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Figure 1: A simple real-time application showing Happy Buddha with emphasis on texturing operations for timing: on the left Ground truth HDR texture was encoded

using 32bit floating point for each channel (96 bpp). On the center left RGBE encoding (32 bpp). On the center right Wang et al. [28] (16 bpp), note that in this case

the splitting axis between LDR and HDR image minimizes RMSE error but appearance presents noticeable quantization artifacts. On the right our method using

residuals (8 bpp).

ABSTRACT

In recent years, High Dynamic Range Textures (HDRTs) have
been frequently used in real-time applications and video-games
to enhance realism. Unfortunately, HDRTs consume a consider-
able amount of memory, and efficient compression methods are
not straightforward to implement on modern GPUs. We propose
a framework for efficient HDRT compression using tone map-
ping and its dual, inverse tone mapping. In our method, encod-
ing is performed by compressing the dynamic range using a tone
mapping operator followed by a traditional encoding method for
low dynamic range imaging. Our decoding method, decodes the
low dynamic range image and expands its range with the inverse
tone mapping operator. We present results using the Photographic
Tone Reproduction tone mapping operator and its inverse encoded
with S3TC running in real-time on current programmable GPU-
hardware resulting in compressed HDRTs at 4 − 8 bits per pixel
(bpp), using a fast shader program for decoding. We show how our
approach is favorable compared to other existing methods.

Index Terms: I.4.2 [Image Processing and Computer Vision]:
Compression (Coding) Approximate methods— [I.3.1]: Com-
puter Graphics—Architecture Graphics processors I.3.7 [Computer
Graphics]: Three Dimensional Graphics and Realism Texture—

1 INTRODUCTION

High dynamic range (HDR) images [24] offer a more representa-
tive description of image-based digital content by storing data with
a higher pixel depth than the more conventional low dynamic range
(LDR) images. The increased depth presented by HDR image for-
mats can account for the dynamic range visible by the human vi-
sual system. Not surprisingly, HDR imagery has been adapted for a
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large number of applications, for example, it served as the founda-
tion of image-based lighting [5]. Interactive rendering applications,
most notably video games, have been quick to adopt the format for
lighting and general texture mapping methods [10, 19].

The use of texture mapping in real-time requires careful man-
agement of textures, due to limited texture memory and texture
bandwidth which can negatively affect performance. The problem
is further compounded with the use of HDR textures which can
easily be twice the size or more of LDR textures (LDRTs). For
LDRTs, texture compression algorithms have made it possible to
pass compressed data to texture memory and have it decoded in real
time upon texture access. A typical LDRT consisting of 24 bit-per-
pixel (bpp) RGB data can be compressed into 4-8 bpp (depending
on the format) saving texture memory and reducing texture band-
width. Many of these compression formats require fixed-rate access
to enable simple decoding in hardware. Similar methods are being
developed for HDRTs, yet some of them are not automatically sup-
ported by current hardware/software and their compression rates
are not yet comparable to those of LDRTs.

In this paper we present a new texture compression method for
HDRTs which uses the concepts of tone mapping and inverse tone
mapping. Tone mapping algorithms (see [24] for an overview)
were developed to compress the dynamic range of HDR images
to enable them to be displayed on conventional monitors and print
which cannot support such high dynamic ranges. Some tone map-
ping algorithms use tone mapping operators (TMOs) which can be
inverted [1]. These inverse TMOs (iTMOs) can be used to recon-
struct the dynamic range of an image.

In this paper we present a framework for HDRT compression
which encodes images using a TMO to reduce the dynamic range
of an HDRT to that of an LDRT which can then be compressed us-
ing a standard encoding algorithm. The decoding process uses the
standard decoding method to decode the LDRT and the iTMO to
expand the LDRT back to an HDRT. We show our framework with
respect to the Photographic Tone Reproduction Operator [23] and
its inverse [1] using S3TC [9] compression for the LDRT, which
enables us to achieve 4-8 bpp for HDRTs. We use a simple pixel



shader for the decoding which can run in real time on current graph-
ics hardware using bilinear, and mip-mapping filtering. We present
results of our implementation compared to other similar methods.

2 RELATED WORK

2.1 Representation Format

An uncompressed HDR image typically uses 96 bpp for an RGB
image, which is four times that of an uncompressed LDR image.
This large amount of data needs to be compressed in order to be
used efficiently. One of the first efficient HDR image representation
was RGBE introduced by Ward in [29]. This format compresses a
96 bpp image in 32 bpp using an 8 bit mantissa for each channel
and a shared 8 bit exponent. However, RGBE representation cannot
cover the full visible color gamut since it does not allow negative
values. To solve this problem two formats can be used: XYZE, the
same encoding of RGBE in XYZ, and LogLuv format [12]. The
latter format uses 32 bpp in which luminance is stored in 16 bit log-
arithmic space and 16 bits is used for colors. A 24 bpp alternative
uses 10 bit for luminance and 14 bit for colors. Recently, a new for-
mat, OpenEXR, introduced by Industrial Light & Magic in [8] has
become very popular. OpenEXR represents HDR data using 16 bit
floating-point per channel for a total of 48 bpp. It is supported by
modern graphics hardware. Finally, RGBS format presented in [19]
is similar to RGBE, a shared exponent for red, green and blue chan-
nel. However, the exponent is not saved in logarithmic space so
exponential operation is avoided during decoding.

These formats present some problems for texture mapping in
real-time applications. RGBE needs expensive operations such as
the exponential calculation to be programmed in the shader, and
filtering needs to be performed on the shader to avoid artifacts
using standard filtering on hardware (bilinear, mip-mapping, and
anisotropic filtering). RGBS has the same problem for the filter-
ing. LogLuv can be implemented only on new GPUs which have
bit operators, and presents the same problems as RGBE. Finally,
OpenEXR is not supported by all GPUs for filtering operations,
and its 48 bpp mean that it is not memory efficient.

2.2 General HDR Compression

A representation format for a single pixel can help in reducing
space, however high compression ratios may be achieved using in-
formation from neighboring pixels. In the last years several ex-
tensions to standard compression algorithms have been presented.
Backwards-compatible HDR-JPEG presented in [30–32] extends
JPEG standard keeping retro-compatibility. Firstly, an HDR image
is tone mapped using PTR and stored as a normal JPEG. Secondly,
a sub-band corresponding to HDR information is stored in the “ap-
plication markers” of the standard for a maximum of 64 Kbytes,
which is a constraint for encoding high resolution HDR images.
HDR-JPEG2000 [33] is an extension to JPEG2000 that exploits the
support of the standard for 16 bit integer data. So HDR data is
transformed into the logarithmic domain, quantized into integers
and compressed using standard JPEG2000 encoding. Finally, for
HDR videos HDR-MPEG had been proposed in [16, 17] as an ex-
tension to MPEG-4. As in HDR-JPEG-backwards videos are tone
mapped, and for each frame a reconstruction function is calculated
for storing HDR data. To improve quality residuals of frames are
saved in the video stream.

While these algorithms present high quality and high compres-
sion ratios, they are not ideally suitable for real-time applications
since their lack of hardware support results in complex imple-
mentations, particularly due to the potentially complex fetching
mechanisms required for decoding. For real-time applications, us-
ing fixed-rate bit compression simplifies the decoding process and
makes it simpler and typically faster to implement on graphics hard-
ware.

2.3 LDR Texture Compression

One of the first methods for rendering from compressed texture was
Vector Quantization [2], which had a high compression ratio, but re-
quired access into a look-up table. The current standard de facto is
S3TC [9] a blocking code scheme (see section 4.2 for more details).
Recently, new methods have been proposed based on tiles. For ex-
ample, in [6], for each tile two low resolution images are coded
and magnified during decoding. In PackMan [27] and its evolu-
tion iPackMan [27], for each tile (4× 4) two 4 bit base colors are
stored with modifier values. The final color is calculated by adding
a modifier value to the base color.

2.4 HDR Texture Compression

Three recent papers addressed HDRT compression [20, 25, 26], us-
ing new block based texture compression methods similar to S3TC.
The main problem of these two new methods, despite the high qual-
ity in compression, is that they need special hardware that is not
provided in the current target generation of graphics hardware. A
different approach is adopted by Wang et al. [28], where HDR and
LDR parts of the images were separated and quantized in two 8 bit
textures compressed using S3TC with their residuals. The recon-
struction was performed combining HDR and LDR part in a simple
shader. The main disadvantage of their approach is that it takes
two LDR textures (16 bpp). Recently a more general compression
scheme was proposed [13]. This method relies on a hierarchical
data structure that represents spatially coherent graphics data in an
efficient way. While it achieves 5 bpp for HDRT maintaining high
quality, it presents a complex shader (shader model 4) to decode
the texture which is 20 times slower than a fetch to a compressed
texture using S3TC. Finally hardware vendors presented hardware
support for RGBE with filtering, EXT texture shared exponent
[11] or DXGI FORMAT R9G9B9E5 SHAREDEXP [3], using 9
bits for each channel and 5 bits for the shared exponent. However
the main problem, low compression rate 32 bpp, still remains.

2.5 Inverse Tone Mapping for Compression

A multi-scale image processing technique for both tone mapping
and companding (tone mapping followed by an expansion) was pro-
posed in [14]. The main problem for the decoding in this algorithm
is that the compressed LDR has to be decomposed into subbands,
an operation that is not very efficient on current GPUs.

A compression method based on an inverse tone mapping opera-
tor and JPEG was presented in [21]. The TMO is based on the Hill
function and parameters for inverse tone mapping are calculated
using minimization techniques, and then encoded using JPEG. The
residuals are calculated for increased quality and are compressed
using wavelets. Wavelets and DCT decompression are computa-
tionally expensive to evaluate on GPU, and they do not provide a
constant decompression time.

A compression scheme for still images and videos using a TMO
based on a model of human cones was presented in [7]. This work
neither presented a validation nor a study about a further compres-
sion stage of tone mapped LDR images or videos, such as apply-
ing JPEG, JPEG2000, or MPEG compression and the effect on the
inversion. Also it does not provide the computational cost of the
proposed TMO and iTMO.

3 INVERSE TONE MAPPING COMPRESSION FRAMEWORK

In this section we present the general framework and underlying
theory of our approach. Implementation details of our framework
will be described in Section 4.

Our encoding and decoding processes can be seen in Figure 2.
The entire framework is based on the concept of inverse tone map-
ping. Tone mappers generally use tone mapping operators (TMOs)
to compress HDR images in order to visualize them on traditional
displays. If a TMO is a monotonically increasing function it can



Figure 2: Our compression framework: a) The pipeline of the framework for enconding HDR textures: the process begins with an optimization step, a TMO is applied

to it and the obtained LDRT is stored using a codec and residuals are calculated from this encoded LDRT. Finally we check if the error is small enough otherwise the

process is iterated again until the best minimization is reached. b) The pipeline of the framework for decoding HDR textures: when a pixel needs to be evaluated LDR

decoding is applied, S3TC/DXTC in our case. Then the luminance value of this pixel is expanded using inverse tone mapping using the iTMO parameters, which are

calculated in the encoding phase, and the residuals.

be inverted in order to expand a low dynamic range image into a
high dynamic range image [1]. In general a global TMO is usu-
ally invertible while a local operator is not, due to problems with
deconvolution and since local TMOs are not usually monotonically
increasing functions.

Using this knowledge, we compress HDRTs (96 bpp) using a
TMO and store the result in an LDRT (24 bpp). We then compress
this LDRT using a traditional LDR compression codec. When a
texture is accessed we first decode the LDRT and then use the in-
verse of the tone mapping operator used in compression to expand
the LDRT to an HDRT. Additive or multiplicative residuals can be
added to increase the final quality.

3.1 An Inverse Tone Mapping Operator

An Inverse Tone Mapping Operator, g(x), can be derived from a
TMO when the TMO is a monotonically increasing function f (x)
that we can invert, such that g = f−1(x). As an example of how
tone mapping and inverse tone mapping may be used in our frame-
work we present our approach using the Global Photographic Tone
Reproduction operator [24]. We chose this TMO because it is non-
linear, which allows to define a good relationship between HDR and
LDR values, easy to invert, and computationally cheap. This TMO
compresses luminance without applying any particular operation on
colors, it is defined as:
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where R, G, B are respectively red, green and blue color chan-
nels, ′ indicates compressed values, L = 0.213R +0.72G +0.072B
is the luminance channel of an HDRT, LH is the harmonic mean,
Lwhite is the maximum white point, and α is the scale factor, see
[24] for a complete overview on these parameters. As in [1] we
invert, the above TMO, for decoding the LDRT to an HDRT, by
solving Equation 1 for Li, j obtaining g = f−1:
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At this point, we need to define how to set the parameters, α and
Lwhite, for f and g = f−1, because during the quantization to 8 bit
per channel of the tone mapped texture, we need to fit the data in
the bits as much as possible, see for example Figure 3. So we define
a function that we need to minimize:

ε(L) = ∑
i, j

∥

∥log(Li, j)− log(g([ f (Li, j)]
255
0 ))

∥

∥

2
(3)

where [ ]255
0 is the quantization in the range [0,255]. ε is calcu-

lated in the logarithmic domain to be more robust to outliers, for ex-
ample few pixels with high luminance levels. Minimization can be
uniquely determinate as in [21], but for some non-linear TMOs can-
not be inverted, since inversion implies finding zeros in a non-linear
function. In order to keep our framework as general as possible
we decided to use numerical methods such as Levenberg-Marquadt
minimization. The parameters that are optimized during the mini-
mization process are α and Lwhite, which are initialized using auto-
matic estimation as presented in [22]. This approach worked well
in practice.

The parameters α and Lwhite are used to tone map the HDRT.
We then compress this LDRT using a standard traditional method.
Other TMO and iTMO pairs can be used.

4 IMPLEMENTATION

In this section we describe the implementation of our framework
and certain implementation-relevant design choices taken. We
present two implementations, one based on DXT1 which com-
presses at 4 bpp and another one based on DXT5 which stores the
residuals in the channel reserved for alpha values, for a total of 8
bpp.

4.1 Color Space Transform

A color transformation in compression algorithms is usually impor-
tant because some properties can be exploited for assigning more
bits to more important color channels. In certain HDRT compres-
sion methods, such as in [20, 25, 28], more bits are assigned to the
luminance channel rather than the chroma channels. Similarly, we
could have adopted the same approach in our implementation, but
we use standard RGB color space for two reasons. Firstly, the TMO
that we used compresses only luminance, and colors are scaled as
can be seen from Equation 1. Note that is similar to the LUVW
color space proposed in [28]. The second reason is the decoding



Figure 3: An example of wrong parameters selection: on the left the tone

mapped image 15 from Figure 6 with a region of interest in green. On the

right top a close-up of the region of interest after reconstruction using non

estimated parameters for the (inverse) tone mapping operator. On the bottom

right the region of interest after reconstruction using estimated parameters. As

can be seen a non-automatic estimation of parameters may produce additional

quantization artifacts because not all 8 bits are used.

efficiency, as we show in Section 4.4. If we were to apply for ex-
ample Luv ( [25]) or Yxy color space (or other color spaces which
concentrate information in the luminance channel) the total number
of operations would increase by at least four multiplications and
two additions to calculate the final color of Luv.

4.2 S3TC for LDR Textures Encoding

The current de facto standard, as implemented on graphics hard-
ware is S3TC/DXTC [9]. This is what we use as part of our own
implementation. However, when a new standard will be available it
can easily be updated in our system. DXTC works on 4× 4 pixel
tiles, where for each tile two 16 bit colors are calculated (5 bit for
the red channel, 6 bit for the green channel and 5 bit for the blue
channel), and 2 bits for each pixel are used for interpolating from
these two colors. In our work we used two variants of DXTC:
DXT1 and DXT5. DXT1 uses only a 1 bit alpha channel and is
very compact (64 bits per 4×4 tile) resulting in 4 bpp. DXT5 uses
an additional 64 bits for encoding an 8 bit alpha channel (128 bits
per 4× 4 tile) resulting in 8 bpp. In our implementations we use
DXT1 for our simple implementation, and DXT5 to store residuals
in the bits reserved for the alpha channel.

4.3 Residuals

For improved quality in one of our implementations we make use
of the alpha channel to store residual information. As can be ex-
pected, there is a difference between the reconstructed HDRT and
the original HDRT which can be expressed as:

δa = Lori −Lrec δm = Lori/Lrec (4)

where δa is the additive difference, δm the multiplicative difference,
Lori the luminance of the original HDRT and Lrec the luminance
of the reconstructed HDRT. We did not consider residuals for the
colors because we would need another texture to store these. A
TMO usually compresses only the luminance channel, keeping the
color information so the errors in colors due to quantization dur-
ing LDR encoding is lower than errors in the luminance channel.
We use additive residuals, δa, since it has been shown that they do
not introduce noticeable artifacts compared to multiplicative resid-
uals δm [28]. We store δa quantized linearly into 8 bit in the alpha
channel which is subsequently compressed by DXT5.

1 sampler2D texTMO;

2 sampler1D texITMO;

3 const float3 LUMINANCE= float3(0.21,0.72,0.07);

4

5 float3 tex2DITMO(float2 texCoords)

6 {
7 float4 tmoValue= tex2D(texTMO,texCoords);

8 float L= dot(tmoValue.rgb,LUMINANCE);

9 float Lw= tex1D(texITMO,L);

10 return tmoValue.rgb*(Lw+texTMO.a)/L;

11 };

Listing 1: tex2DITMO is the function which is used in a shader for decoding a com-

pressed texture using our framework. This function takes 2 fetches to texture, 1 dot

product, 1 multiplication, 1 division.

4.4 The Decoding Stage

For our decoding stage we implemented as a shader the iTMO
from [1] described in Section 3.1. To speedup on-the fly calcula-
tions, we pre-compute, for each texture, Equation 2 into a 1D tex-
ture with 256 half floating point values (512 bytes). Our fragment
shader program, tex2DITMO, is shown in Listing 1. When an
HDRT lookup is called, our function firstly fetches the compressed
tone mapped HDRT value, texTMO (line 8), and calculates the lu-
minance, L (line 9). The luminance is then used as a lookup into the
pre-calculated 1D texture, texITMO (line 10), and used to expand
the value back into a high dynamic range (line 11). Finally, we add
the residuals stored in the alpha channel.

4.5 Analysis of Error for Linear/Bi-Linear Interpolation

In our implementation we used bilinear, mip-mapping filtering per-
formed on the texTMO. The used iTMO is not a linear function and
this leads to errors during these filtering operations. However, the
error introduced does not produce noticeable artifacts as in the case
of interpolation in RGBE or RGBS. This is due to two reasons, the
first is that we are not interpolating exponents, such as in RGBE, but
we are interpolating only base values of a function. The second rea-
son is that the iTMO is a monotonically increasing and continuous
function. Therefore the interpolated value y, between two values a
and b, will still be continuous without producing edges, see Figure
5. Finally residuals can be up-sampled and added without problems
because they are additive, so they are linear.

For the one dimensional case, correct linear up-sampling of lu-
minance is defined as:

L(a,b,x) = xg(a)+(1−x)g(b) (5)

where g is the inverse tone mapping operator, a is the first value that
we want to interpolate, b is the second one, and x is the in between
factor of interpolation, where

{

a,b,x
}

∈ [0,1]. In our implementa-
tion we firstly up-sample compressed luminance:

L̂(a,b,x) = g(xa+(1−x)b) (6)

So the error is given by:
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∥
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∥
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∥
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∥
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Substituting g, Equation 2, in Equation 7 and simplifying it, we
obtain:
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ε(a,b,x) depends on the interval [a, b] that we want to interpolate
and parameters which are specific for each image: Lh, Lwhite, and
α . For an empirical analysis we took the worst case Image 3, in
our image set Figure 6. We analyzed the error for two interpolation
cases, an average interpolation interval in which the variation of the
interval b− a = 0.3 [0.3, 0.6], and the worst case, the interval [0,
1]. In Figure 4 the error function is plotted for these cases. As it
can see the error is quite low in the average interval [0.3, 0.6]. On
the other hand the error is quite high for the interval [0, 1], but as
soon the interval is lowered a bit the error becomes again quite low,
see Figure 4. Note that there are few pixels which are mapped to 1
which corresponds to the maximum value of the HDR texture.

(a) (b) (c)

Figure 5: An example of bilinear up-sampling using our method for Image 11

from Figure 6: a) simulated bilinear filter in the shader b) up-sampling before

applying inverse tone mapping function c) difference between a) and b) which

is scaled 20 times.

5 RESULTS

We implemented our compression framework in Matlab R2007b
using the Levenberg-Marquadt function implemented in the Opti-
mization toolbox. During the encoding stage, we always reached
the local minimum using our set of images. Minimization (Equa-
tion 3) takes less than few seconds using a 748×1128 texture. The
decoding function was integrated into an existing Direct3D9 appli-
cation. This step is straightforward and can be easily integrated into
similar real-time graphics applications. We tested our framework,
compression and decompression, on an Intel Pentium M 1.76 Ghz
equipped with 1.5 GB of memory and a GeForceGO 7300 with 256
MB.

5.1 Quality Metrics

In order to evaluate our work we use common metrics used to
evaluate HDR images. We used HDR Visual Difference Predictor
(VDP), a psychophysical metric, Root Mean Square Error (RMSE)
in the log2[RGB] domain, and Multi-Exposure Peak Signal Noise
Ratio (mPSNR), both of which are objective metrics.

The VDP [4] takes into account limitations in the human vi-
sual system rather than just physical values when comparing im-
ages. We use an extension to VDP, HDR-VDP which is special-
ized in comparing HDR images [15, 18]. HDR-VDP outputs an
image showing per-pixel false coloring highlighting the perceptual
difference between the images. This resulting color-coded image
can be summarized the results using two values. The first is the
percentage of different pixels detected with the probability of 75%
(P(X) ≥ 0.75). The second is the percentage of different pixels
detected with the probability of 95% (P(X) ≥ 0.95).

The RMSE in the log2[RGB] domain was proposed by Xu et

al. [33], which is defined as follows:

RMSE(I, Î) =

√

√

√

√

1

n
∑
i, j

(

log2

Ri j

R̂i j

)2

+

(

log2

Gi j

Ĝi j

)2

+

(

log2

Bi j

B̂i j

)2

(8)
where I is the reference image and (R,G,B) its red, green and blue

channels, Î the comparison image and (R̂, Ĝ, B̂) its channels, n the
number of pixels of the two images. A small RMSE value means
that image Î is close to the reference, zero means that they are the
same, while a high value means that they are very different.

The final metric is mPSNR, introduced in Munkberg et al. [20],
this takes a series of exposures which are tone mapped using a sim-
ple gamma curve:

T (X ,c) =

[

255(2cX)
1
γ

]255

0

(9)

where c is the current f-stop, X is a color channel, and γ = 2.2.
Then the classic Mean Square Error (MSE) is computed:

MSE(I, Î) =
1

w×h× p

p

∑
c=1

∑
i, j

(

∆R2
i j,c +∆G2

i j,c +∆B2
i j,c

)

(10)

where p is the number of used exposures, n is the number of pixel
in the image, ∆Ri j,c = T (Ri j,c)−T (R̂i j,c) for the red color chan-
nel, and so on for green and blue channels. Finally the PSNR is
calculated using the standard formula:

mPSNR(I, Î) = 10log10

(

3×2552

MSE(I, Î)

)

(11)

We determined automatically the p exposures. We used all ex-
posures which generate an image that has a mean luminance less
than or equal to 0.9, and greater than or equal to 0.1. These two
thresholds were chosen after an examination of p values presented
in Munkeberg et al. [20].

5.2 Comparisons

We compared our method with two other methods that are currently
used in real-time applications, RGBE and Wang et al. [28]. In
addition to these methods we compared our technique with other
HDRT compression methods [20, 25] which are not currently sup-
ported by current OpenGL2/Direct3D9 and OpenGL3/Direct3D10
class hardware.

We compressed 22 HDRTs using our framework with and with-
out residuals, these images were originally stored in the OpenEXR
format (48 bpp). Figure 7 shows the values obtained for each pic-
ture using the metrics log2[RGB] RMSE, mPSNR and HDR-VDP,
plotted as graphs. Table 1, summarizes these results with the aver-
age value for each of the metrics over the total number of pictures.
Furthermore, Table 1, presents a second value which serves to high-
light the quality as a function of the compression. These results
must be interpreted as less is better for HDR-VDP and log2[RGB]
RMSE, while more is better for mPSNR.

It is clear from the results that RGBE performs best in terms of
quality in all metrics. However, when compared as a function of
quality, it is best only in the case of the HDR-VDP metric. Further-
more, RGBE has problems when it comes to filtering and perfor-
mance, only on G80 graphics cards RGBE filtering is implemented
in hardware. The hardware methods [20, 25] perform better on av-
erage than our methods for straight out values, but less so as a func-
tion of quality. However, as mentioned earlier, these methods need
special hardware to run. Our methods perform reasonably well,
overall, they are better than the method of Wang et al. [28], more
so when considering the compression as a function of quality. Our
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Figure 4: An example of evaluation of the error function for Image 3 from Figure 6: on the left hand side graph the error function for linear interpolation in the interval

[0.3, 0.6], note the error is quite low. On the right hand side graph the error function for linear interpolation in the interval [0, 1], the error is quite high, but as soon as

we lower down a bit the interval to [0, 0.95] or [0, 0.9] the error becomes acceptable.

Roimela et al. [25] Munkberg et al. [20] Wang et al. [28] Our method without residuals Our method with residuals RGBE*

Bits per pixel (Bpp) 8 8 16 4 8 32

Frames per seconds (FPS) NA NA 309 314 312 201

HDR-VDP average 0.0609 0.0014 1.333 0.815 0.1 0.0

HDR-VDP × Bpp 0.4872 0.0112 21.328 3.26 0.8 0.0

HDR-VDP / FPS NA NA 3.23e-3 2.59e-3 3.2e-4 0.0

log2[RGB] RMSE average 0.412 0.342 0.277 0.581 0.348 0.0623

log2[RGB] RMSE × Bpp 3.296 2.736 4.432 2.324 2.784 1.993

log2[RGB] RMSE / FPS NA NA 8.9e-4 1.85e-3 1.1e-3 3.1e-4

mPSNR average 84.43 89.31 81.12 77.12 83.11 99.03

mPSNR / Bpp 10.554 11.1638 5.07 19.28 10.3888 3.09

mPSNR × FPS NA NA 25066.1 24215.7 25930.32 19905.03

Table 1: Comparisons: this table shows the ratio of the average values of the used metrics and the bits per pixel, and as well for frames per second (FPS). We did

not calculate FPS for Munkberg et al. [20] and Roimela et al. [25] because they can not be implemented using current hardware. * Note: on a G80 series RGBE is

supported in hardware with filtering so it should scale with similar or better performances in fps compared to our method.

method without residuals seems to offer the best compression to
quality ratio in the cases of mPSNR and log2[RGB] RMSE, mainly
due to the high compression ratio of 4 bpp.

5.3 Real-time Graphics Application

Decoding speed is another important parameter that has to be taken
into account for real-time applications. In modern applications
such as games many texture fetches are needed to calculate post-
processing filters. To show the efficiency of our implementation we
timed the decoding time of all methods using a simple Direct3D9
application where bilinear filtering and mip-mapping were applied
to textures. Real-time performance is summarized in Table 1. These
values are timed from the simple application shown in Figure 1.
Our methods obtained the fastest times, running without residuals
at 314 fps, and with residuals at 312 fps. RGBE was the slowest, at
201 fps, due to the fact that bilinear filtering and mip-mapping has
to be emulated in a shader because otherwise artifacts at the edges
are present in results, because in these areas the exponent changes
rapidly. Wang et al. [28] is nearly as fast as our methods, 309 fps,
but it uses more operations: 3 multiplications, 3 additions, 1 dot
product, 2 texture fetches compared to our method which uses 1
multiplication, 1 addition, 1 dot product, 1 division and 2 texture
fetches.

An important issue is the caching during the second texture fetch
in Listing 1, since it depends on the first texture lookup. Since our
1D texture is quite small (512 bytes) it remains in the GPU cache.
To verify this we render a simple scene with 16 Happy Buddhas
with one single texture and the same scene with 16 different tex-
tures. Performances were timed, and the results are 18.13 fps for
the single texture application, and 17.91 fps for the application us-
ing 32 different textures. So the difference in terms of fps is only

5, which is quite low and shows that our approach does not harm
caching.

(a) (b) (c)

Figure 8: A close-up of the central window in image 12 in Figure 6. Note our

method does unfortunately inherit color mixing artifacts from S3TC at edges

and in a color gradient. a) Original HDR image. b) Compressed image without

residuals, color mixing decreases the quality of luminance. c) Compressed

image with residuals.

6 CONCLUSION AND FUTURE WORK

In this paper we have presented a compression framework for HDR
textures that can be implemented on current graphics hardware. Our
framework is based on tone mapping for the encoding stage and in-
verse tone mapping for the decoding stage. In our implementation
we used S3TC for compressing LDR textures resulting in a com-
pression rate of 8 bpp for high quality HDRTs and 4 bpp for fairly
good HDRTs. S3TC is the main limit to the quality, our methods



Figure 6: Tone mapped HDR textures used in our compression experiments.

are affected by classic problems of this compression scheme, see
Figure 8. Our method has been designed for natural HDR textures,
and tested with a maximum contrast ratio of 1.5×108 : 1 (in Image
11 from Figure 6). Images with contrast ratio over 109 : 1 are a dif-
ficult scenario in which quantization artifacts would be noticeable.

We have shown that our method has a good quality compared
to existing available solutions for real-time applications on current
hardware, RGBE and Wang et al. [28], and state of art that needs
special hardware Munkberg et al. [20] and Roimela et. al [25]. A
further advantage of our method over the other compression meth-
ods such as RGBE is that it can handle filtering without visible
artifacts (bilinear and mip-mapping) and it can be implemented ef-
ficiently on GPUs. Moreover, the decoding shader is easy to in-
tegrate into existing real-time applications. Compared to Wang et
al. [28] we use half the memory and we can avoid quantization ar-
tifacts when the splitting axis can not find an optimal separation, as
in the case of Saint Peter Basilica’s lightprobe, see Figure 1.

For future work we would like to exploit new graphics hardware
features to compress on the fly. This would be helpful for com-
pressing the main rendering target which currently uses HD reso-
lutions. This can take up a large amount of memory, especially for
anti-aliasing or temporary post processing buffers.
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Figure 7: The results of the comparisons using the three metrics using the set in Figure 6: in the top left results for RMSE in log2[RGB], in the top right results for

mPSNR, and in the bottom results for HDR-VDP with probability of detection equals to 0.75.
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[27] J. Ström and T. Akenine-Möller. ipackman: high-quality, low-

complexity texture compression for mobile phones. In HWWS ’05:

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference

on Graphics hardware, New York, NY, USA, 2005. ACM Press.

[28] L. Wang, X. Wang, P.-P. Sloan, L.-Y. Wei, X. Tong, and B. Guo.

Rendering from compressed high dynamic range textures on pro-

grammable graphics hardware. In I3D ’07: Proceedings of the 2007

symposium on Interactive 3D graphics and games, pages 17–24, New

York, NY, USA, 2007. ACM Press.

[29] G. Ward. Real pixels. Graphics Gems, 2:15–31, 1991.

[30] G. Ward. JPEG-HDR: A backwards-compatible, high dynamic range

extension to JPEG,. In CIC 13th: Proceedings of the Thirteenth Color

Imaging Conference. The Society for Imaging Science and Technol-

ogy, 2005.

[31] G. Ward. A general approach to backwards-compatible delivery of

high dynamic range images and video. In CIC 14th: Proceedings of

the Fourteenth Color Imaging Conference. The Society for Imaging

Science and Technology, 2006.

[32] G. Ward and M. Simmons. Subband encoding of high dynamic range

imagery. In APGV ’04: Proceedings of the 1st Symposium on Applied

perception in graphics and visualization, pages 83–90, New York, NY,

USA, 2004. ACM Press.

[33] R. Xu, S. N. Pattanaik, and C. E. Hughes. High-dynamic-range still-

image encoding in jpeg 2000. IEEE Comput. Graph. Appl., 25(6),

2005.


