would copy the result from the global memory to the host memory

and finish the initial population process. Figure 7 shows the flowchart
of the RGAMP in Lab view and the program from left to right are
initial population, fitness function calculation, tournament selection,
crossover and mutation. The main idea and the detail functions are

described as follows.

Figure 5 Procedure for the EAMP.

Initial population using CUDA

The CUDA thread is different from PC thread. In order to generate
the initial population in parallelism, the first thing is to determine
how many core needed to use. In this study, the number of CUDA
thread depends on the number of chromosomes as shown in Figure

8. The main idea is to generate a lot of random value by M cores on
CUDA target and each core generates random values using “FOR”
loop where N is determined by the DOF of the redundant robot; MN
× random values are generated finally. The pseudo random number
generator (PRNG) is very important for the proposed Method,
because the GPU cannot generate random seeds by time and random
seeds are needed to be generated on host. There are many different

ways for PRNG.32 Before 2010, CUDA libraries did not include the
function for generating random numbers, so the kernel has to generate
random numbers using an original process. CUDA SDK comes with a
sample random number generator based on Messene twister proposed
by Matsumoto et al.34–36 The process is to operate the random seed

array in the global memory, and then an array of random numbers,

based on the seed array, is produced to the shared memory. In 2010

August, CUDA 3.2 released CURAND, a library for PRNG using

Xorwow generator was selected as the PRNG standard of CUDA.36

XORWOW PRNG is introduced by Marsaglia in 2003 to add xor-
shift with Weyl sequence.35 First, the PRNG is performed in the host
for the proposed method, where the random numbers are produced

by CPU. As shown in Figure 8, the random numbers are generated
using standard C language routines in the host. This includes the set

of random numbers,
,random

N as follows.

_ _ _
, ,

random r xover r mutate r select
N N N N= Where

_ _ _
, ,

r xover r mutate r select
N N N are the sets of random numbers required

by crossover, mutation, and selection stages. For each generation, the

random numbers are generated in the host and they are copied to the

device for the computation of the proposed method. Each core obtains
the random seeds from the seed memory and produces the random

numbers using the random seeds. The “for” loop generates N random
values and transmits them to the chromosome memory by specific
arrangement ()*N ji + . The index i is the number of the current core,

the index j is the number of the joint.

https://doi.org/10.15406/iratj.2017.02.00015

A GPU-based evolution algorithm for motion planning of a redundant robot 51
Copyright:

©2017 Lin et al.

Citation: Lin CJ, Chen CS, Yu SK. A GPU-based evolution algorithm for motion planning of a redundant robot. Int Rob Auto J. 2017;2(2):45‒57.
DOI: 10.15406/iratj.2017.02.00015

Figure 6 Flowchart of genetic algorithms based on CUDA.

Calculate fitness function using CUDA using CUDA

The GPU with many cores could calculate the fitness values for
each chromosome in parallelism. Figure 9 shows that the core number

is determined by Number of chromosome. For each core, the first thing
is to calculate fitness value of each chromosome from the memory
space and the next step is to calculate the position of end-effort of
robot manipulator. Then, the fitness values are transmitted to the GPU
memory and the GPU returns M fitness values for each chromosome.

Selection and crossover for the selection operation

The tournament selection is used to choose the better chromosomes

and put them into the crossover pool. The single-point crossover method
is used for the EA. The main idea of CUDA code is shown in Figure
10, where each core exchanges its genes from two chromosomes.

Thus, this component only employs M/2 cores and each core obtains
the joint parameters using the selection and crossover operations from

the memories of chromosome1 and chromosome 2, respectively.

The crossover rate is designed as 0.8 in this study. First, the program

produces a random value and compares it with the crossover rate,

where the random value is used to determinate whether the crossover

process is performed or not. Second, if the crossover rate is bigger

than the random number, then the crossover process is achieved. If

the crossover condition is satisfied, the program produces a random
crossover point. Then, the “for” loop function is used to perform
the crossover operation, where the elements of chromosome 1 and

chromosome 2 are exchanged before the index of the crossover point

and they are remained as the same after the index of the crossover

point. Finally, the GPU transfers the data back to new Chromosome1
memory and the Host obtains M chromosomes.

Mutation for the mutation operation

The component generates N random value for each thread and

makes each gene have an opportunity to mutation. Figure 11 shows the
main idea and the mutation rate is configured 0.03 in this study. First,
a random value is generated by the program. Second, if the mutation

rate is bigger than the random number, then the mutation process is

achieved. As the mutation condition is satisfied, the GPU regenerates
a new gene using ()0ji j

q M∆ ≤ randomly and transmits the

chromosome data into the chromosome memory. For each generation

of the EAMP, the crossover, mutation, and selection operations are
performed in parallel for the device. The parallel computing processes

in the device are described as follows.

i. Launch GPU Kernel to calculate the fitness of each individual
in parallel and copy the fitness values from the GPU to the
HOST for comparison.

ii. Reproduction copies the random angular solution in the

permissible range from the random pool to the device.

iii. Launch GPU Kernel and generate the random numbers in
parallel for the crossover and mutation operations.

iv. Launch GPU Kernel to perform the crossover operation for the
EAMP in parallel.

v. Launch GPU Kernel to perform the mutation operation for the
EAMP in parallel.

vi. Initialize the offspring in the next generation and return to Step

1. Finally, the host is used to receive the optimal result where

the individual with the best fitness from the device.

Experimental result and discussions

To check the feasibility of real-time motion planning, a trajectory
planning task with obstacle avoidance is designed to discuss the
positioning accuracy and computation performance for the proposed

method.

System description in this study

A robot manipulator with 8 DOFs is designed as shown in Figure1.
Tables 1, Table 2 show the specification of the motors used for the
system and the D-H parameters of the 8-DOF robot manipulator. Figure
2 shows the control architecture of this robot manipulator, where an

NI Compact RIO 9074 is used as the real-time embedded controller
for the whole system. The Compact RIO (cRIO) is a combination of a

real-time controller, reconfigurable IO Modules (RIO), FPGA module
and an Ethernet expansion chassis. The modules NI 9512, 9516 and
9505 are installed in the cRIO 9074 for the purposes of controlling

servo motors and DC motors in P-command, I-command drive and
PWM-command. The motion commands, which are computed in the

https://doi.org/10.15406/iratj.2017.02.00015

A GPU-based evolution algorithm for motion planning of a redundant robot 52
Copyright:

©2017 Lin et al.

Citation: Lin CJ, Chen CS, Yu SK. A GPU-based evolution algorithm for motion planning of a redundant robot. Int Rob Auto J. 2017;2(2):45‒57.
DOI: 10.15406/iratj.2017.02.00015

PC, are transmitted to cRIO via the internet. In this study, a real-time
control code is developed in Lab VIEW and embedded in cRIO 9074
for the real-time implementation. The control architecture is divided
into three parts, which are the supervisor control, the trajectory

generator, and the hardware-in-loop (HIL) control, and Figure 3
shows the block diagram of the whole system. The user can set the
parameters into the system by the supervisor control block, such as
the departure and destination, the increment or velocity constraints.

After that, the supervisor control block transfers the command to the
trajectory generator to produce the trajectory planning path. Finally,

the HIL code in cRIO 9074 is used to make the robot manipulator
track the desired trajectory and perform the priority task such as
obstacle avoidance. 4.2 Motion planning using CUDA architecture the
proposed EAMP method is studied to solve this problem to implement
Realtime motion planning. The fitness function of the RGA motion
planning with avoidance obstacle method is shown in Eq. (14). Table
3 describes the robot parameters for this experimental case study. The

initial position of the end-effector is () []0 17.0,57.6.30.5
T

r = (mm)

with () 0 0 0 0 0 0 0 00 0 90 50 0 50 0 25 0
T

q = − − − − the

first step is to make the end-effector follow a straight-line trajectory
between []17.0,57.6,30.5 and []11,110,40 . Therefore, the reference

tracking point in Cartesian space can be obtained by

() 0

0
, 1.. . d

ref

r r
r k r k k N

N

−
= + × = (21)

where
0

17 57.6 30.5 , 11 110 40
T T

d
r r = = and N is the

number of the tracking reference. The second step is to make the robot
away from an obstacle, which is a rectangular box. The coordinate

of the four edges for the obstacle’s top plane are [15, 50, 50], [5,

50, 50], [5, 100, 50] and [15, 100, 50]. The third step is to calculate

the forward kinematic using the D-H matrix. For this 8-DOF robot,
the parameters of the D-H matrix are described in Table 2, where qi

denotes the joint angle between the incident normal of a joint axis, ai is

offset distance between two adjacent joints axes, d
i
 is link offset along

this common axis from ith link to the (i+1)th link, and α
i
 is twist angle

between two adjacent joint axes. Hence, using the transformation

of the DH matrixes, A
0
 to A

8
, the position of the end-effector at the

ground coordinate system can be obtained as follows.

Figure 7 Flowchart of Lab view program based on CUDA.

Figure 8 Schematic diagram for population initialization.

https://doi.org/10.15406/iratj.2017.02.00015

A GPU-based evolution algorithm for motion planning of a redundant robot 53
Copyright:

©2017 Lin et al.

Citation: Lin CJ, Chen CS, Yu SK. A GPU-based evolution algorithm for motion planning of a redundant robot. Int Rob Auto J. 2017;2(2):45‒57.
DOI: 10.15406/iratj.2017.02.00015

Figure 9 Schematic diagram for calculate the Fitness function.

Figure 10 Schematic diagram of crossover operation.

https://doi.org/10.15406/iratj.2017.02.00015

A GPU-based evolution algorithm for motion planning of a redundant robot 54
Copyright:

©2017 Lin et al.

Citation: Lin CJ, Chen CS, Yu SK. A GPU-based evolution algorithm for motion planning of a redundant robot. Int Rob Auto J. 2017;2(2):45‒57.
DOI: 10.15406/iratj.2017.02.00015

Figure 11 Schematic diagram of mutation operation.

Table 3 Parameters setup for the perturbation method and the RGAMP

Initial angle of each link
q1=0.0 q2=-90.0 q3=-50.0 q4=0.0 q5=-
50.0 q6=0.0

q7=-25.0 q8=0.0 (deg)

Li, Ui +0.5~-0.5

+0.5~-0.5

+0.5~-0.5

+0.5~-0.5

+0.5~-0.5

+0.5~-0.5

+0.5~-0.5

+0.5~-0.5 (deg)

ni 4

Robot manipulator origin [0,0,0]

Tracking point 1000

Departure and destination of
trajectory

Departure: [17.0, 57.6,30.5]

Destination: [11,110,40]

Obstacle coordination
[15,50,50],[5,50,50],[5,100,50],[15,1
00,50]

Parameters of GA Crossover=0.8

Mutation=0.03

Generation=10

Population=500,1000

Terminated condition: generation
number

0 0 1 2 3 4 5 6 7 8 8

x

r y A A A A A A A A A r

z

= =

Where

() () () () () ()
() () () () () ()

() ()

1

1

cos cos sin sin sin cos

sin cos cos sin cos sin

0 sin cos

0 0 0 1

i i i i i i

i i i i i i

i
i i i

q q q a q

q q q a q
A

d

α α
α α

α α

 −

− =

and ()0,0,20,1
s

r = denotes the position of the end effector with

respect to the 8th coordinate system and
0

r denotes the position of

the end-effector, P0, which is relative to the base coordinate system.

The fourth step is to obtain the inverse-kinematic solutions using the
proposed EAMP method for the tracking task with the consideration
of obstacle avoidance. To compare the computing performance

for the serial and parallel RGAMP methods from the perturbation
motion planning method,5 the designed parameters of perturbation

are described in Table 3. In addition, the results for the CUDA-
based EAMP using GPU with the PRNG of the GPU are denoted
as CEA. The experimental results for him EAMP using CPU only
are denoted as GA. The parameters of GA for the proposed EAMP,
which are the crossover rate, mutation rate, generation number, and

population number, are also described in Table 3. From Figure 6,

the communication needs 4 times to copy data in the crossover and

mutation process, because the initial data is needed to copy to GPU
from Host and then it is copied from GPU to Host as calculating
finished. Therefore, the CUDA EA program is modified to combine
crossover and mutation operator (as shown in Figure12) so that the

number of copying can reduce to 2 times.

https://doi.org/10.15406/iratj.2017.02.00015

A GPU-based evolution algorithm for motion planning of a redundant robot 55
Copyright:

©2017 Lin et al.

Citation: Lin CJ, Chen CS, Yu SK. A GPU-based evolution algorithm for motion planning of a redundant robot. Int Rob Auto J. 2017;2(2):45‒57.
DOI: 10.15406/iratj.2017.02.00015

Figure 12 Flowchart of the proposed CUDA-based EAmotion planning.

Experimental results and discussions

For the CUDA-based EAMP method, it takes about 48 and 106
seconds for the total computing time of motion planning in the

trajectory tracking task with obstacle avoidance (1000 planning
points). For each tracking point, the CEA spends 48 and 106 (ms) of
computing time for the different GA parameters as shown in Table
4. The computing performance of the proposed CEA (with 48/106
ms) is much faster than the perturbation motion planning method

(with 19083 ms). The speed up rate of the CEA is about 398 and 180
with respect to the perturbation method; Figure 13 shows the inverse
kinematic solution obtained by the CEA. As shown in Table 4, the
GA has the speed up rate of 224 with respect to the perturbation
method for the population number of 500 with the generation number

of 10. Even the proposed method is implemented on PC only, the
computation performance is much better than the past method. Table

4 shows that using the perturbation method cannot achieve the real-
time motion planning, because it take a very large computing time,
19.083 seconds per step, for the trajectory tracking with avoidance
obstacle cost. However, the proposed CEA/GA methods only need
48/78 (ms) per step for this task-priority task, so that there may
be some chance to achieve the real-time motion planning for the
redundant robot. To check the priority task of obstacle avoidance,
Figure 14 shows the trajectory planning of robot manipulators with

free-collision in simulation by openGL and Figure 15 shows the real-
time implementation of the 8 DOF robots for the trajectory tracking
task with obstacle avoidance. These results show that the proposed
method can perform the obstacle avoidance task with keeping the end-
effector on the desired trajectory at the same time.

Figure 13 Inverse kinematic solution using the proposed method.

Figure 14 Motion planning simulation of the tracking task with obstacle
avoidance.

https://doi.org/10.15406/iratj.2017.02.00015

A GPU-based evolution algorithm for motion planning of a redundant robot 56
Copyright:

©2017 Lin et al.

Citation: Lin CJ, Chen CS, Yu SK. A GPU-based evolution algorithm for motion planning of a redundant robot. Int Rob Auto J. 2017;2(2):45‒57.
DOI: 10.15406/iratj.2017.02.00015

Table 4 Computing time of the three methods

Population No.
/Generation No.

Average Time
(ms/step)

Speed up
Rate

Perturbation
method

n
i
 = 4 19083

CEA 500/10 48 398

1000/10 106 180

GA 500/10 78 244

1000/10 152 126

Figure 15 Implementation for the tracking task with obstacle avoidance.

Conclusion

This paper proposed a CUDA- based EAMP method for a robot
with 8DOF to track a trajectory with obstacle avoidance. According
to the experimental results, the speed up rate for the proposed method

is very significant. Moreover, the motion planning methods based on
CEA/GA were also studied and the priority task with two main tasks
has been achieved. The proposed RGAMP is 398 times faster than the
perturbation method for this case study. Finally, experimental results

using NI Compact RIO® validate the proposed method feasible for

real-time motion planning of the redundant robot.

Acknowledgements

None.

Conflict of interest
The author declares no conflict of interest.

References

1. Martin BJ, Bobrow JE. Minimum effort motions for open chain mani-
pulators with task-dependent end-effector constraints. Int J Rob Res.

1999;18(2):213–224.

2. Zhang Y. Inverse‐free computation for infinity‐norm torque minimiza-
tion of robot manipulators. Mechatronic. 2006;16:177–184.

3. Zhang Y, Wang J. A dual neural network for constrained joint torque opti-
mization of kinematically redundant manipulators. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics). 2002;32(5):654–
662.

4. Lin CJ. Motion planning of redundant robots by perturbation method.
Mechatronics. 2004;14(3):281–297.

5. Saravanan R, Ramabalan S, Balamurugan C. Evolutionary collision-free
optimal trajectory planning for intelligent robots. Int J Adv Manuf Tech-

nol. 2008;36(11):1234–1251.

6. Maria da Grac Marcosa, JA Tenreiro Machadoa, TP Azevedo‐Perdicou-
lisb. A multi‐objective approach for the motion planning of redundant

manipulators. Applied Soft Computing. 2012;12:589–599.

7. Joo H Kim, Chang B Joo. Optimal motion planning of redundant ma-
nipulators with controlled task infeasibility. Mechanism and Machine

Theory. 2013;64:155–174.

8. Yoshikawa T. Manipulability of robotic mechanisms. Int J Rob Res.

1985;4(2):3–9.

9. Karl Lukas Knierim, Oliver Sawodny. Tool-Center-Point control of the
KAI manipulator using constrained QP optimization. Mechatronics.

2015;30:85–93.

10. Lloyd JE, Hayward V. Singularity‐robust trajectory generation. Int J Rob

Res. 2001;20(1):38–56.

11. Hyejin Han, Jaeheung Park. Robot control near singularity and joint lim-
it using a continuous task transition algorithm. International Journal of

Advanced Robotic Systems. 2013;10(10):346.

12. Lin CJ, Lin CR, Yu SK, et al. Singularity Avoidance for a Redundant
Robot Using Fuzzy Motion Planning. Applied Mechanics and Materials.

2014;479‐480:729–736.

13. Zhang Z, Zhang Y. Variable joint-velocity limits of redundant robot ma-
nipulators handled by quadratic programming, IEEE/ASME Transactions

on Mechatronics. 2013;18(2):674–686.

14. Zhang Y, Zhang Z. Repetitive Motion Planning and Control of Redun-
dant Robot Manipulators, Springer Science & Business Media; 2013.

15. Whitney DE. Resolved motion rate control of manipulators and human
prostheses. IEEE Trans Man-Mach Syst. 1969;10:47–53.

16. Klein CA, Huang CH. Review of pseudo inverse control for use with
kinematically redundant manipulators. IEEE Trans Syst Man Cybern.

1983;13(3):245–250.

17. Baillieul J. Kinematic programming alternatives for redundant manipula-
tors. Proc IEEE Int Conf Robot Automat. 1985. p. 722–728.

18. Qiu CW, Cao QX, Sun YJ. Redundant Manipulator Control with Cons-
traints for Sub goals. Proc IEEE Int Conf Automat Sci Eng. 2006. p.

212–217.

19. Saravanan R, Ramabalan S. Evolutionary minimum cost trajectory
planning for industrial robots. J Intell Robot Syst. 2008;52(1):45–77.

20. Pires EJS, Machado JAT, Oliveira PBM. Manipulator trajectory planning
using a MOEA. Appl Soft Comput J. 2007;7(3):659–667.

21. Marcos MG, Machado JAT, Azevedo-Perdicoulis TP. An evolutionary
approach for the motion planning of redundant and hyper-redundant ma-
nipulators. Nonlinear Dyn. 2010;60(1):115–129.

22. Satish N, Harris M, Garland M. Designing efficient sorting algorithms
for many core GPUs. In Proc. 23rd IEEE International Parallel and Dis-
tributed Processing Symoposium; USA: IEEE; 2009.

23. Liu TS, Tsay SY. Singularity of robotic kinematics: a differential motion
approach. Mech Mach Theory. 1990;25(4):439–448.

https://doi.org/10.15406/iratj.2017.02.00015
https://pdfs.semanticscholar.org/180c/c8492721eb9c013de9ec19bd7d9dc6c38cf0.pdf
https://pdfs.semanticscholar.org/180c/c8492721eb9c013de9ec19bd7d9dc6c38cf0.pdf
https://pdfs.semanticscholar.org/180c/c8492721eb9c013de9ec19bd7d9dc6c38cf0.pdf
http://sdcs2.sysu.edu.cn/space/060009/06j_mech.pdf
http://sdcs2.sysu.edu.cn/space/060009/06j_mech.pdf
http://ieeexplore.ieee.org/document/1033184/
http://ieeexplore.ieee.org/document/1033184/
http://ieeexplore.ieee.org/document/1033184/
http://ieeexplore.ieee.org/document/1033184/
http://link.springer.com/article/10.1007/s00170-007-0935-x
http://link.springer.com/article/10.1007/s00170-007-0935-x
http://link.springer.com/article/10.1007/s00170-007-0935-x
https://www.semanticscholar.org/paper/A-multi-objective-approach-for-the-motion-planning-Marcos-Machado/4185a2d789fe087a3ddef5d3bc0654f9c9fb1930
https://www.semanticscholar.org/paper/A-multi-objective-approach-for-the-motion-planning-Marcos-Machado/4185a2d789fe087a3ddef5d3bc0654f9c9fb1930
https://www.semanticscholar.org/paper/A-multi-objective-approach-for-the-motion-planning-Marcos-Machado/4185a2d789fe087a3ddef5d3bc0654f9c9fb1930
https://nyuscholars.nyu.edu/en/publications/optimal-motion-planning-of-redundant-manipulators-with-controlled
https://nyuscholars.nyu.edu/en/publications/optimal-motion-planning-of-redundant-manipulators-with-controlled
https://nyuscholars.nyu.edu/en/publications/optimal-motion-planning-of-redundant-manipulators-with-controlled
http://journals.sagepub.com/doi/abs/10.1177/027836498500400201?journalCode=ijra
http://journals.sagepub.com/doi/abs/10.1177/027836498500400201?journalCode=ijra
https://www.infona.pl/resource/bwmeta1.element.elsevier-348ee03a-0ddc-37a8-9add-bbad0246697c
https://www.infona.pl/resource/bwmeta1.element.elsevier-348ee03a-0ddc-37a8-9add-bbad0246697c
https://www.infona.pl/resource/bwmeta1.element.elsevier-348ee03a-0ddc-37a8-9add-bbad0246697c
http://www.cim.mcgill.ca/~haptic/pub/JL-VH-IJRR-01.pdf
http://www.cim.mcgill.ca/~haptic/pub/JL-VH-IJRR-01.pdf
http://journals.sagepub.com/doi/full/10.5772/56714
http://journals.sagepub.com/doi/full/10.5772/56714
http://journals.sagepub.com/doi/full/10.5772/56714
https://www.scientific.net/AMM.479-480.729
https://www.scientific.net/AMM.479-480.729
https://www.scientific.net/AMM.479-480.729
http://ieeexplore.ieee.org/document/6140974/
http://ieeexplore.ieee.org/document/6140974/
http://ieeexplore.ieee.org/document/6140974/
http://link.springer.com/book/10.1007%2F978-3-642-37518-7
http://link.springer.com/book/10.1007%2F978-3-642-37518-7
http://ieeexplore.ieee.org/document/4081862/
http://ieeexplore.ieee.org/document/4081862/
http://ieeexplore.ieee.org/document/6313123/
http://ieeexplore.ieee.org/document/6313123/
http://ieeexplore.ieee.org/document/6313123/
http://ieeexplore.ieee.org/document/1087234/
http://ieeexplore.ieee.org/document/1087234/
http://ieeexplore.ieee.org/document/4120348/
http://ieeexplore.ieee.org/document/4120348/
http://ieeexplore.ieee.org/document/4120348/
http://link.springer.com/article/10.1007/s10846-008-9202-0
http://link.springer.com/article/10.1007/s10846-008-9202-0
http://dl.acm.org/citation.cfm?id=1238439
http://dl.acm.org/citation.cfm?id=1238439
http://link.springer.com/article/10.1007/s11071-009-9584-y
http://link.springer.com/article/10.1007/s11071-009-9584-y
http://link.springer.com/article/10.1007/s11071-009-9584-y
https://pdfs.semanticscholar.org/95d3/3b46a631d82b57e4a80cc68d2c802baf2fee.pdf
https://pdfs.semanticscholar.org/95d3/3b46a631d82b57e4a80cc68d2c802baf2fee.pdf
https://pdfs.semanticscholar.org/95d3/3b46a631d82b57e4a80cc68d2c802baf2fee.pdf
http://docslide.net/documents/singularity-of-robotic-kinematics-a-differential-motion-approach.html
http://docslide.net/documents/singularity-of-robotic-kinematics-a-differential-motion-approach.html

A GPU-based evolution algorithm for motion planning of a redundant robot 57
Copyright:

©2017 Lin et al.

Citation: Lin CJ, Chen CS, Yu SK. A GPU-based evolution algorithm for motion planning of a redundant robot. Int Rob Auto J. 2017;2(2):45‒57.
DOI: 10.15406/iratj.2017.02.00015

24. NVIDIA. NVIDIA Fermi Compute Architecture Whitepaper; 2009.

25. Lin CJ, Chen CS, Yu S K A. GPU-based motion planning for a redundant
robot using a parallel genetic algorithm, ICMT Int Conf; Taiwan: IEEE;
2014.

26. Nakamura Y, Hanafusa H. Inverse kinematic solutions with singulari-
ty robustness for robot manipulator control. J Dyn Syst Meas Control.

1986;108(3):163–171.

27. Maciejewski A, Klein Ch. The singular-value decomposition: computa-
tion and application to robots. Int J Rob Res. 1989;8(6):63–79.

28. Mayorga RV, Janabi-Sharifi F, Wong AKC. A fast approach for the ro-
bust trajectory planning of redundant robot manipulators. J Rob Syst.

1995;12(2):147–161.

29. Holland JH. Adaptation in natural and artificial systems. USA: The Uni-
versity of Michigan Press; 1975.

30. Rechenberg I. Evolutionsstrategie: optimierung technischer systeme

nach Prinzipien der biologischen evolution. Stuttgart: Frommann-Hol-
zboog; 1973.

31. Nelles O. Nonlinear system identification. Berlin: Springer; 2001.

32. Langdon WB. Afast high quality pseudo random number generator for
nVidia CUDA. Proc 11th Ann Conf Comp Gene & Eol Comp, New York:
The ACM digital library is published by the association for computing
machinery.; 2009. p. 25511–25514.

33. Knuth DE. Art of Computer Programming. Volume 2: Seminumerical Al-

gorithms. 3rd ed. USA: Addison-Wesley Longman; 1997.

34. Matsumoto M, Nishimura T. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans

Model Comput Simul. 1998;8(1):3–30.

35. Marsaglia G. Xorshift RNGs. J Statistical Software. 2003;8(14):1–6.

36. NVIDIA. CUDA Toolkit; 2012.

https://doi.org/10.15406/iratj.2017.02.00015
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1403812
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1403812
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1403812
http://journals.sagepub.com/doi/abs/10.1177/027836498900800605
http://journals.sagepub.com/doi/abs/10.1177/027836498900800605
http://onlinelibrary.wiley.com/doi/10.1002/rob.4620120205/full
http://onlinelibrary.wiley.com/doi/10.1002/rob.4620120205/full
http://onlinelibrary.wiley.com/doi/10.1002/rob.4620120205/full
https://mitpress.mit.edu/books/adaptation-natural-and-artificial-systems
https://mitpress.mit.edu/books/adaptation-natural-and-artificial-systems
http://www.citeulike.org/user/wvangeit/article/1721818
http://www.citeulike.org/user/wvangeit/article/1721818
http://www.citeulike.org/user/wvangeit/article/1721818
http://link.springer.com/book/10.1007%2F978-3-662-04323-3
https://dl.acm.org/citation.cfm?id=1570353&dl=ACM&coll=DL
https://dl.acm.org/citation.cfm?id=1570353&dl=ACM&coll=DL
https://dl.acm.org/citation.cfm?id=1570353&dl=ACM&coll=DL
https://dl.acm.org/citation.cfm?id=1570353&dl=ACM&coll=DL
http://dl.acm.org/citation.cfm?id=270146
http://dl.acm.org/citation.cfm?id=270146
http://ir.lib.hiroshima-u.ac.jp/en/list/ndc/410/p/2/item/15032
http://ir.lib.hiroshima-u.ac.jp/en/list/ndc/410/p/2/item/15032
http://ir.lib.hiroshima-u.ac.jp/en/list/ndc/410/p/2/item/15032
https://www.jstatsoft.org/article/view/v008i14
https://developer.nvidia.com/cuda-toolkit

	Title
	Abstract
	Keywords
	Introduction
	Problem formulation
	System description
	Cartesian trajectory tracking and motion planning with obstacles avoidance

	Ea-based motion planning for redundant robots based on cuda
	Initial population using CUDA
	Calculate fitness function using CUDA using CUDA
	Selection and crossover for the selection operation
	Mutation for the mutation operation

	Experimental result and discussions
	System description in this study

	Experimental results and discussions
	Conclusion
	Acknowledgements
	Conflict of interest
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Table 1
	Table 2
	Table 3
	Table 4

