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Abstract

Graphics Processing Units (GPUs) have emerged as powerful ac-
celerators for many regular algorithms that operate on dense ar-
rays and matrices. In contrast, we know relatively little about us-
ing GPUs to accelerate highly irregular algorithms that operate on
pointer-based data structures such as graphs. For the most part, re-
search has focused on GPU implementations of graph analysis al-
gorithms that do not modify the structure of the graph, such as algo-
rithms for breadth-first search and strongly-connected components.

In this paper, we describe a high-performance GPU implemen-
tation of an important graph algorithm used in compilers such as
gcc and LLVM: Andersen-style inclusion-based points-to analysis.
This algorithm is challenging to parallelize effectively on GPUs be-
cause it makes extensive modifications to the structure of the under-
lying graph and performs relatively little computation. In spite of
this, our program, when executed on a 14 Streaming Multiproces-
sor GPU, achieves an average speedup of 7x compared to a sequen-
tial CPU implementation and outperforms a parallel implementa-
tion of the same algorithm running on 16 CPU cores.

Our implementation provides general insights into how to pro-
duce high-performance GPU implementations of graph algorithms,
and it highlights key differences between optimizing parallel pro-
grams for multicore CPUs and for GPUs.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms Algorithms, Languages, Performance

Keywords Inclusion-based Points-to Analysis, Irregular Pro-
grams, Graph Algorithms, GPU, CUDA

1. Introduction

GPU hardware is designed to process blocks of pixels at high speed
and with wide parallelism, so it is well suited for executing regular
algorithms that operate on dense vectors and matrices. We under-
stand much less about how to use GPUs efficiently to execute ir-
regular algorithms that use dynamic data structures like graphs and
trees. Harish et al. [14] pioneered this field with their CUDA im-
plementations of algorithms such as breadth-first search and single-
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source shortest paths. BFS has recently received much attention in
the GPU community [19, 24, 26]. Barnat et al. [5] implemented a
GPU algorithm for finding strongly-connected components in di-
rected graphs and showed that it achieves significant speedup with
respect to Tarjan’s sequential algorithm. Other irregular algorithms
that have been successfully parallelized using GPUs are n-body
simulations and some dataflow analyses [9, 30].

An important characteristic of most of the irregular algorithms
that have been implemented to date on GPUs is that they are graph
analysis algorithms that do not modify the structure of the underly-
ing graph [5, 14, 19, 24, 26]; when they do modify the graph struc-
ture, the modifications can be predicted statically and appropriate
data structures can be pre-allocated for the program [9, 30]. How-
ever, there are many important graph algorithms in which edges
or nodes are dynamically added to (or removed from) the graph at
runtime in an unpredictable fashion, such as mesh refinements [11],
compiler optimizations [3], and social network maintenance [7]. In
TAO analysis [29], which is an algorithmic classification for irreg-
ular codes, these are called morph algorithms. Implementation of
a morph algorithm on a GPU is challenging because it is unclear
how to support dynamically changing graphs on a GPU; in partic-
ular, static graph representations such as compressed row storage
(CRS), which work well on GPUs, cannot be used.

In this paper, we describe the first high-performance GPU im-
plementation of a very important morph algorithm: Andersen’s
inclusion-based points-to analysis [3], which is a compiler anal-
ysis algorithm that takes a program as input and infers an over-
approximation of the set of variables pointed to by each pointer
in the program. Inclusion-based points-to analysis provides a good
trade-off between precision of results and speed of analysis, and it
has been incorporated into several production compilers including
gcc and LLVM. A multi-CPU, shared memory implementation of
this algorithm is presented by Méndez-Lojo et al. [25]; it achieves
an average speedup of 6x on sixteen cores relative to a highly-tuned
sequential implementation by Hardekopf [13], when analyzing a
suite of 14 benchmark programs.

Although our paper focuses mainly on inclusion-based points-
to analysis, many of the ideas presented here (especially the graph
representation) are applicable to the implementation of other morph
codes on the GPU. In addition, our work adds another data point
to the ongoing debate regarding the performance of CPU and GPU
architectures and their associated programming models [10, 20, 22,
34], and it confirms that modern GPUs can be used to accelerate a
wide range of applications.

We summarize the contributions of this paper below.

• A GPU implementation of Andersen’s analysis requires funda-
mental modifications with respect to the CPU code. The modi-
fications include adapting the data structures to the GPU mem-
ory model (Section 4), distributing work to threads using novel
scheduling policies and avoiding explicit worklists (Section 5),
adding new algorithmic features based on primitives (sorts, pre-



Code Name Edge

x=&y points

x=y copy

x=*y load

*x=y store

x=y+o addPtr

Figure 1. Basic edge types

fix sums) that can be executed very efficiently on the GPU (Sec-
tions 5 and 6), and minimizing the overhead penalty derived
from exchanging data between the CPU and the GPU (Sec-
tion 6). This paper can be useful for understanding some of the
differences between optimizing codes for multicores and GPUs.

• We describe a graph representation suited for the implementa-
tion of morph algorithms on GPUs (Section 4). Our graph data
structure is based on ‘wide’ sparse bit vectors and does not im-
pose any constraint on the structure of the graph, allowing the
algorithm to add and remove edges dynamically. This is the first
GPU implementation of arbitrary graphs that takes into account
three relevant performance factors: global address alignment,
shared memory bank conflicts and thread divergence.

• Previous work [25, 31] shows how to formulate Andersen’s
points-to analysis as a graph rewriting problem. In Section 5,
we introduce a modified set of rewrite rules such that any num-
ber of rules can be executed simultaneously without synchro-
nization. These new rewrite rules are useful independent of the
architecture chosen for the parallelization of the algorithm.

• Our GPU code, written in CUDA, outperforms an existing
multi-CPU version of the same algorithm [25], achieving an
average speedup of 7x with respect to the state of the art se-
quential CPU implementation [13].

The rest of this paper is organized as follows. Section 2 in-
troduces Andersen’s points-to analysis, formulating it as a graph
rewriting system. A brief overview of the GPU hardware and soft-
ware model is given in Section 3. Sections 4 and 5 describe how
to compactly represent sparse graphs for morph algorithms on the
GPU and how to implement the graph rewrite rules without resort-
ing to synchronization. Important optimizations tailored to the GPU
hardware are discussed in Section 6. Section 7 presents experimen-
tal results comparing the performance of the GPU, multi-core CPU,
and sequential CPU implementations. Related work is discussed in
Section 8. Section 9 summarizes our findings and concludes.

2. Inclusion-based points-to analysis

Points-to analysis is a static analysis technique that determines
what a pointer variable may point to during the execution of a
program. The results of this analysis are useful for program op-
timization, program verification, debugging and whole program
comprehension [17]. The literature contains many variations of
points-to analysis: context-sensitive versus context-insensitive,
flow-sensitive versus flow-insensitive, etc. [3, 6, 12, 13, 15, 33, 35].
These variations make different trade-offs between precision and
running time, but production compilers like gcc and LLVM seem to
have settled on context-insensitive, flow-insensitive points-to anal-
ysis because the more precise alternatives are currently intractable
for very large programs.

2.1 Andersen-style points-to analysis

The most popular algorithm for context-insensitive, flow-insensitive
points-to analysis is known as inclusion-based or Andersen-style
analysis [3]. The asymptotic worst-case complexity of the algo-
rithm is O(n3), where n is the number of variables in the program,
although this worst-case behavior is rarely observed in practice:
there is a plethora of heuristics (e.g., [12, 13, 32]) that dramatically
speed up the analysis.

Traditionally, inclusion-based points-to analysis is formulated
as a set-constraint problem. Each statement in the input program
adds a new constraint to the system, which is iteratively solved until
a fixpoint is reached. However, many constraint problems can also
be formulated in terms of graph rewriting rules [16, 31]. We now
describe a graph-based formulation [25] of Andersen’s analysis.

1. Initialization. The input program is read, discarding any state-
ment not related to pointer manipulations. Since we assume that
we are analyzing C programs, there are five statements of inter-
est: x = &y (points), x = y (copy), x = ∗y (load), ∗x = y
(store), and x = y+o (pointer arithmetic, abridged as ‘addPtr’).

2. Constraint graph creation. For each pointer variable in the input
program, we add a new node to a constraint graph, which is the
only data structure required by this particular formulation of the
analysis. For each pointer-related statement, we add an edge
as indicated in Figure 1. Note that the resulting graph might
contain multiple edges of different types between two given
nodes. An example is shown in Figure 3. The program contains
five variables and four statements, so the initial constraint graph
in Figure 3(a) has five nodes and four edges.

3. Solving constraints. Most of the analysis time is spent in this
phase, in which we repeatedly apply a set of four rewrite rules
in any order. The rules are listed in Figure 2. Intuitively, each
rewrite rule updates the graph locally to satisfy some constraint.
For brevity, we will only cover the intuition behind the copy
rule; a more formal explanation of each rule can be found
elsewhere [25]. The copy rule states that if variable y has an
outgoing points edge to z and an outgoing copy edge to x, then
an edge of type points must exist between x and z. In other
words, the rule augments the points-to set of x by adding one
variable that is already present in the points-to set of y. Newly
added edges are shown using dashed lines. The formula in the
last row indicates the postcondition that will hold once we have
applied all the copy rules involving x and y: the points-to set of
y is a subset of that of x.

Notice that each rewrite rule is triggered if there is a node
with two outgoing edges at which the relevant invariant is not
satisfied because of a missing edge between two variables in
the constraint graph. Such a node is called an active node. In
Figure 2, the active node for each rule is shaded. When an active
node is processed and a new edge is added to the graph, it may
cause other nodes to become active. There may be many active
nodes in a given constraint graph, a fact that we exploit in the
parallel algorithm described in Section 2.2.

When no more graph rewrite rules can be applied, the process
terminates. Termination is ensured because the process only adds
new edges to the constraint graph, and there is only a finite number
of edges that can be added. The solution to the points-to problem
can be read off the points-to subgraph. It can be proven that the
resulting solution is equivalent to the one obtained by solving a
system of constraints.

An example of this graph-based analysis is illustrated in Fig-
ure 3. In the initial state (a), there are two active nodes, x and z.
We choose to apply the copy rule for z first, adding a new points

edge y
p
−→ w. Now x is the only active node, firing a store rule that
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y
p
−→ z ∧ y

c
−→ x ⇒ x

p
−→ z y

p
−→ z ∧ y

l
−→ x ⇒ z

c
−→ x x

p
−→ z ∧ x

s
−→ y ⇒ y

c
−→ z

y
p
−→ z ∧ y

a,o
−−→ x ⇒ x

p
−→ z + o

pts(x) ⊇ pts(y) ∀z ∈ pts(y) : pts(x) ⊇ pts(z) ∀z ∈ pts(x) : pts(z) ⊇ pts(y) pts(x) ⊇ { z + o | z ∈ pts(y)}

Figure 2. Constraint graph rewriting rules

program constraint graph solution

x = &v;
∗x = y;
y = z;
z = &w

var pts
x {v}
y {w}
z {w}
v {w}
w {}

Figure 3. Graph rewrite example

adds y
c
−→ v. After applying another copy rule (transition from (c)

to (d)), the preconditions of all the rewrite rules are satisfied and
we reach a fixpoint. The points-to solution is shown on the right
hand side of Figure 3.

2.2 Parallelism in Andersen’s points-to analysis

Graph rewrite rules can be applied concurrently, provided that the
graph data structure is properly synchronized such that edges can
be added to it in a concurrent fashion. To understand this simple
parallelization scheme, consider the possible scenarios that can
happen when a rule R is adding an edge from x to y:

• Another rule reads an edge that starts at node x. This edge will
not be removed by R because no edges are removed.

• Another rule adds an edge x −→ z such that y 6= z. This new
edge cannot affect the update rule executed by R because it
does not depend on that edge. On the other hand, the concrete
representation of the edge set needs to be synchronized so
it supports concurrent additions. For example, in Figure 3(a),
there are two active nodes x and z, and both are trying to add a
new outgoing edge to y. In a parallel setting, we allow the two
rules to perform the addition concurrently.

• Another rule tries to add the same edge. The two rules can be
interleaved in any fashion and the final state will be the same.
The work performed by one of the activities is redundant, but it
is irrelevant which one actually performs the edge addition.

The parallelism in inclusion-based points-to analysis is a par-
ticular example of amorphous data-parallelism, a generalization of
data-parallelism that is ubiquitous in irregular programs [29]. Note
that this parallelism is independent of the programming model or
the underlying parallel hardware: it is a property of the algorithm.

3. GPU architecture and programming model

We briefly describe the micro-architecture of modern graphics pro-
cessors and the CUDA programming model for using them. Al-
though we focus on NVIDIA GPUs, the concepts discussed here
also apply to other similar architectures.

The Fermi architecture [1] on which our work is based consist
of up to 16 identical streaming multiprocessors (SMs), each of
which contains 32 tightly coupled processing elements (PEs) that
are sometimes called CUDA cores. Whereas each PE is able to
run an independent thread of instructions, all 32 PEs in an SM
must either execute the same instruction in the same cycle or wait.
This Single Instruction Multiple Thread (SIMT) execution model
is tantamount to running instructions that conditionally operate on
32 individual data items. A set of 32 threads that run together in
this manner is called a warp.

Warps are automatically subdivided by the hardware into sets of
threads that want to execute the same instruction. The sets are then
serially executed until they re-converge, which degrades perfor-
mance. Therefore, it is very important to avoid thread divergence,
i.e., situations where not all threads follow the same control flow,
as occur in certain if-then-else and looping statements.

Up to 48 warps can simultaneously be resident in an SM. The
PEs execute the warps in multithreading style to hide latencies, that
is, the PEs in an SM are time-shared among the warps. Because
only one warp is actively executed in any one cycle, threads be-
longing to different warps can execute different instructions. The
PEs do not support out-of-order execution within threads but are
able to arbitrarily interleave warps. Hence, it is important to have
a large number of warps running concurrently to extract the full
performance of the GPU.

The memory subsystem is also optimized for warp-based ex-
ecution. If the threads in a warp simultaneously access words in
main memory that lie in the same aligned 128-byte segment, the
hardware merges the 32 reads or writes into one coalesced memory
transaction that is as fast as accessing a single word. But if a warp
requests 32 scattered words, the hardware has to perform 32 sep-
arate memory transactions. Thus, coalesced memory accesses are
crucial to achieve a high memory bandwidth.

The PEs within an SM share a pool of parallel threads called
thread block, synchronization hardware, an L1 data cache, and
a software-controlled cache called shared memory. The shared
memory is as fast as the L1 data cache and allows threads in a
thread block to quickly exchange data. A warp can simultaneously
access 32 words in shared memory as long as the words reside in
different banks or all accesses within a bank request the same word.



Figure 4. Sparse bit vector representing {0, 62} (bits is assumed
to be 32 bits wide)

Otherwise, bank conflicts occur that result in (partial) serialization
of the 32 accesses.

The SMs operate largely independently. They can only com-
municate through global memory (DRAM). Thus, synchronization
between SMs must be accomplished using atomic operations on
global memory locations.

NVIDIA’s CUDA programming model extends the C/C++ pro-
gramming language with several parallel programming primitives
to exploit the architectural capabilities of GPUs. A CUDA program
consists of host code running on the CPU and device code running
on the GPU. The device code includes one or more functions, called
kernels, that can be invoked by the CPU.

4. Graph representation on the GPU

Creating an efficient data structure to represent the constraint graph
under the GPU memory model is a challenging problem. The data
structure has to compactly represent millions of edges (the analysis
of the linux kernel results in a constraint graph with 1.498 billion
edges) and allow dynamic modifications. At the same time, the
memory layout of the graph has to be specifically designed for
the GPU architecture to minimize memory transactions, maximize
coalescing, and avoid divergence within the threads of a warp.

One feasible representation for the constraint graph is an adja-
cency matrix. For instance, the points-to graph can be represented
by an n × n dense matrix (where n is the number of variables in
the program); call this matrix P . If we assign a unique id to each
variable in the program, then P (i, j) = 1 if the variable with id i
points to the variable with id j. In a similar fashion, matrices C, S,
L and A would represent the other types of edges in our problem.

The matrix representation has one major advantage: the graph
rewrite rules can be expressed in terms of matrix-matrix multipli-
cations, which can be performed quickly on a GPU (NVIDIA pro-
vides the CUBLAS library for this purpose). For example, we can
apply all the available copy rules at once and update the points-to
matrix P by computing P = P + Ct ∗ P .

The disadvantage of this approach is that it wastes a lot of
space since graphs in this application are very sparse. We computed
the initial and final density of the P and C matrices using the
points-to algorithm of Hardekopf [13] to analyze three inputs: the
gcc compiler, the vim editor and the linux kernel. Densities are
calculated as the number of non-zero entries in the corresponding
matrix (i.e., the number of edges in the graph) divided by the total
number of entries, which is n2. It can be seen that both the initial
and final matrices are very sparse. (The matrices for load, store and
pointer arithmetic edges are also extremely sparse.)

input Pi Pf Ci Cf

gcc 5 * 10−7 6 * 10−4 6 * 10−6 4 * 10−5

vim 2 * 10−7 8 * 10−4 10 * 10−7 2 * 10−5

linux 1 * 10−7 2 * 10−3 2 * 10−7 2 * 10−4

An alternative representation tailored to sparse graphs is the
Compressed Sparse Row representation. The limitation in this case
is that Andersen’s analysis, like other morph codes, dynamically
adds new edges to the graph. Since the final number of neighbors
for each node in the constraint graph cannot be statically predicted
and can vary dramatically from variable to variable, adjacency list-
based representations like CSR are not adequate.

Figure 5. Union of two sparse bit vector elements on the GPU
using a warp

One representation of sparse graphs that allows the addition and
removal of new edges is based on sparse bit vectors. A sparse bit
vector is a data structure that compactly represents sets of integers.
Internally, it is a linked list in which each element contains three
fields: the base of that element, the bits, and a pointer to the next
element. The base indicates the range of integers possibly contained
in the current element; the bits indicate whether a particular integer
belongs to the set or not.

Figure 4 shows the representation of a set of integers P using
a sparse bit vector. The bits field is 32 bits wide, so each element
can store up to 32 integers. The first element of P has base 0, so
it can only contain numbers between 0 and 31. Since the right-
most bit is set, 0 is in P . Since the 30th bit of the element with
base 1 is also set and 32*1+30=62, we have P = {0, 62}. By
assigning unique integer identifiers to each variable in the program,
a sparse bit vector can be used to represent the set of neighbors
of a given variable. In our example, if P represents the points-
to set of variable x, then pts(x) = {0, 62}. Sparse bit vectors
have been used in some CPU implementations of points-to analysis
( [13, 15, 23], among others).

The sparse bit vectors used in our implementation occupy 128
bytes per element. The base and the next pointer use one word each;
the rest of the space is dedicated to the bits field. Therefore, each
element can hold up to 960 integers. The 32-word width matches
the GPU memory bus. Assuming that the elements are 128-byte
aligned, bringing one element from global into shared memory
requires exactly one transaction: thread i (i ∈ {0..31}) brings
in the i-th word. Once the element is in shared memory, each
thread of the warp can manipulate its own word without causing
any bank conflicts. Finally, many set operations can be performed
concurrently by all the threads within a warp with little divergence.

Consider, for example, the union of two sparse bit vector ele-
ments with the same base, defined as the bitwise OR of their re-
spective bits fields: only the thread that corresponds to the next
word will diverge, since performing an OR of two identical bases
does not change the base. Set intersection can be implemented in
a similar fashion using the logical AND operation. A visual repre-
sentation of the union operation is depicted in Figure 5. It takes one
memory transaction (400-800 cycles [2]) to transfer each element
from global to shared memory, one cycle to do the bitwise OR of
the two elements, and another transaction to write the result back
to global memory.

The 128-byte element representation we propose can waste
large amounts of memory. For instance, if we want to represent
a singleton set using a standard bit vector element (in many CPU
implementations [13, 23], the bits field is 4 bytes-wide) we need
only 12 bytes, ten times less space than what the wide represen-
tation requires. However, sets containing large sequences of con-
tiguous integers benefit from wider elements: the set {0, .., 959}
occupies 128 bytes, while the standard representation requires 360
bytes (thirty elements) of storage.



Figure 6. Adjacency matrix of the gcc points-to graph

Using wide elements can also result on a performance penalty
when most of the words in the bits field are zero, since the amount
of useful work performed by the threads within a warp diminishes.
Consider the example in Figure 5: if a thread is performing bitwise
operations such as union or intersection on two empty words, then
it is basically working on data that is not useful to the algorithm.

We compared the storage needed by the wide and standard bit
vector representations when storing the final constraint graph. We
used Hardekopf’s points-to analysis [13] and the same inputs as
in the experiments in Section 7. On average, the GPU-tailored
sparse bit vectors use 2.3x more space. The reason why using wider
elements is fairly efficient is that the analyzed programs exhibit
spatial locality. If a variable points at some other variable i, then
there is a high probability that it also points to variables with
identifiers close to i. This holds because identifiers are sequentially
assigned to variables as they appear in the program, so variables in
the same block/function receive similar ids.

This distribution can be observed in Figure 6, in which we
plotted the adjacency matrix for the points-to edges at the beginning
(solid squares) and at the end (shaded crosses) of the analysis.
Since Andersen’s algorithm does not removes edges, the initial
edges are also part of the final graph. The input is gcc, which
has 120K variables. As we can see in Figure 6, the initial points-
to subgraph corresponds almost perfectly to a diagonal adjacency
matrix: variables point to others that appear close together in the
program. After repeatedly applying the rewrite rules, there is a
clustering effect in the points-to sets: once a variable is determined
to possibly point to another variable in some other block, then it
probably might point to its aliases, too. In Figure 6, we also observe
that some nodes have a large number of incoming points-to edges;
they correspond to global variables and allocation sites.

In summary, the proposed graph representation is a good fit for
the implementation of morph algorithms on a GPU. Furthermore, it
is the first implementation of arbitrary graphs we are aware of that
takes into account global address alignment, shared memory bank
conflicts and thread divergence. Since we expect that the graph
being manipulated by other algorithms (in particular, flow analyses)
will also be sparse and share the same locality characteristics as in
our application, we believe that irregular codes such as [30] could
benefit from our representation.

5. Parallel rule application on the GPU

A parallel CPU implementation of Andersen’s algorithm depends
on multiple features that have been studied in depth in the context

(a) (b)

Figure 8. Simultaneous application of copy rules requires syn-
chronization, which can be avoided by reversing the copy edges

of that particular hardware model: concurrent data structures, work
schedulers, dynamic memory allocators, etc. However, there is no
standard GPU counterpart for many of these basic building blocks.
In this section, we present solutions for some of these problems.

Parallel execution of the rewrite rules in Figure 2 requires syn-
chronization in the graph data structure. An example is shown in
Figure 8(a): both copy rules simultaneously try to add an outgo-
ing edge to node x, so synchronization is needed. Modern GPUs
support atomic compare and swap operations, but overusing them
may result in a substantial performance penalty. We devised a novel
algorithmic solution to dramatically reduce the amount of synchro-
nization needed to implement Andersen’s analysis.

Figure 8(b) shows the intuitive idea: instead of storing an out-
going copy edge in the source variable, we store the reversed edge,
which we denote by c−1, in the destination node. The copy rule is

adapted for this new type of edge, and now we add x
p
−→ z if there

exists a path x
c−1

−−→ y
p
−→ z. The modified rewrite rule is called a

reversed copy rule, or copy−1 rule. Note that the only active node
in Figure 8(b) is x. The benefit of the new formulation is that, as
long as there are no two concurrent rules working on the same ac-
tive node, we do not depend on synchronization: active nodes only
add outgoing edges to themselves.

The new set of rewrite rules is shown in Figure 7. They require
flipping the copy, load, and pointer arithmetic edges. The store−1

rule also depends on storing the incoming points-to edges. Modifi-
cations made by a ‘reversed’ rewrite rule are now local: the edge is
added to the active node of that rule.

The distribution of work to threads is done in a warp-centric
manner, in a very similar way to [18]. Each active node is assigned
to a warp, which executes all the possible rules of a specific type.
The selected level of granularity seems to be adequate: a) using
an entire block to process and active node will result in many idle
threads since there is very little work to be done for some variables,
b) using one thread will result in high intra-warp divergence (poor
performance) since the number of rewrite rules that need to be
applied is not uniform across active nodes.

The pseudo-code of Andersen’s algorithm on the GPU is shown
in Figure 9. The comments indicate whether the code is being
executed on the CPU, GPU or is a data transfer between the two
devices. The input is read on the CPU and then transferred to
the GPU, where we create the initial constraint graph (initialize
kernel). Then, we repeatedly apply each reversed graph rewrite
rule (rule kernel) on the GPU until the constraint graph reaches
a fixpoint. The termination condition is verified on the CPU by
first transferring a Boolean variable from the global memory of
the GPU. When the process terminates, we copy the solution (i.e.,
the points-to edges) to the CPU. Note that the rest of the constraint
graph is necessary for the solving phase but is not part of the output
of this algorithm.

The rule kernel is executed entirely on the GPU. Each warp
is assigned a variable x and then applies the transitive closure to
the edges of the specified types. Multiple warps will never work
on the same variable because variables are assigned by atomically



copy−1 load−1 store−1 addPtr−1

x
c−1

−−−→ y
p
−→ z ⇒ x

p
−→ z x

l−1

−−→ y
p
−→ z ⇒ x

c−1

−−−→ z x
p−1

−−−→ y
s
−→ z ⇒ x

c−1

−−−→ z x
a−1,o
−−−−→ y

p
−→ z ⇒ x

p
−→ z + o

pts(x) ⊇ pts(y) ∀z ∈ pts(y) : pts(x) ⊇ pts(z) ∀x ∈ pts(y) : pts(x) ⊇ pts(z) pts(x) ⊇ { z + o | z ∈ pts(y)}

Figure 7. Constraint graph rewriting rules, modified to avoid synchronization

andersen ( ) :
r e a d i n p u t / / CPU

t r a n s f e r i n i t i a l c o n s t r a i n t s / / CPU→GPU

i n i t i a l i z e k e r n e l ( ) / / GPU

do

r u l e k e r n e l (C−1, P, P ) / / GPU

r u l e k e r n e l (L−1, P, C−1 ) / / GPU

r u l e k e r n e l (P−1, S, C−1 ) / / GPU

r u l e k e r n e l (A−1, P, P ) / / GPU

t r a n s f e r changed / / GPU→CPU

whi le changed / / CPU

t r a n s f e r P / / GPU→CPU

r u l e k e r n e l (R, S, T ) : / / GPU

foreach x i n v a r i a b l e s

i f R 6= A−1

foreach x
R
−→ y

un ion S−n e i g h b o r s o f y t o T−n e i g h b o r s o f x
e l s e

foreach x
a−1,o
−−−−→ y

N ← add o t o each S−n e i g h b o r o f y
un ion N t o T−n e i g h b o r s o f x

i f T−n e i g h b o r s o f x changed
changed ← t ru e

Figure 9. Pseudo-code of Andersen’s algorithm on the GPU

incrementing a global integer. Thus, our algorithm does not need
an explicit worklist for the active elements (unlike most of the
CPU implementations we know of); instead, we simply check if
it is possible to apply a given rule to all variables. Since there are
many warps (see Section 7) executing concurrently, the overhead
of processing non-active nodes is almost negligible.

The transitive closure is implemented as follows. Given a vari-
able x, we traverse the set of neighbors for the first relation (vari-
able R in the pseudo code). The traversal implies decoding the
sparse bit vector representing the outgoing edges of that type. For
each neighbor y, we union the sparse bit vector containing all its S-
neighbors with the sparse bit vector that contains the T -neighbors
of x. The pointer arithmetic rule requires an extra step, since we
need to add the offset to each points-to neighbor of y before per-
forming the union. The computation of the union of two adjacency
lists is explained in Section 4.

The union of two adjacency list might result in the addition of
new elements to the sparse bit vector representing the adjacency list
of a particular combination of variable and edge type. Although re-
cent CUDA implementations offer dynamic memory allocation [2],
we created a custom allocator. We divided a region of global mem-
ory into two element pools. One is dedicated to the points-to edges
and the other is used for all other types of edges. Each time a warp
has to allocate a new element, it simply atomically increments the

pointer to the next free element in the corresponding pool. The di-
vision of the heap into two regions has two advantages: a) the more
regions we have, the lower the contention on the free list pointers
is and, more importantly, b) all elements containing points-to edges
are stored together. When the analysis terminates, we can minimize
the amount of data transferred from the GPU to the CPU by copy-
ing only the points-to region.

6. Optimizations

We now describe several GPU-based optimizations that dramati-
cally improve the performance of our implementation.

6.1 Minimize memory consumption

The store−1 rewrite rule in Figure 7 introduces a performance
problem since it depends on also storing the reversed (incoming)
points-to edges, which can be prohibitive in terms of memory
usage. In order to avoid this, we use a different, two-phase strategy
to implement the store rule. In the first phase, we create a worklist
containing all pairs of variables (x, y) such that y has outgoing

store edges, and y
p
−→ x is in the constraint graph. In the second

phase, we assign all pairs with an identical first component to the
same warp. Since an active node is processed by only one warp,
there is no synchronization required except for removing elements
from the worklist. Creating an explicit worklist to handle store
edges may seem expensive, but it performs well in practice because
the number of store edges is very small for most input programs
(about 5% of the edges in the final graph).

6.2 Avoid redundant rule application

The graph rewrite rules in Figure 7 need to be applied only once.
For instance, the copy−1 rule does not need to be fired in a par-
ticular iteration if the points-to sets of all the variables have not
changed during the last iteration of the main loop in the pseudo-
code in Figure 9.

A possible solution to avoid repeated work is to distinguish
between two types of points-to edges: the ones that have been added
to the constraint graph before the last iteration (P ) and the ones
added during the last and current iterations (∆P ). The distinction
results in two major modifications of the algorithm: a) the graph
rewrite rules are now defined in terms of edges in ∆P , not P ,
and b) we need an additional kernel that performs the updates
∆P = ∆P − P and P = P ∪∆P .

The idea of working exclusively on the newly added edges is
not novel [15]. However, the GPU implementation benefits from it
in two distinct ways:

• At the beginning of each iteration, we transfer ∆P from the
GPU to the CPU in parallel with the execution of the rewrite
kernels using streams [2]. This approach completely hides the
transfer latency and greatly reduces the overall runtime.



K V
{a, c} {b} {a, c} x y z

hash(K) 38 12 38 x y z
sort(K,V) 12 38 38 y x z

diff(K) 0 1 0 y x z
prefix(K, max) 0 1 1 y x z

Figure 10. Example of detection of ∆P -equivalent variables

• Computing differences between sets of edges (i.e., differences
between sparse bit vectors) can be efficiently implemented us-
ing a warp-based approach that is similar to the union operation.

6.3 Detect pointer-equivalent variables

∆P -equivalent variables have the same outgoing ∆P edges in the
current iteration. It is desirable to identify ∆P -equivalent variables,
since much redundant work can be avoided. For example, assume
that the ∆P (x) = {a, c}, ∆P (y) = {b} and ∆P (z) = {a, c}. If
the three variables are copy−1 neighbors of some other node in the
constraint graph, then applying the copy−1 rule to x (or z) and then
to y produces the same result as applying it to all three variables
because the new points-to sets of x and z are identical.

Detection of ∆P -equivalent variables is extremely efficient on
the GPU. We illustrate the mechanism with an example. In Fig-
ure 10, we have a map containing keys (∆P ) and values (vari-
ables). The key at column i corresponds to the value at the same
column (e.g., ∆P (x) = {a, c}). We first compute a hash value
for the keys and then sort both keys and values according to the
hash. Then we apply a difference function between keys such that
K′(i) = i if K(i − 1) 6= K(i) or i = 0. The final step computes
a prefix sum of the keys, using the maximum operator: K′(i) =
max(K0, ...,Ki). The final map verifies that the variable at col-
umn i is ∆P -equivalent to the one at column K(i). For example,
variable z has the same ∆P as variable V (K(2)) = V (1) = x.

Detection of ∆P -equivalent variables is implemented using the
Thrust library [28], which supports fast data-parallel operations
such as sorting, prefix sums, and reductions. It is interesting to note
that the multi-CPU implementation of [25] does not try to detect
∆P -equivalent variables, and it is not clear whether the described
mechanism will perform well on a CPU.

6.4 Collapse cycles

When two or more variables belong to a cycle of copy−1 edges,
they are pointer-equivalent (i.e., their points-to sets will be identi-
cal by the end of the analysis) and the corresponding strongly con-
nected component can be collapsed. For example, a pair of state-
ments of the form a = b; b = a; produces a cycle of constraints that
imply that pts(a) = pts(b). In the literature, cycle detection comes
in two flavors: offline methods [32] look for cycles during a prepro-
cessing phase whereas online methods [12] look for cycles during
the solving process.

Some intermediate techniques, such as Hybrid Cycle Detec-
tion [13] (HCD), combine the two: potential cycles are identified
in the offline phase, and these are collapsed during analysis. Po-
tential cycles arise from statements of the form *a = b; b = *a;.
Without knowing pts(a), we do not know the nodes that participate
in cycles with b, so these cycles cannot be eliminated during pre-
processing, but we can remove them during the constraint solving
process whenever we add nodes to pts(a).

Our implementation of Andersen’s analysis uses only Hybrid
Cycle Detection. Offline techniques greatly improve the perfor-
mance of the sequential version, but they often introduce a bottle-
neck to scalability in the parallel codes. The offline phase of HCD
is executed on the CPU. The online phase is implemented as a GPU

program vars stmts

ex 11 13
perl 54 68

python 92 111
nh 97 114
svn 107 139
gcc 120 156
gdb 232 241

program vars stmts

vim 246 108
php 339 325

mplayer 537 377
gimp 558 649
pine 612 315
linux 1,503 420

tshark 1,555 1,789

Figure 11. Benchmark suite: number of variables and statements
(in thousands)

kernel, and it implies merging variables that are pointer equivalent
(i.e., variables that belong to the same strongly connected compo-
nent), by selecting one representative node and adding to it all the
outgoing edges of the non-representative variables.

Cycle collapsing seems to require implementing two extra graph
operations: node and edge deletion. An alternative approach that
performs well in practice is to ignore non-representative variables
and their edges. A warp only processes variables identified as
representative in a representative table in global memory.

7. Experimental evaluation

This section compares the performance of Andersen’s analysis
on the GPU with two previous CPU implementations: a sequen-
tial version by Hardekopf [13] and our multi-CPU version [25].
The source code of the multi-CPU and GPU analyses is available
at http://clip.dia.fi.upm.es/˜mario/. In the rest of
this section, we refer to the multi-CPU version as the reference im-
plementation.

The reference implementation is very similar to the sequential
analysis, except for the necessary synchronization on the data struc-
tures and minor algorithmic modifications. However, the GPU im-
plementation introduces major algorithmic changes, as described
in the previous sections. Another important difference is the use
of a Binary Decision Diagram [8] data structure. The benefits of
BDDs in the context of points-to analysis have been touted by many
researchers [6, 35]. The reference implementation uses a BDD to
compactly represent the points-to edges, while all the other types
of edges are internally represented using sparse bit vectors. In con-
trast, our implementation only uses ‘wide’ sparse bit vectors be-
cause BDDs are extremely complex and ill-suited for GPUs.

Figure 11 shows the benchmark suite used in our experiments. It
consists of fourteen C programs ranging from 11K to 1555K vari-
ables (nodes in the constraint graph) and 13K to 1789K statements
(initial edges). Most of the programs in our benchmark suite have
been used by other researchers in this area [13, 25].

We evaluated the performance of the CUDA implementations
on a 1.15 GHz NVIDIA Tesla C2070 GPU with 14 streaming mul-
tiprocessors (448 processing elements, i.e., CUDA cores) and 6 GB
of main memory. This Fermi GPU has a 64 KB L1 cache per SM.
We dedicate 48 KB to shared memory (user-managed cache) and
16 KB to the hardware-managed cache. All the streaming multi-
processors share an L2 cache of 768 KB. We compiled the CUDA
code with nvcc v4.1 RC2 and the -arch=sm 20 flag.

To execute the CPU codes, we used a machine running Ubuntu
10 with four 4-core 2.7 GHz AMD Opteron processors. The 16
CPU cores share 24 GB of main memory. Each core has a 64 KB L1
cache and a 512 KB L2 cache. Each processor has a 6 MB L3 cache
that is shared among its four cores. The sequential implementation
is written in C++ and compiled with gcc and the -O3 flag. The
reference implementation is written in Java on top of the Galois
framework [21]. The Java Virtual Machine used is the 64-bit Sun
HotSpot server version 1.6.0 24.



input CPU-s CPU-1 CPU-16 GPU

ex 400 3.17 1.54 5.00

gcc 1,000 1.20 4.63 3.57

nh 1,280 1.22 5.54 6.74

perl 1,990 1.12 6.18 6.22

vim 10,110 1.30 9.39 1.28

tshark 12,110 0.89 3.53 5.13

svn 14,630 0.96 5.70 10.09

python 17,890 0.85 3.99 14.54

gimp 20,500 0.92 7.83 3.45

gdb 31,300 0.90 6.95 9.40

pine 38,950 0.92 4.93 5.21

php 44,670 0.86 5.97 6.54

mplayer 66,260 0.83 6.07 7.97

linux 120,340 1.05 7.67 10.39

Figure 12. Runtimes (in ms) for the sequential online phase (CPU-
s column), and speedups achieved by CPU-x and GPU

Each GPU kernel can be configured with respect to the number
of blocks and the number of threads per block it uses. Having many
threads per block seems to be a good choice, since communication
among threads within the same block is cheaper (they can commu-
nicate through the local memory of the streaming multiprocessor).
However, the hardware imposes limits on the number of threads per
block (1024 in Fermi GPUs). Other factors that impose constraints
on the number of threads per block are the register and the shared
memory usage. The number of persistent blocks and threads per
block used by the most relevant kernels in our implementation is
shown in the following table.

kernel blocks threads

update P , ∆P 14 1024
cycle collapsing (HCD) 14 512

copy−1 / load−1 / store−1 14 864

addPtr−1 14 1024

Since the GPU used in our experiments has fourteen SMs, we
use that many blocks. Within each block, the thread count is not
always maximized since operations on sparse bit vectors heavily
rely on caching of data in the fast shared memory. In our warp-
based approach, a kernel with 1024 threads (32 warps) restricts the
shared memory usage of each warp to just 1,536 bytes.

The first set of results, shown in Figure 12, contains the online
analysis times (in milliseconds) for each program in the benchmark
suite using the sequential analysis, denoted by CPU -s. We sorted
the inputs according to the sequential analysis runtimes, which are
not always proportional to the number of variables or statements.
The other columns list the speedups achieved by the reference
implementation using x threads (CPU -x) and the implementation
discussed in this paper (GPU ). In the case of CPU -x, we only
show the results for one and sixteen threads. The best speedups are
marked in bold.

In the case of CPU -s and GPU , each benchmark was run three
times (there is very little variability) and the median runtime (or its
speedup) is reported. In the case of CPU -x, in order to minimize
the effects of JIT compilation, each benchmark was run five times,
and the speedup achieved by the median runtime is reported. We
also minimized the influence of garbage collection in the CPU -x
results by maximizing the size of the JVM heap to the point where
the measured time spent in GC is always zero. Finally, we verified
that the three outputs (points-to of every variable in the original
program) are identical.

The first observation about Figure 12 is that the reference im-
plementation has better scalability than what was previously re-
ported [25]: the average scalability when using 16 threads is 6.07x

0%

20%

40%

60%

80%

100%

vim CPU-16 vim GPU vim GPU-1SM python CPU-16 python GPU python CPU-1

misc

update

HCD

ptrAdd

store

load

copy

Figure 13. Breakdown of the online analysis times for the vim and
python benchmarks

if we exclude the ex benchmark, which is an obvious outlier be-
cause of its small size. Another observation is that the multi-CPU
implementation using one thread is faster than the sequential ver-
sion for some of the inputs, which is counter-intuitive. This is due
to minor algorithmic changes in the multi-core version, which re-
duce the memory usage and simplify the scheduling policy [27]
(i.e., how elements are removed from the worklist).

The GPU implementation performs remarkably well. For all the
inputs, it is significantly faster than the sequential analysis. For 11
out of 14 benchmarks, it is also faster than the best reference run-
time, which always happens at the highest thread count, except for
ex. Although the results indicate that GPU outperforms CPU -
x, we acknowledge that establishing a completely fair comparison
between the two parallel codes is difficult: there are remarkable
differences at the algorithmic, language and hardware levels. For
instance, the reference implementation is written in Java whereas
the GPU code is written in low-level CUDA. From the hardware
perspective, the two machines used in our experiments have a sim-
ilar number of processing units (fourteen streaming multiproces-
sors and sixteen cores, respectively), but the CPU cores are signifi-
cantly faster, exploit instruction-level parallelism, and contain large
caches. In any case, it might come as a surprise that CUDA codes
can be competitive with highly-tuned multi-core implementations
for algorithms as irregular as Andersen’s points-to analysis.

Our experimental data reveal the different behavior of the two
parallel analyses. For instance, the CUDA code performs signifi-
cantly worse for the vim input (8x slowdown with respect to CPU -
16) but much better for python (3.5x speedup). We broke down
the online analysis times of these two benchmarks to understand
the cause of the performance differences. The results are shown in
Figure 13. We divided the algorithm into seven components: the
rewrite rules, updating P and ∆P , cycle collapsing (HCD), and a
miscellaneous category that includes worklist accesses (CPU -x)
and detection of pointer-equivalent variables (GPU ).

The left hand-side of Figure 13 shows the breakdowns of the
time spent analyzing vim by CPU -16, GPU and GPU -1SM ,
which is identical to GPU except for the fact that only one stream-
ing multiprocessor is active. This last bit of information is useful
for finding scalability issues; for instance, the breakdown of GPU
looks similar to that of GPU -1SM , and both reveal that the GPU
implementation spends a lot of time computing load rules. In this
particular case, we found that the data representation was respon-
sible for the slowdown. Operations involving BDDs can be cached
because the operands have canonical representations. The memo-



input offline online offline online speedup offline online speedup

ex 20 400 73 259 1.27 73 80 2.75

gcc 340 1,000 210 216 3.15 210 280 2.73

nh 270 1,280 156 231 4.01 156 190 4.48

perl 160 1,990 121 322 4.85 121 320 4.88

vim 250 10,110 153 1,077 8.42 153 7,870 1.29

tshark 3,090 12,110 1,567 3,432 3.04 1,567 2,360 3.87

svn 210 14,630 188 2,568 5.38 188 1,450 9.06

python 220 17,890 167 4,488 3.89 167 1,230 12.96

gimp 1,110 20,500 634 2,618 6.65 634 5,950 3.28

gdb 490 31,300 265 4,502 6.67 265 3,330 8.84

pine 670 38,950 333 7,900 4.81 333 7,470 5.08

php 620 44,670 352 7,486 5.78 352 6,830 6.31

mplayer 750 66,260 375 10,921 5.93 375 8,310 7.72

linux 1,210 120,340 543 15,685 7.49 543 11,580 10.03

GPUCPU-s CPU-16

Figure 14. Comparison of runtimes (in ms) for the whole analysis:
CPU (sequential), CPU (parallel, 16 threads), and GPU

ization is very useful when the same operation is applied over and
over during analysis, as it happens in vim. In fact, disabling this
cache in the reference implementation results in an average slow-
down of almost two orders of magnitude.

The breakdown of python (right hand-side of Figure 13) shows
that, in the reference implementation, there is no phase with major
scalability issues since the CPU -16 plot is almost identical to that
of CPU -1. Instead, the measured performance slowdown (with re-
spect to GPU ) is caused by the slower execution of the pointer
arithmetic rules. Adding an integer (offset) to every element in a
set is a highly data-parallel operation when its internal representa-
tion uses sparse bit vectors: a left shift of the bits field by offset
positions. The CPU implementations cannot use the same approach
because points-to sets are represented with a BDD.

Figure 14 compares the total analysis runtimes, which do not
include the time spent in reading the inputs from disk. We show the
runtimes of the sequential, the reference (using sixteen threads),
and the GPU implementation. For each version, we show the time
spent in the offline and online phase. As explained in Section 6,
we only use the Hybrid Cycle Detection technique. Since its of-
fline component is always executed on the CPU, the runtimes in
the offline column are identical for GPU and CPU -16. An impor-
tant observation is that the offline phase is significantly faster in the
parallel implementations because it has been partially parallelized.
Finally, the speedup column is the total runtime of the correspond-
ing parallel implementation divided by the sequential total runtime.
The best speedups are marked in bold.

The GPU total runtimes do include the time involved in ex-
changing information between the CPU and the GPU. Although in
many GPU algorithms this transfer represents a major bottleneck
for the overall performance, our implementation overlaps the trans-
fer of the points-to subgraph with the execution of the rewrite rules,
cf. Section 6. The time to transfer the initial constraint graph from
the CPU to the GPU is negligible (never more than 10 ms).

The average speedup of the reference implementation is 6x;
the GPU code achieves a 7x average speedup. These results are
remarkable given that some phases of the offline optimizations
such as the detection of Strongly Connected Components (SCC)
are still sequential. It is future work to implement the offline phase
in CUDA and evaluate the benefit of using GPU versions of the
SCC algorithm [5].

8. Related Work

There have been numerous implementations of parallel graph algo-
rithms using various computer architectures, including distributed
memory supercomputers [36], shared memory supercomputers [4],

and multi-core SMP machines [21]. In the context of points-to anal-
yses, the only parallel implementation we know of [25] has been
discussed in depth in previous sections.

Graphics Processing Units have only recently been used for the
parallelization of irregular programs. Harish [14] describes CUDA
implementations of important graph algorithms such as BFS, Sin-
gle Source Shortest Paths, Minimum Spanning Tree, etc. In all
these algorithms, the structure of the graph being manipulated re-
mains unchanged, which significantly simplifies the GPU imple-
mentation. Hong [18] proposes a warp-centric approach for the par-
allelization of BFS, which is similar to the solution adopted in this
paper for distributing work among threads.

Burtscher [9] describes a GPU implementation of an n-body
simulation (Barnes Hut algorithm) that is based on unbalanced oc-
trees, which is twice as fast as a multicore implementation run-
ning on 128 CPU cores. In this algorithm, the octree used to record
the spatial decomposition of the bodies is populated in the initial-
ization phase, so synchronization is required to correctly grow the
tree. However, over 80% of the execution time is spent in the force
calculation phase, which does not modify the octree’s structure.

The closest work to this paper is the GPU implementation of a 0-
CFA analysis by Prabhu et al [30]. As in Andersen’s algorithm, the
graph containing the solution for the dataflow analysis only grows
over time until a fixpoint is reached. Our work improves on their
solution in several ways:

• Our sparse bit vector representation allows arbitrary, dynamic
addition of edges to the graph. In contrast, the size of the
adjacency list used by Prabhu is statically determined: if too
many outgoing edges are added to a node, the execution is
aborted. Also, a substantial amount of memory is wasted for
variables with few outgoing edges.

• We modified the graph rewrite rules to avoid synchronization,
which is required in the implementation by Prabhu.

• The transfer of data between the GPU and the CPU does not
impose any performance penalty in our implementation.

9. Conclusions and future work

Our work presents solutions for many of the challenges involved in
implementing highly efficient codes on the GPU. In particular, we
have shown that porting code from the CPU to the GPU demands
fundamental changes in the data structures and algorithmic com-
ponents being used: classical CPU solutions would result in very
poor performance on the GPU. Other important aspects, such as
the data transfer between devices, are absent from CPU implemen-
tations and need to be carefully included in the design of any GPU
code. We expect other researchers in the area to benefit from the
techniques presented in this paper, thus reducing the effort required
to implement complex algorithms on GPUs.

This paper also confirms that it is possible to efficiently imple-
ment highly irregular codes such as Andersen’s analysis on the
GPU. Although the graphics card utilized in our experiments is
cheaper than the multi-CPU machine we are comparing against,
we achieve better performance on the GPU. It is interesting to note
that although the programming effort involved in the GPU imple-
mentation was significantly larger (35% more person-hours) than
for the SMP implementation [25], the CUDA version is quite com-
pact in terms of source code size, requiring only 3,000 lines of code
(compared to 9,000 in the CPU version). This is primarily due to
the smaller set of data structures used by the GPU implementation.

In the future, we intend to implement several other irregular al-
gorithms for which there exist highly competitive, parallel CPU im-
plementations [29]. We expect the programming effort to become
less as the GPU architecture and programming model evolve to-
ward supporting more general-purpose features.
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