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In this paper, we first study in a Hilbertian framework the weak convergence of a
general Gradient Projection Algorithm for minimizing a convex function of class
C1 over a convex constraint set. The way of selecting the stepsizes corresponds
to the one used by López et al. for the particular case of the Split Feasibility
Problem. This choice allows us to avoid the computation of operator norms.
Afterwards, a relaxed version of the Gradient Projection Algorithm is considered
where the feasible set is approximated by half-spaces making the projections
explicit. Finally, to get the strong convergence, each step of the general Gradient
Projection Method is combined with a viscosity step. This is done by adapting
Halpern’s algorithm to our problem. The general scheme is then applied to the
Split Equality Problem, and also to the Split Feasibility Problem.

Keywords: gradient projection method; split equality problem; split feasibility
problem; relaxed algorithms; strong convergence

AMS Subject Classifications: 65K05; 90C25; 47H10

1. Introduction

Let H1, H2 and H3 be three infinite-dimensional real Hilbert spaces. The split equality
problem recently studied by Byrne and Moudafi [1], and Moudafi [2,3] consists in

(SE P) Finding x ∈ C and y ∈ Q such that Ax = By

where C and Q are two nonempty closed convex subsets of H1 and H2, respectively, and
A : H1 → H3 and B : H2 → H3 two bounded linear operators.

As mentioned in Moudafi [3], the interest of considering this problem is to cover many
situations, for instance in decomposition methods for PDEs and in game theory. In decision
sciences, this problem allows us to consider agents who interplay only via some components
of their control variables. For further details, seeAttouch et al. [4] and the references therein.

∗Corresponding author. Email: jjstrodiot@fundp.ac.be
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2322 P.T. Vuong et al.

Here we assume that Problem (SEP) has a solution (x∗, y∗), i.e. the SEP is consistent.
So if we define

f (z) = 1

2
‖Ax − By‖2 for every z = (x, y) ∈ H1 × H2

then f is a nonnegative convex function of class C1 on H1 × H2, and z∗ = (x∗, y∗) is a
solution of the minimization problem

min f (z) subject to z ∈ C × Q

that satisfies the property f (z∗) = 0.
When the operator B is the identity, the SEP becomes the split feasibility problem:

(SFP) Find x ∈ C such that Ax ∈ Q

where C and Q are two nonempty closed convex subsets of H1 and H2, respectively, and
A : H1 → H2 is a bounded linear operator.

Censor and Elfving [5] first introduced in 1994 this Problem (SFP) for modelling inverse
problems which arise in medical image reconstruction; see also Byrne [6] and Stark [7].
The Problem (SFP) can also be applied to study intensity-modulated radiation therapy; see,
for instance, Censor et al. [8]. Many well-known iterative algorithms for solving it were
established; see Byrne [9], and see also the survey papers by Bauschke and Borwein [10]
and by López et al. [11].

Here we assume that Problem (SFP) has a solution x∗. So if we define

f (x) = 1

2
‖(I − PQ)Ax‖2 for every x ∈ C

then f is a nonnegative convex function of class C1 on H1, and x∗ is a solution of the
minimization problem

min f (x) subject to x ∈ C

that satisfies the property f (x∗) = 0. So in both cases we have to solve the minimization
problem

(P) min f (z) subject to z ∈ S

with the additional condition that the solution z∗ ∈ S satisfies f (z∗) = 0 where S is a
nonempty closed convex subset of a Hilbert space H and f : H → R is a nonnegative
convex function of class C1. Many iterative methods have been investigated for solving
the SFP. Among them, the most popular method is the Byrne CQ-algorithm [9], which
generates a sequence {xk} by

xk+1 = PC (xk − λA∗(I − PQ)Axk) ∀k ∈ N (1)

where x0 ∈ C , the stepsize λ is chosen in the interval
(

0, 2
‖A‖2

)
, and A∗ denotes the adjoint

of the operator A. Recently, this method has been studied by Moudafi [12] when the sets C
and Q are the fixed point sets of two quasi-nonexpansive operators, respectively.

As observed in López et al. [13], this method is nothing but the gradient projection
method applied for minimizing on C the function f defined by

f (x) = 1

2
‖(I − PQ)Ax‖2 for every x ∈ C.
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Optimization 2323

Indeed, the iteration (1) can be rewritten as

xk+1 = PC (xk − γ∇ f (xk)) ∀k ∈ N.

Motivated by Byrne [9], Byrne and Moudafi proposed in [1] the following CQ-algorithm
for solving the Split Equality Problem (SEP); see also Moudafi and Al-Shemas [14]. Given
(x0, y0) ∈ C × Q, compute successively the elements of the sequence {(xk, yk)} by using
the equalities {

xk+1 = PC (xk − λk A∗(Axk − Byk))

yk+1 = PQ(yk + λk B∗(Axk − Byk))
(2)

where the stepsize λk is chosen in the interval (a, b) ⊂
(

0,min
{

1
‖A‖2 ,

1
‖B‖2

})
.

Let us mention that Moudafi [2] has also proposed a sequential version of (2) where the
computation of yk+1 is replaced by

yk+1 = PQ(yk + λk B∗(Axk+1 − Byk)). (3)

If we define f (z) = f (x, y) = 1
2‖Ax − By‖2 for every z = (x, y) ∈ H1 × H2, it is easy

to see that the iteration (2) can be rewritten as{
xk+1 = PC (xk − λk∇x f (xk, yk))

yk+1 = PQ(yk − λk∇y f (xk, yk)).

Note that for computing λ or λk both iterative methods (1) and (2) need the a priori
knowledge of the norm (or at least an estimate of the norm) of the bounded linear operators
A and B, which is, in general, not an easy work (see, for instance, Byrne [9] and López et al.
[13]). To overcome this difficulty, an alternative way is to construct another stepsize that is
independent of operator norms. A first attempt was made by Yang [15] who considered the
following stepsize λk = ρk/‖∇ f (xk)‖ where {ρk} is a sequence of positive real numbers
such that

∞∑
k=0

ρk = ∞ and
∞∑

k=0

ρ2
k < ∞.

Unfortunately, in order to obtain the convergence of the corresponding method, other
conditions must be imposed on the step sequence {λk} excluding some important cases (see
López et al. [13] for more details). Recently, the authors in [13] modified the computation
of λk to remove the additional conditions imposed by Yang [15] in the CQ-algorithm for
solving (SFP). They proposed to use the sequence {xk} defined by

xk+1 = PC (xk − λk A∗(I − PQ)Axk) ∀k ∈ N (4)

where x0 ∈ C is given, and the stepsize λk is chosen as

λk = ρk f (xk)

‖∇ f (xk)‖2
(5)

with f (x) = 1
2‖(I − PQ)Ax‖2 and ρk ∈ (0, 4). It was proved in ([13], Theorem 3.5) that

if inf k ρk(4 − ρk) > 0, then the sequence {xk} generated by (4) with the step given by (5)
converges weakly to a solution x∗ of (SFP). The reader is referred to Polyak’s book [16]
for more details about the Gradient Projection Algorithm.
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2324 P.T. Vuong et al.

In this paper, motivated by the work of López et al. [13], we first study the convergence
of a general Gradient Projection Algorithm for minimizing a convex function f of class
C1 over a convex constraint set S using the stepsize λk given by (5). Then we apply this
general result first to the Split Equality Problem (SEP), and then after to the Split Feasibility
Problem (SFP). Doing so, we recover the convergence results of López et al. [13], and we
obtain a new method for solving the Split Equality Problem (SEP) without the knowledge
of operator norms ‖A‖ and ‖B‖.

When C and Q are the level sets associated with convex functions, the computation of
the projections onto C and Q may be time-consuming. In such cases, many authors replaced
the projections PC and PQ used in the previous iterative schemes by projections onto half-
spaces containing the convex sets C and Q, respectively. In that case, the projections
become explicit. Let us mention here the papers by Byrne and Moudafi [1] and Moudafi [3]
for Problem (SEP), and by López et al. [13], Xu [17], and Yang [18] for Problem (SFP).

In this paper, we consider a relaxed version of the Gradient Projection Algorithm. In
this version, the feasible set is the level set of a convex function and the objective function
f is approximated at each iteration k by a nonnegative convex function fk of class C1.
Conditions linking fk to f are given to obtain the convergence of the sequence generated
by the algorithm. This general scheme allows us to treat the Split Equality Problem (SEP)
by taking fk = f for all k, and the Split Feasibility Problem (SFP) by choosing carefully
the functions fk .

Up to now, only weak convergence results have been discussed. However, it is well
known that strongly convergent algorithms are of fundamental importance for solving
infinite-dimensional problems. So in the last part of this paper we combine the general
Gradient Projection Method with a viscosity procedure to get the strong convergence of the
sequence of iterates generated by our scheme. This is done by adapting Halpern’s algorithm
[19] to our problem. As before, this general scheme is applied to the Split Equality Problem
(SEP) and the Split Feasibility Problem (SFP) giving each time the strong convergence of
the generated sequences. Finally, let us mention the Tikhonov regularization method that
was also used in Chen et al. [20] to obtain the strong convergence of the iterates.

After this paper has been submitted, the authors took note of a paper of Dong et al. [21]
which was devoted to the Split Equality Problem. The difference between their algorithm
and ours is in the choice of the step length that can be larger in our algorithm (see Section 3
below).

The paper is organized as follows. In the next Section, some preliminary results are
recalled. In Section 3, a general Gradient Projection Algorithm is presented and the weak
convergence of the sequence generated by this one is given. Then the particular cases of
the Split Equality Problem and the Split Feasibility Problem are examined. In Section 4, we
consider a relaxed version of the Gradient Projection Algorithm when the feasible sets C
and Q are level sets of convex functions. The strong convergence of the method is obtained
in Section 5 thanks to the incorporation of a viscosity step into the iterations. Finally, in
Section 6, we give some concluding remarks.

2. Preliminaries

Let H be a real Hilbert endowed with an inner product and its induced norm denoted 〈·, ·〉
and ‖ · ‖, respectively. We write xk ⇀ x (xk → x) to indicate that the sequence {xk}
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Optimization 2325

converges weakly (strongly) to x . Let C be a nonempty closed convex subset of H . For
each x ∈ H , there exists a unique point in C , denoted by PC x , such that

‖x − PC x‖ ≤ ‖x − y‖ ∀y ∈ C.

It is known that PC is a nonexpansive mapping from H onto C and that for every x ∈ H ,
u ∈ C , the following property holds

u = PC x ⇐⇒ 〈x − u, v − u〉 ≤ 0 ∀v ∈ C.

On the other hand, a function f : H → R is said to be weakly lower semi-continuous
(l.s.c.) at x if xk ⇀ x implies

f (x) ≤ lim inf
k→∞ f (xk).

The function f is said to be weakly l.s.c. on H if it is weakly l.s.c. at every point x ∈ H .
We also need the following lemma due to He and Yang [22]. This lemma is a new

fundamental tool that generalizes a very well-known result due to Xu [23].

Lemma 2.1 Assume that {sk} is a sequence of nonnegative real numbers such that for
all k

sk+1 ≤ (1 − αk)sk + αkδk,

sk+1 ≤ sk − ηk + γk,

where {αk} is a sequence in (0, 1), {ηk} is a sequence of nonnegative real numbers, and {δk}
and {γk} are two sequences in R such that

(i)
∑∞

k=0 αk = ∞,
(ii) limk→∞ γk = 0,

(iii) limk→∞ ηnk = 0 implies that lim supk→∞ δnk ≤ 0 for any subsequence {nk} of {n}.

Then limk→∞ sk = 0.

3. A gradient projection method

In this section, we study a general Gradient Projection Method for minimizing a nonnegative
convex function f : H → R of class C1 over a nonempty closed convex subset S of H .
We assume that this problem has a solution z∗ such that f (z∗) = 0. We denote by (P) this
problem and by SOL(P) its solution set. Our aim is first to solve Problem (P) and then to
apply the obtained algorithm for solving the particular problems (SEP) and (SFP). For this
purpose we introduce a gradient projection algorithm with a special stepsize that coincides
with the one used by López et al. [13] when the problem (SFP) is considered.

The Gradient Projection Algorithm we consider in this paper has the following form:

ALGORITHM 1

Step 1. Let z0 ∈ S. Set k = 0.
Step 2. If ∇ f (zk) = 0, STOP (zk is a solution to (P)). Otherwise, go to Step 3.
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2326 P.T. Vuong et al.

Step 3. Compute the next iterate as follows

zk+1 = PS(zk − λk∇ f (zk)) (6)

where the stepsize λk is chosen in such a way that

λk = ρk f (zk)

‖∇ f (zk)‖2
with ρk ∈ (0, 4). (7)

Step 4. Set k → k + 1 and go to Step 2.

Since the function f is convex, it is immediate that zk ∈ S is a minimum of f over S
when ∇ f (zk) = 0. So in the sequel we assume that ∇ f (zk) �= 0 for all k. In order to prove
the convergence of the sequence {zk} generated by Algorithm 1, we introduce the following
assumptions on the sequences {zk}, {λk}, and {ρk}.

(C1) 〈∇ f (zk), zk − z̄〉 ≥ 2 f (zk) for all k and every z̄ ∈ SOL(P).
(C2) λk ≥ λ > 0 for all k.
(C3) inf k [ρk(4 − ρk)] > 0.

Since f (zk) ≥ 0 for all k, Condition (C1) is related to the acute angle condition

〈∇ f (z), z − z̄〉 ≥ 0 for all feasible z �= z̄

that was introduced by Konnov [24] to prove the convergence of the gradient projection
method. Thanks to this condition, we can write immediately for every z̄ ∈ SOL(P)

‖zk+1 − z̄‖2 = ‖PS(zk − λk∇ f (zk))− PS(z̄)‖2

≤ ‖zk − λk∇ f (zk)− z̄‖2

= ‖zk − z̄‖2 − 2λk〈∇ f (zk), zk − z̄〉 + λ2
k‖∇ f (zk))‖2

≤ ‖zk − z̄‖2 − 4λk f (zk)+ λ2
k‖∇ f (zk))‖2. (8)

Now we can choose λk > 0 such that the right-hand side of (8) is minimized. This gives
the following value for λk

λk = 2 f (zk)

‖∇ f (zk)‖2
.

However in our method, to have more flexibility, we choose

λk = ρk f (zk)

‖∇ f (zk)‖2
where 0 < ρk < 4. (9)

Let us also observe that the sequence {zk} generated by Algorithm 1 is contained in S.
Now we can prove the following weak convergence theorem for Algorithm 1.

Theorem 3.1 Assume that the solution set SOL(P) is nonempty. Let {zk}, {λk}, and {ρk}
be the sequences generated by Algorithm 1. If Conditions (C1)–(C3) are satisfied, then

(a) For all k and every z̄ ∈ SOL(P), the following inequality holds

‖zk+1 − z̄‖2 ≤ ‖zk − z̄‖2 − ρk (4 − ρk)
[ f (zk)]2

‖∇ f (zk)‖2
;
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Optimization 2327

(b) The sequence {zk} is bounded and
∑∞

k=0 ρk (4 − ρk)
[ f (zk )]2

‖∇ f (zk )‖2 < ∞;
(c) The sequence {zk} converges weakly to some z∗ ∈ SOL(P) and the sequence { f (zk)}

converges to 0.

Proof The first statement is obtained immediately by replacing λk by its value (9) in the
inequality (8). Since ρk (4 − ρk) > 0, it follows from (a) that {‖zk − z̄‖} is a decreas-
ing sequence. As a consequence, the sequence {zk} is bounded. Furthermore, it follows
immediately from (a) that for all n

n∑
k=0

ρk (4 − ρk)
[ f (zk)]2

‖∇ f (zk)‖2
≤ ‖z0 − z̄‖2.

But this means that the second statement of (b) is proven. Now it remains to prove (c).
In that purpose, first we observe that thanks to Condition (C3) and the convergence of the
series given in (b), we can write that

[ f (zk)]2

‖∇ f (zk)‖2
→ 0.

Since 0 < ρk < 4, we can also write, using the definition of λk and Condition (C2), that

4[ f (zk)]2

‖∇ f (zk)‖2
≥ ρk[ f (zk)]2

‖∇ f (zk)‖2
= λk f (zk) ≥ λ f (zk) ≥ 0.

So we deduce that f (zk) → 0 and, since λ ‖∇ f (zk)‖2 ≤ 4 f (zk), that ‖∇ f (zk)‖ → 0.
Furthermore, using the nonexpansiveness of the projection, we obtain for all k that

‖zk+1 − zk‖2 = ‖PS(zk − λk∇ f (zk))− PS(zk)‖2

≤ λ2
k ‖∇ f (zk)‖2.

Since ‖∇ f (zk)‖ → 0, we can conclude that

‖zk+1 − zk‖2

λ2
k

→ 0. (10)

Let z∗ be a weak limit point of the bounded sequence {zk}. Then there exists a subsequence of
{zk}, denoted again by {zk}, that converges weakly to z∗. Since zk+1 = PS(zk −λk∇ f (zk)),
we have immediately that

zk − zk+1

λk
− ∇ f (zk) ∈ NS(zk+1) (11)

where NS(zk+1) denotes the normal cone to S at zk+1. Taking the limit in (11) as k → ∞,
we obtain that 0 ∈ NS(z∗), and thus that z∗ ∈ S.

On the other hand, the function f being convex and strongly continuous is weakly l.s.c.
and

0 ≤ f (z∗) ≤ lim inf
k→∞ f (zk) = 0

because f (zk) → 0. Hence f (z∗) = 0, and since z∗ ∈ S, we can conclude that z∗ ∈
SOL(P).

It remains to prove that z∗ is the unique weak limit point of {zk}. Suppose there exists
another weak limit point z̃ of {zk}. Replacing z∗ by z̃ in the previous part of the proof, we
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2328 P.T. Vuong et al.

can deduce that z̃ ∈ SOL(P). Furthermore thanks to (8) written with z̃ instead of z∗, we
have that the sequences {‖zk − z∗‖} and {‖zk − z̃‖} are convergent.

On the other hand, since for all k,

2〈zk, z∗ − z̃〉 = ‖zk − z̃‖2 − ‖zk − z∗‖2 + ‖z∗‖2 − ‖z̃‖2

we can conclude that the sequence {〈zk, z∗ − z̃〉} is also convergent. Let l be its limit. Since
z∗ and z̃ are the weak limits of two subsequences of {zk}, we obtain that

l = 〈z∗, z∗ − z̃〉 = 〈z̃, z∗ − z̃〉,
i.e. ‖z∗ − z̃‖2 = 0. But this means that z∗ = z̃ and thus that the whole sequence {zk}
converges weakly to a vector z∗ in SOL(P). �

Now we examine successively the particular problems SEP and SFP. Since, for Problem
(SEP), f (x, y) = 1

2‖Ax − By‖2 for every (x, y) ∈ C × Q, we have that

∇ f (x, y) = (A∗(Ax − By),−B∗(Ax − By))

for every (x, y) ∈ C × Q, where A∗ and B∗ denote the adjoint operators of A and B,
respectively. In this case, Algorithm 1 can be rewritten as

ALGORITHM 1-SEP

Step 1. Let (x0, y0) ∈ C × Q. Set k = 0.
Step 2. If A∗(Axk − Byk) = B∗(Axk − Byk) = 0, STOP ((xk, yk) is a solution of
Problem (SEP)). Otherwise, go to Step 3.
Step 3. Compute the next iterate (xk+1, yk+1) as follows:{

xk+1 = PC (xk − λk A∗(Axk − Byk))

yk+1 = PQ(yk + λk B∗(Axk − Byk))

where the stepsize λk is chosen in such a way that

λk = ρk‖Axk − Byk‖2

2‖A∗(Axk − Byk)‖2 + 2‖B∗(Axk − Byk)‖2
with ρk ∈ (0, 4). (12)

Step 4. Set k → k + 1 and go to Step 2.

Recently, Dong et al. [21] have proposed a projection algorithm similar to Algorithm
1-SEP for solving Problem (SEP). The main difference with our algorithm is in the choice
of the stepsize λk in (12). If, at iteration k, we set

a = ‖Axk − Byk‖, b = ‖A∗(Axk − Byk)‖, c = ‖B∗(Axk − Byk)‖,
then the stepsize used in [21] is chosen in the interval (0,min{ a2

b2 ,
a2

c2 }) while our stepsize

must be in the interval (0, 2a2

b2+c2 ). Since

min

{
a2

b2
,

a2

c2

}
≤ 2a2

b2 + c2
,
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Optimization 2329

the step λk in our algorithm can be theoretically chosen larger than the one considered
in [21].

When Problem (SFP) is considered, the function f is defined for every x ∈ C by
f (x) = 1

2‖(I − PQ)Ax‖2. Then ∇ f (x) = A∗(I − PQ)Ax for every x ∈ C . In this case,
Algorithm 1 coincides with Algorithm 3.1 in López et al. [13] and takes the following form

ALGORITHM 1-SFP

Step 1. Let x0 ∈ C . Set k = 0.
Step 2. If (I − PQ)Axk = 0, STOP (xk is a solution of Problem (SFP)).
Otherwise, go to Step 3.
Step 3. Compute the next iterate as follows:

xk+1 = PC (xk − λk A∗(I − PQ)Axk) (13)

where the stepsize λk is chosen in such a way that

λk = ρk‖(I − PQ)Axk‖2

2‖A∗(I − PQ)Axk)‖2
with ρk ∈ (0, 4). (14)

Step 4. Set k → k + 1 and go to Step 2.

In the next two propositions we will prove the weak convergence of the sequences
generated by Algorithms 1-SEP and 1-SFP to a solution of Problems (SEP) and (SFP),
respectively. This is done by using Theorem 3.1.

Proposition 3.2 Assume that the solution set of Problem (SE P) is nonempty and that
the sequence {ρk} satisfies Condition (C3). Then the sequence {(xk, yk)} generated by
Algorithm 1-SEPconverges weakly to a solution of Problem (SE P). Moreover, the sequence
{Axk − Bxk} converges strongly to 0.

Proof In order to use Theorem 3.1, we have only to show that the sequences {zk} =
{(xk, yk)} and {λk} satisfy Condition (C1) and Condition (C2), respectively. Let z̄ = (x̄, ȳ)
be a solution to Problem (SEP) and let zk = (xk, yk) ∈ C × Q. Since ∇x f (xk, yk) =
A∗(Axk − Byk), we easily obtain the following equalities

〈∇x f (xk, yk), xk − x̄〉 = 〈A∗(Axk − Byk), xk − x̄〉
= 〈Axk − Byk, Axk − Ax̄〉
= ‖Axk − Byk‖2 + 〈Axk − Byk, Byk − Ax̄〉
= 2 f (xk, yk)+ 〈Axk − Byk, Byk − Ax̄〉.

Similarly, since ∇y f (xk, yk) = −B∗(Axk − Byk), we obtain

〈∇y f (xk, yk), yk − ȳ〉 = 2 f (xk, yk)− 〈Axk − Byk, Axk − B ȳ〉.
So Condition (C1) is satisfied because

〈∇ f (zk), zk − z̄〉 = 〈∇x f (xk, yk), xk − x̄〉 + 〈∇y f (xk, yk), yk − ȳ〉
= 4 f (xk, yk)− ‖Axk − Byk‖2

= 2 f (xk, yk) = 2 f (zk).
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On the other hand, since ρk ≥ ρ > 0 (by Condition (C3)), the stepsize λk satisfies the
following relations for all k

λk = ρk f (zk)

‖∇ f (zk)‖2
= ρk‖Axk − Byk‖2

2‖A∗(Axk − Byk)‖2 + 2‖B∗(Axk − Byk)‖2

≥ ρ‖Axk − Byk‖2

2‖A‖2‖Axk − Byk‖2 + 2‖B‖2‖Axk − Byk‖2
= ρ

2

1

‖A‖2 + ‖B‖2
.

So Condition (C2) is satisfied. Finally, using Theorem 3.1, we obtain that f (xk, yk) → 0,
i.e. the sequence {Axk − Bxk} converges strongly to 0. �

For Problem (SFP) we can recover from Theorem 3.1 the following convergence result
due to López et al. ([13], Theorem 3.5):

Proposition 3.3 Assume that the solution set of Problem (SF P) is nonempty and that
the sequence {ρk} satisfies Condition (C3). Then the sequence {xk} generated by Algorithm
1-SFP converges weakly to a solution of Problem (SF P). Moreover, the sequence {(I −
PQ)Axk} converges strongly to 0.

Proof In order to use Theorem 3.1, we have only to prove that the sequences {xk} and
{λk} satisfy Condition (C1) and Condition (C2), respectively. Let x̄ be a solution to problem
(SFP) and let x ∈ C . Since ∇ f (x) = A∗(I − PQ)Ax , we can write

〈∇ f (x), x − x̄〉 = 〈(I − PQ)Ax, Ax − Ax̄〉
= 〈(I − PQ)Ax, Ax〉 − 〈Ax, (I − PQ)Ax̄〉
= ‖(I − PQ)Ax‖2 = 2 f (x)

where we have used PQ(Ax̄) = Ax̄ and (I − PQ)(I − PQ) = I − PQ . So Condition (C1)
is satisfied. On the other hand, since ρk ≥ ρ > 0, the stepsize λk satisfies the following
relations for all k

λk = ρk f (xk)

‖∇ f (xk)‖2
= ρk‖(I − PQ)Axk‖2

2‖A∗(I − PQ)Axk‖2
≥ ρ

2‖A‖2
.

So Condition (C2) is satisfied. Finally, using Theorem 3.1, we obtain that f (xk) → 0, i.e.
the sequence {(I − PQ)Axk} converges strongly to 0. �

4. A relaxed gradient projection method

In Section 3, we studied a gradient projection method for solving Problem (P). In that
method it was supposed that the orthogonal projection onto the feasible set S is easy to
obtain. It was the case, for example, when S is a ball, a half-space or a convex polyhedron.
However, when the set S is defined by means of convex inequalities, the computation of
the projection onto S is generally difficult. To overcome this difficulty, Fukushima [25]
suggested to approximate the set S by a sequence of half-spaces {Sk} that contain it. Then
the projection onto S is replaced by projections onto the half-spaces Sk . This idea was
followed by Yang [18] and Moudafi [3] for solving (SFP) and (SEP), respectively. Here we
use the same strategy but applied to Problem (P). As a consequence the sequence of points
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generated by the algorithm does not remain necessarily in the set S. Practically, we assume
that the set S is defined by

S = {z ∈ H | s(z) ≤ 0}
where s : H → R is a convex l.s.c. (w.r.t. the strong topology) function defined on a real
Hilbert space H . In this section, we also assume that the function s is subdifferentiable on
H and that at each point z some subgradient of s at z can be computed. So, if ψk ∈ ∂s(zk)

(i.e. ψk is a subgradient of s calculated at zk), the level set S is approximated at zk by the
half-space

Sk = {z ∈ H | s(zk)+ 〈ψk, z − zk〉 ≤ 0}
(see, e.g. [22]). Then the projection z̄ of a point z �∈ Sk onto Sk is explicitly given by

z̄ = zk − s(zk)

‖ψk‖2
ψk . (15)

Here we assume that the objective function f : H → R of Problem (P) is convex and
l.s.c. (in the strong topology). In order that our general model can solve both problems
(SEP) and (SFP), we also consider a sequence { fk} of nonnegative convex functions of
class C1 defined on H that approximate f in the sense given below by Condition (C4).
More precisely, we consider the following relaxed algorithm for solving Problem (P).

ALGORITHM 2

Step 1. Let z0 ∈ S. Set k = 0.
Step 2. If ∇ fk(zk) = 0, STOP (zk is a solution to (P)). Otherwise, go to Step 3.
Step 3. Compute ψk ∈ ∂s(zk) and the next iterate as follows

zk+1 = PSk (zk − λk∇ fk(zk)) (16)

where the set Sk = {z ∈ H | s(zk)+ 〈ψk, z − zk〉 ≤ 0} and the stepsize λk

is chosen in such a way that

λk = ρk fk(zk)

‖∇ fk(zk)‖2
with ρk ∈ (0, 4). (17)

Step 4. Set k → k + 1 and go to Step 2.

Let us observe that Algorithm 2 is implementable because the projections onto half-
spaces Sk are explicit (via the formula (15)). In the next theorem, we need to replace
Condition (C1) by the following condition

(C1a) 〈∇ fk(zk), zk − z̄〉 ≥ 2 fk(zk) for all k and every z̄ ∈ SOL(P)

and to assume the following relationship between the functions fk and f :

(C4) There exists M > 0 such that 0 ≤ f (zk) ≤ M fk(zk) for all k ∈ N.

Finally, we have also to impose the next assumption on the function s:

(A1) The subdifferential operator ∂s(·) is bounded on bounded subsets of H .
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It is well known that Assumption (A1) is automatically satisfied when H is a finite dimen-
sional real Hilbert space (see, e.g. Bauschke and Borwein [10]).

Theorem 4.1 Assume that the solution set of Problem (P) is nonempty and that
Assumption (A1) is satisfied. If the sequences {zk}, {λk} and {ρk} generated by Algorithm
2 satisfy Conditions (C1a) and (C2)–(C4), then the sequence {zk} converges weakly to a
solution z∗ of (P). Moreover, the sequence { fk(zk)} converges to 0.

Proof
(1) Let z̄ be a solution of Problem (P). Then f (z̄) = 0 and z̄ ∈ S ⊂ Sk for all k. Using

Assumptions (C1a) (instead of (C1)), (C2) and (C3), we can deduce, using a proof similar
to the one of Theorem 3.1, that the sequence {‖zk − z̄‖} is decreasing, the sequence {zk} is
bounded and the sequence { fk(zk)} tends to zero. Moreover

λk‖∇ fk(zk)‖ = ρk fk(zk)

‖∇ fk(zk)‖ → 0.

Consequently, the sequence ‖zk+1 − zk‖ → 0 as k → ∞. Indeed, for all k, we have

‖zk+1 − zk‖2 = ‖z̄ − zk‖2 − ‖z̄ − zk+1‖2 + 2〈zk+1 − zk, zk+1 − z̄〉 (18)

and by definition of zk+1,

〈zk+1 − (zk − λk∇ fk(zk)), z̄ − zk+1〉 ≥ 0.

Hence, for all k, we can write, using the Cauchy-Schwarz inequality

〈zk − zk+1, z̄ − zk+1〉 ≤ λk 〈∇ fk(zk), z̄ − zk+1〉
≤ λk ‖∇ fk(zk)‖ ‖z̄ − zk+1‖. (19)

Gathering (18) and (19), we deduce that for all k

‖zk+1 − zk‖2 ≤ ‖z̄ − zk‖2 − ‖z̄ − zk+1‖2 + 2λk‖∇ fk(zk)‖ ‖z̄ − zk+1‖.
So

‖zk+1 − zk‖ → 0 as k → ∞ (20)

because the sequence {‖z̄ − zk‖} is convergent and λk‖∇ fk(zk)‖ → 0.
(2) Let z∗ be a weak limit point of the sequence {zk}. Then there exists a subsequence

of {zk}, denoted again {zk}, that converges weakly to z∗. Since, by construction, zk+1 ∈ Sk ,
we have

s(zk)+ 〈ψk, zk+1 − zk〉 ≤ 0

where ψk ∈ ∂s(zk). The subdifferential operator ∂s(·) being bounded on bounded subsets
of H (in virtue of (A1)), there exists � > 0 such that ‖ψk‖ ≤ � for all k. Then, following
(20),

s(zk) ≤ −〈ψk, zk+1 − zk〉 ≤ � ‖zk+1 − zk‖ → 0.

So, from the weak lower semicontinuity of the mapping s, we obtain that

s(z∗) ≤ lim inf
k

s(zk) ≤ 0.
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But this means that z∗ ∈ S.
(3) Since fk(zk) → 0, we obtain from Condition (C4) that f (zk) → 0. So, the function

f being convex and l.s.c. (in the strong topology) is weakly l.s.c. and

0 ≤ f (z∗) ≤ lim inf
k

f (zk) = 0.

Since z∗ ∈ S, this implies that z∗ is a solution of Problem (P).
Finally, using again the proof of Theorem 3.1, we can conclude that the weak limit of

the sequence {zk} is unique. So the whole sequence {zk} converges weakly to z∗. �

Now we examine Problem (SEP) where f (x, y) = 1
2‖Ax − By‖2 for every (x, y) ∈

C × Q. In this case, the sets C and Q have a particular structure of the form

C = {x ∈ H1 | c(x) ≤ 0} and Q = {y ∈ H2 | q(y) ≤ 0}
where the functions c : H1 → R and q : H2 → R are convex and subdifferentiable.

Then the corresponding relaxed sets at iteration k are defined by

Ck = {x ∈ H1 | c(xk)+ 〈ξ k, x − xk〉 ≤ 0}
and

Qk = {y ∈ H2 | q(yk)+ 〈ηk, y − yk〉 ≤ 0}
where ξ k ∈ ∂c(xk) and ηk ∈ ∂q(yk). We have immediately that C ⊂ Ck and Q ⊂ Qk for
all k. To make the link with Algorithm 2, we define the function s : H1 × H2 → R by

s(z) = s(x, y) = c(x)+ q(y).

Then C × Q ⊂ S where S = {z ∈ H1 × H2 | s(z) ≤ 0}. Furthermore, it is easy to see that
∂s(x, y) = ∂c(x) × ∂q(y) for all x ∈ H1 and y ∈ H2. Here we also define the sequence
{ fk} by fk = f for all k. So each function fk is nonnegative, convex and of class C1, and
Condition (C4) is satisfied with M = 1. In this case, Algorithm 2 can be rewritten as

ALGORITHM 2-SEP

Step 1. Let (x0, y0) ∈ C × Q. Set k = 0.
Step 2. If A∗(Axk − Byk) = B∗(Axk − Byk) = 0, STOP ((xk, yk) is a solution to
Problem (SEP)). Otherwise, go to Step 3.
Step 3. Compute the next iterate (xk+1, yk+1) as follows:{

xk+1 = PCk (xk − λk A∗(Axk − Byk))

yk+1 = PQk (yk + λk B∗(Axk − Byk))

where the stepsize λk is chosen in such a way that

λk = ρk‖Axk − Byk‖2

2‖A∗(Axk − Byk)‖2 + 2‖B∗(Axk − Byk)‖2
with ρk ∈ (0, 4). (21)

Step 4. Set k → k + 1 and go to Step 2.

As for Algorithm1-SEP, the step λk in our algorithm can be chosen larger than the one
considered in [21].
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Since the projections onto half-spaces Ck and Qk are explicit, Algorithm 2-SEP is
implementable. Now we study the convergence of Algorithm 2-SEP. For this purpose, we
need the following assumption

(A2) The subdifferential operators ∂c and ∂q are bounded on bounded subsets of H1 and
H2, respectively.

As for Assumption (A1), it is well known that Assumption (A2) is satisfied when the Hilbert
spaces H1 and H2 are finite dimensional.

Proposition 4.2 Assume that the solution set of Problem (SE P) is nonempty and that
Assumption (A2) is satisfied. If the sequence {ρk} satisfies Condition (C3), then the sequence
{(xk, yk)} generated by Algorithm 2-SEP converges weakly to a solution (x∗, y∗) of (SE P).
Moreover, the sequence {Axk − Byk} converges strongly to 0.

Proof Since fk = f for all k, Condition (C4) is obviously satisfied. Moreover, using a
proof similar to that of Proposition 3.2 with (xk, yk) belonging to H1 × H2 instead of C × Q,
we obtain that the sequence {zk} = {(xk, yk)} satisfies Condition (C1a) (and thus Condition
(C1)) and the sequence {ρk} Condition (C2).

On the other hand, setting zk = (xk, yk) and replacing S by C × Q and Sk by Ck × Qk

in the first part of the proof of Theorem 4.1, we obtain that the sequence {zk} is bounded,
the sequences { fk(zk)} and {‖zk+1 − zk‖} tend to zero. Consequently

‖xk+1 − xk‖ → 0 and ‖yk+1 − yk‖ → 0.

Let z∗ = (x∗, y∗) be a weak limit point of the sequence {zk} = {(xk, yk)}. Then the second
part of the proof of Theorem 4.1 may be used twice with zk replaced successively by xk

and yk to get first that x∗ ∈ C and after that y∗ ∈ Q. The third part of the proof of Theorem
4.1 gives directly that f (x∗, y∗) = f (z∗) = 0 because f (zk) = fk(zk) → 0. Since
(x∗, y∗) ∈ C × Q, this implies that (x∗, y∗) is a solution to Problem (SEP). The rest of the
proof follows directly from the end of the proof of Theorem 4.1. �

To finish this section, we consider the Split Feasibility Problem:

(SFP) Find x∗ ∈ C such that Ax∗ ∈ Q.

Here the operator A : H1 → H2 is linear and bounded, and the subsets C and Q are defined
as

C = {x ∈ H1 | c(x) ≤ 0} and Q = {y ∈ H2 | q(y) ≤ 0}
where the functions c : H1 → R and q : H2 → R are convex and subdifferentiable.

Then the corresponding relaxed sets at iteration k are defined by

Ck = {x ∈ H1 | c(xk)+ 〈ξ k, x − xk〉 ≤ 0}
and

Qk = {y ∈ H2 | q(Axk)+ 〈ηk, y − Axk〉 ≤ 0}
where ξ k ∈ ∂c(xk) and ηk ∈ ∂q(Axk).
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For all k we define the functions fk : H1 → R by

fk(x) = 1

2
‖(I − PQk )Ax‖2 for every x ∈ H1.

In this case, Algorithm 2 coincides with Algorithm 4.1 in López et al. [13] and takes the
following form:

ALGORITHM 2-SFP

Step 1. Let x0 ∈ C . Set k = 0.
Step 2. If (I − PQk )Axk = 0, STOP (xk is a solution to Problem (SFP)).
Otherwise, go to Step 3.
Step 3. Compute the next iterate xk+1 as follows:

xk+1 = PCk (xk − λk A∗(I − PQk )Axk) (22)

where the stepsize λk is chosen in such a way that

λk = ρk‖(I − PQk )Axk‖2

2‖A∗(I − PQk )Axk‖2
with ρk ∈ (0, 4). (23)

Step 4. Set k → k + 1 and go to Step 2.

For Problem (SFP) we recover from Theorem 4.1 the following convergence result due
to López et al. ([13], Theorem 4.3), where the following assumption has been used:

(A3) The subdifferential operator ∂c is bounded on bounded subsets of H1.

Proposition 4.3 Assume that the solution set of Problem (SF P) is nonempty and that
Assumption (A3) is satisfied. If the sequence {ρk} satisfies Condition (C3), then the sequence
{xk} generated by Algorithm 2-SFP converges weakly to a solution x∗ of (SF P). Moreover,
the sequence {(I − PQ)Axk} converges strongly to 0.

Proof In order to apply Theorem 4.1, we have to prove that Conditions (C1a), (C2) and
(C4) are satisfied. First we observe that Conditions (C1a) and (C2) can be proven exactly as
in the proof of Proposition 3.3. Consequently, for every x̄ ∈ S, we can write as in Theorem
3.1(a) that for all k

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 − ρk(4 − ρk)
[ fk(xk)]2

‖∇ fk(xk)‖2
.

So the sequence {xk} is bounded. Next, the solution set of Problem (SFP) being nonempty,
it is easy to see that Problem (SFP) is equivalent to the problem

(P) minimize f (x) over x ∈ C

where f : H1 → R is defined by

f (x) = max {0, q(Ax)} for all x ∈ H1.
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This function f is weakly l.s.c. because it is convex and l.s.c. (in the strong topology). So, to
finish the proof, it remains to show that Condition (C4) is satisfied. Since PQk (Axk) ∈ Qk ,
we have, by definition of Qk , that

q(Axk) ≤ 〈ηk, Axk − PQk (Axk)〉
where ηk ∈ ∂q(Axk). On the other hand, the sequence {xk} being bounded, it follows from
(A3) that the sequence {ηk} is also bounded. So there exists M > 0 such that q(Axk) ≤
M‖(I − PQk )Axk‖, which implies that f (xk) ≤ M fk(xk) for all k. So Condition (C4) is
satisfied. �

5. Strong convergence of the GP method

In this Section, we use a Halpern-type procedure to modify Algorithm 1 in Section 3 in such
a way that the weak convergence of the iterates becomes strong convergence. This procedure
has been introduced in Halpern [19] for finding a fixed point of a nonexpansive mapping.
Let K be a nonempty closed convex subset of a Hilbert space H and let T : K → K be a
nonexpansive mapping (i.e. ‖T x − T y‖ ≤ ‖x − y‖ for all x, y ∈ H ) whose fixed point set
is nonempty. Let u ∈ K be fixed. Then Halpern’s algorithm generates a sequence {xk} in
K via the iterative procedure

xk+1 = αku + (1 − αk)T xk ∀k ∈ N (24)

where x0 ∈ K and {αk} is a sequence in (0, 1). It was shown in Wittmann [23,26] and Xu
[23] that if {αk} satisfies the following conditions

(B1) limk→∞ αk = 0 and
∑∞

k=0 αk = ∞
(B2) either

∑∞
k=0 |αk+1 − αk | < ∞ or limk→∞

αk+1

αk
= 1

then the sequence {xk} generated by Halpern’s algorithm converges strongly to the fixed
point of T nearest to u. In [27], Suzuki used an explicit iteration similar to (24) and proved
the strong convergence of the sequence {xk} under the only Assumption (B1).

In this section, our aim is to adapt Halpern’s procedure for solving Problem (P). Let us
recall that this problem consists in minimizing a nonnegative convex function f : H → R

of class C1 onto a nonempty closed convex subset S of H . We assume that this problem
has a solution z∗ such that f (z∗) = 0. Furthermore, we want the sequence generated by
our algorithm to be strongly convergent to the projection of a fixed element w ∈ S onto the
solution set, and that under the Assumption (B1). In that purpose we consider the following
algorithm

ALGORITHM 3

Step 1. Choose w ∈ S. Let z0 ∈ S. Set k = 0.
Step 2. If ∇ f (zk) = 0, STOP (zk ∈ SOL(P)). Otherwise, go to Step 3.
Step 3. Compute the next iterate as follows:

zk+1 = αkw + (1 − αk)PS(zk − λk∇ f (zk)) (25)
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where αk ∈ (0, 1) and the stepsize λk is chosen in such a way that

λk = ρk f (zk)

‖∇ f (zk)‖2
with ρk ∈ (0, 4). (26)

Step 4. Set k → k + 1 and go to Step 2.

Theorem 5.1 Assume that the solution set SOL(P) of Problem (P) is nonempty and Con-
ditions (C1)–(C3), and (B1) are satisfied. Then the sequence {zk} generated by Algorithm
3 is contained in S and converges strongly to the solution z∗ of Problem (P) which is the
projection of w onto SOL(P).

Proof Let z∗ = PSOL(P)w. By construction, the sequence {zk} is contained in the feasible
set S. Let us define wk = PS(zk − λk∇ f (zk)) for all k. Then, Conditions (C1)–(C3) being
satisfied, it follows from Theorem 3.1(a) that for all k

‖wk − z∗‖2 ≤ ‖zk − z∗‖2 − ρk (4 − ρk)
[ f (zk)]2

‖∇ f ((zk)‖2
(27)

≤ ‖zk − z∗‖2. (28)

Hence, using the convexity of the square of the norm and (28), we obtain for all k

‖zk+1 − z∗‖2 = ‖αk(w − z∗)+ (1 − αk)(wk − z∗)‖2

≤ αk‖w − z∗‖2 + (1 − αk)‖wk − z∗‖2

≤ αk‖w − z∗‖2 + (1 − αk)‖zk − z∗‖2

≤ max{‖w − z∗‖2, ‖zk − z∗‖2}. (29)

So by induction, we can conclude from (29) that, for all k,

‖zk+1 − z∗‖2 ≤ max{‖w − z∗‖2, ‖z0 − z∗‖2}
which implies that the sequence {zk} is bounded.

On the other hand, we have successively for all k

‖zk+1 − z∗‖2 = ‖αk(w − z∗)+ (1 − αk)(wk − z∗)‖2

= α2
k ‖w − z∗‖2 + (1 − αk)

2‖wk − z∗‖2 + 2αk(1 − αk)〈w − z∗, wk − z∗〉
= α2

k ‖w − z∗‖2 + (1 − αk)
2‖wk − z∗‖2

+ 2αk〈w − z∗, (1 − αk)(wk − z∗)〉
= α2

k ‖w − z∗‖2 + (1 − αk)
2‖wk − z∗‖2

+ 2αk〈w − z∗, αk(w − z∗)+ (1 − αk)(wk − z∗)〉 − 2α2
k ‖w − z∗‖2

≤ (1 − αk)
2‖wk − z∗‖2 + 2αk〈w − z∗, zk+1 − z∗〉

≤ (1 − αk)‖wk − z∗‖2 + 2αk〈w − z∗, zk+1 − z∗〉. (30)

Hence, we can deduce, using (27), that for all k

‖zk+1 − z∗‖2 ≤ (1 − αk)

[
‖zk − z∗‖2 − ρk (4 − ρk)

[ f (zk)]2

‖∇ f ((zk)‖2

]

+ 2αk〈w − z∗, zk+1 − z∗〉. (31)
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Since αk → 0 and inf k ρk(4 − ρk) > 0, we may assume without loss of generality that
there exists σ > 0 such that ρk(4 − ρk)(1 − αk) ≥ σ . As a consequence, it follows from
(31) that for all k

‖zk+1 − z∗‖2 − ‖zk − z∗‖2 + αk‖zk − z∗‖2 + σ [ f (zk)]2

‖∇ f (zk)‖2

≤ 2αk〈w − z∗, zk+1 − z∗〉. (32)

In particular, for all k, we obtain the next two inequalities

‖zk+1 − z∗‖2 ≤ (1 − αk)‖zk − z∗‖2 + αkδk (33)

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − ηk + αk M (34)

where αk ∈ (0, 1), αk → 0,
∑
αk = ∞, 2‖w − z∗‖‖zk+1 − z∗‖ ≤ M , and

ηk = σ [ f (zk)]2

‖∇ f (zk)‖2
and δk = 2〈w − z∗, zk+1 − z∗〉.

In order to apply Lemma 2.1 with sk = ‖zk − z∗‖2, it remains to prove that for any
subsequence {nk} of {n},

ηnk → 0 ⇒ lim sup
k→∞

δnk ≤ 0.

Let {nk} be a subsequence of {n} such that ηnk → 0. Then, as in the proof of Theorem
3.1, we can obtain that every weak limit point of the sequence {znk } is a solution to Problem
(P). Since zk ∈ S and wk = PS(zk − λk∇ f (zk)) for all k, and ηnk → 0, we have,
using successively the nonexpansiveness of the projection, the definition of λk and the
boundedness of ρk , that for all k

‖wnk − znk ‖ = ‖PS(znk − λnk ∇ f (znk ))− PS(znk )‖
≤ λnk ‖∇ f (znk )‖ = ρnk f (znk )‖∇ f (znk )‖ → 0.

But this implies, by definition of znk+1, that

‖znk − znk+1‖ ≤ αnk ‖w − znk ‖ + (1 − αnk )‖wnk − znk ‖ → 0 (35)

because αk → 0 and the sequence {zk} is bounded. Then, recalling that z∗ = PSOL(P)w,
we can deduce from (35) that

lim sup
k→∞

δnk = 2 lim sup
k→∞

〈w − z∗, znk+1 − z∗〉
= 2 lim sup

k→∞
〈w − z∗, znk − z∗〉

= 2 max
z∈ωw(znk )

〈w − PSOL(P)w, z − PSOL(P)w〉 ≤ 0. (36)

Applying finally Lemma 2.1, we can conclude that ‖zk − z∗‖ → 0. Hence the sequence
{zk} converges strongly to z∗. �

Now we examine successively the particular problems (SEP) and (SFP). Let us recall
that when Problem (SEP) is considered, the function f is defined, for every (x, y) ∈ C × Q,
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by f (x, y) = 1
2‖Ax − By‖2. Then

∇ f (x, y) = (A∗(Ax − By),−B∗(Ax − By))

for every (x, y) ∈ C × Q. In this case, Algorithm 3 takes the following form:

ALGORITHM 3-SEP

Step 1. Choose (u, v) ∈ C × Q. Let (x0, y0) ∈ C × Q. Set k = 0.
Step 2. If A∗(Axk − Byk) = −B∗(Axk − Byk) = 0, STOP ((xk, yk) is a solution to
Problem (SEP)). Otherwise, go to Step 3.
Step 3. Compute the next iterate (xk+1, yk+1) as follows:{

xk+1 = αku + (1 − αk)PC (xk − λk A∗(Axk − Byk))

yk+1 = αkv + (1 − αk)PQ(yk + λk B∗(Axk − Byk))

where αk ∈ (0, 1) and the stepsize λk is chosen in such a way that

λk = ρk‖Axk − Byk‖2

2‖A∗(Axk − Byk)‖2 + 2‖B∗(Axk − Byk)‖2
with ρk ∈ (0, 4). (37)

Step 4. Set k → k + 1 and go to Step 2.

As for Algorithm1-SEP, the step λk in our algorithm can be chosen larger than the one
considered in [21].

When Problem (SFP) is considered, the function f is defined, for every x ∈ C , by
f (x) = 1

2‖(I − PQ)Ax‖2. Then ∇ f (x) = A∗(I − PQ)Ax for every x ∈ C . In that case,
Algorithm 3 coincides with Algorithm 5.1 in López et al. [13] and takes the following form:

ALGORITHM 3-SFP

Step 1. Choose u ∈ C . Let x0 ∈ C . Set k = 0.
Step 2. If (I − PQ)Axk = 0, STOP (xk is a solution to Problem (SFP)).
Otherwise, go to Step 3.
Step 3. Compute the next iterate xk+1 as follows:

xk+1 = αku + (1 − αk)PC (xk − λk A∗(I − PQ)Axk)

where αk ∈ (0, 1) and the stepsize λk is chosen in such a way that

λk = ρk‖(I − PQ)Axk‖2

2‖A∗(I − PQ)Axk‖2
with ρk ∈ (0, 4). (38)

Step 4. Set k → k + 1 and go to Step 2.

Remark 1 Very recently, He and Zhao [28] proposed a Halpern-type algorithm to solve
the Split Feasibility Problem (SFP) based on the stepsize given by López et al. [13]. Their
algorithm is similar to our Algorithm 3-SFP above, but their approach and proof are quite
different from ours.

Proposition 5.2 Assume that the solution set SO L(SE P) of Problem (SEP) is nonempty
and that Conditions (C3) and (B1) are satisfied. Then Conditions (C1) and (C2) hold and
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the sequence {(xk, yk)} generated by Algorithm 3-SE P converges strongly to a solution
(x∗, y∗) of Problem (SE P). This solution is the projection of (u, v) onto SO L(SE P).

For Problem (SFP) we recover from Theorem 5.1 the following convergence result due
to López et al. ([13], Theorem 5.2).

Proposition 5.3 Assume that the solution set SO L(SF P) of Problem (SFP) is nonempty
and that Conditions (C3) and (B1) are satisfied. Then Conditions (C1) and (C2) hold and
the sequence {xk} generated by Algorithm 3-SF P converges strongly to a solution x∗ of
Problem (SF P). This solution is the projection of u onto SO L(SF P).

Remark 2 A relaxed version of Algorithms 3, 3-SEP and 3-SFP can be obtained when
the feasible sets S, C and Q are described by means of convex inequalities. The procedure
is the same as the one used in Section 4 to derive Algorithms 2, 2-SEP and 2-SFP from
Algorithms 1, 1-SEP and 1-SFP, respectively. At each iteration, the sets S, C and Q are
approximated by half-spaces Sk , Ck and Qk making the projections easy to compute.

6. Conclusions

Ageneral Gradient Projection Method has been introduced for minimizing a convex function
of class C1 onto a convex constraint set. When this set is described by convex inequalities, a
relaxation was proposed to make explicit the computation of the projections. In a first part,
conditions were given for obtaining a weak convergence theorem and after, it was proven
that these conditions are satisfied for the particular problems (SEP) and (SFP). In a second
part, the Gradient Projection Method has been combined with a viscosity procedure to get
a strong convergence theorem. Finally, let us mention that encouraging numerical results
have been displayed in [21] where the behaviour of Algorithm 1-SEP has been compared
with the classical projection algorithm (2) and the alternating CQ algorithm (3).
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