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A GPX4-dependent cancer cell state underlies
the clear-cell morphology and confers sensitivity
to ferroptosis
Yilong Zou1,2, Michael J. Palte1, Amy A. Deik1, Haoxin Li1,2, John K. Eaton 1, Wenyu Wang1, Yuen-Yi Tseng1,

Rebecca Deasy 1, Maria Kost-Alimova1, Vlado Dančík1, Elizaveta S. Leshchiner1, Vasanthi S. Viswanathan1,

Sabina Signoretti3, Toni K. Choueiri 4, Jesse S. Boehm 1, Bridget K. Wagner1, John G. Doench 1,

Clary B. Clish 1, Paul A. Clemons 1 & Stuart L. Schreiber 1,2

Clear-cell carcinomas (CCCs) are a histological group of highly aggressive malignancies

commonly originating in the kidney and ovary. CCCs are distinguished by aberrant lipid and

glycogen accumulation and are refractory to a broad range of anti-cancer therapies. Here we

identify an intrinsic vulnerability to ferroptosis associated with the unique metabolic state in

CCCs. This vulnerability transcends lineage and genetic landscape, and can be exploited by

inhibiting glutathione peroxidase 4 (GPX4) with small-molecules. Using CRISPR screening

and lipidomic profiling, we identify the hypoxia-inducible factor (HIF) pathway as a driver of

this vulnerability. In renal CCCs, HIF-2α selectively enriches polyunsaturated lipids, the rate-

limiting substrates for lipid peroxidation, by activating the expression of hypoxia-inducible,

lipid droplet-associated protein (HILPDA). Our study suggests targeting GPX4 as a ther-

apeutic opportunity in CCCs, and highlights that therapeutic approaches can be identified on

the basis of cell states manifested by morphological and metabolic features in hard-to-treat

cancers.
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C
lear-cell carcinomas (CCCs), marked by the clear cyto-
plasm in neoplastic cells during histological analyses,
constitute the most frequent and metastatic form of kid-

ney malignancy and the most therapy-resistant form of ovarian
carcinomas1,2. Though occurring at low incidences, CCCs also
arise from a wide range of other tissues, including the cervix,
thyroid, liver, and pancreas3–6. The broad resistance to current
anti-cancer therapies and dismal prognoses in patients with CCCs
present a significant unmet medical need.

The clear-cell morphology of CCCs, caused by highly active lipid
and glycogen synthesis and deposition, reflects a unique metabolic
state of cancer. While these metabolic alterations support cancer
progression and promote resistance to immune surveillance and
therapies7,8, directly targeting the primary metabolic liabilities
remains challenging due to complications from metabolic plasticity
and systemic toxicity of currently available compounds9,10.
Exploring novel vulnerabilities associated with the metabolic state in
CCCs is critical for developing new therapies.

Recently, we generated quantitative sensitivity profiles of 481
“Informer Set” compounds in 887 cancer cell lines from various
lineages, including kidney and ovary, and made these data and
analysis tools available in the Cancer Therapeutics Response
Portal (CTRP)11–13. These compounds perturb many distinct
nodes in cellular pathways, and therefore are informative for
identifying both pan-cancer and tissue-specific vulnerabilities.
Here, by interrogating the CTRP, we report that inhibitors of
glutathione peroxidase 4 (GPX4), among all nodes of cell cir-
cuitry, exhibit the highest selectivity and potency in killing CCC
cells. This observation is consistent with a recent report showing
that clear-cell renal cell carcinomas (ccRCC), a major subtype of
CCCs, are hypersensitive to GPX4 knockdown14. Given GPX4’s
role in selectively detoxifying lipid hydroperoxides, and that
GPX4 inhibition triggers ferroptotic cell death (ferroptosis)15, we
postulate that CCC cells are intrinsically susceptible to ferropto-
sis, and targeting GPX4 represents a therapeutic opportunity in
these devastating diseases.

Though the developmental role of ferroptosis has not yet been
identified, ferroptotic death is associated with various pathological
conditions, including acute kidney injury, hepatocellular degenera-
tion and hemochromatosis, traumatic brain injury, and neurode-
generation16–20. Notably, we and others have recently identified a
GPX4-dependent state in therapy-resistant cancer cells, including
therapy-induced persister cells, that in general resist apoptotic death
otherwise induced by the main modalities of cancer treatments—
chemotherapy, targeted therapy, and immunotherapy21–23. These
insights point to ferroptosis-inducing agents as attractive ther-
apeutic strategies for cancer treatment in certain contexts, for
example, in minimal residual disease. However, the intrinsic sus-
ceptibility of untreated cancers to ferroptosis varies significantly
among organ systems and the mechanisms underlying cell type-
specific ferroptosis sensitivity are poorly understood.

In the present study, we systematically characterize the
mechanisms driving the histotype-specific GPX4 dependency in
CCCs. By combining genome-wide CRISPR screening and lipi-
domic profiling, we highlight the HIF-2α-HILPDA axis as a
central driver of this vulnerability. HIF-2α-HILPDA selectively
enriches lipids that contain polyunsaturated fatty acyl side chains
and induces a ferroptosis-susceptible cell state. Our findings have
implications for understanding the mechanisms of the ferroptosis
pathway, as well for developing novel treatment options for CCC
patients.

Results
Sensitivity to GPX4 inhibition-induced ferroptosis in CCCs.
To search for druggable vulnerabilities in CCCs, we systematically

interrogated the CTRP datasets [portals.broadinstitute.org/ctrp/]
to identify CCC-selective chemicals12,13. The CCC cell-line col-
lection in CTRP comprises 17 clear-cell renal cell carcinoma
(ccRCC) and 9 ovarian CCC (OCCC) cell lines24. In contrast to
the low efficacy of conventional chemotherapies such as pacli-
taxel, three GPX4 inhibitors emerged as the most potent and
selective compounds for killing CCC cells: (1S, 3R)-RSL3 (RSL3),
ML210 and, ML16215,21 (Fig. 1a, b, Supplementary Fig. 1a). The
GPX4 inhibitor sensitivity in CCC cells was stronger than the
sensitivity of any specific solid tumor lineage (Fig. 1c, Supple-
mentary Fig. 1b). Moreover, the chemical sensitivity was con-
firmed by strong genetic dependence on GPX4 using both
CRISPR and shRNAs in the Cancer Dependency Map (DepMap)
database25, which explores genetic dependencies (Supplementary
Fig. 1c). GPX4 uses glutathione to detoxify lipid hydroperoxides
selectively and acts as a gatekeeper for ferroptosis, an iron-
dependent cell-death pathway15. Our results imply that CCCs are
intrinsically vulnerable to ferroptosis.

We first validated the GPX4 dependency in several frequently
used ccRCC cell lines, including 786-O, 769-P, OS-RC2, and
RCC10RGB via small-molecule, CRISPR or shRNA-mediated
GPX4 inhibition (Fig. 1d, Supplementary Fig. 2a–c). GPX4
inhibition-induced cell death in ccRCC cells was completely
blocked by treatment with ferroptosis rescue agents ferrostatin-1
(Fer-1) or liproxstatin-1 (Lip-1) (Fig. 1e). Results from our
characterizations using covalent GPX4 inhibitors were consistent
with previous studies using erastin and L-buthionine-S,R-
sulfoximine (BSO), compounds that target distinct steps in the
creation of glutathione in cells, in ccRCC cells14. Moreover,
ML210-treatment induced rapid accumulation of lipid radicals in
ccRCC but not BFTC909 cells, as reported by BODIPY-C11,
confirming the involvement of ferroptotic cell death (Fig. 1f,
Supplementary Fig. 1d). This vulnerability to ferroptosis was
recapitulated in 786-O xenografts in vivo (Fig. 1g–i), and in
patient-derived, primary ccRCC cell lines (Fig. 1j, k, Supplemen-
tary Table 1). Notably, ccRCC cells exhibited substantially higher
sensitivity to ferroptosis than normal renal cells (Fig. 1d, k),
which possess basal level of ferroptosis sensitivity26,27, indicating
the presence of a therapeutic window for inducing ferroptosis as a
ccRCC treatment strategy.

In ovarian cancers, OCCC cells exhibited significantly higher
sensitivity to GPX4 inhibitors and lower sensitivity to paclitaxel
than other ovarian carcinoma lines in average in CTRP
(Supplementary Fig. 2d). The ferroptosis susceptibility was strong
in OCCC cell lines ES-2, OVISE, and TOV21G, but weak in at least
one high-grade serous carcinoma (HGSC) cell line OV-90 (Fig. 1l,
Supplementary Fig. 2e). Lip-1 treatment rescued OCCC cells from
ML210 or RSL3-induced cell death (Supplementary Fig. 2e).
Moreover, CRISPR or shRNA-mediated GPX4-depletion signifi-
cantly reduced the viability of ES-2 cells (Supplementary Fig. 2a–c).
The shared ferroptosis sensitivity between ccRCC and OCCC is
consistent with their resemblance at the transcriptome level28,29.
Additionally, mRNA levels of frequently used CCC markers HNF-
1β, PAX8, PLIN2, and PLIN330–33 strongly correlate with sensitivity
to GPX4 inhibitors in CTRP (Supplementary Fig. 2f). Collectively,
these results indicate that CCC cells are intrinsically susceptible to
GPX4 inhibition-induced ferroptosis.

HIF-1/2α mediates sensitivity to ferroptosis in CCCs. Although
ferroptosis is frequently triggered under pathological conditions
such as ischemia/reperfusion and traumatic brain injuries34, how
intrinsic ferroptosis sensitivity arises is poorly understood. Illu-
minating the mechanisms underlying ferroptosis susceptibility is
important for identifying the right patient cohort that would
benefit from ferroptosis-inducing agents. Notably, the highly
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variable sensitivity to ferroptosis across CTRP models appears
independent of the relative levels of GPX4 mRNA (Supplemen-
tary Fig. 3a). While CCCs arising from different lineages remain
genetically distinct, we focused on characterizing ccRCCs, the
most frequent and genetically defined CCC subtype, by per-
forming a genome-wide CRISPR suppressor/resistance screen in
786-O cells to identify mediators of ML210 sensitivity (Fig. 2a,
Supplementary Data 1–3). Among the genes required for
ML210 sensitivity in all three time-points, the top hits included

acyl-CoA synthetase long-chain family member 4 (ACSL4) and
Kelch-like ECH associated protein 1 (KEAP1), two genes that
were previously implicated in ferroptosis35,36 (Fig. 2b); we ver-
ified both genes as required for ferroptosis in CCCs (Supple-
mentary Fig. 3b–i). Importantly, we found that genes related to
the HIF pathway, including EPAS1 (encoding HIF-2α), EP300,
FOSL1, CITED1, as well as ARNT (encoding HIF-1β) are enriched
in the top screening hits in one or multiple conditions37,38

(Fig. 2b). HIF-2α is a driver of ccRCC oncogenesis and
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acquisition of the clear-cell morphology39,40, and its emergence as
a ferroptosis regulator is consistent with a prior study revealing
that VHL-restoration diminished the sensitivity to erastin and
BSO in RCC4, another ccRCC cell line14. Gene suppression with
independent sgRNA and shRNA libraries validated this pathway
as mediators of ML210 sensitivity in 786-O cells (Fig. 2c, Sup-
plementary Data 9 and 10). HIF-2α-dependent sensitivity to
ferroptosis was also observed in ccRCC cells expressing individual
HIF-2α-targeting sgRNAs and shRNAs, in single-cell EPAS1−/−

clones with or without restored EPAS1-GFP expression, as well as
HIF-2α/GPX4 double knockouts (Fig. 2d–h, Supplementary
Fig. 4a–f and Supplementary Data 8). While loss of HIF-2α did
not compromise the proliferation rate of ccRCC cells in vitro41,42

(Supplementary Fig. 4g), HIF-2α ablation significantly reduced
lipid peroxidation levels (Supplementary Fig. 4h–i), providing a
strong indication of reduced susceptibility to ferroptosis.

The HIF-2α-induced ferroptosis sensitivity underscores a
prominent example of oncogene-induced vulnerability in ccRCC.
Notably, cancer cells with VHL mutations exhibited greater
dependence on GPX4 than VHL wildtype cells in a pan-cancer
DepMap analysis (Supplementary Fig. 4j). Intriguingly, OCCC
tumors mimic the hypoxia response in the endometrium cyst
microenvironment with activated HIF-1α43. Notably, HIF-1α-
depletion by CRISPR diminished the sensitivity to ferroptosis in
ES-2 cells (Supplementary Fig. 4k–l). Collectively, our results
indicate that the HIF pathway is a central driver of ferroptosis
susceptibility in CCCs. In addition, HIF prolyl hydrolase 2
(EGLN1) diminishes ferroptosis susceptibility by destabilizing
HIF-1α in A549 non-small cell lung cancer cells44, implying a
more general role of this pathway in ferroptosis in other cancer
contexts.

HIF-2α selectively enriches polyunsaturated lipids in CCCs.
Ferroptosis is executed by peroxidized membrane phospholipids,
particularly phosphatidylethanolamines (PEs) that contain poly-
unsaturated fatty acyl (PUFA) chains including arachidonic acid
(C20:4) and docosahexaenoic acid (C22:6)45,46. Although HIFs
drive extensive reprogramming of lipid metabolism and promote
lipid storage in cancer cells, how these metabolic alterations are
associated with ferroptosis sensitivity is unknown. To determine
how the HIF pathway drives ferroptosis sensitivity, we performed
lipidomic profiling in EPAS1−/− single-cell 786-O clones (Sup-
plementary Fig. 5a, b, Supplementary Data 4). HIF-2α-depletion
induced a profound shift in the lipidome of 786-O cells, with
significant loss in triacylglycerols (TAGs), the major components
of lipid droplets, and in phospholipids (Fig. 3a, Supplementary

Fig. 5c, d). Remarkably, PUFA-TAGs exhibited the most sig-
nificant reduction in response to HIF-2α-depletion compared
with TAGs containing saturated/monounsaturated fatty acyl
chains (SFA/MUFA-TAGs) (Fig. 3a, b). Alterations in TAG
saturation levels during hypoxia response was also previously
noted in ccRCC cells47. Moreover, most PEs and PE-
plasmalogens (ePEs), including the ferroptosis-relevant C36:4,
C38:4/5/6 and C40:6 PEs and C36:5, C38:5 and C40:7 ePEs, were
significantly reduced in EPAS1−/− cells (Fig. 3c, d). Finally, free
PUFA levels were also strongly dependent on HIF-2α activity,
whereas free SFA/MUFAs were less affected by HIF-2α status
(Fig. 3e, Supplementary Data 5). Most of these alterations were
reverted by HIF-2α-GFP overexpression, supporting these events
as specifically driven by HIF-2α (Fig. 3a–e, Supplementary
Fig. 5a–d). Importantly, exogenous PUFA (arachidonic acid,
C20:4) treatment significantly sensitized WT or HIF-2α-depleted
786-O and 769-P cells to ferroptosis (Fig. 3f). Taken together,
these data suggest that HIF-2α drives ferroptosis susceptibility by
selective enrichment and incorporation of PUFAs into glycer-
olipids (TAGs and phospholipids).

By interrogating a previous lipidomics dataset comprising 49
ccRCC normal/tumor tissue pairs48, we found that human ccRCC
tumors exhibited higher levels of PUFA-PE/ePEs and PUFA-PC/
ePCs than normal renal tissues (Fig. 3g). These PUFA-lipids were
further enriched in high-grade tumors (stage III/IV) when
compared with low-grade samples (stage I/II) (Supplementary
Fig. 5e). Thus, human ccRCC tumors, which commonly possess
constitutively active HIF-2α48, are in a PUFA-lipid-enriched cell
state and are likely to be sensitive to ferroptosis.

HILPDA mediates HIF-2α’s ferroptosis sensitization activity.
To determine the downstream mediators of HIF-2α’s activity in
stimulating the selective enrichment of PUFA-lipids and driving
ferroptosis sensitivity, we first identified HIF-2α-dependent genes
and then re-expressed each gene in EPAS1−/− cells to identify
candidate genes that restore sensitivity to ferroptosis (Fig. 4a). We
were able to collect cDNAs for 77 of the 149 HIF-2α-activated
genes identified by RNA-Seq, including 9 of the 11 lipid meta-
bolism genes (Fig. 4b, Supplementary Data 6). RNA-Seq and
western blot analyses also ruled out any significant changes in
ACSL family expression induced by HIF-2α (Supplementary
Fig. 6a, b). With ALOX15 (15-Lipoxygenase-1) as a positive
control, we identified hypoxia-inducible, lipid droplet-associated
protein (HILPDA, also known as HIG2) and G0/G1 Switch 2
(G0S2) as top re-sensitization factors (Fig. 4c, d, Supplementary
Fig. 6c, d). HILPDA and G0S2 share a homologous

Fig. 1 Clear-cell carcinoma cells are intrinsically sensitive to GPX4 inhibition-induced ferroptosis. a Volcano-plot showing compound sensitivity comparison

by normalized area-under-curve (AUC) values between clear-cell carcinoma (CCC) cells (n= 26) and other solid tumor cancer cell lines (sCCL) (n= 634)

in CTRP. Cpds, compounds. b Chemical structures of GPX4 inhibitors ML210, RSL3, and ML162. c Scatterplot of AUCs for ML210 in sCCL (blue), CCC

(red) or cancer cell lines from each tissue. Tissue types are ordered by the average AUC values. Abbreviations: CNS, central nervous system; UAT, upper

aerodigestive tract; a_ganglia, autonomic ganglia. Mann–Whitney–Wilcoxon test, ****p < 0.0001. d Viability curves for the indicated cells treated with

ML210 or RSL. n= 4. Representative plot of experiments repeated three times. e Viability curves for the indicated cells treated with ML210 or RSL3 plus

indicated DMSO, liproxstatin-1 (Lip-1) or ferrostatin-1 (Fer-1). Representative plot of experiments repeated three times. f Fluorescent images of BODIPY-

C11 stained 786-O, 769-P, and BFTC909 cells treated with ML210 plus DMSO or Lip-1 for the indicated time periods. Scale bars: 10 µm. g Immunoblot

showing GPX4 protein levels in GPX4+/+ 786-O or GPX4−/− clones 3A2 and 3A7. h Viability curves for WT 786-O, 3A2, and 3A7 over a 2.5-day time

course after Fer-1 removal. Representative plot of experiments repeated three times. i Tumor volume measurements of subcutaneous xenografts of WT

786-O or GPX4−/− 3A2 cells (n= 10 mice, two tumors per mouse). GPX4−/− tumor-bearing mice were divided to a Lip-1 treated group and a vehicle-

treated group. Treatment lasted for the first 10 days. Two-tailed t-test, ***p < 0.001, ****p < 0.0001. j Immunoblot showing HIF-2α protein levels in primary

human ccRCC cell lines CCLF_KIPA_0001_T, CCLF_KIPA_0002_T, and normal renal-cell culture CCLF_KIPA_0001_N matched with CCLF_KIPA_0001_T.

k Viability curves for indicated cell lines treated with ML210 or RSL3 plus DMSO or 0.5 µM of Lip-1. n= 4. Representative plot of experiments repeated

twice. l Viability curves for ovarian clear-cell carcinoma (OCCC) cell lines ES-2, OVISE, and TOV21G, and high-grade serous carcinoma (HGSC) line OV-90

treated with ML210 (left) or RSL3 (right). n= 4. Representative plot of experiments repeated twice. Error bars: ±s.d. β-Actin was used as loading controls

for immunoblots
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PNPLA-binding motif (Supplementary Fig. 6e), and each can
act as a co-inhibitor of adipose triglyceride lipase (ATGL,
encoded by PNPLA2)49,50, the rate-limiting enzyme for TAG
hydrolysis. In contrast, overexpressing another HIF-2α-regulated,

lipid droplet-associated protein perilipin2 (PLIN2) did not alter
GPX4 inhibitor sensitivity40 (Fig. 4c, Supplementary Fig. 6c),
suggesting that specific lipid remodeling activity downstream of
HILPDA/G0S2 is required for ferroptosis sensitization.
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Fig. 2 Genome-wide CRISPR screen identifies HIF-2α as a driver of ferroptosis susceptibility. a Experimental scheme describing the genome-wide CRISPR

resistance screening to identify mediators of ML210 sensitivity in 786-O cells. b Volcano plot highlighting top enriched CRISPR hits in 786-O cells treated

with ML210 for 4, 6 or 8 days. Red genes, HIF pathway genes. Purple genes, representative known ferroptosis regulators. c Relative AUC values of the
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for the concentration range of ML210. d Immunoblot showing the HIF-2α/HIF-1β protein levels in control (sgNC) or EPAS1-targeting sgRNA-expressing

786-O-Cas9 and 769-P-Cas9 cells. e Viability curves of control (sgNC) or EPAS1-targeting sgRNA-expressing 786-O-Cas9 and 769-P-Cas9 cells

treated with indicated concentrations of ML210 or RSL3. Representative plot of experiments repeated three times. f Immunoblot showing HIF-2α and
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While qRT-PCR confirmed the HIF-2α-dependent expression
of HILPDA and G0S2 (Supplementary Fig. 6f), analyses of
previous ChIP-Seq data in 786-O cells51 revealed HIF-2α/HIF-1β
binding to genomic loci adjacent to PLIN2 and HILPDA but not
to G0S2 (Supplementary Fig. 6g), supporting PLIN2 and HILPDA
as direct HIF-2α target genes; whereas the regulatory mechanisms
of HIF-2α on G0S2 expression remain to be characterized.
shRNA-mediated knockdown of endogenous HILPDA dimin-
ished GPX4 inhibitor sensitivity in 786-O cells (Fig. 4e–g).

However, detecting endogenous G0S2 protein expression in
CCC cells proved challenging even with multiple commercially
available and validated antibodies; and four sequence-
independent G0S2-targeting shRNAs did not alter the ferroptosis
sensitivity in 786-O cells (Supplementary Fig. 6h, i). Additionally,
786-O-Cas9 cells expressing both a HILPDA-targeting shRNA
and a high-score G0S2-targeting sgRNA nearly phenocopied the
ferroptosis sensitivity of cells expressing only the HILPDA-
shRNA (Supplementary Fig. 6j, k). Altogether, these results
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suggest that HILPDA is necessary and sufficient to mediate HIF-
2α’s activity in driving ferroptosis susceptibility. While over-
expressed G0S2 is sufficient to drive ferroptosis sensitivity, the
role of endogenously expressed G0S2 protein in ferroptosis is
likely insignificant.

In the cDNA screening experiment, we also included HIF-1α in
the cDNA library and found that HIF-1α expression re-sensitized
HIF-2α-null cells to ferroptosis (Fig. 4c). Importantly, HILPDA is
also a HIF-1α target gene, and is up-regulated in OCCCs
compared with other ovarian carcinomas52,53. These observations
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resonate with the activity of HIF-1α in inducing ferroptosis
sensitivity in OCCC cells (cf. Supplementary Fig. 4k, l), and
further substantiate the key role of the HIF pathway in ferroptosis
susceptibility in CCCs.

HILPDA enriches polyunsaturated lipids downstream of HIF-
2α. We next characterized the mechanisms by which HILPDA
mediates ferroptosis susceptibility in CCCs through lipidomic
profiling. Remarkably, HILPDA expression in EPAS1−/− cells
selectively restored the levels of most PUFA-PE/ePEs and PUFA-
TAGs, but barely impacted SFA/MUFA-lipids (Fig. 4h, i, Sup-
plementary Fig. 7a–f, Supplementary Data 7). On the other hand,
G0S2-overexpression induced a global up-regulation of phos-
pholipids and TAGs regardless of saturation levels (Fig. 4h, i,
Supplementary Fig. 7a–f). These results suggest that although
HILPDA and G0S2 share similar functional properties49,50, they
exhibit significantly different selectivity in modulating the lipi-
dome, potentially through engaging distinct target proteins.
While elevated PUFA-lipid levels are key risk factors for high
ferroptosis sensitivity46, our results indicate that HIF-2α’s fer-
roptosis sensitization role is mediated primarily by HILPDA.

The profound impact of HILPDA on TAG abundance
prompted us to assess whether HILPDA also drives the clear-
cell phenotype. It was previously revealed that HIF-2α actively
promotes lipid deposition and storage in lipid droplets by
activating PLIN2 in ccRCC cells40. By quantitating lipid droplet
(LD) contents, we found that HILPDA induced a modest
increase, while G0S2 and PLIN2 induced a strong increase in
LD abundances (Fig. 4j, Supplementary Fig. 7g). These results are
consistent with PUFA-TAGs, i.e., the HILPDA-dependent
species, being a small proportion of total TAGs in ccRCC cells.
Collectively, these data suggest that HILPDA is a participant,
though not a dominant factor in the HIF-2α-regulated molecular
program that stimulates the clear-cell morphology (Fig. 4k).

Discussion
Patients with CCCs often face systemic resistance, high rates of
metastasis and poor prognosis. In this study, we systematically
characterized the dependencies of CCCs, and applied high-
throughput screening, functional genomics, and metabolomics to
dissect the underlying mechanisms. We found that CCCs from
distinct lineages share an intrinsic vulnerability to GPX4 inhibi-
tion-induced ferroptosis, identified the HIF-HILPDA pathway as
the key molecular modality that links this sensitivity with the
unique clear-cell metabolic state and morphology, and suggest

GPX4 as a therapeutic target in CCCs (Fig. 4k). Our work points
toward the significant potential in combining conventional his-
tology with modern chemical and genetic profiling to reveal
important biological and therapeutic insights in difficult-to-treat
cancers.

Our study highlights an important role of the HIF pathway in
driving ferroptosis sensitivity in cancers, and implies that a
GPX4-dependent cell state may be shared by other HIF-α-active
cancers, for example, pheochromocytoma and paraganglioma
(PCPG). PCPGs are two rare, hard-to-treat neuroendocrine
malignancies that display frequent mutations in the VHL/HIF
pathway54. Importantly, PCPG tumors also exhibit aberrant
cytoplasmic lipid accumulation54, hence testing their GPX4
dependency merits future investigation. Furthermore, as the HIF
pathway drives pleiotropic downstream events in cancers, it will
be intriguing to examine whether tumors that acquire resistance
to the recently developed HIF-2α inhibitors55,56 retain their fer-
roptosis susceptibility and sensitivity to GPX4 inhibition, and if
so, whether GPX4 inhibitors will be useful to treat these otherwise
drug-resistant cancers.

Our work also provides insights into the mechanisms under-
lying ferroptosis. First, while lipid droplets (LDs) in CCCs have
been considered labile organelles that protect cells from lipo-
toxicity40, our data imply that PUFA-TAGs in LDs of CCCs
contribute to ferroptosis susceptibility. Of note, our PLIN2-
overexpressing EPAS1−/− 786-O cells demonstrated that aberrant
LD accumulation is not sufficient to drive ferroptosis suscept-
ibility (Fig. 4c, j). Instead, our lipidomic profiling and functional
analyses suggest that the unsaturation level of LD lipids plays a
more direct role in dictating sensitivity to ferroptosis, potentially
by acting as reservoirs of PUFAs in non-toxic forms and sources
for PUFA-phospholipid synthesis. Though the physiological role
of PUFA-TAGs/phospholipids in cancers remain unclear, cancer
stem cells in several contexts, including ovarian and breast can-
cers, exhibit increased lipid unsaturation levels11,57, pointing
toward broader applications of ferroptosis-inducing agents in
conquering cancer stemness and metastasis.

Secondly, our study emphasizes the potent activity of HILPDA
in inducing a ferroptosis-susceptible state downstream of HIF-2α
in CCC cells. This activity is mediated through HILPDA’s pre-
viously overlooked selectivity toward enriching PUFA-TAGs/
phospholipids over SFA/MUFA-lipids. Although HILPDA and
G0S2 were both shown to repress ATGL activity49,58, the distinct
lipidomic profiles in HILPDA-, and G0S2-overexpressing cells
characterized here strongly suggest that an ATGL-independent
activity of HILPDA is present. This activity, coupled with the

Fig. 4 HILPDA enriches polyunsaturated lipids and promotes ferroptosis sensitivity downstream of HIF-2α. a Scheme summarizing the experimental

strategy for identifying the HIF-2α target genes mediating ferroptosis susceptibility in 786-O cells. b Heatmap showing the RNA-Seq analysis of WT 786-O

cells and three EPAS1−/− clones (1D1, 1D7, and 1E3). HIF-2α-dependent known lipid metabolism genes are highlighted. c Viability curves of cDNA screening

results in EPAS1−/− clones treated with a 7-point, 2-fold dilution series of ML210 or RSL3. Viability is relative to that of each cell line under zero ML210 or

RSL3 treatment, respectively. n= 4, error bars are omitted for visual clarity. d Viability curves of HILPDA, G0S2, or EGFP-overexpressing EPAS1−/− 1D1 and

1D7 cells treated with ML210 or RSL3 for 48 h. Viability is relative to the respective DMSO-treated conditions. n= 4, Representative plot of experiments

repeated three times. e qRT-PCR analysis of HILPDAmRNA levels in 786-O cells expressing shNC or shHILPDAs. B2M was used as an internal control. n=

3. Student’s T-test. *p < 0.05. f Immunoblot analysis of HILPDA protein levels in 786-O cells expressing shNC or shHILPDAs. β-Actin was used as a loading

control. g Viability curves for 786-O cells expressing shNC or two most effective shHILPDAs under indicated concentrations of ML210 or RSL3. Viability is

relative to the DMSO-treated conditions, n= 4. Representative plot of experiments repeated three times. h Volcano plots showing the changes in each

TAG (left panels) and PE/ePE (right panels) species grouped as PUFA-containing (red fill) or SFA/MUFA-only (white fill) lipids between the indicated cell

lines. n= 3. i Bar graph showing the relative abundances of the PUFA-PE/ePEs in the conditions tested. n= 3. S, ferroptosis-sensitive; (R), ferroptosis-

resistant. j Lipid droplet abundances analyzed by flow cytometry quantitation of BODIPY-493/503 signal in 1D1 and 1D7 EPAS1−/− cells expressing

exogenous EGFP, HILPDA, G0S2 or PLIN2. Representative plot of experiments repeated three times. k Scheme summarizing the molecular network driving

the intrinsic GPX4 dependency and ferroptosis susceptibility in clear-cell carcinomas. Abbreviations: PUFA, polyunsaturated fatty acids, e.g. arachidonic

acid (C20:4); TAG, triacylglycerols; PE, phosphatidylethanolamine; ePE, vinyl ether-linked PE-plasmalogens. Metabolites highlighted in red indicate

promoters of ferroptosis susceptibility. Error bars: ±s.d
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remarkable selectivity toward PUFA-lipids, is likely contributing
to ferroptosis susceptibility in CCC and other contexts. The
molecular basis of HILPDA’s lipid selectivity and the mechanisms
mediating the interconversion between PUFA-TAGs and PUFA-
phospholipids merit future studies. Recently, a mutant allele of
PNPLA3, the closest homolog of ATGL (PNPLA2), was reported
to convert selectively PUFA-TAGs to PUFA-phospholipids in
non-alcoholic fatty liver disease59. Though PNPLA3 mRNA levels
appear below the detection limit in CCC cells in DepMap, similar
biochemical pathways may be involved in converting TAGs to
phospholipids. Nonetheless, the insights provided in this study
shed light on the highly complex and dynamic nature of LDs60,
and highlight how alterations in the lipidome can result in dif-
ferent cell states. Additionally, our results imply that HILPDA
expression may be used as a biomarker to predict sensitivity to
GPX4-targeting agents in patients.

While most current apoptosis-inducing treatment modalities
for clear-cell tumors are challenged by complications from low
response rates and emergences of resistance, the unique substrate
specificity of GPX4 and its lack of functional redundancy from
other peroxidases offer an appealing paradigm in the way that
these cancers may be targeted. However, due to the poor bioa-
vailability of current small-molecule GPX4 inhibitors, the in vivo
efficacy of chemical inhibition of GPX4 in cancer models remains
to be demonstrated. While a recently reported GPX4-targeting
strategy suggests that it may be possible to overcome the liabilities
associated with conventional GPX4 inhibitors61, developing novel
GPX4 inhibitors with improved pharmacokinetics and pharma-
codynamics profile warrants further investigation.

In summary, we identify a histotype-specific ferroptosis sus-
ceptibility and GPX4-dependency in CCCs, delineate the genetic
and metabolic basis for this dependency, and illuminate the
principles of ferroptotic cell death. These insights are potentially
translatable toward novel therapies for CCCs and other diseases
involving ferroptosis.

Methods
Cell lines and culture conditions. 786-O, 769-P, OS-RC2, ES-2, and OVISE cells
were cultured in RPMI-1640 (Gibco) media; RCC10RGB, BFTC909, and HEK-
293T cells were cultured in DMEM (Gibco) media; TOV21G and OV-90 cells were
cultured in MCDB 105:Medium 199 (1:1, Gibco) mixed media. All media were
supplemented with 10% fetal bovine serum (Gibco) and 1% penicillin/strepto-
mycin. Medium for OV-90 cells was supplemented with 1.5 g/L of sodium bicar-
bonate. HK-2 cells were cultured in keratinocyte serum-free medium (Gibco)
supplemented with 0.05 mg/mL bovine pituitary extract and 5 ng/mL human
recombinant epidermal growth factor. All cells were cultured in a humidified
incubator at 37 °C with 5% CO2. All cancer cell lines were obtained from the
Cancer Cell Line Encyclopedia (CCLE) distributed by the Broad Institute Biological
Samples Platform, except HK-2 and HEK-293T cells that were obtained from
American Type Culture Collection (ATCC). All cells were regularly tested for
mycoplasma contamination using MycoAlert Plus (Lonza) and cells used in
experiments were negative for mycoplasma.

Compound sources, synthesis, and treatment. ML210 and RSL3 were synthe-
sized according to previously described protocols15,62. The concentration range for
ML210 was 0.01953–20 μM in 11-concentration experiments and 0.07813–5 μM in
7-concentration experiments unless otherwise indicated. The concentration range
for RSL3 is 0.001953–2 μM in 11-concentration experiments and 0.01563–1 μM in
7-concentration experiments unless otherwise indicated. Liproxstatin-1 (Lip-1,
Sigma-Aldrich SML1414) was used at 0.5–1 μM. Ferrostatin-1 (Fer-1, Sigma-
Aldrich, SML0583) was used at 1–5 μM. Polyunsaturated acids (arachidonic acid,
C20:4) (Cayman Chemicals) were conjugated with fatty-acid free BSA (Sigma-
Aldrich) using previously described protocols63, and were applied to cell culture
media at 20 μM for 3 days.

Gene-expression analysis by qRT-PCR. Total RNA was extracted from cells
using RNeasy Mini kit (Qiagen) following the manufacturer’s instructions. cDNA
was synthesized using the ProtoScript First Strand cDNA Synthesis kit (New
England Biolabs). Quantitative PCR reaction mixtures were prepared with SYBR
Green PCR Master Mix (Thermo Fisher Scientific, Applied Biosystems). PCR
reactions were performed and analyzed on a LightCycler 480 Instrument (Roche).

Each sample condition contains at least three biological replicates and all mea-
surements were performed with four technical replicates. Mean and standard
deviation (s.d.) of biological replicates were presented unless otherwise indicated.
Gene-expression levels were first normalized to internal control genes including
B2M and GAPDH and then to no-perturbation conditions unless otherwise indi-
cated. qPCR primers used in this study are listed in Supplementary Data 8.

Immunoblotting and antibodies. Adherent cells were briefly washed twice with
PBS and lysed with 1% SDS lysis buffer containing 10 mM EDTA and 50mM Tris-
HCl, pH 8.0. Lysates were collected, briefly sonicated, and incubated at 95 °C for
10 min, and the protein concentrations were determined by BCA Protein Assay kit
(Pierce). Calibrated samples were diluted with 4× LDS sampling buffer (Novus),
separated by SDS-PAGE using NuPAGE 4–12% Bis-Tris protein gels (Novus), and
transferred to nitrocellulose or PVDF membranes by iBlot2 protein-transfer system
(Thermo Fisher Scientific). Membranes were blocked with 50% Odyssey blocking
buffer (LiCor) diluted with 0.1% Tween-20-containing TBS and immunoblotted
with antibodies from Abcam, including GPX4 (Ab41787), HIF-1α (Ab51608),
HILPDA (Ab78349), ACSL4 (Ab155282), and from Cell Signaling Technologies,
including V5-tag (D3H8Q, #13202), HIF-1β/ARNT (D28F3, #5537), HIF-2α
(D9E3, #7096), KEAP1 (D6B12, #8047), NRF2 (D1Z9C, #12721), β-Actin
(8H10D10, #3700 and 13E5, #4970). All antibodies were diluted at 1:1000 for
immunoblotting. Membranes were then washed with TBST and incubated
with IRDye 800CW goat-anti-Rabbit or 680RD donkey-anti-Mouse secondary
antibodies (LiCor). Immunoblotting images were acquired on an Odyssey
equipment (LiCor) according to the manufacturer’s instructions, and analyzed
in the ImageStudio software (LiCor). Unless otherwise indicated, β-Actin was
used as a loading control. Raw, full scan images are presented in Supplementary
Figs. 8 and 9.

CRISPR/Cas9-mediated genome editing and RNA interference. For CRISPR/
Cas9-mediated genome-editing, cells were engineered for Cas9 expression with the
pLX-311-Cas9 vector (Addgene 96924), which contains the blasticidin S-resistance
gene driven by the SV40 promoter and the SpCas9 gene driven by the EF1α
promoter. sgRNA sequences were cloned into the pLV709 doxycycline-inducible or
pXPR_BRD050 constitutive sgRNA expression vectors. For shRNA-mediated RNA
interference, shRNAs targeting the genes of interest were pre-cloned into con-
stitutive shRNA expression vectors pLKO.1 or pLKO-TRC005 by the Broad
Institute Genetic Perturbation Platform. Lentiviruses were generated from sgRNA/
shRNA constructs in HEK-293T packaging cells in 96-well plate format using
FUGENE6 (Promega) as the transfection reagent and infected cells for sgRNA or
shRNA expression. Infected cells were selected with puromycin at 2 μg/mL starting
48 h post-infection and propagated for further analysis. Cells transduced with
inducible sgRNA constructs were treated with 1 μg/ml doxycycline (Sigma-
Aldrich) for 7–14 days prior to gene-knockout validation by immunoblot analysis.
Sequences for sgRNAs and shRNAs used are listed in Supplementary Data 9 and
10, respectively.

Single-cell cloning. 786-O-Cas9 cells were transfected with ribonucleoprotein
(RNP) complex containing EnGen Cas9 NLS, S. pyogenes (New England Biolabs),
Alt-R CRISPR tracrRNA and Alt-R CRISPR crRNA (Integrated DNA Technolo-
gies) according to the manufacturer’s instructions using Lipofectamine RNAiMAX
transfection reagent (Thermo Fisher Scientific). Transfected cells were sorted into
96-well plates at 1 cell/well on SONY SH800 cell sorter (SONY). Cells were allowed
to grow for 7 days to become single-cell clones and analyzed by immunoblot for
effective gene knockout and further analysis. The names of each clone were
designated by the original plate numbers and well positions.

Genome-wide CRISPR screen and data analysis. Pooled lentiviruses for the
sgRNA library was prepared using HEK-293T cells in T175 flasks as previously
described64. Briefly, the viral titer and volume was pre-determined with pilot
experiments prior to screening to ensure about 30% infection rate in the screening
experiment and caution was taken to minimize multiple constructs transduced into
the same cell. Optimized surface area for cell growth was pre-determined in pilot
experiments to avoid reaching over-confluence. Puromycin concentration was pre-
determined with pilot experiments before the screen. For the screening experiment,
150 million 786-O-Cas9 cells were infected with a lentiviral library containing
77,441 sgRNA targeting ~18,000 genes in the human genome to ensure each
sgRNA is represented by at least 500 cells on average65. For the infection, cells
added with the calculated lentivirus volume were supplemented with 4 μg/mL of
polybrene and centrifuged at 930 RCF for 2 h. Fresh media was added at a 1:1 ratio
post-centrifugation. Infected cells were selected with 2 μg/mL of puromycin for
96 h, expanded for another 4 days to reach the desired cell number and split for
DMSO or 5 μM ML210 treatment. At least 40 million cells were used for each
treatment condition to keep the minimum presentation number for each sgRNA
above 500. Cells were exposed to ML210 treatment for 4, 6, or 8 days before being
cultured in drug-free media for recovery and expansion for 24 h. Genomic DNA
from cell pellets was purified using the QIAamp DNA Blood Maxi/Midi/Mini kits
(Qiagen) according to the manufacturer’s protocols and quantified using a
Nanodrop 2000 (Thermo Fisher Scientific).
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The sequencing library was prepared, sequenced, and analyzed as previously
described64,66. Briefly, sgRNA cassettes were PCR-amplified and barcoded with
sequencing adaptors utilizing ExTaq DNA Polymerase (Clontech). PCR products
were purified with Agencourt AMPure XP SPRI beads (Beckman Coulter A63880)
according to the manufacturer’s instructions, quantified using a Nanodrop 2000,
pooled into a master sequencing pool, and sequenced on a HiSeq sequencer
(Illumina) with 300 nt single-end reads, loaded at 60% with a 5% spike-in of PhiX
DNA.

For CRISPR screen data analysis, the sgRNA sequences were mapped to a
reference file containing all SpCas9 sgRNAs in the library and the sgRNA-
associated barcodes were counted and mapped to the barcode reference file. The
read count matrix was normalized to reads per million reads (RPM) within each
condition. Normalized read counts for each sgRNA in the ML210-treated
conditions were compared with those in the DMSO-treated condition. SgRNA and
gene level analyses for each condition are listed in Supplementary Data 1–3. Genes
represented by 3–10 sgRNAs were included in the differential enrichment analysis.
Genes of interest in each ML210-treated condition were required to have at least
2 sgRNAs exhibiting at least 2-fold enrichment with p-values <0.05. Selected genes
that scored in all three ML210-treated conditions were further validated with
shRNA-mediated knockdown.

Lipid peroxidation analysis by imaging and flow cytometry. For imaging, cells
were plated at 5000 cells per well in a 96-well, Cell Carrier Ultra Microplate
(PerkinElmer) in the appropriate cell culture media, supplemented with 1 μM of
liproxstatin-1 where indicated and cultured overnight. Cells were incubated with
0.1% DMSO (same volume of DMSO as samples with a compound), 10 μM
ML210, or 10 μM ML210+ 1 μM of liproxstatin-1 for the indicated times (1–4 h).
During the last hour of incubation, the media also contained 60 nM DRAQ7
(Abcam), 1 μg/mL Hoechst 33342 (Thermo Fisher Scientific), and 1 μM BODIPY-
581/591 C11 (Thermo Fisher Scientific) for live-cell imaging. Cells were imaged at
×63 magnification using an Opera Phenix High-Content Screening System (Per-
kinElmer, Waltham, MA) equipped with 405, 488, 560, and 647 nm lasers. Image
analysis was conducted with Harmony software (PerkinElmer). All images (14
images per well) were collected with the same instrument parameters and pro-
cessed with the same settings to maximize the ability to compare results between
conditions. 9 randomly selected images per condition were presented in Supple-
mentary Figure 1.

For flow cytometry analysis, 786-O, 769-P, and derivative cells were treated
with DMSO or ML210 (5 μM) for 90 min, while for the last 45 min cells were also
incubated with 5 μM of BODIPY-C11 dye. Before flow cytometry, cells were
washed with PBS twice, stained with Hoechst 33342 for 5 min, trypsinized and
filtered into single-cell suspensions. Flow cytometry analysis was performed on a
SONY SH800 cell sorter with standard settings, using PE-TexasRed filter for
reduced BODIPY-C11 (emission: 590 nm) and the FITC filter for oxidized
BODIPY-C11 (emission: 510 nm). A minimum of 10,000 cells were analyzed for
each condition, and each experiment was independently performed at least twice
and representative experimental results are shown. Data analysis was performed
using the FlowJo 10 software. An example gating strategy is demonstrated in
Supplementary Fig. 4.

CellTiter-Glo assay for viability analysis. For cellular viability assays, cells were
seeded in 384-well opaque white tissue culture and assay plates (Corning) at 1000
cells/well. 18–24 h after seeding, cells were treated with compounds at indicated
concentrations for 48–72 h. Cellular ATP levels were quantified using CellTiter-Glo
(Promega) on a multi-plate reader (Envision). Relative viability was normalized to
the respective DMSO-treated condition unless otherwise indicated. For data pre-
sentation, the mean and standard deviation (s.d.) for the four biological replicates
of each data point in a representative experiment is presented. Sigmoidal non-
linear regression models were used to compute the regression fitting curves. For
plate-based screening, area-under-curve (AUC) value for each regression curve is
calculated and normalized to 1 as the total AUC for the concentration ranges of
ML210 or RSL3.

Lipid droplet abundance analysis by flow cytometry. 786-O derivative cell lines
were grown at optimal confluence and stained with BODIPY-493/503
(Thermo Fisher Scientific, Molecular Probes) at 2 μM final concentration for 30
min according to the manufacturer’s instructions. Cells were then briefly washed
with PBS, trypsinized, collected, stained with Hoechst 33258 for 5 min and filtered
through a 70 μm nylon filter. The resulted post-staining single-cell suspensions
were analyzed on a SONY SH800 cell sorter (SONY) according to the manu-
facturer’s protocols. The filter used for detecting the BODIPY-493/503 signal was
FITC 488 nm. A minimum of 10,000 cells were analyzed for each condition, and
each experiment was independently performed at least twice and representative
experimental results are shown. An example gating strategy is demonstrated in
Supplementary Fig. 7.

cDNA overexpression screening of HIF-2α-dependent genes. cDNAs for the
HIF-2α-dependent genes identified by RNA-Seq were obtained from the previously
described human cDNA library collection at the Broad Institute Genetic

Perturbation Platform (Supplementary Data 6)67. These cDNAs were constructed
for mammalian expression in the pLX-TRC317 vector system. Lentiviruses
were produced with the cDNA constructs in HEK293-T cells in 96-well format.
EPAS1−/− 786-O clones were infected with the cDNA lentivirus array, selected
with 2 μg/mL puromycin for 96 h and analyzed for the cells’ ferroptosis suscept-
ibility 7 days post-infection. Control vectors expressing EGFP were used to evaluate
the infection rate. Genes of interest were identified as having significantly shifted
ML210 and RSL3 sensitivity curves compared with EGFP-expressing EPAS1−/−

786-O cells. Protein expression of the top hit genes and controls was verified by
immunoblot analysis.

RNA-Seq and data analysis. RNA-Seq analysis was performed with wildtype and
three EPAS1−/− 786-O single-cell clones generated by CRISPR/Cas9 to identify the
HIF-2α-responsive genes. Total RNA was extracted from adherent 786-O cells and
derivatives using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s
instructions. The RNA sequencing library was prepared using NEB-Next Ultra
RNA Library Prep Kit following the manufacturer’s recommendations. Briefly,
mRNAs were first enriched with Oligo-d(T) beads and fragmented for 15 min at
94 °C. First strand and second strand cDNA library was subsequently synthesized,
end repaired, and adenylated at 3’ ends. Universal adapter was ligated to cDNA
fragments, followed by index addition and library enrichment with limited-cycle
PCR. Sequencing libraries were validated using the Agilent Tapestation 4200, and
quantified using a Qubit 2.0 Fluorimeter as well as by quantitative PCR. The
sequencing libraries were multiplexed and clustered on one lane of a flowcell. After
clustering, the flowcell was loaded on the Illumina HiSeq instrument according to
the manufacturer’s instructions. The samples were sequenced using a 2 × 150 bp
paired-end configuration. Image analysis and base calling were conducted by the
HiSeq Control Software. Raw sequence data generated from Illumina HiSeq was
converted into fastq files and de-multiplexed using Illumina’s bcl2fastq 2.17 soft-
ware. One mismatch was allowed for index sequence identification.

For RNA-Seq data analysis, raw paired-end 150 bp/150 bp sequencing reads
were mapped to human genome build hg19 using Bowtie2 (v2.3.1) with standard
settings. On average 66% of read pairs were uniquely mapped to the hg19 genome.
Mapped reads were counted to gene features by the htseq-count function from
HTSeq (version 0.9.1) with standard settings, normalized to library size and
analyzed for differentially expressed genes with DESeq2 (Bioconductor). Heatmaps
were generated using the heatmap.2 function in gplots package in R (The
Comprehensive R Archive Network).

Lipidomic profiling and data analysis. Analyses of polar and non-polar lipids
were conducted using an LC-MS system comprising a Shimadzu Nexera X2 U-
HPLC (Shimadzu Corp.) coupled to an Exactive Plus orbitrap mass spectrometer
(Thermo Fisher Scientific). Lipids were extracted from cells with 0.8 mL iso-
propanol (HPLC Grade; Honeywell). Three replicates were analyzed for each cell
line or condition. Cell extracts were centrifuged at 10,000 RCF for 10 min to
removed residual cellular debris prior to injecting 10 μL onto an ACQUITY BEH
C8 column (100 × 2.1 mm, 1.7 µm; Waters). The column was eluted isocratically
with 80% mobile phase A (95:5:0.1 vol/vol/vol 10 mM ammonium acetate/
methanol/formic acid) for 1 min followed by a linear gradient to 80% mobile-phase
B (99.9:0.1 vol/vol methanol/formic acid) over 2 min, a linear gradient to 100%
mobile phase B over 7 min, then 3 min at 100% mobile-phase B. MS data were
acquired using electrospray ionization in the positive-ion mode over 200–1100m/z
and at 70,000 resolutions. Other MS settings were: sheath gas 50, in source CID
5 eV, sweep gas 5, spray voltage 3 kV, capillary temperature 300 °C, S-lens RF 60,
heater temperature 300 °C, microscans 1, automatic gain control target 1e6, and
maximum ion time 100 ms. Raw data were processed using TraceFinder 3.3
(Thermo Fisher Scientific) and Progenesis QI (Nonlinear Dynamics) software for
detection and integration of LC-MS peaks. Lipid identities were determined based
on comparison to reference standards and reference plasma extracts and were
denoted by total number of carbons in the lipid acyl chain(s) and total number of
double bonds in the lipid acyl chain(s).

For lipidomics data analysis, median normalization was performed between
each sample in the same experiment. Median-normalized lipidomic datasets are
presented in Supplementary Data 4, 5 and 7. Differential-abundance analysis was
performed between previously annotated lipid species (about 200 lipids were
previously annotated) using two-tailed Student’s T-test. For fold-change analysis,
each dataset was normalized to the mean of the WT cell condition for each lipid
species, and the ratio between Test/WT was log2 transformed and presented as
heatmaps, bar graphs or volcano plots. P values are adjusted for multiple-test
correction using Benjamini-Hochberg correction method and presented as -log10
adj. p. For principal component plots, the log-ratios between Test/WT for each
lipid were further median normalized and computed using the principal
component analysis function in DESeq2 (Bioconductor) using RStudio.

Public dataset queries. The Cancer Therapeutics Response Portal (portals.
broadinstitute.org/ctrp/) compound sensitivity dataset, a data matrix containing
the normalized AUC values of each compound in each cell line, was downloaded
from [https://ocg.cancer.gov/programs/ctd2/data-portal], (also deposited in [ftp://
caftpd.nci.nih.gov/pub/OCG-DCC/CTD2/Broad/] and [https://github.com/
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remontoire-pac/ctrp-reference/tree/master/auc]). For the lineage/histotype-specific
analyses, compounds that were profiled in at least 2/3 of the total solid cancer cell
line collection, and cell lines that were profiled using at least 50% of the com-
pounds, were included in the statistical analyses. Primary cancer types that contain
>5 cell lines profiled for compound sensitivities were presented.
Mann–Whitney–Wilcoxon tests were performed between cancer cell lines from
each cancer type and other solid cancer cell line collections. Statistical significances
were adjusted for multiple-test correction using the Benjamini-Hochberg correc-
tion method. Compound sensitivity-gene expression correlation analysis were
performed with the web tools in CTRP [portals.broadinstitute.org/ctrp/]11.

For gene expression analysis of CTRP cell lines, RNA-Seq dataset was downloaded
from the Cancer Cell Line Encyclopedia data portal [https://portals.broadinstitute.org/
ccle/data]. For Cancer Dependency Map (DepMap) datasets, dependency scores for
each gene of interest, including CERES scores from CRISPR/Cas9 screening
experiments and DEMETER scores for RNA interference screening experiments, were
downloaded from the DepMap web portal [https://depmap.org/portal]. ChIP-Seq
dataset for HIF-2α/HIF-1β in 786-O cells (GSE34871) was downloaded from Gene
Expression Omnibus [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE34871].

Animal studies. All animal experiments were in compliance with relevant ethical
regulations and were approved by the Institutional Animal Care and Use Com-
mittee (IACUC) of the Broad Institute. Briefly, 3–4-week-old, male athymic nude
mice were used for 786-O xenograft experiments. Five million cells for each
injection were trypsinized, resuspended in 50 μl PBS containing 0.5 μM DMSO or
Lip-1, mixed with 50 μl Matrigel (BD Biosciences), and implanted to mice sub-
cutaneously. For Lip-1 treatment, Lip-1 was first dissolved in DMSO then diluted
with PBS and injected into mice at 20 mg/kg body weight daily. Lip-1 or vehicle
treatment was continued for 10 days before withdrawal. Tumor sizes were mon-
itored and measured on a weekly basis. Tumor volumes were quantified by mea-
suring the length (L) and width (W) of the tumor using a caliper and calculated
according to V= (L*W*W)/2.

Patient-derived cancer cell model generation. Human renal cell carcinoma
samples, CCLF_KIPA_0001_T and CCLF_KIPA_0002_T, were obtained from
patients, with their informed consent, at the Dana Farber Cancer Institute (DFCI);
and all procedures were conducted under an Institutional Review Board (IRB)-
approved protocol. Clinical information for the patient tumors were included in
Supplementary Fig. 1. For primary cell line generation, tumor resections were
placed in a sterile conical tube containing DMEM media (Thermo Fisher Scientific,
cat. #11995073) with 10% FBS (Sigma Aldrich, cat. #F8317), 1%
penicillin–streptomycin (Thermo Fisher Scientific, cat. #15140163), 10 μg/ml of
gentamicin, and 250 ng/ml fungizone on wet ice during transport from the oper-
ating room to the research laboratory. Resections were placed in a 15 ml conical
flask with 5 ml DMEM media, 10% FBS, 1% penicillin–streptomycin, and the
digestion enzymes regular collagenase 1 ml (StemCell, cat. #07912) and dispase
1 ml (StemCell Technologies, cat. #07913). The flask was placed on a rotator and
incubated at 37 °C for 1 h. The cells were then centrifuged at 200 × g (RCF) for
5 min. Cell pellets were resuspended in a 50:50 mix culture medium of Smooth
Muscle Growth Medium-2 (Lonza CC-3182) and ACL4 media with 5% FBS68,69.
Later, suspended cells were plated into a 96-well plate. The medium was changed
every 3 days, and cells were maintained at 37 °C in a humidified 5% CO2 incubator.
RCC cells were passaged using Gibco TrypLE Express (Thermo Fisher Scientific,
cat. # 12604039) to detach cells when the cells reached 80–90% confluence.
CCLF_KIPA_0001_N cells were prepared with a similar protocol but cultured with
conditional media as previously described70.

Statistical analysis. Data are generally expressed as mean ± s.d. unless otherwise
indicated. No statistical methods were used to predetermine sample sizes. Statistical
significance was determined using a two-tailed Mann–Whitney–Wilcoxon test or
two-tailed Student’s T-test using Prism 7 software (GraphPad Software) unless
otherwise indicated. The Benjamini-Hochberg correction method was used to
adjust the p-values where multi-testing corrections were involved. Statistical sig-
nificance was set at p < 0.05 unless otherwise indicated.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw sequencing files and read count matrix for the CRISPR screening experiment

(related to Fig. 2) is deposited in Gene Expression Omnibus under the accession number

GSE126696, with the processed data matrix supplied in Supplementary Data tables. The

accession number for raw RNA sequencing data (related to Fig. 4) in GEO is GSE115389.

Original lipidomic profiling data are available in Supplementary Data tables (related to

Figs. 3 and 4). Links to publicly available datasets are provided in the Public dataset

queries section of Methods, with data analysis procedures described. All remaining data

and computational code that support the findings of this study are available from the

corresponding author (S.L.S.) upon request.
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