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ABSTRACT

Simulation plays a vital role in analyzing many discrete

event systems. Usually, using simulation to solve such

problems can be both expensive and time consuming.

We present an effective approach to smartly allocate

computing budget for discrete-event simulation. This

approach can smartly determine the best simulation

lengths for all simulation experiments and significantly

reduce the total computation cost for obtaining the same

confidence level. Numerical testing shows that our

approach can obtain the same simulation quality with

one-tenth the simulation effort.

1 INTRODUCTION

In order to efficiently manage and operate large man-made

systems such as communication networks, traffic sys

tems, and automated manufacturing plants, it is often

necessary to apply extensive simulation to study their

performance since no closed-fonn analytical solutions

exist for such problems. Collectively, these types of

systems are known as Discrete Event Systems (DES)

(Ho 1991). Unfortunately, using simulation to solve

such problems can be both expensive and time consum

ing due to their massive search space and their evolution

in time according to complex man-made rules and the

influence of random occurrences. In industry, with pres

sure to meet certain system specifications and only a

limited budget to carry out necessary simulations, the

limitations of traditional simulation technology can

either delay a project or force it to go over budget.

Suppose we want to compare n different discrete-event

systems (designs or alternatives), we do T simulation

replications for all n designs (or alternatives). Totally,

we need n T simulation replications. The simulation

results become more accurate when T increases. If the

accuracy requirement is not low (T is not small), and if

the total number of designs in a decision problem is not

small (n is large), then nT can be very large, which may
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easily make total simulation cost extremely high and

preclude the feasibility of a simulation approach. To

reduce total simulation time, one can either develop more

efficient simulation technology or use faster computers

to reduce the simulation time of each simulation

experiment. In this paper, we present another approach

to improve the overall simulation efficiency.

Our ideas are as follows. Intuitively, some bad re
signs can be discarded before completing all of the T rep

lications. We don't have to waste efforts on simulating

bad designs and so reduce overall simulation time. Then

the question is how to systematically do this? When?

And which designs? Ideally, we want to optimally

choose the number of simulation replications for all re
signs to minimize the total simulation cost, while ob

taining the desired confidence level. In fact, this question

is equivalent to optimally decide which designs will

receive computing budget for continuing simulation.

Figure 1 illustrates the ideas by comparing a typical

solution to this problem with the conventional approach

using equal simulation lengths. Chen (1995) formulates

this question and obtained promising preliminary results

using very simple heuristics. In this paper, we will

further discuss it and compare two approaches, one of

which utilizes the gradient infonnation.

To optimally allocate computing budget, first of all,

one must have an efficient way to estimate the confi

dence level based on the results of the completed simula

tion. Further, one must have easy ways to anticipate

how the confidence level will change if some computing

budget is allocated and additional simulation replications

are completed.

Goldsman and Nelson (1994) provide an excellent

survey on current approaches (e.g., Goldsman, Nelson,

and Schmeiser (1991), Gupta and Panchapakesan (1979),

and Law and Kelton (1991)) to estimating simulation

confidence level. In addition, Bechhofer, Santner, and

Goldsman (1995) give a systematic and more detail

discussion on this issue. Those approaches are mainly

suitable for problems not having large number of designs
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Figure 1: Comparison of Simulation Budget Allocations for Obtaining the Same Confidence Level
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(e.g., Goldsman and Nelson (1994) suggest 2 to 20

designs). For real-life DES problems, the number of

designs can grow up to numerous orders of magnitude

easily. Chen (1996) presents a feasible way to quantify

confidence level for large DES simulation (the "large"

refers to large search space). Further, when the approach

in Chen (1996) is applied the sensitivity information of

the confidence level with respect to simulation

replication numbers can be easily obtained, which will

provide the basis to detennine how to allocate computing

budget among designs in this paper.

Section 2 describes the notation used in this paper and

a brief overview of Chen (1996)'s approach to quantify

confidence level for problems with large search space. In

Section 3, we will define the "optimal computing budget

allocation" problem. Two major difficulties in solving

this problem will be pointed out. Since it is difficult to

find an optimal solution for the computing budget allo

cation problem, and it is impractical to spend lot of time

in finding the optimal solution, we propose a sequential

approach to overcome these two difficulties in Sections 4

and 5. We call this approximation smart computing

budget allocation scheme. Numerical testing in Section

6 shows that using this approach to smartly allocate

computing budget can reduce the total computation time

by about ten times for a 1000-design example. Section

7 concludes this paper.

2 A FEASIBLE APPROACH TO

QUANTIFY CONFIDENCE LEVEL FOR

PROBLEMS WITH LARGE SEARCH

SPACE

Chen (1996) provides a simple approximation approach

to quantify confidence level for problems with large

search space and also provide some useful sensitivi ty

information of the confidence level with respect to simu

lation replication numbers, which will provide the basis

to detennine how to allocate computing budget among

designs in this paper. Denote

n: the total number of designs,

T: the length of simulation, the number of

replication, or the total number of samples,

J
j
(t): the t-th sample of the perfonnance measure of

designj,

Jj(T): the sample mean of design j, namely, Jj(T) =

1 T ,.,

- IJj(t), and
T 1=1

Jj the performance measure, or more specifically,

the mean perfonnance measure of design j, i.e.,

the mean of J j (t).

Assume that

i) lj(f) is i.i.d. for all t,

ii) the simulations f ~ r designs ,.,i and j, i * j, are inde-

pendent. Thus, Ji(t) and lj(t) are independent.

For steady-state simulation, the sample J j (t) may not

be independent of lj (s) for s -:t:. t. One possible way is

to place the "raw" data in a few large batches, and work

with these few batches as if they were independent

(Banks, Carson, and Nelson 1995). As the strong law of

large numbers, with probability 1,

Without infinitely long simulations or infinite number

of simulations replication, the sample mean lj (T) is an

approximation to lj' We refer to the sample mean

I j (T) from one finite simulation experiment as an

observed perfonnance measure for a particular design's
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simulation. Let OJ be the index of the design having the

j-th largest observed perfonnance measure. With these

notations, we have

The traditional optImIzation approaches are to find the

design with maximum perfonnance measure. (Without

loosing generality, we only consider maximization prob

lems in this paper.) However, even the simulation cost

for a good estimation of l j could be very high, especially

for complicated systems. Instead of insisting on picking

the best design, Ordinal Optimization (Ho, Sreenivas,

and Vakili 1992) concentrates on finding good enougb

designs and reduces the required simulation time dramati

cally. Comparing the observed perfonnance measures at

short simulation length T, we can select the observed

best design (oJ) or the observed top-r designs (oJ' 02' , .. ,

0,), and then ask what is the probability that at least one

of the observed top-r designs actually belongs in top-k.

This is crucial to Ordinal Optimization, although estima

tion of such a probability is very difficult for problems

having large n.

Chen (1996) adopts the Bayesian model to analyze

such confidence probability. Under the Bayesian model.

1· is treated as a random variable and has a prior distribu

tion which describes the knowledge or the subjective

belief about 1· before any sampling. The posterior dis-
J '"

tribution is updated after we observe the samples {1 j (t ) ,

t= 1,.. ,T} . The posterior distribution p(lj I {1 j (t),

t=I, .. ,T}) summarizes the statistical properties of Jj

given the prior knowledge and sampling infonnation.

When simulation stops, the statistical properties is re
scribed by the posterior distri butions. We can estimate

the probability that l j is in some specific region, e.g.,

Pr{ Jj >0 I {lj(t), t=I, .. ,T }}, or compare two designs,

e.g., Pr{Ji-lj >O I {li(t), lj(t), t=I, .. ,T}}. For nota

tional simplicity, we denote J j as the posteriori

l j I { 1j ( t ), t= 1,.. ,T} .

Namely, Pr{ Jj>O} represents Pr{ l j > 0 I {Jj(t), t = 1,

.. , T} }. The posterior distribution p( Jj ) illustrates what

value l j may be, based on samples {lj(t), t=l, .. ,T} and

the prior knowledge. With some normal assumptions,

the posterior

T 2
- '" 1 ~ A a j
l j =lj l{lj (t),t=1,2, ..,T}-NC-

T
£..lj (t)'T)

1=}

Chen (1996) also shows that the Confidence Probability

CPl =Pr{At least one of designs 01' 02' .. , Or actually

belongs in top-k}

2:: Approximated Confidence Probability

n _ _

ACPl - I1Pr{l
o1

> 1
0j

},

j=r+k

and that

CP2 == Pr{The true performance of the observed best

design is not worse than /3 fraction of the

performance of the true best design}

2:: Approximated Confidence Probability

n _ _

ACP2 == I1Pr{lo > /310 .}'
) J

j=2

While CPl and CP2 are very difficult to obtain, ACPl

and ACP2 can be computed very easily, and therefore

will be used to approximate CPl and CP2, respectively.

Numerical testing shows that they can provide reasona

bly good approximation. Furthermore, since ACPl and

ACP2 are lower bounds of CPl and CP2, we are sure

that confidence level is sufficiently high when ACP1 or

ACP2 is high enough. Although the definitions of CPl

and CP2 are different, the fonnulas for ACPI and ACP2

are qujte similar. For easy explanation, without loss of

generality, we will only consider the simple case that

n

ACP == I1Pr{Jo > Jo .}
1 J

j=2

in the latter discussion, i.e., how to smartly allocate

computing budget for obtaining satisfactory ACP.

3 PROBLEM DEFINITION

We follow the problem formulation given by Chen

(1995). Let Tj be the simulation length, or the number

of samples, of design j. If simulations are performed on

a sequential computer and with simulation length T for

all designs, the computation cost can be approximated by

T} + T2 + ... + Tn = nT. However, to ensure that ACP

is larger than some value, we don't need to restrict our

selves to T} =T2 =... =Tn' and may choose different

simulation lengths for different designs. This means T;

may not be equal to Tj for i ;:/; j. Furthermore, we c~

choose 1) for all j such that the total computation cost IS

minimized, while guaranteeing that ACP is greater than

some satisfactory level. More specifically, we are

considering the following problem.

(P) min (T} + T2 + ... + Tn)'
TI , .. ·• Tn

S.t. ACP 2:: (a satisfactory level).
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There are two major difficulties in solving (P):

Difficulty 1. ACP( T1, T2 , ... , Tn) can be com-

puted only after doing simulations until T1, T2 , ... , Tn'

Before performing simulations until T1, T2 , , Tn' how

can we predict or estimate the ACP at T1, T
2

, , Tn ?

Difficulty 2. T1, T2 , ... , Tn are integers. Even if

we have techniques to estimate ACP at T1, T
2

, ... , Tn'

an extremely large combinatorial space must be searched

to find a solution to (P), especially when n is large.

Note that the purpose of solving (P) is to further re

duce computation cost for obtaining a desired confidence

level. We should not exert too much effort solving (P)

during simulation. Otherwise, the additional cost of

solving (P) will cancel the benefits of computing budget

allocation. Hence, we need to solve (P) very efficiently,

even if this means obtaining a sub-optimal solution.

Efficiency is more crucial than optimality in this appli

cation.

4 A SEQUENTIAL APPROACH

This section presents a sequential procedure to overcome

the difficulties in solving (P). To Optimally allocate

computing resource, it is equivalent to detennine which

designs we should do more simulation. We will

sequentially decide it, although this is usually not an

optimal solution any more.

Before doing simulation there is neither knowledge

about ACP nor a basis for choosing Tj . First, all re-
signs are simulated until length to to obtain statistical

information about sample means and sample variances.

Then we try to determine how to further allocate comput

ing budget using available statistical information. When

simulation is stopped at to, the posterior distribution of

design} is

- - "
J j == Jj(to) == J j I{Jj(t), t =1,2, ..,to}

1 to ()2

- N(- IJj(t),-)
to 1=1 to

At this moment, we have some ideas about each design

and then can decide which designs are worthy of being

allocated more computing budget. To detennine how to

further allocate computing budget, we have to be able to

know how the ACP will change if some computing

budget is allocated to some designs (Difficulty I). More

specifically, based on statistical information at to, we

want to anticipate the posterior distribution at to + ~,

where ~ is a positive integer. To do this, we assume the

sample mean and variance at to are near those at to + ~ ,

and approximate the posterior distribution at to + ~

using the estimated posterior distribution

Note that the denominator of variance portion is to + ~

rather than to' This approximation will be satisfactory

assuming to is large enough and if ~ is not too large.

On the other hand, we don't want to choose to too large,

or we will defeat the purpose of this approach. Using

the estimated posterior distributions, we can estimate the

ACP at to + ~ using the statistical information at to, and

call it the "Estimated ACP" or EACP.

Similarly, when simulation proceeds until

T1,T2,"',Ti-I,Ti,Ti+I,"',Tn' we can also use the

available information to estimate how ACP will change

if design i is given additional budget ~ , i.e.,

EACP( T1, T2 ,···, Ti- 1, Ti +~, Ti+l ,···, Tn)' This is ac-

complished by using the estimated posterior distribution

for design i.

Now it is feasible to predict the ACP when the change

of T;'s are not large. A possible sequential approxima

tion approach to solving (P) is as follows. Since ACP

will become larger as simulation proceeds, we sequen

tially add computing budget by b each time until ACP

reached some satisfactory level (say Psat)' In order to

minimize to the total computation cost, at each step,

this budget b is allocated among some designs such that

the EACP is maximized. Thus, at step k, k= 1,2,3, .. ,

(P-k)

More specifically, the sequential algorithm is

A Sequential Aleorithm for Smart Computine

Bud2et Allocation (SCBA)

Step O. PERFORM SIMULAnON until length to

for all designs,

k ~ 0,

T
k rk r k] = 2 =... = n = to'

Step 1. If ACP( r]k, Tf, .. ·, T ~ ) ~ Psat , stop,

otherwise, go to Step 2.

Step 2. Solve (P-k),

rk+1 Tk k ~ . 1
i = i + 'i ' lor I = , .. , n,

k ~ k+l,

Step 3. PERFORM SIMULAnON until

(T]k, r;, .. ·, T ~ ) ; go to Step I.
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n n

ACP= IIpr{J
01

>J
Oj

} = II(I-Pr{J
01

-J
Oj

<OJ)
j=2 j=2

Remarks:

1. Obviously, the computing budget allocated by this

sequential approach is not the optimal way. As we dis

cussed before, efficiency is more important than optimal

ity. Otherwise, the additional cost of detennining com

puting budget allocation may cancel its benefits.

2. b is the one-time increment of simulation budget.

Small b means small step size and therefore will increase

the total number of solving (P-k). On the other hand,

large b may waste computing budget and result in a

larger ACP.

5 SOLVING PROBLEM (P-k)

ti2
Pr{X<O} ~ exp( ---2 ).

20'

With this lemma,

~ fI[l-eXp(- L l ~ ~ )) = ACP*,
j=2 20'1j

Q.E.D.

if i"* s,

For notation simplicity, let S=OI. The gradient of ACP*

with respect to T; are as follows:

The next question is how to efficiently solve (P-k).

While solving (P-k) is easier than solving (P). again,

efficiency is much more important than optimality here.

In this paper, we test two quick and dirty approaches to

allocate the given computing budget b for obtaining

large increment of ACP.

In the first approach, m designs are chosen and then

the computing budget is equally distributed to them (each

design has blm). For each design, we calculate the an

ticipated increment of ACP if computing budget blm is

allocated to it. Then those designs are chosen if their

anticipated ACP increments are among top-In.

~ A C P * =
aTi

Approach 1. Choose a positive integer m, and let ~ =
b I nz (assume ~ is an integer)

Step 1. For i =1, .. , n, calculate D; ==

C Tk Tk k T k k kEA P( l' 2'·'·' Ti- l , ; +~, Ti+ l , ... , Tn )

C Tk Tk k k k T k
- A P( I' 2.···. Ti- l , T; , Ti+ l , ... , n)·

Step 2. Find the set S(nz) == { i : Di is within the

top-highest-1n}

Step 3. r; = ~, for all i E SCm).

n

• II 1- exp(
j=1
j ~ 5 . j ~ ;

ifi=s, ~ A C P * =
aTs

Approach 2. In the second approach, instead of equally

allocating computing budget among some m designs, we

apply steepest-descent method (Luenberger 1984) to

solve (P-k). We do the following approximation to

estimate the gradient of ACP with respect to Tj •

n

L
i=2

Lemma 1. Suppose the random variable X - N(~, cr),

~ 2
where ~ > o. Then Pr{X<O} ~ exp( ---2 ).

2a

<pf> Using Chernoff bounds (Ross 1994), we have

n

• II
j = 2 . j ~ o j

a 2
t

2

Pr{X<O} ~ infM(t) = inf exp(-- + f1t).
1<0 1<0 2

Choose t = -.1;., we have the minimum, i.e.,
a ~

To avoid spending much time in iteratively finding the

solution of (P-k), we only do a very limited numbers of

iterations when applying steepest-descent method. Dif

ferent numbers of iterations are tested in Section 6.



A Gradient Approach for Smartly Allocating (:omputing Budget

Unif11,7] Unif11,7]
CI

EXP(I)
C2

Cl

~ 0 =:;
CI: Unif[2,18] C2 .. 1

C2: Exp(O.12) CI

C2

CI

~ 2 ~

C2 .. 3

Figure 2: 10-Node Network with Priority, Interruption, and Shared Server
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6 NUMERICAL TESTING

Two examples are tested. Example I is a steady-state

simulation, and Example 2 is a terminating simulation.

Example 1. We consider a 10-node network (Please

see Figure 2). Such a network could be the model for a

large number of real-world systems, such as a

manufacturing system, and a communication or a traffic

network. For details about this example, please refer to

Chen and Ho (1995). We consider the problem of

optimally allocating 22 buffer units among the 10

different nodes for maximizing the throughput. Priority,

interruption, blocking and multi-classes are included in

this network. We denote the buffer size of node i by B j.

We set some constraints for symmetry reasons: Bo =B 1 =
B2 =B3, B4 =B6 , and B s =B7 . In addition, Bg & B9 ~ 1.

These constraints limi t our search space to 11= 1000

different configurations.

The Standard Clock method (Chen and Ho 1995 and

Vakili 1991), which is an efficient technique for DES

simulation, is used to simulate this system. The

computation cost for one design is roughly proportional

to the number of clock ticks (for Standard Clock method,

one event is generated at each clock tick). We define the

computation cost as

1 1000

-- L [the number of clock ticks when the
1000 j=1

simulation of design j is stopped),

The _1_ is used to rescale the cost. The computation
1000

cost for determining the smart computing budget alloca

tion is so small as compared with the simulation cost

that we ignore this portion. In this testing, we consider

CPl = Pr{At least one of the observed top-3 designs

actually belongs in top-3} and CP2 = Pr{The true per

formance of the observed best design is not worse than

99.6% of the performance of the true best design}. We

test Approach 1 and set to =5, m =25, and b =125. We

repeat this testing 50 times. Each run has a different

random seed. We consider the computation costs for

different satisfactory confidence levels. Tables 1 and 2

contain the testing results for CP 1 and cn respectively.

The computation costs in these two tables are the

average costs in the 50 testing runs.

Table 1: Speedup with the SCBA Method for ACPl

Psat without with Speedup

SCBA SCBA

500/0 24200 3952.5 6.12

600/0 29100 4378.7 6.64

700/0 45700 4670.0 9.78

80% 65600 5775.0 11.35

Table 2: Speedup with the SCBA Method for ACP2

Psat without with Speedup

SCRA SCRA

50% 23000 3737.5 6.15

600/0 29400 4105.0 7.16

70% 37300 4480.0 8.32

80% 54400 5446.2 9.98

Example 2. To further compare these two approaches,

we test a simple single-node queue. The interarrival time

is - Unifonn[O.I, 1.9]. We consider 10 designs with

different service times, which are Uniform[O.I, 1.85

;*0.05] for design ;, i= 1, .. ,10. Suppose we are interested

in the average system time of the customers served

between time 0 and time 10. Although the derivations

in Sections 2 -5 focus on maximization, we only need

to reverse their inequality signs in order to apply to this

minimization problem. We set b = 12. and to = 10.

10,000 independent experiments are done to estimate the

average cost for using different approaches. We consider

CP = Pr{The observed best design is actually the true

best design}. Table 3 shows the average total numbers
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of simulation replications for obtaining the confidence

level P
Sal

when setting to = 10, and Table 4 is for to = 5.

Table 3: Average Total Number of Simulation

Replications for Different SCBA Approaches (To=IO)

Psat 60% 70% 800/0 90%

App. 1 (m = 4) 172.4 230.3 350.0 608.4

App. 1 (m = 3) 170.5 225.9 322.5 542.7

App. I (m = 2) 170.0 226.5 322.5 511.9

App. I (m = 1) 176.6 228.9 324.6 509.6

App. 2 (1 itrn) 167.2 221.1 324.1 525.9

App. 2 (2 itms) 162.2 212.0 307.7 498.6

App. 2 (4 itms) 163.3 213.4 313.4 511.6

Without SCBA 327.1 488.2 796.4 1458.

Table 4: Average Total Number of Simulation

Replications for Different SCBA Approaches (To=5)

Psat 600/0 70% 800/0 90%

App.l(m=4) 127.6 186.3 305.6 576.9

App. 1 (m = 3) 127.6 183.6 287.0 507.1

App. 1 (nz =2) 129.9 182.4 275.4 470.0

App. 1 (m = 1) 139.9 192.3 283.6 470.1

App. 2 (1 itrn) 130.1 185.9 290.4 496.2

App. 2 (2 itrns) 122.3 175.3 273.1 467.3

App. 2 (4 itms) 125.9 185.3 285.5 492.1

Without SCBA 305.2 475.5 790.0 1462.

From Tables 3 and 4, we have the following

observations:

• to may affect the performance quite significantly,

particularly when Psat is small. How to choose an

appropriate to is problem-specific. This remains to

be investigated.

• Different choices of nz's obtain different perfonn

ances. It is interesting to note that large nl works

better for low Psap while small m perfonns well for

high Psat ' We conjecture that there exist some better

ways which dynamically change nz through

simulation.

• For the steepest descent method, two iterations in

each sequential optimization step works better than

others. We need more testing to justify this. Ide

ally, we may gradually change the number of itera

tions through simulation to optimize the

performance.

• The time savings factor of using SCBA increases as

Psat increases. This makes sense since we have more

space to manipulate the allocation of computing

budget when P sal' the confidence level requirement,

is higher.

• When to = 5, Approach 2 with two iterations can

reduce computation effort by 68% for PSal = 90%.

We believe that this time savings factor will be even

larger if higher confidence level is required.

Since ACP is a lower bound of the confidence level

CP and we use ACP to detennine computing budget

allocation, people may be concerned with the ending CP

(actual confidence). In this testing, CP = Pr{ The ob

served best design is actually the true best design} can be

obtained numerically by calculating (total number of

simulation experiments in which the observed best re
sign is actually the true best design) / 10,000. Table 5

shows the numerical results of CP's for to = 5.

Table 5: CP for Different SCBA Approaches (to=5)

Psat 60% 70% 80% 90%

App. 1 (nz = 4) .629 .714 .815 .920

App. 1 (nz = 3) .630 .724 .817 .920

App. 1 (m = 2) .634 .720 .813 .912

App. 1 (nz = 1) .632 .717 .804 .902

App. 2 (1 itrn) .627 .724 .818 .918

App. 2 (2 itrns) .627 .714 .816 .917

App. 2 (4 itrns) .632 .713 .811 .919

Without SCBA .696 .780 .879 .951

Our approaches stop simulation when ACP is no less

than Psal ' We anticipate that the ending CP will be

higher than PSal since ACP is a lower bound of CPo

Table 5 shows that CP's are not much higher than

ACP's except the case in which SCBA is not used. The

reason is that without using SCBA, all designs receive

computing budget so that the simulation quality im

provement is higher at each step. Consequently the

ending CP's can be much higher than required level.

7 CONCLUDING REMARKS

In this paper we present two approaches to smartly al1o

cate computing budget for DES simulation. Preliminary

numerical testing shows that we can significantly reduce

total computation cost. For real-time application

problems, we have only a limited computing budget to

carry out simulation. The SCBA can be applied to these

problems to maximize the utilization of limited budget

and obtain higher confidence level. In particular, from

Table 1, the computation cost is 65,600 units for

ensuring ACPl > 80% without SCBA. On the other

hand, with SCBA the computation cost is only 5,775

units. This implies that 5,775 SCBA computation units



A Gradient Approach for SIIlartl.\' Allocating C o n l p u t i ~ l g Budget 405

can obtain the same simulation quality as 65,600

computation units without SCBA. Application of the

SCBA algorithm can obtain the same simulation quality

with one-tenth the simulation effort.

In this paper, we compare two simple approaches us

ing an example. The gradient approach perfonns slightly

better than the other. While which approach is surprier

needs more testing to justify, we fiinnly believe that

there exists some more sopfisticaed way to accomplish

better perfonnance. We will test more examples in the

future. The approaches using second order information is

also one of the ongoing research topics.
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