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Abstract The purpose of conventional linear discriminant analysis (LDA) is to find an
orientation which projects high dimensional feature vectors of different classes to a more
manageable low dimensional space in the most discriminative way for classification. The
LDA technique utilizes an eigenvalue decomposition (EVD) method to find such an orien-
tation. This computation is usually adversely affected by the small sample size problem.
In this paper we have presented a new direct LDA method (called gradient LDA) for com-
puting the orientation especially for small sample size problem. The gradient descent based
method is used for this purpose. It also avoids discarding the null space of within-class scatter
matrix and between-class scatter matrix which may have discriminative information useful
for classification.

Keywords Gradient linear discriminant analysis · Small sample size problem ·
Fisher’s criterion function · Dimensionality reduction

1 Introduction

Linear discriminant analysis (LDA) is a well known technique for dimensionality reduction.
It finds an orientation W that reduces a high dimensional feature vectors belonging to dif-
ferent classes to a lower dimensional feature space such that the projected feature vectors of
a class on this lower dimensional space are well separated from the feature vectors of other
classes. If the dimensionality reduction is from d-dimensional (Rd) space to h-dimensional
(Rh) space (where h < d) then the size of the orientation matrix W would be d×h. Therefore
W has h column vectors known as the basis vectors. The orientation W is evaluated so that
the Fisher’s criterion function J (W) is maximum. The criterion function depends on three
factors: orientation W, within-class scatter matrix (SW ) and between-class scatter matrix
(SB ). For a c-class problem the value of h will be c− 1 or less, a constraint due to SB . In the
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basic or conventional LDA technique, the orientation W is computed by using eigenvalue
decomposition (EVD) method where scatter matrix SW is arranged in such a way that it
restricts the computation of W if it is being singular or reduced rank matrix. This limitation
(quite often arises in human face recognition problem) is due to the high dimensionality of
original feature vectors in comparison with the low number of feature vectors available. This
drawback of LDA is known as small sample size problem [1]. To overcome this problem,
several authors [2–6] have used intermediate techniques like principal component analysis
(PCA) prior to the application of LDA. The PCA technique is used in such a way that the
projected feature vectors on h-dimensional space give a full rank SW matrix. Thereby the
computation of the inverse of SW is feasible and thus orientation W can then be found by
the basic LDA method. The application of intermediate techniques would, however, sacri-
fice some classification performance. There are some techniques recently developed to solve
small sample size problems. Chen et al. [7] have proposed a new LDA-based method. Their
new LDA is based on the modified Fisher’s criterion and involves discarding the null space
of SW , which contains the most discriminative information useful for classification [7,8].
Yu and Yang [8] presented a direct LDA method which discards the null space of SB , how-
ever, prevents discarding the null space of SW . Lu et al. [9] presented an approach based
on the combination of direct LDA and fractional-step LDA [10] methods that overcomes
shortcomings and limitations of individual methods used in the combination.

In this paper we do not extend any techniques presented in [7–10]. However, we have
presented a new way of computing the orientation W which is derived directly from the
conventional LDA technique. We used gradient descent method to solve for the orientation
W. The learning rate parameter is taken to be unity and J (W) is used adaptively in the iter-
ative process. This makes the convergence fast and reliable which is empirically presented.
For brevity we call the proposed technique as gradient LDA technique. The gradient LDA
technique can compute orientation W for both singular and non-singular SW . This technique
does not discard any null spaces of SW and SB thereby preserving discriminative information
that may be useful for classification.

2 LDA Revisited

To explicitly define SB and SW for the Fisher’s criterion function, in a c-class (assuming c >

2) problem let χ denotes d-dimensional set of n feature vectors, � = {ωi : i = 1, 2, . . . , c}
be the finite set of c states of nature or class labels where ωi denotes the i th class label. The
set χ can be subdivided into c subsets χ1,χ2. . .,χc where each subset χ i belongs to ωi and
consists of ni number of samples such that:

n =
c∑

i=1

ni

The samples or patterns of setχ can be written as:

χ = {x1, x2, . . . , xn} where x j ∈ Rd

χ i ⊂χ and χ1 ∪χ2 ∪ . . . ∪χc =χ.
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Let µ j be the centroid ofχ j and µ be the centroid ofχ , then the between class scatter matrix
is given as

SB =
c∑

j=1

n j (µ j − µ)(µ j − µ)T (1)

It can be observed from Eq. 1 that SB is the sum of c matrices of rank one or less, and because
only c − 1 of these are independent, SB is of rank c − 1 or less [11].

The within-class scatter matrix which is the sum of c scatter matrices is defined as

SW =
c∑

i=1

Si (2)

where

Si =
∑

x∈χ i

(x − µi )(x − µi )
T (3)

It can be observed from Eqs. 2 and 3 that SW is the sum of c scatter matrices and each
of the scatter matrices is the sum of ni matrices, and because only c(navg − 1) or less are
independent (where navg = 1

c

∑c
j=1 n j = n/c), the rank of SW (for n ≥ c) is

rank(SW ) ≤ c(navg − 1) = n − c

If n − c ≥ d then SW is full rank matrix i.e. non-singular and its inversion is possible. Now
given scatter matrices SB and SW we can define Fisher’s criterion as a function of W as [11]

J (W) = |W
T SBW|

|WT SW W| (4)

where |•| is the determinant. The orientation W is taken so that the Fisher’s criterion function
J (W) is maximum. In a c-class problem the LDA projects from d-dimensional space to c−1
or less dimensional space i.e. W : x → y or y = WTx where x ∈ Rd , y ∈ Rh such that
1 ≤ h ≤ c− 1. The orientation W is a rectangular matrix of size d × h which is the solution
of the conventional eigenvalue problem

S−1
W SBwi = λi wi (5)

where wi are the column vectors of W that correspond to the largest eigenvalues (λi ) in Eq. 5.
It is evident from Eq. 5 that the explicit solution of the orientation can be found when SW is
non-singular. If SW is singular (i.e. n− c < d) then it is not possible to obtain the orientation
W by using Eq. 5. To overcome this singularity problem, we have presented the gradient
LDA method which is described in the next section.

3 Gradient LDA for Reduced Rank Within-class Scatter Matrix

It is possible to find the desired leading h eigenvectors of the orientation W for reduced rank
SW matrix provided rank(SW ) ≥ h and rank(SB) ≥ h. A direct computation of W can
be achieved by applying gradient descent method on the Fisher’s criterion function. Here
we are interested in the orientation W that gives maximum J (W) value. However, denoting
Ĵ (W) = 1/J (W), the maximization problem becomes the minimization problem, where
we investigate the orientation W that minimizes Ĵ (W) value. To derive the gradient LDA
method we first find the derivative of Ĵ (W) then update W using gradient descent method
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Table 1 Gradient LDA algorithm for computing the orientation W

1. Choose h, the number of leading eigenvectors required to estimate.
2. Initialize the orientation W of size d × h e.g. randomly or using identity matrixa

3. while (true)
4. Compute Ĵ (W) = |WT SW W|/|WT SBW|
5. W←W− α2 Ĵ (W)[SW W(WT SW W)−1 − SB W(WT SBW)−1]
6. Normalize column vectors of W

for j = 1 to h
W(:, j)←W(:, j)/||W(:, j)||b

end
7. end

a In a d × h identity matrix Id×h , the first h rows and columns is an identity matrix Ih×h and the last d − h
rows are zero elements i.e. Id×h = [Ih×h0h×d−h ]T
b In W(:, j), ‘:, j’ indicates elements of all the rows of j th column (i.e. j th column vector) and ||•|| denotes
the norm value of this column vector

while normalizing the column vectors of W for each of the iterations. The derivative of Ĵ (W)

can be given from Appendix 1 as

∂ Ĵ (W)

∂W
= 2 Ĵ (W)[SW W(WT SW W)−1 − SBW(WT SBW)−1] (6)

It can be observed from Eq. 6 that the inverse of SW (a d × d sized matrix) is not computed
in the equation as has been done in Eq. 5. However, inverse of (WT SW W) and (WT SBW)

are computed to find the derivative of Ĵ (W) which are full rank h × h sized matrices. Eq. 6
can be utilized in the gradient descent algorithm to solve for the values of W

W←W− α
∂ Ĵ (W)

∂W
(7)

W← Normalize each of the column vectors of W separately (8)

where α is a learning rate parameter. It can also be observed from substituting Eq. 6 in Eq. 7
that Ĵ (W) is updated for each of the iterations. The gradient LDA algorithm is illustrated in
Table 1. It will be empirically seen in the next section that the algorithm converges fast when
unity value of α is taken and when Ĵ (W)(or J (W)) is utilized adaptively in the algorithm.
This makes the algorithm fast converging for the iteration process. The iterative process of
the algorithm can be terminated when J (W) becomes stable.

The convergence relation proof of the gradient LDA technique can be easily shown. Since
it is a typical gradient descent based algorithm, the convergence proof will be similar to that
of the LMS (least-mean-squared) algorithm.

4 An Illustration

In this section we first compare the performance of the proposed gradient LDA technique
with that of the basic LDA technique using the Fisher’s criterion value as a prototype. Since
the basic LDA can be applied only for full ranked SW matrix we have taken the dataset
accordingly. For this purpose Sat-Image dataset from UCI repository [12] is used. The Sat-
Image dataset consists of six distinct classes with 36 dimensions or attributes. It has 4,435
feature vectors for training purpose and 2,000 feature vectors for testing purpose. However,

123



A Gradient Linear Discriminant Analysis 21

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

The logarithm of Fishers's criteria function for full rank S
W

 matrix

Iterations

)
W(Jgol

Basic LDA method 

Gradient LDA method 
(α = 1) 

(α = 0.5) 

(α = 0.1) 

rank(S
W

) = 36 (full rank matrix) 

class = 3; d = 36; h = 2 

nvec = [1072, 479, 961] 

Fig. 1 A comparison between basic LDA method and Gradient LDA method using Fisher’s criterion value
as a prototype

for this comparison we have taken the features from the first three classes of the training set.
The coordinates of dataset taken are given as follows:

Class 1 Class 2 Class3
Number of training feature vectors per class (nvec): 1072 479 961

The dimension is reduced from 36-dimensional space to 2-dimensional plane. The total num-
ber of feature vectors minus the number of classes (n − c) is 2,509 which is greater than the
original dimension (d = 36). Therefore SW is a full rank matrix of size 36 × 36. Figure 1
illustrates the comparison between both the techniques for this dataset. The x-axis repre-
sents the number of iterations used for gradient LDA method and y-axis represents Fisher’s
criterion in logarithmic scale (log J (W)) for both the techniques. Five different values (0.1,
0.5, 1, 2 and 5) of α are taken for the gradient LDA algorithm. The α values1 2 and 5 do
not converge and provide negative J (W) values which cannot be plotted on the figure (since
log J (W) will yield a complex value). It can be observed from the figure that gradient LDA
algorithm converges fast for α = 1. Substituting this unity value for α (in Eq. 7) means that
the convergence becomes independent of any learning rate parameter or initial settings. One
of the reasons for this fast convergence is the use of parameter Ĵ (W)(or J (W)) adaptively
in the algorithm (Table 1) i.e.J (W) is updated for each of the iterations or for every single
change in the value of W. This adaptation makes the process fast and reliable. The value
of J (W) for gradient LDA is very close to the value of J (W) of the basic LDA method.
This test indicates that the orientation W obtained by both the techniques will discriminate
different classes of feature vectors in a similar fashion.

Next, we have taken feature vectors such that SW is no longer full rank matrix to demon-
strate its use in solving the small sample size problem. The same Sat-Image dataset is used
where only four vectors from each of the three classes are taken i.e.

1 The α values above 1 usually do not provide very stable J (W) values i.e. convergence is not guaranteed.
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Fig. 2 Gradient LDA application for small sample size problem. (a) The logarithm of Fisher’s criterion func-
tion for reduced rank SW matrix. (b) Projection of feature vectors onto 2-dimensional plane using Gradient
LDA method for α = 1

Class 1 Class 2 Class3
Number of training feature vectors per class (nvec): 4 4 4

The rest of the parameters are not altered (i.e. d = 36 and h = 2). The size of SW matrix is
still 36× 36. However, its rank is now n − c = 9. The basic LDA method cannot be applied
here since SW is singular thereby its inverse is not possible. The gradient LDA method is
applied in this case for the same five values of α. The Fisher’s criterion in logarithmic scale
is depicted in Fig. 2a and projected samples (y =WTx) on 2-dimensional plane is depicted
in Fig. 2b (for α = 1).

Here also the α values greater than unity (2 and 5) diverge and give complex log J (W)

values which cannot be plotted in Fig 2a. The convergence using other values of α is depicted
in the figure. It can be observed from the figure that the algorithm achieves stable Fisher’s
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criterion value somewhere before the tenth iteration. The orientation W at this iteration is
adequate for providing the discrimination between different classes of feature vectors in the
reduced dimensional space. In this case as well, the unity value of α is giving better results
than the other presented values. This means that α = 1 is a suitable choice for the convergence
of the algorithm.

In Fig 2a the iteration count is shown up to 100, however, we have experimented the
algorithm up to serval thousand iteration counts and it was observed that the log J (W)(or
J (W)) value increases towards positive infinity. This means increasing the iteration count
the WT SW W value tends towards zero whereas WT SbW remains non-zero tending J (W)

towards positive infinity which will give the value of W close to the global optimal solution
of W.

Figure 2b illustrates projection of 36-dimensional feature vectors onto 2-dimensional
plane using orientation W which is obtained by the gradient LDA method (for α = 1). It is
evident from the figure that different classes of feature vectors are well separated.

It can be concluded from the experiments that gradient LDA method is an efficient sub-
stitute of basic LDA method especially for reduced rank within-class scatter matrix (small
sample size problem).

5 Conclusion

We have presented a new way of computing the orientation W in LDA which addresses
small sample size problem. The proposed method (called gradient LDA) is based on gradient
descent method but the convergence fast and reliable. The gradient LDA method does not
discard any null spaces of SW and SB matrices and thus preserves discriminative information
which is useful for classification.

Appendix 1

Lemma 1 Let the scalar function Ĵ (W) = |WT SW W|/|WT SBW| be a differentiable func-
tion of a d×h rectangular matrix W such that h < d. The size of both the symmetric matrices
SB and SW is d × d and the rank for both is greater or equal to h. Then the derivative of
Ĵ (W) is defined as

∂ Ĵ (W)/∂W = 2 Ĵ (W)[SW W(WT SW W)−1 − SBW(WT SBW)−1].
Proof 1 Using the quotient rule of differentiation we can differentiate Ĵ (W) with respect to
W as

∂ Ĵ (W)

∂W
= [|WT SBW| ∂

∂W
(|WT SW W|)− ∂

∂W
(|WT SBW|)|WT SW W|]/|WT SBW|2

(A1)

from Appendix 2 we can write Eq. A1 as

= 2|WT SBW||WT SW W|[SW W(WT SW W)−1 − SBW(WT SBW)−1]/|WT SBW|2

Therefore

∂ Ĵ (W)/∂W = 2 Ĵ (W)[SW W(WT SW W)−1 − SBW(WT SBW)−1] �	
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Appendix 2

Lemma 2 Let the scalar function g(W) = |WT SW| be a differentiable function of a d ×
h rectangular matrix W such that h < d.The size of symmetric matrix S is d × d and
rank(S) ≥ h. Then derivative of g(W) with respect to W is defined as ∂g(W)/∂W =
2|WTSW|SW(WTSW)−1.

Proof 2 The derivative of any determinant X is given by [13]

∂|X|/∂X = |X|(XT)−1 (A2)

Equation A2 can also be written in the trace format as

∂|X| = |X|trace[(XT)−1∂XT] (A3)

from Eq. A3 the derivative of g(W) is

∂g(W) = |WTSW|trace[(WTSW)T−1
∂(WTSW)T]

= |WTSW|{trace[STW(WTSW)T−1
∂WT]

+trace[SW(WTSW)−1∂WT]}
{∵ trace(AT) = trace(A) and trace(AB) = trace(BA)}

= 2|WTSW|trace
[
SW(WTSW)−1∂WT]

{∵ S is a symmetric matrix therefore(WTSW) is symmetric too}
∴ ∂g(W)/∂W = 2|WTSW|SW(WTSW)−1 �	
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